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Lakes are widely distributed on the Tibetan Plateau, which plays an important role in
natural methane emission. Aerobic methanotrophs in lake sediments reduce the
amount of methane released into the atmosphere. However, no study to date has
analyzed the methanotroph community composition and their driving factors in
sediments of these high-altitude lakes (>4000 m). To provide new insights on this
aspect, the abundance and composition in the sediments of six high-altitude alkaline
lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied.
The quantitative PCR, terminal restriction fragment length polymorphism and 454-
pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies
ranged 10* -10° per gram fresh sediment. Type | methanotrophs predominated in
Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs
being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining
the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-
sequencing data from lake sediments of other regions, a significant salinity and
alkalinity effect (P=0.001) was detected, especially salinity, explained ~25% of
methanotroph community variability. The main effect was Methylomicrobium being
dominant (up to 100%) in saline lakes only. In freshwater lakes, however,
methanotroph composition was relatively diverse, including Methylobacter,
Methylocystis, and uncultured type Ib clusters. This study provides the first
methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity
is a driving factor for the community composition of aerobic methanotrophs.
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Abstract

Lakes are widely distributed on the Tibetan Plateau, which plays an important role in
natural methane emission. Aerobic methanotrophs in lake sediments reduce the
amount of methane released into the atmosphere. However, no study to date has
analyzed the methanotroph community composition and their driving factors in
sediments of these high-altitude lakes (>4000 m). To provide new insights on this
aspect, the abundance and composition in the sediments of six high-altitude alkaline
lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied.
The quantitative PCR, terminal restriction fragment length polymorphism and 454-
pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies
ranged 10*-10° per gram fresh sediment. Type | methanotrophs predominated in
Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs
being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining
the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-
sequencing data from lake sediments of other regions, a significant salinity and
alkalinity effect (P=0.001) was detected, especially salinity, explained ~25% of
methanotroph community variability. The main effect was Methylomicrobium being
dominant (up to 100%) in saline lakes only. In freshwater lakes, however,
methanotroph composition was relatively diverse, including Methylobacter,
Methylocystis, and uncultured type Ib clusters. This study provides the first
methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity

is a driving factor for the community composition of acrobic methanotrophs.
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Introduction

Methane is an important greenhouse gas and its concentration has increased 150%
since 1750 [1]. Lakes are estimated to be responsible for 6-16% of total natural
methane emission, which is greater than oceanic emission [2]. Methane emission in
lake sediments is ultimately regulated by microbial production and oxidation,
including the actions of methanogens and methanotrophs. Aerobic methanotrophs
within the oxic lake sediment surface layer can consume ~93% of the methane

produced in deeper sediments [3], fulfilling an important ecosystem service.

Methanotrophs belonging to the phylum Proteobacteria [4] are widespread in
diverse habitats. They are commonly divided into two groups: type I methanotrophs
in the family Methylococcaceae (Gammaproteobacteria) and type II methanotrophs in
the family Methylocystaceae and Beijerinckiaceae (Alphaproteobacteria) [5].
Methanotrophs in Gammaproteobacteria are further divided into type la and type Ib.
The genera Methylomonas, Methylobacter, Methylomicrobium and Methylosarcina
belong to type la, while Methylocaldum, Methylococcus and uncultivated cluster
FWs, LWs and RPCs are grouped as type Ib methanotrophs [6, 7]. Methanotrophs can
be identified in environmental samples not only by 16S rRNA gene analysis but also
by the detection of the pmoA gene, which encodes the B-subunit of particulate

methane monooxygenase (pMMO) [8].
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A large diversity of different methanotrophs has been reported in different lake
ecosystems [9, 10, 11]. In sediments of freshwater lakes, such as Lake Constance,
arctic Lake Qalluuraq and Yunnan lakes, type I methanotrophs dominated over type 11
methanotrophs [10, 11, 12, 13]. Especially Methylobacter (type la) is always one of
the dominant genera. However, because of unclear classification of uncultivated
clusters, methanotrophs in the type Ib group have not been well described in the
former lake studies. Methane oxidation activity has also been found in the water
column and the sediment of saline and alkaline lakes [14, 15]. Methanotroph
communities of saline and alkaline lakes are dominated by type I methanotrophs [9,
16], and many of these haloalkaliphilic and haloalkalitolerant type I methanotrophs
have also been isolated in pure culture [17, 18]. In the meantime, type II
methanotrophs were also isolated from saline and alkaline lakes indicating that they

are an important component of the methanotroph community [19, 20].

There are several thousand lakes on the Tibetan Plateau with a total area of about
36,900 km? accounting for about 49.5% of the total lake area in China [21]. These
lakes are characterized by high altitude and low annual mean temperature [22]. These
environmental conditions could favor an aerobic methanotroph community distinct
from warmer climates, as it is generally thought that low temperature might be of
advantage for type I methanotrophs [11, 23]. Most of the Tibetan lakes are alkaline
and some of them are more or less saline [24, 25, 26], so that the gradual effects of
salinity can be studied. However, the methanotroph composition in these lakes has not

been reported previously.




©CO~NOOOTA~AWNPE

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Our main objectives were to obtain information on the presence of aerobic
methanotrophs in lake sediments of the Tibetan region and to investigate the effect of
salinity on their community composition. Therefore, sediments from six lakes were
sampled on the Tibetan Plateau. We applied pmoA gene pyrosequencing coupled with
terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR
(qPCR) to detect the relative abundance of the main methanotroph groups in these
lake sediments. We also summarized other published studies on methanotroph
community composition in lake sediments from various other regions and compared

them with our results from the lake sediments of the Tibetan Plateau.

Materials and Methods

Characteristics of the lakes

The six lakes sampled were Bangong Co (BGC), Zongxiong Co (ZXC), Lagor Co
(LGC), Qige Co (QGC), Long Co (LC) and Zhangnai Co (ZNC), which were all
located on the Tibetan Plateau (Figure 1). The altitude of these lakes was all above
4,000 m. Triplicate samples from the surface sediment (0-5 cm) were collected from
each lake in August 2012 at or near the site of maximum water depth using a sediment
grab sampler. The salinity, pH and conductivity of lake water overlying the sediment
were measured using the Hydrolab DS5 Quality Multiprobe (Hach, Loveland, CO,
USA). The sediment samples were kept in a cool box during transportation and stored
in the laboratory at -20°C. The total organic carbon (TOC) and total nitrogen (TN) of

sediments were determined by dichromate oxidation and Kjeldahl digestion,
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DNA extraction and quantitative PCR

Total DNA was extracted from 0.5 g sediment using the FastDNA® SPIN Kit
(MP Biomedical). The copy numbers of pmoA gene were determined by quantitative
PCR using forward primer A189f (5’-GGNGACTGGGACTTCTGG-3’) and reverse
primer mb661r (5’-CCGGMGCAACGTCYTTACC-3") [27] as described previously
[28]. Quantitative PCR was performed using an iCycler instrument (Bio-Rad) and the

SYBR Green System (Sigma-Aldrich).

Terminal restriction fragment length polymorphism (T-RFLP)

T-RFLP fingerprinting of pmoA genes from the lake sediment DNA was
performed using the A189f-mb661r primers with the forward primer A189f FAM-
labeled. PCRs were performed on a Bio-Rad instrument with the following cycling
conditions: initial denaturation (94°C, 4 min), followed by 38 cycles of denaturation
(94°C, 1 min), annealing (54°C, 1 min) and elongation (72°C, 1 min), and final
extension (72°C, 10 min). Each 50 pl PCR reaction contained 25 pl Premix Tag DNA
Polymerase (TaKaRa Co), 0.5 uM each primer and 1 pl template. GenElute PCR
Clean-up kit (Sigma) was used to purify the PCR product. Approximately 100 ng of
purified product was then digested with the restriction endonuclease Mspl (TaKaRa
Co) for 1 h at 37°C. Reactions were stopped by incubating at 65°C for 15 min. The

digested products were sent to Sangon Biotech Company (Shanghai, China) for T-RF
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Pyrosequencing and data analysis

Amplicon pyrosequencing was performed using the same primer set (A 189f-
mb661r without FAM-label) as for gPCR and T-RFLP fingerprinting. Each sample
had an A189f primer with a 6-bp individual barcode for further identification. PCR
was performed in 50 ml volumes using the same conditions as described for T-RFLP
analyses. Finally, the PCR products from each sample were quantified by Qubit
dsDNA HS Assay Kit (Life Technologies) and pooled together at equal concentration.
Roche GS-FLX 454 pyrosequencing was carried out at Meiji Biotechnology
Company (Shanghai, China) using standard procedures. The pyrosequencing data
were processed as described previously [29]. In short, reads were first sorted to
samples based on the unique barcode and then sequences with low quality or shorter
than 400 bp were deleted in Mothur (v. 1.27) [30]. Taxonomy analyses based on a
pmoA taxonomy database (Supplement of [29]) were done using the Bayesian/Wang
methods (cutoff=80%). The pyrosequencing reads (raw data) were deposited under

the study number SRP068717 in the NCBI Sequence Read Archive.

Data collection and analysis

Besides data of the 6 lakes we measured on Tibetan Plateau, the pmoA sequence
data in sediments of other 22 lakes were collected from literatures. All the pmoA

sequences had been obtained using the primer sets A189f-mb661r or A189f-A682r.
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Only those studies were included that were based on DNA extracted from lake
sediments, while those based on DNA from lake water or from enrichments of lake
sediments were not included. Eighteen of the studied lakes are freshwater lakes,
including four lakes in Germany (Lakes Dagow, Stechlin [31]; Lakes PluB3see,
Schohsee [32]) and fourteen on the Yunnan Plateau in China [12, 13]). Only
sequences in lake Plu3see and Schohsee were amplified using A189f-A682r primer
set. All the amoA sequences obtained in these two lakes were deleted for further OTU
analysis. The other four analyzed lakes were saline lakes in Russia (Lakes
Suduntuiskii, Gorbunka, Khuzhirta [9]) and India (Lonar Lake [33]). The pmoA
sequences from all these lake sediments were downloaded from the website of the

National Center for Biotechnology Information (NCBI).

Distance matrices were calculated in ARB [34] based on the 133 amino acid
residues of the downloaded pmoA sequences and the high quality pmoA sequences
obtained in the present study. OTUs were assigned based on a cut-off of 7% protein
dissimilarity using the average linkage algorithm implemented in Mothur. Two pmoA
sequences from Lonar Lake were shorter than 400 bp length and excluded from the
calculations. Instead, they were subsequently assigned to OTUs using a maximum-
parsimony method. A neighbor-joining phylogenetic tree based on representative
OTU sequences and related sequences was built using ARB. A heatmap was
generated based on methanotroph composition data using the R functions heatmap.2
(package gplots) and hclust with Euclidean distances and Ward distance functions
(ward. D2). The phylogenetic tree and heatmap were combined in Adobe Illustrator

CS6 according to the position of the OTUs in the tree.
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Statistical analysis

DUNCAN test was performed to test significant differences of pmoA gene copy
numbers, TOC and TN between different lakes using agricolae package in R [35]. The
canonical correspondence analysis (CCA) method [36] was used to investigate the
effects of environmental factors on the methanotroph community composition. First,
CCA analysis was conducted for each candidate environmental factor (including
salinity and pH of lake water, TOC and TN of lake sediment) to find out which factor
has significant effect. Only salinity and pH have significant impacts and were used as
environmental factors. The 22 lakes having pH values were used in the analysis. The
pH factor was used as scale variable, while the salinity factor was used as nominal
variable because 8 out of 22 lakes only had salinity categories (i.e., fresh lake or
saline lake) instead of numerical salinity values. The 14 lakes with numerical salinity
values were classified into categories using the method proposed by Hammer (1986)
[37]. In this method, lakes were classified into 5 categories: fresh (less than 0.5 g L™!
salinity), subsaline (0.5-3 g L"), hyposaline (3-20 g L"), mesosaline (20-50 g L"),
and hypersaline (more than 50 g L") according to their salinity. Because there are
only 2 salinity categories in the other 8§ lakes, the subsaline, hyposaline, mesosaline
and hypersaline lakes were further grouped as saline lakes to generate a classification
result of 2 categories. In addition, we also conducted a CCA analysis taking both the
salinity and pH factors as scale variables using data of the 14 lakes with numerical
salinity values. The variables for methanotroph community composition included the

relative abundance of 28 non-singleton OTUs. An ANOVA like permutation test
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function (anova.cca) was run to detect the significant environmental factors
contributing to the methanotroph community composition. All CCA statistical

analyses were performed using the vegan package in R [38].

Results

The six lakes studied are located in different geographic zones along a west-east
transect on the Tibetan Plateau (Figure 1). The lakes have different environmental and
limnological characteristics (Table 1). All of the lakes were alkaline (pH 8.7-10.4), but
had different water salinities (and conductivities). Three of the lakes (ZXC, QGC and
BGC) were considered as freshwater lakes, three (LC, ZNC and LGC) as saline lakes
with salinities ranging from 1.55 g/L (3000 uS cm™) to 43.8 g/L (63649 uS cm™).
TOC of lake sediments was between 21.8 g/kg and 97.4 g/kg; and TN was between
1.1 g/lkg and 5.1 g/kg (Table 1). TOC and TN of lake sediments in ZXC and BGC

were significantly higher than those in the other four lakes (P<0.05).

Methanotroph abundances were determined by qPCR analyses of the pmoA gene
copies. Lake LC, which has a salinity of 1.55 g/L, had pmoA gene copies of 10° g’!
fresh sediment. Higher pmoA gene copies were detected in the sediments of
freshwater lakes (ZXC, QGC and BGC, 108 g'! fresh sediment) than that in the saline
lakes (ZNC, 10* g! fresh sediment and LGC, 10° g'! fresh sediment) (p<0.05) (Table

1 and Figure S1).
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The composition of the methanotroph community in Tibetan lake sediments was
determined by T-RFLP and pyrosequencing analysis of the pmoA genes. Six main T-
RF fragments were detected (Figure 2A). The affiliation of these T-RFs to
phylogenetic groups of methanotrophs is shown in Table S1. We compared the
abundances obtained by T-RFLP and pyrosequencing and found very good agreement
(Figure 2A, B). Type I methanotrophs were found to be dominant in all Tibetan lake
sediments. In the freshwater lakes (ZXC and QGC), sequences of the uncultivated
type Ib groups RPCs and FWs (both main T-RF 79 bp) accounted for more than 90%
and type la sequences belonging to Methylobacter (main T-RF 505 bp) made up the
rest. In the sediment of freshwater BGC, Methylobacter accounted for 80% of the
detected sequences. However, in the sediments of saline lakes (LC, ZNC and LGC)
the type la genus Methylomicrobium (main T-RF 437 bp) was the by far most
abundant methanotroph. Its relative abundance is almost 100% in lakes ZNC and
LGC and is 57% in LC. The lake LC contained the type II methanotroph genus
Methylocystis as the second most abundant (42%) group. In the other lakes

Methylocystis was only detected at very low (<1%) relative abundance.

In addition to the data from the Tibetan Plateau lakes, we also summarized the
published methanotroph community compositions in sediments of lakes from other
geographical regions. These included both freshwater and saline lakes, and also lakes
having neutral or alkaline pH (Figure 3). All these lakes have pmo4 OTU numbers
between 2 to 13. The coverage was generally higher 76% and most higher than 90%

meaning that these pmoA sequences represent the methanotrophs in these lakes quite
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well. The average methanotroph diversity was higher in freshwater than saline lakes
(Table S2). Using Euclidean distances and Ward distance functions, saline lakes and
freshwater lakes were separated into two different groups (Figure 3). The relative
abundance of Methylomicrobium was clearly higher in sediments of saline compared
with freshwater lakes. Methylobacter (OTU-4), Methylocystis (OTU-5), and the
uncultured clusters Lake Cluster-2 (OTU-6), FWs (OTU-3) and LWs (OTU-7, 8, 13
and 14) were common methanotrophs in freshwater lakes. Besides these abundant
clusters, other methanotroph groups were also present in these lakes, especially
among type I methanotrophs (Figure 3). The type la-affiliated sequences detected
include Methylomonas, Methylosarcina and RPC-2 clusters. Besides Lake Cluster-2,
FWs and LWs, the clusters RPCs, RPC-1, Methylocaldum_rel and Methylothermus
within type Ib group were detected. Methylothermus species were only found in two
saline lakes in Russia. Among the type Ic group, upland cluster USCy was detected in
BGC, ZNC and LGC, and upland cluster JR-3 was detected in BGC and QGC.
Among type Il methanotrophs, Methylocystis species were common and Methylosinus

and Methylocapsa were also detected in saline lakes in Russia.

We first performed CCA and the ANOVA like permutation test (anova.cca) for
each environmental factor to check which factor has a significant explanation for the
methanotroph community matrix. TOC and TN data of Tibetan and Yunnan Plateau
lakes were collected and they accounted for only 6.7% (P=0.22) and 5.9% (P=0.34) of
the variability of the methanotroph community composition, respectively, which are

not significant. Salinity and pH both significantly accounted for the variability of
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methanotroph community (P=0.001) and were selected to perform CCA analysis. The
contribution of salinity and pH to the total variability of the methanotroph community
matrix was 33.1%, of which CCA1 accounted for 25.7% and CCA2 for 7.4% of total
variability. CCAL described salinity difference of lakes, reflected by a distribution of
OTUs and lakes along CCA1 (Figure 4). CCA2 showed the effects of pH on the
methanotroph community composition. We also performed CCA analysis with 14
lakes whose salinity and pH values were known. The results confirmed our
conclusion that salinity is the most important factor in shaping methanotroph
community (Figure S1). The methanotroph cluster Methylomicrobium was only
abundant in saline and alkaline lakes. The freshwater lakes TP-QGC and TP-ZXC
with alkaline pH, different from other freshwater lakes with lower alkalinity, showed

higher relative abundances of FWSs and RPCs.

Discussion

Salinity has been reported as the driving factor in shaping bacterial and archaeal
community composition in Tibetan lake sediments [25, 26, 39, 40]. We found a
significant effect of lake water salinity on methanotroph community composition in
Tibetan lake sediments and other studied sediments (P=0.001). The main difference
was Methylomicrobium species being abundant in sediments of lakes with water
salinity higher than 1.5 g/L (0.15% w/v, 0.026 M). This salinity seems to be the

threshold for the presence of Methylomicrobium species. This observation is
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consistent with the description of Methylomicrobium strains as being NaCl-requiring
methanotrophs (0.05 M Na*), isolated from hypersaline and alkaline lake sediments

[41, 42, 43].

Sediment pH was found to be the best predictor for the community structure of
bacteria in lake sediments on the Tibetan Plateau [24]. We found that besides salinity,
pH was also an important factor shaping the methanotroph community composition of
lake sediments. However, our results showed that Methylomicrobium species were
absent in the non-saline lakes TP-QGC and TP-ZXC (pH > 9), and the pH optima of
Methylomicrobium species isolated from hypersaline and alkaline lakes was 6.5-10.5
[43]. This indicates that it is salinity rather than pH that will select for
Methylomicrobium in lake sediments. The fact that the saline lakes analyzed here
were all high pH with a span of 1 pH unit means that we could not test the effect of
pH on the methanotroph community in these lakes. However, the CCA analysis
indicated pH was the main factor in separating the freshwater lakes TP-QGC and TP-
ZXC (pH > 9) with other freshwater lakes with lower alkalinity. Therefore, salinity is
the primary factor with pH having a secondary effect on methanotroph community

structure in lake sediments.

Methanotroph community composition has been previously studied in other
saline lakes, albeit sometimes using different primer sets than those used here or
targeting lake water rather than sediment. PCR products were obtained from DNA
purified from Mongolian soda lake sediments using primers specific for

Methylomicrobium [44] and Methylomicrobium species were found to be abundant in




©CO~NOOOTA~AWNPE

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

the water of Mono Lake, California [15, 20]. Besides Methylomicrobium, which
seems to be abundant in saline lakes, other genera like Methylobacter,

Methylothermus and Methylocystis are commonly found in saline lakes [9, 15, 20].

DNA stable-isotope probing experiments in Lonar and Transbaikal soda lake
sediments showed that Methylomicrobium species were not only abundant but were
also responsible for the consumption of methane [15, 45]. Therefore, we may infer
that Methylomicrobium is also active in consuming methane in the Tibetan lake
sediments. Methylomicrobium appear to have adapted to the high salinity by the
synthesis of osmoprotectants, such as ectoine, sucrose and glutamate [16, 43]. The
formation of macro-molecular glycoprotein structures (S-layers) on the cell surface

might be another adaptation to elevated salt concentration [16, 43].

Our results showed that type | methanotrophs were the dominant methanotrophs
in the lake sediments on the Tibetan Plateau. They were relatively diverse in the non-
saline freshwater lake sediments, including Methylobacter and uncultured clusters
(Lake Cluster-2, FWs and LWs). In our results, all these clusters were abundant in
sediments of the three freshwater lakes (BGC, ZXC and QGC). The Lake Cluster-2
and FWs clusters were similar to sequences found in freshwater lakes in Germany and
on the Yunnan Plateau in China [10, 12, 13, 31, 32]. PmoA sequences of uncultivated
type Ib methanotrophs have also been previously detected in Lake Constance [46],

wetlands of Lake Kevaton [47] and the Zoige wetlands [48, 49].

Type Il methanotrophs (e.g. Methylocystis) are ubiquitous methanotroph
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inhabitants of many ecosystems [50, 51, 52] and often dominate among
methanotrophs in acidic peat wetlands [51, 53]. We found that Methylocystis was a
common methanotroph in most of the freshwater lake sediments. In addition,
molecular studies of methanotrophs in soda lakes from Mongolia, Southeastern
Transbaikalia and the United States, plus the isolation of Methylocystis from
Southeastern Transbaikalia further indicates the presence of type II methanotrophs in
saline and alkaline lakes [9, 15, 19, 44]. The detection of Methylocystis in alkaline
Tibetan lakes suggests that Methylocystis are widely distributed in alkaline lake

sediments.

In methanotroph community profiling studies, t-RFLP analysis targeting the
pmOA gene has often been used [31, 54, 55]. However, T-RFLP has a limited
phylogenetic resolution, and particular t-RFs can co-occur in more than one phylotype
[55]. The different T-RFs need to be assigned to particular pmoA clusters by using
pmoA sequencing data. Pyrosequencing allows linking particular pmoA clusters to T-
RFLP fingerprints, and also allows deeply analyzing pmoA sequences for
phylogenetic affiliation. We used these two techniques for analysis of pmoA. Both T-

RFLP and pyrosequencing showed consistent methanotroph community composition.

In summary, our data show that salinity is the most important factor shaping
methanotroph community composition in surface sediments of the Qinghai-Tibetan

Lakes and other lakes around the world.
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Figure Legends

Figure 1 Location of the investigated six lakes, Long Co (LC), Bangong Co (BGC),
Zongxiong Co (ZXC), Qige Co (QGC), Zhangnai Co (ZNC) and Lagor Co (LGC), on

the Tibetan Plateau.

Figure 2 Relative abundances of different pmoA clusters in the six lake sediments

based on (A) T-RFLP and (B) pyrosequencing analyses. Means + SD, n=3.

Figure 3 Neighbor-joining phylogenetic tree based on representative OTUs and
related pmoA sequences. The heatmap next to phylogenetic clusters shows the relative
abundance of the sequencing reads assigned to each OTU. OTUs that are relatively
abundant (>10%) in lake sediments are marked in red; horizontal cluster codes
indicate the different lake sediments from which the pmoA sequences originated. The
first two capital letter indicate the location; i.e. DE = Germany; IN = India; RUS =
Russia; TP = Tibetan Plateau; YN = Yunnan. The following letters indicate the
particular lake. Values of pH and salinity were collect from the following literatures:
pH and salinity of Yunnan lakes [56]; pH of DE-Dag [57]; pH of DE-Ste [58]; salinity
of DE-Dag and DE-Ste [59]; pH of DE-Plu [60]; pH of RUS lakes and salinity of

RUS-Gor [9]; pH and salinity of IN-Lon [33].

Figure 4 The effect of lake salinity and pH on methanotroph community composition

was determined by canonical correspondence analysis (CCA). Relative abundances of
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non-singleton OTUs were used for the methanotroph community matrix. Only 22
lakes with known pH values (Figure 3) were included in the analysis. Salinity
separated them into two groups as saline (pink circle) versus freshwater (light blue
circle) lakes. Characters next to symbols identify different lakes, the first two capital
letter of the names indicating the location (i.e., DE = Germany; IN = India; RUS =
Russia; TP = Tibetan Plateau; YN = Yunnan) and the following letters indicating the
particular lake. OTUs are shown as red plus signs (+). Abundant OTUs (>10%) are
shown in bold and were labeled with their cluster affiliations, such as

Methylomicrobium, Methylocystis, Methylobacter, Lake Cluster-2 and FWs.
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Table

Table 1 Overview of physical and chemical properties of lake water and sediment in six lakes of the Tibetan Plateau.

Sediment Water
Lake Short Location Altitude PMOA copies TOC TN Depth  Salinity ~ Conductivity oH
Name (m) (x10° g* fresh sediment) (9/kg) (9/kg) (m) (g/L) (uS cm™)

Zongxiong Co ZXC N33°06', E80°09’ 4324 30.5+10.4 97.4+13.7 3.62+0.33 1.2 0.15 314 9.34
Qige Co QGC N31°11’, E85°31’ 4663 32.6+1.86 34.8+0.9 1.37£0.11 0.6 0.18 374 10.48
Bangong Co BGC N33°31', E79°50’ 4212 16.2+5.74 81.2+5.0 5.12+£0.5 37 0.47 948 8.74
Long Co LC N29°12', E87°24' 4264 26.6x16.5 25.31£3.1 1.37£0.04 254 1.55 3000 9.45
Zhangnai Co ZNC N31°32', E&7°23’ 4581 0.2+0.11 38.2+3.4 1.90+0.32 13.7 4.06 7335 9.59
Lagor Co LGC N32°03’, E&4°10’ 4442 1.16x0.17 21.8+£0.9 1.14+0.03 19.6 43.77 63649 9.11
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