Estimation of seismic drift and ductility demands in plane regular X-braced steel frames
Estimation of seismic drift and ductility demands in plane regular X-braced steel frames
This paper summarizes the results of an extensive study on the inelastic seismic response of X-braced steel buildings. More than 100 regular multi-storey tension-compression X-braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record-to-record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design-oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation-controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former.
2273-2289
Karavasilis, T.L.
15850eb0-6af4-4b6e-bab4-d5bde281b769
Bazeos, N.
a7030733-6d22-4723-860c-71f0e0d4a53c
Beskos, D.E.
9fa0ddd7-599f-46b3-953b-0b1950992c87
December 2007
Karavasilis, T.L.
15850eb0-6af4-4b6e-bab4-d5bde281b769
Bazeos, N.
a7030733-6d22-4723-860c-71f0e0d4a53c
Beskos, D.E.
9fa0ddd7-599f-46b3-953b-0b1950992c87
Karavasilis, T.L., Bazeos, N. and Beskos, D.E.
(2007)
Estimation of seismic drift and ductility demands in plane regular X-braced steel frames.
Earthquake Engineering & Structural Dynamics, 36 (15), .
(doi:10.1002/eqe.728).
Abstract
This paper summarizes the results of an extensive study on the inelastic seismic response of X-braced steel buildings. More than 100 regular multi-storey tension-compression X-braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record-to-record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design-oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation-controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former.
This record has no associated files available for download.
More information
Accepted/In Press date: 10 May 2007
e-pub ahead of print date: 21 June 2007
Published date: December 2007
Organisations:
Infrastructure Group
Identifiers
Local EPrints ID: 401714
URI: http://eprints.soton.ac.uk/id/eprint/401714
ISSN: 0098-8847
PURE UUID: 2ffa00bc-1da3-4cbc-aae4-8351898b76cf
Catalogue record
Date deposited: 24 Oct 2016 15:35
Last modified: 15 Mar 2024 02:53
Export record
Altmetrics
Contributors
Author:
T.L. Karavasilis
Author:
N. Bazeos
Author:
D.E. Beskos
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics