Read me file:

University of Southampton - Nano research group - Kapil Debnath - K.Debnath@soton.ac.uk

Date of data collection: from September 2016 - November 2016

Date that the file was created: December 2016

Location of data collection: University of Southampton, U.K.

License: Creative Commons Attributions

Publications: http://eprints.soton.ac.uk/id/eprint/403671

The excel file contains experimental data for the paper "Photonic crystal waveguides on silicon rich nitride platform". In particular:

Figure 1: Calculated normalized frequency (a/λ) vs Wavevector for different dispersion bands of a hexagonal photonic crystal of air holes in a silicon rich nitride substrate along with air light line.

Figure 1b: Calculated dispersion relation of a W1 waveguide and W0.7 waveguide in a hexagonal photonic crystal of air holes in a silicon rich nitride substrate along with air light line.

Figure 4: Measured transmission and the trend in transmission of 100μ m long W1 waveguides in a hexagonal photonic crystal of air holes in a silicon rich nitride substrate for different lattice periods of a = 560nm, 570nm and 580nm.

Figure 5a: Measured transmission and the trend in transmission of 200μ m long W1 waveguides in a hexagonal photonic crystal of air holes in a silicon rich nitride substrate for lattice period of a = 580nm.

Figure 5b: Estimated group index and estimated propagation loss along with calculated group index of W1 waveguides in a hexagonal photonic crystal of air holes in a silicon rich nitride substrate for lattice period of a = 580nm.

Figure 5c: Measured transmission and the trend in transmission of 200μ m long W0.7 waveguides in a hexagonal photonic crystal of air holes in a silicon rich nitride substrate for lattice period of a = 580nm.

Figure 5d: Estimated group index and estimated propagation loss along with calculated group index of W0.7 waveguides in a hexagonal photonic crystal of air holes in a silicon rich nitride substrate for lattice period of a = 580nm.