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Abstract – In this Letter we report on a novel approach to study the dynamics of harmonically
confined Weyl particles using magnetically trapped fermionic atoms. We find that after a kick of
its center of mass, the system relaxes towards a steady state even in the absence of interactions,
in stark contrast with massive particles which would oscillate without damping. Remarkably, the
equilibrium distribution is non-Boltzmann, exhibiting a strong anisotropy which we study both
numerically and experimentally.

Introduction. – Weyl fermions were introduced for
the first time in 1929 as massless solutions of the Dirac
equation [1]. Despite constituting one of the paradigms of
contemporary high energy physics, their existence in na-
ture has remained unconfirmed until very recently. While
at first suggested to describe neutrinos, the observation
of flavor oscillations implying a non-zero rest mass ruled
out this hypothesis [2]. It had been pointed out that
they could be observed in the form of low energy exci-
tations of crystalline structures with a linear dispersion
relation around a so-called Weyl point. The non-trivial
topology of such Weyl semimetals is responsible for the
Adler-Bell-Jackiw chiral anomaly [3, 4] which leads to re-
markable properties such as negative magnetoresistance,
anomalous Hall effect and non-local transport [5]. More-
over, the confinement of quasiparticles obeying a linear
dispersion relation was suggested as a way to engineer in-
dividual quantum dots [6], notably for the improvement
of multiple exciton generation in solar cells [7].

The mere existence of Weyl points in reciprocal space re-
quires a broken time-reversal or inversion symmetry, which
are challenging to implement experimentally. As a conse-
quence, observations of Weyl particles were reported only
recently in 3D-compounds such as HgCdTe, HgMnTe [8],
TaAs [9, 10] as well as in photonic crystals [11]. Owing
to their high degree of control and versatility, cold atoms
offer a promising and complementary route for the exper-

imental study of Weyl fermions. Early proposals in this
context were based on the band structure of cold atoms in
3D optical lattices extending the 2D Harper Hamiltonian
[12]. Yet another approach is analog simulation where one
takes advantage of the mathematical equivalence between
two seemingly different physical systems. Such mapping
were successfully used in the past to relate, for instance,
Anderson localization to the δ-kicked rotor [13–15], quan-
tum magnetism to the filling factor of an optical lattice
[16, 17], the solutions of Dirac equation to the dynamics
of ion chains [18, 19], or quantum Hall edge states to the
eigenmodes of classical coupled pendula [20].

In this letter, we report on the analog simulation of
Weyl particles in a harmonic potential using a dilute gas
of cold magnetically trapped atoms. Using a canonical
mapping exchanging position and momentum in the sys-
tem’s Hamiltonian, we address the dynamics of an ensem-
ble of non-interacting Weyl particles after excitation of
their center of mass. The system’s ensuing relaxation to-
wards a steady-state exhibits intriguing dynamics, result-
ing in a strongly anisotropic and non-thermal momentum
distribution of the cold gas. Our observations are inter-
preted using a kinetic model based on virial theorem and
energy conservation.

Mapping. – The magnetic quadrupole trap is a com-
mon technique for confining neutral atoms [21]. It is made
up of a pair of coils carrying anti-parallel currents, cre-
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ating close to their symmetry center a linear magnetic
field B0(r) = b(αxx, αyy, αzz), where z is the symmetry
axis of the coils. Here b denotes the magnetic field gra-
dient and Maxwell’s equations imply that αx = αy = 1,
αz = −2. For a spin 1/2 atom of mass m carrying a mag-
netic moment µ, the coupling to this field leads to the
single-particle Hamiltonian

h (r,p) =
p2

2m
− µσ ·B0(r), (1)

where σ are the Pauli matrices. By means of the canonical
mapping Xi = cpi/µbαi and Pi = −µbαixi/c with c being
an arbitrary velocity scale, the Hamiltonian (1) becomes

H = cσ · P +
1

2

∑
i

kiX
2
i . (2)

The first term corresponds to the kinetic energy cσ · P
of a massless Weyl particle moving at velocity c while
the second one is readily identified as an anisotropic har-
monic potential, characterized by spring constants ki =
α2
iµ

2b2/mc2 = α2
i k along each direction i. This mapping

is at the core of our work and it shows that neutral atoms
confined by a linear potential can be used to simulate ex-
perimentally the dynamics of Weyl particles.

The single-particle trajectories of the Weyl particles
can be obtained using Ehrenfest’s theorem applied to the
Hamiltonian (2). Using uppercase (lowercase) symbols for
the phase-space coordinates of the Weyl particles (spin-
1/2 atoms), we obtain respectively in the Heisenberg rep-
resentation:

Ẋi = cσi (3)

Ṗi = −kiXi (4)

σ̇ =
2c

h̄
σ × P (5)

ṗi = µbαiσi (6)

ẋi = pi/m (7)

σ̇ =
2µ

h̄
σ ×B(r) (8)

Equations (3) to (8) are fully quantum, but in the fol-
lowing we will focus on the classical regime, and consider
the operator mean values. Noting that 〈σ〉2 = 1, Equa-
tion (3) immediately shows that even in a harmonic trap
Weyl particles move at a constant velocity c. Equations
(5) and (8) describe respectively the particle’s spin preces-
sion around the momentum P and magnetic field B. The
adiabatic following results in the conservation of helicity
and of the Zeeman populations, giving rise to topological
properties. The analogy existing between these two equa-
tions allows to draw a parallel between a peculiar feature
of Weyl particles, the Klein paradox [22], and the well
known Majorana losses [23–26] for magnetic traps. The
Klein paradox states if the rate of change of the particle’s
energy is too high (i.e. much larger than 2Pc/h̄ for Weyl
particles), the spin will not follow the momentum adia-
batically and the helicity of the particle is not conserved.
The resulting transfer of the particle to negative energy
states leads to dramatic effects, such as the suppression

of back-scattering for electrons in 1D carbon nanotubes
[27]. For the equivalent picture of magnetically trapped
atoms, in regions where the Larmor frequency 2µB/h̄ is
smaller than the rate of change of the Zeeman energy, the
atomic spin will not follow adiabatically the direction of
the local magnetic field. This results in Majorana losses.
The absence of backscattering in carbon nanotubes then
appears as equivalent to the impossibility to trap atoms in
a 1D magnetic quadrupole. Furthermore, for an ensemble
of particles at temperature T , we can define a Klein loss
rate ΓKlein equivalent to the Majorana rate ΓMaj.:

ΓMaj. '
h̄

m

(
µBb

kBT

)2

, ΓKlein ' h̄k
(

c

kBT

)2

(9)

Just like Majorana losses prevent the existence of a true
thermodynamic equilibrium in a quadrupole trap, the
Klein paradox prevents stable trapping of Weyl particles
in external potentials [6]. Nevertheless, at high enough
temperature such as considered in our experiments below,
particles spend little time close to 0 and we can neglect
Majorana-Klein losses. Particles of positive and negative
helicities can therefore be described by the effective Hamil-
tonians:

H± = ±c|P |+
∑
i

kiX
2
i

2
. (10)

The negative-helicity Hamiltonian H− is not bounded
from below which implies diverging trajectories. This di-
rectly corresponds to the anti-trapped high-field seeking
states of the atomic problem. In the following we shall
therefore restrict our study to the case of metastable,
positive-helicity particles.

Results. – Using the mapping derived above, we ex-
plore the dynamics of Weyl particles using a sample of
spin-polarized 6Li atoms confined in a quadrupole mag-
netic trap.

The experimental preparation of the sample starts with
a dual species magneto-optical trap which is loaded with
fermionic 6Li and 40K. In a second step the clouds are sub-
jected to blue detuned D1 molasses [29, 35], cooling both
species down to the 50µK regime. Subsequently the atoms
are optically pumped into their low-field seeking stretched
Zeeman states |F = 3/2,mF = 3/2〉 and |9/2, 9/2〉, re-
spectively. Finally, we ramp a magnetic quadrupole field
up to b = 80 G/cm within 500 ms, capturing 107 6Li and
109 40K atoms. Inter-species- as well as p-wave collisions
among 40K atoms [36] allow for the complete thermaliza-
tion of the two clouds at approximately T0 = 300µK. This
value is high enough to preclude Majorana losses during
the experiment’s duration and is well below the p-wave
collision threshold. After thermalization the 40K atoms
are removed from the trap by shining in resonant light,
which leaves 6Li unaffected.

We deliver a momentum kick to the cloud by quickly
turning on a magnetic bias field B which shifts the center
of the trapping potential by a distance δ for a short time τ .
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Fig. 1: Center-of-mass oscillations of the Lithium cloud after
a kick along the symmetry axis of the coils z (a) and along
x, within the symmetry plane. (b). Blue squares (resp. red
circles) are experimental data along x (resp. z). Solid lines are
exponentially damped sinusoidal oscillations. Damping results
solely from dephasing of single particle trajectories. Equiva-
lently, this corresponds to momentum oscillations of Weyl par-
ticles in a harmonic trap. Here, r0 = kBT/µBb ∼ 0.6 mm and
t0 =

√
mkBT/µBb ∼ 1 ms.

Maximum trap center displacements are of order δ ∼ 7 r0

along x and δ ∼ 5 r0 along z, where r0 = kBT/µBb ∼ 0.6
mm is the characteristic thermal size of the cloud. The
kick duration τ is typically a few ms, being constrained by
the coil inductances and eddy currents in the surrounding
vacuum chamber. During the kick, the ensemble acquires
an overall momentum of magnitude q ∼ µBbτ , similar to
free fall in gravity. The potential is then quickly brought
back to its initial position, and the cloud is left to evolve
during a variable time t before switching off all fields to
perform a time of flight measurement of the momentum
distribution. Temperatures and kick velocities are mea-
sured with a time-of-flight (TOF) technique: the trapping
potential is abruptly switched-off and the atomic cloud
expands freely during a few ms, before it gets imaged on
a CCD camera by resonant light absorption. The center
of mass velocity can be extracted by tracking the cen-
ter of the distribution during the TOF, while the tem-
perature is measured using the standard deviation of the
position distribution for sufficiently long TOF expansion
times. A limitation for the accurate determination of the
kick amplitude originates from transient currents lasting
about 3 ms, which appear while abruptly switching off
the quadrupole magnetic trap with gradients of the or-
der of 100 G/cm. The transient magnetic field creates
a position-dependent Zeeman effect which deforms the
atomic cloud profile at short TOF durations. This re-
sults in a potential error in the measurement of the center
of mass momentum with or without kick. For instance,
in the absence of a kick we observe a small parasitic ve-
locity v0 which is proportional to the magnetic gradient b
and reaches 30 cm/s at our highest value b = 165 G/cm.
Therefore, to infer the actual momentum delivered to the

cloud solely by the kick, we subtract v0 measured after
the thermalization time of 500 ms from the velocity right
after the kick. The fit errors are given by the error bars
in Fig. 2 and account for our statistical errors of typ-
ically 0.05/mkB on temperature. Performing the experi-
ment with 4 different magnetic field gradients, we estimate
a systematic uncertainty of 0.2/mkB for the fitted coeffi-
cient of the parabolic dependence of the heating on the
momentum kick strength in Fig. 2.

For Weyl fermions, this excitation corresponds to dis-
placing the Weyl point in momentum space, waiting until
the distribution has moved by a distance R and switching
the Weyl point back to its initial position. The resulting
time evolution of the position (resp. momentum) distribu-
tion of the Lithium atoms (resp. Weyl particles) is shown
in Fig.1. Even though collisions are absent, oscillations
are damped as a consequence of the dephasing between
single particle trajectories. The initially imparted energy
is converted into internal energy of the cloud and the dis-
tribution reaches a steady state within a few units of time
t0 =

√
mkBT/µBb ∼ 1 ms.

To characterize the steady state, we kicked the cloud
along the z- and x-directions and measured (i) the cen-
ter of mass velocity right after the kick and (ii) the re-
spective steady state momentum distribution after a suf-
ficiently long relaxation time, typically 250 t0. We define
the steady-state’s effective temperature along direction i
as the second moment of the momentum (resp. position)
distribution:

kBTi =
〈p2
i 〉
m

= ki〈X2
i 〉, (11)

where 〈·〉 denotes the statistical average.

The heating ∆T and the center of mass momentum
q induced by the momentum kick are extracted from
the difference between the corresponding values at quasi-
equilibrium and the ones measured right after the kick.
While for a fully thermalized system the temperatures in
both directions should be equal, our results presented in
Fig.2, show a very strong anisotropy, thus demonstrating
that the final distribution is non-thermal. The tempera-
ture increases much more in the direction of the kick than
in the transverse directions. A kick in the z direction pro-
duces strong heating along z, but a much weaker energy
transfer along x. Conversely, a kick in the (x,y) plane
results in smaller heating in the z direction than along x.
Quantifying the strength of the kick through the dimen-
sionless parameter

η =
〈q〉√
mkBT0

=

√∑
i ki〈Ri〉2
kBT0

, (12)

we find that for kicks along x the best quadratic fits are
given by ∆Tx/T0 = 0.52(5)stat(20)syst× η2 and ∆Tz/T0 =
0.10(4)stat(5)syst × η2. For kicks along the strong axis
z, ∆Tz/T0 = 0.63(7)stat(20)syst × η2 and ∆Tx/T0 =
−0.14(5)stat(8)syst × η2.
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Fig. 2: Temperature increase ∆T/T0 = (T − T0)T0 along x
(blue squares) and z (red circles) as a function of the nor-
malized CoM momentum η acquired during the kick. a) z
momentum kick at b = 70 G/cm. b) x momentum kick at
b = 55 G/cm. Solid lines are quadratic fits to the experimental
data with coefficients given in the text. Error bars represent
the temperature statistical uncertainty and shaded zones give
the 95% confidence level of the fits. Dashed lines are results of
numerical simulations presented in figure 3.

Numerics. In order to interpret these results, we per-
formed single particle dynamics simulations on an ensem-
ble of 105 particles. As in the experiment, an excitation
is applied to the initial distribution by displacing the trap
center (resp. the Weyl point in momentum space) by an
amount δ for a duration τ before bringing it back to its
initial position. To simulate the effect of coil response
time and eddy currents, we consider excitations of con-
stant duration and increasing displacement. The simula-
tion does not include any collisions, and yet we observe,
as in the experiment, a relaxation towards a steady state
after ∼ 100 t0 as all calculated moments of the distribu-
tion up to 8th order reach a stationnary value. We also
reproduce the strong anisotropy between the z and x di-
rection (see Fig. 3). Numerical simulations also provide
access to the y direction (not measured in the experiment),
which also appears to be decoupled from the strong axis
z, but reaches the same final effective temperature as the
other weak axis x, regardless of the kick direction. The
simulated dynamics thus features a quasi-thermalization
within the symmetry plane of the distribution.

More quantitatively, the relation between the center-of-
mass momentum (resp. center-of-mass position for Weyl
particles) after the kick and the effective temperature in
the steady state can be approximated by a quadratic rela-
tion ∆Tx,y,z/T0 = αx,y,zη

2, where the heating coefficients
αi depend on the kick direction, δ and τ . For short exci-
tation times, αi are nearly independent of τ . Their Their
explicit dependence on δ is depicted in Fig. 4.

For kicks along z, αz does not vary significantly with the
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Fig. 3: Numerical simulation of the temperature increase as
a function of the normalized CoM momentum kick η. Data
points are obtained by solving the classical equations of motion
along x (blue squares), y (gray triangles) and z (red circles).
In the simulation, kick duration is kept constant at τ = 0.6 t0
for z and τ = 3 t0 for x, with increasing values of displace-
ment δ. The effective temperatures along x and y are equal
and almost totally decoupled from z. Solid lines are the best
quadratic fits to the data: ∆Tx/T0 = ∆Ty/T0 = 0.48 × η2

and ∆Tz/T0 = −0.006 × η2 for a kick along x and ∆Tx/T0 =
∆Ty/T0 = −0.006 η2, ∆T/T0 = 0.52 η2 for a kick along z.
The dashed line in (a) is given by equation (19), assuming zero
cross-thermalization between z and x.

trap displacement for the experimentally relevant choice
δ > 1, in which case αz = α0 = 0.5. The value of τ
essentially sets the strongest achievable kick η and we take
τ = 0.6 t0 in the simulation to cover the experimental
range of excitations. The heating coefficient α0 = 0.5 is in
agreement within error bars with the experimental result
αz = 0.63(7)stat(20)syst. The decoupling of the x direction
appears more pronounced in the simulation than in the
experiment with ∆Tx/T0 = −0.006 η2, to be compared to
the experimental value ∆Tx/T0 = −0.14(5)stat(8)syst×η2,
a difference we attribute to imperfections of the magnetic
excitation procedure.

For kicks along x, αx strongly varies with the kick am-
plitude δ (blue points in Fig. 4) and therefore a quan-
titative comparison with experiment requires a detailed
modeling of the shape of the transient excitation cur-
rents, which is difficult. Nevertheless, fitting the du-
ration τ = 3t0 leads to ∆Tx/T0 = 0.48 × η2 (to be
compared to ∆Tx/T0 = 0.52(5)stat(20)syst × η2) and
∆Tz/T0 = −0.006 × η2 (to be compared to ∆Tz/T0 =
0.10(4)stat(5)syst × η2). The chosen duration 3 t0 is con-
sistent with the decay time of the eddy currents in our
chamber (∼ 3 ms).

A simple model. The heating of Weyl particles along
the excitation direction can be understood from the the
constraints imposed on the dynamics by energy conserva-

p-4



Analog Simulation of Weyl Particles with Cold Atoms

0 4 8 12

0.5

0.3

0.1

H
ea

tin
g 

co
e�

ci
en

t α

16

0.7

Displacement δ
2420

Fig. 4: Heating coefficient α along the kick direction versus
Weyl point displacement δ in momentum space (resp. trap
center displacement in position space) for kicks along x (blue)
and z (red). α is defined as α = ∆T/(T0η

2), relating excess
temperature to kick strength η (see text). For kicks along z,
αz ∼ 0.5 and is almost constant. On the contrary, for kicks
along x, αx shows a strong dependence on displacement δ.
Solid lines are derived from equations (16)-(17) and (13)-(14).
Filled symbols are results from numerical simulations.

tion and virial theorem Ekin = 2Epot. Here Ekin = 〈Pc〉
and Epot =

∑
i ki〈X2

i 〉/2 are respectively the kinetic and
potential energy of the Weyl particles, and the relation
can be derived from its equivalent for massive particles in
a linear trap. However, these two conditions are not suffi-
cient to predict the final thermodynamic properties of the
system. We therefore make two additional assumptions
motivated by the results of the experiment and the simu-
lations. (i) Heating occurs predominantly along the kick
direction and (ii) whatever the kick’s orientation may be,
the final temperatures along the x- and y-directions are
equal by symmetry. Under these conditions one finds for
the final temperatures,

z − kick : ∆Tx = ∆Ty � ∆Tz, ∆Tz '
2∆E

3kB
, (13)

x− kick : ∆Tx = ∆Ty ' ∆E
3kB

, ∆Tz � ∆Tx,y, (14)

where ∆E is the energy transferred to the cloud through
the excitation. Our numerical simulations satisfy (13) -
(14) for the redistribution of the imparted energy.

In order to relate ∆E to the experimental kick strength
η, we describe the dynamics of the cloud during the ex-
citation through Liouville’s equation for the phase-space
density f(R,P , t),

∂tf (R,P ; t) = −Lf (R,P ; t) . (15)

The Liouville operator is defined as L = ∂PH
exc
+ .∂R −

∂RH
exc
+ .∂P with Hexc

+ = H+(R,P − δ) being the shifted
Weyl-point Hamiltonian. The formal solution to this equa-
tion is f(R,P , τ) = exp(−τL)[f0]; for small excitation
times τ , we can Taylor-expand this expression an d obtain

〈R〉 = τ

∫
d3rd3p f0 (Vexc − V ), (16)

∆E =
τ2

2

∫
d3rd3p f0

∑
i

ki (Vexc − V )
2
i , (17)

where V = ∂PH+ is the velocity and Vexc = ∂PH
exc
+ .The

relative scalings of ∆E and 〈R〉 with τ confirm that α ∝
∆E/〈R〉2 does not depend on the excitation duration in
the short time limit. The values of α corresponding to
equations (16)-(17) and (13)-(14) are presented as solid
lines in Fig. 4 and confirm the validity of the simulations.

For kicks along the z direction, we estimate the value of
αz by considering large displacements δ, leading to

∆E =
3

4
E0η

2. (18)

Interestingly, the energy gain is in fact larger than the
value E0η

2/2 associated with the center of mass shift, be-
cause the cloud also expands in momentum space during
the excitation whereby it gains additional kinetic energy.
Inserting these asymptotic developments in equations (13)
and (14), we finally obtain for z kicks the relative temper-
ature increase along the excitation direction

∆T

T0
=
η2

2
, (19)

corresponding to αz = 0.5, as discussed above and found
in fair agreement with the experimental value.

Conclusion. – Contrary to massive particles, Weyl
fermions do not obey Kohn’s theorem [30] stating that
the center of mass of an ensemble of non-relativistic mas-
sive particles oscillates in a 3D harmonic potential with-
out dephasing at frequencies

√
ki/m. Instead, after an

excitation, Weyl fermions move at constant speed even
in a quadratic potential. Dephasing of the single-particle
trajectories gives rise to damping of the center of mass
motion and to an anisotropic spread of the position dis-
tribution, corresponding to an effective heating. In the
symmetry plane, the steady-state distribution is almost
decoupled from the strong axis but reach the same effec-
tive temperature along both directions regardless of the
kick orientation, displaying a quasi-thermalization.

It should also be pointed out the anisotropic heating is
not specific to our choice of spring constants for harmonic
trap (2), which are in turn constrained by the mapping
from the quadrupole potential. Additional simulations
have shown that the same behavior is observed for arbi-
trary anisotropic potentials V (r) = (k0x

2+k0y
2+kzz

2)/2.
Even in a fully isotropic situation kz = k0, the two unex-
cited directions are partially decoupled from the excited
one and reach the same final temperatures, as the kick
orientation breaks the overall symmetry.

It is crucial to note that in our experiments the energy
transfer from the center-of-mass to the internal energy of
the distribution does not depend on interactions between
particles. It is solely due to the complexity of the single
particle trajectories in phase-space [31], which originates
from the non-harmonicity and non-separability of the un-
derlying Hamiltonian (10). This absence of collisions is
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responsible for the non-thermal nature of the final distri-
bution. Indeed, according to Thermodynamics’ Second
Law, Boltzmann’s distribution maximizes the entropy of
the system for a given energy. In our experiment, we start
with a thermal cloud characterized by a total energy E
and equilibrium entropy S(E). A perfect momentum kick
delivers an additional energy ∆E per particle, but does
so without increasing the system’s entropy. The latter is
then conserved throughout the ensuing evolution because
the ensemble remains collisionless. The quasi-equilibrium
state thus exhibits a larger energy E + ∆E for the same
entropy S, in contradiction to the usual entropy growth
expected for a collisional system. The absence of real
thermalization is then revealed by the anisotropic tem-
peratures measured in the long time limit. Weyl particles
in a harmonic trap therefore provide an intriguing case of
quasi-thermalization, midway between massive particles
that do not equilibrate and collisional systems that reach
a real Boltzmann thermal equilibrium (like in [32]). As
shown in [33], this situation can nevertheless be described
within the framework of generalized Gibbs-ensembles as
integrable systems in which a large number of constants
of motion - here, the single-particle hamiltonian of indi-
vidual atoms - prevents true thermalization [34].

Finally, the canonical mapping presented here is not
limited to the simulation of Weyl particles, but can ad-
dress a broader range of problems. For instance, in a
Ioffe-Pritchard trap a bias field gives rise to a non-zero
magnetic field at the trap center and the overall field is
of the form B =

√
B2

0 + b2
∑
i α

2
ix

2
i . In this case, the

analog system would be described by the relativistic ki-
netic energy E =

√
m2c4 + p2c2 where the mass can be

tuned through B0. Another interesting situation arises in
a hybrid trap consisting of the superposition of an opti-
cal dipole trap and a 2D magnetic quadrupole trap, where

the Hamiltonian takes the form h = p2

2m + mω2

2 (x2 + y2) +
mω2

zz
2

2 − µBb(σxx − σyy). Applying our mapping to the
variables (x, y, px, py) leads to the equivalent Hamiltonian

H = P 2

2m + mω2

2 (X2 + Y 2) +
mω2

zZ
2

2 − µBb
mω (σxPx + σyPy),

which turns out to describe a 2D spin-orbit coupled par-
ticle [37]. Finally, in the same trap, it is also possible to
engineer a Rashba coupling by taking X = py/mω, Px =
−mωy, Y = px/mω, Py = −mωx.
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