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1 Introduction

In the late 1940’s, Higman, Neumann and Neumann showed that every countable
group embeds in a 2-generator group, in the same paper in which they introduced
HNN-extensions [6]. Neumann had already shown that there are uncountably many
2-generator groups, from which it follows that they cannot all embed in finitely
presented groups [9]. It was not until the early 1960’s that Higman was able to
characterize the finitely generated subgroups of finitely presented groups [5]. The
Higman embedding theorem is a high-point of combinatorial group theory that
makes precise the connection between group presentations and logic: it states that
a finitely generated group G embeds in some finitely presented group if and only
if G is recursively presented, i.e., there is an algorithm to write down the relations
that hold in G [5].

A group G is almost finitely presented1 or FP2 if its augmentation ideal IG
is finitely presented as a module for its group algebra ZG (see [3, VIII.5] or [2]
for more details). Every finitely presented group is FP2, and every FP2 group
is finitely generated. Bestvina and Brady gave the first examples of FP2 groups
that are not finitely presented [1], although these examples arose as subgroups of
finitely presented groups. In [7] the author constructed groups of type FP2 that
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do not embed in any finitely presented group. Given these examples it becomes
natural to look for an analogue of the Higman embedding theorem for FP2 groups.
Our main theorem answers this question.

Theorem 1.1 Every countable group embeds in an FP2 group.

Although the statement is similar to the Higman-Neumann-Neumann embed-
ding theorem, the proof is much closer to the Higman embedding theorem. In fact
it is modelled on Valiev’s proof of the Higman embedding theorem as described
in [8, Sec. IV.7], which is a simplification of Valiev’s first proof [11]. Our proof
is simpler than these antecedents because we are not obliged to consider recur-
sively enumerable sets. We make the following definition, which is an analogue of
Higman’s notion of a benign subgroup.

Definition 1.2 A subgroup H of a finitely generated group G is a homologically

benign subgroup if the HNN-extension

GH = 〈G, t : t−1ht = h h ∈ H〉

can be embedded in an FP2 group.

Theorem 1.1 implies that all subgroups of finitely generated groups are homo-
logically benign, however showing that various subgroups are homologically benign
plays a major role in the proof of Theorem 1.1. The result below details what we
need from [7]; after the statement we outline how to deduce it from results stated
in [7].

Theorem 1.3 For any fixed l ≥ 4 and any set S of integers with 0 ∈ S, there is an FP2

group J = J(l, S) and a sequence j1, . . . , jl of elements of J such that js1j
s
2 · · · jsl = 1

if and only if s ∈ S.

Proof The groups GL(S) that are constructed in [7] depend on a connected flag
simplicial complex L and a set S ⊆ Z. If L has perfect fundamental group and
contains an edge loop of length l that is not homotopic to a constant map, then
J = GL(S) has the claimed properties. See [7, section 2] for an explicit example
of a suitable L in the case l = 4; examples for larger l can be obtained by taking
subdivisions of this L.

We expand a little by giving the precise results within [7] that guarantee the
various properties of the group J = J(l, S). When 0 ∈ S ⊆ Z, [7, theorem 1.2]
gives a presentation for GL(S) with generators the directed edges of L. By [7,
theorem 1.3], the group GL(S) is FP2 if and only if the fundamental group of L
is perfect. If j1, . . . , jl is a directed loop in L that does not bound a disk then
by [7, Lemma 14.4], the word js1j

s
2 · · · jsl in the given generators for J is equal to

the identity if and only if s ∈ S.

Theorem 1.3 enables one to encode arbitrary subsets of the natural numbers
N in presentations for FP2 groups. This theorem replaces those parts of Valiev’s
proof that concern Diophantine equations or those parts of Higman’s proof that
concern recursive functions, each of which is used to encode recursively enumerable
subsets of N in finite presentations.
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2 The proofs

Since this section is closely modelled on Lyndon and Schupp’s account of the
Higman embedding theorem [8, Sec. IV.7], we have tried to stay close to the
notation that they use. We also omit arguments that are identical to those in [8].

Since we will be working with presentations, it is convenient to have a charac-
terization of the FP2 property in terms of presentations. Recall that the Cayley
complex for a presentation of a group G is the universal cover of the presenta-
tion 2-complex. The group G acts freely on its Cayley complex, with one orbit
of vertices and with orbits of 1- and 2-cells corresponding to the generators and
relators respectively in the presentation. We define a partial Cayley complex to be
a G-invariant subcomplex of the Cayley complex; partial Cayley complexes are in
bijective correspondence with subcomplexes of the presentation complex.

Proposition 2.1 Let H be given by a presentation with finitely many generators and

a countable set of relators r1, r2, . . .. The following are equivalent.

(i) H is FP2.

(ii) There exists m so that for each i > m, the loop defined by ri represents zero in the

homology of the partial Cayley complex corresponding to all the generators and the

relators r1, . . . , rm.

(iii) There is a connected free H-CW-complex with finitely many orbits of cells and

perfect fundamental group.

Proof Equivalence of (i) and (ii). Let X be the Cayley complex for H and let
Xm be the partial Cayley complex containing all 1-cells and only the 2-cells that
correspond to the relators r1, . . . , rm. Let C∗(X) and C∗(Xm) denote the cellular
chain complexes of X and Xm. The image of the map d1 : C1(X) → C0(X) is
isomorphic to the augmentation ideal IH . Hence H is FP2 if and only if the kernel
of d1 is finitely generated as a ZH-module. Since H1(X) is trivial, this kernel
is equal to the image d2(C2(X)). The stated condition on loops is equivalent to
d2(C2(Xm)) = d2(C2(X)). If this holds then clearly d2(C2(X)) is finitely generated.
Conversely, any finite subset of d2(C2(X)) is contained in some d2(C2(Xm)), so if
d2(C2(X)) is finitely generated then there exists m with d2(C2(Xm)) = d2(C2(X)).

(ii) =⇒ (iii) and (iii) =⇒ (i). Each Xi is a connected H-CW-complex with
finitely many orbits of cells, and if (ii) holds then H1(Xm) ∼= H1(X) is trivial.
Given any H-CW-complex Y as in (iii), pick a maximal subtree T in Y/H, leteT be the set of lifts of T in Y , and note that eT is equivariantly isomorphic to
T × H. The cellular chain complex C∗(Y, eT ) gives a finite presentation for the
relative homology group H1(Y, eT ) as a ZH-module. Since H1(Y ) = 0, H1(Y, eT ) is
isomorphic to IH .

Next we give the homological version of the Higman Rope Trick [8, IV.7.6].

Lemma 2.2 If R is a homologically benign normal subgroup of a finitely generated

group F , then F/R is embeddable in an FP2 group.

Proof Fix R as in the statement, and let H be an FP2 group containing the group
FR = 〈F, t : t−1rt = r, r ∈ R〉. Let L be the subgroup of FR ≤ H generated by
F and t−1Ft, so that L ∼= F ∗R F . As in [8, IV.7.6] there is a homomorphism
φ : L → F/R whose restriction to F is equal to the quotient map F → F/R and
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whose restriction to t−1Ft is the trivial homomorphism. Viewing L as a subgroup
of H, the map l 7→ (l, φ(l)) defines a second copy of L inside H × F/R. Let K be
the HNN-extension in which the stable letter conjugates these two copies:

K = 〈H × F/R, s : s−1(l, 1)s = (l, φ(l)), l ∈ L〉.

The group K is generated by the generators for H, the generators for F/R and
the element s. As defining relators we may take the relators for F/R, the relators
for H, finitely many relators stating that the generators for H and the generators
for F/R commute, and finitely many relators of the form s−1(l, 1)s(l, φ(l))−1 for l
in some generating set for L. As in [8, IV.7.6], the relators that hold between the
generators for F/R can be eliminated from this presentation for K, leaving just
the relators for H and finitely many other relators.

To see that K is FP2, we use Proposition 2.1 applied to the presentation 2-
complex with the generators and relators described above. The generators and
relators for H are contained in those for K, so we may look at the partial Cayley
complex for K corresponding to just these generators and relators. This 2-complex
is isomorphic to a disjoint union of copies of the Cayley complex for H (one copy
for each coset of H in K). Let r1, r2 . . . be an enumeration of the relators for H.
Since H is FP2, there exists m so that for i > m, the relator ri represents zero in the
homology of the partial Cayley complex for H with just the relators r1, . . . , rm. It
follows that these same loops represent zero in the homology of the partial Cayley
complex for K discussed above.

Now consider the partial Cayley complex for K, taking all the generators,
the commutation relators between generators for H and F/R, the finitely many
relators involving s, and the relators r1, . . . , rm. For i > m, the loops in this complex
defined by ri represent the zero element of homology, since they already represent
0 in the smaller partial Cayley complex consisting of a disjoint union of copies of
the Cayley complex for H. Hence this presentation for K satisfies condition (ii) of
Proposition 2.1, and so K is FP2.

Lemma 2.3 Let G be a finitely generated group which is embeddable in an FP2 group.

– Every finitely generated subgroup of G is homologically benign in G.

– If H and K are homologically benign subgroups of G, then so are their intersection

and the subgroup that they generate.

Proof Almost identical to the proof of [8, Lemma IV.7.7], except that it relies on
the fact that a free product with amalgamation P = M ∗GN is FP2 provided that
M and N are FP2 and G is finitely generated rather than on a similar statement
for finite presentability. This can be proved easily using Proposition 2.1.

Lemma 2.4 Fix l ≥ 4, and for any integer s define vs := cs0c
s
1 · · · csl de

s, an element

of the free group H = 〈c0, . . . , cl, d, e〉 of rank l + 3. For any S ⊆ Z with 0 ∈ S, the

subgroup

VS := 〈vs : s ∈ S〉 ≤ 〈c0, . . . , cl, d, e〉

is homologically benign and is freely generated by the given elements.

Proof If a reduced word in the elements vs is written out in terms of the elements
c0, . . . , cl, d, e, the only cancellation that can take place involves c0 and e. Thus the
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subwords (cs1c
s
2 · · · csl d)

±1 survive uncancelled, which implies that the elements vs
are free generators for the subgroup VZ of H.

We claim that VZ is benign, and hence homologically benign. To see this, define
an ascending HNN-extension of the free group H = 〈c0, . . . , cl, d, e〉 by

u−1ciu = c0c1 · · · ci−1cic
−1
i−1c

−1
i−2 · · · c

−1
0 , u−1du = c0c1 · · · clde, u−1eu = e.

Since u−1vsu = vs+1 for all s ∈ Z and v0 = d it follows that

〈d, u〉 ∩H = VZ.

Hence VZ is benign in 〈c0, . . . , cl, d, e, u〉 and therefore also in the free group H.
Fix some S ⊆ Z, and claim that VS is homologically benign in H. To see this,

let J = J(l, S) and j1, . . . , jl ∈ J be as in the statement of Theorem 1.3, and let
K = K(S) be

K = 〈c0, d, e〉 ∗ (〈c1, c2, . . . , cl〉 × J) = H ∗〈c1,...,cl〉 (〈c1, c2, . . . , cl〉 × J).

The group K is FP2, since it has a presentation in which the only relators are the
relators of J and finitely many commutation relators between c1, . . . , cl and the
generators of J .

Define an HNN-extension M = M(S) of K, with base group H and stable
letter t via

t−1c0t = c0, t−1cit = ciji for i > 0, t−1dt = d, t−1et = e.

The group M is FP2 and its subgroups VZ, t−1VZt and H are all homologically
benign. The elements t−1vst freely generate the free group t−1VZt. In terms of
the generators for K, t−1vst = cs0c

s
1 · · · csl j

s
1 · · · jsl de

s. When a reduced word in the
elements t−1vst is written in these terms, the only cancellation that can take place
involves c0 and e, thus the subwords (cs1 · · · csl j

s
1 · · · jsl d)

±1 survive uncancelled. It
follows that such a reduced word is in H if and only if each subword js1 · · · jsl is equal
to 1, or equivalently each s that occurs lies in S. Hence VS is equal to t−1VZt ∩H
and is homologically benign in M and in H.

As in [8, IV.7], let L be the free group L = 〈a, b〉, and let F be the free group
of rank l + 6 with F = 〈a, b, c0, . . . , cl, d, e, h〉. Define a Gödel numbering γ of all

words on the alphabet {a, b, a−1, b−1} by the formula

γ(∅) = 0, γ(a) = 1, γ(b) = 2, γ(a−1) = 3, γ(b−1) = 4,

and extending to longer words by concatenation, viewing a concatenation of digits
as a number. Thus γ is a bijection between the words and the subset of N consisting
of zero and all integers whose decimal digits lie in the set {1, 2, 3, 4}.

To any word w on {a, b, a−1, b−1}, associate a codeword gw ∈ L defined by

gw := whc
γ(w)
0 c

γ(w)
1 · · · cγ(w)

l deγ(w).

The subgroup G of F generated by all the elements gw is freely generated by them.

Lemma 2.5 The subgroup G is benign in F .
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Proof Almost identical to the argument in [8, IV.7]. Make a group F ∗ defined as
the fundamental group of a graph of groups with one vertex group F , and four
edges corresponding to stable letters uλ for λ ∈ {a, b, a−1, b−1}, each of which
defines an ascending HNN-extension of F with relations

u−1
λ auλ = a, u−1

λ buλ = b, u−1
λ ciuλ = c

γ(λ)
0 c

γ(λ)
1 · · · cγ(λ)i−1 c

10
i c
−γ(λ)
i−1 · · · c−γ(λ)0 ,

u−1
λ duλ = c

γ(λ)
0 c

γ(λ)
1 · · · cγ(λ)l deγ(λ), u−1

λ euλ = e10, u−1
λ huλ = λh.

In F ∗, we have that for any word w = λ1 · · ·λn,

u−1
λ1
· · ·u−1

λn
g∅uλn

· · ·uλ1 = u−1
λ1
· · ·u−1

λn
hduλn

· · ·uλ1 = gw,

and if w = uλ then uλgwu
−1
λ = gu.

To show that G is benign in F , it suffices to show that in F ∗,

G = F ∩ 〈g∅, ua, ub, ua−1 , ub−1〉.

From the equations given above, it is clear that the left-hand side is contained
in the right-hand side. As in [8, IV.7], to prove the converse it suffices to show
that whenever z ∈ G and λ ∈ {a, b, a−1, b−1} are such that uλzu

−1
λ ∈ F , then in

fact uλzu
−1
λ ∈ G, or equivalently z ∈ u−1

λ Guλ. For this, write z = gε1w1 · · · g
εn
wn as

a reduced word in the elements gw, with εi = ±1. When this expression for z

is rewritten in terms of the generators for F and reduced, each subword of the

form (c
γ(wi)
1 c

γ(wi)
2 · · · cγ(wi)

l d)εi survives uncancelled, and any two such subwords
are separated by a non-trivial word in the other generators a, b, c0, e, h. Each of the

natural free generators for u−1
λ Fuλ except u−1

λ duλ = c
γ(λ)
0 c

γ(λ)
1 · · · cγ(λ)l deγ(λ) has

total exponent of each ci divisible by 10. From this it follows that each γ(wi) is
congruent to γ(λ) modulo 10, and hence that wi = xiλ for some shorter word xi,
so that z ∈ u−1

λ Guλ as required.

Corollary 2.6 Every subgroup of the free group L = 〈a, b〉 is homologically benign.

Proof Let N be a subgroup of L, and define a subset S = S(N) ⊆ N as the set of
Gödel codes for words w on {a, b, a−1, b−1} that are equal (as elements of L) to an
element of N :

S = {γ(w) : w ∈L N}.

Now let YS be the free product 〈a, b, h〉 ∗ VS ≤ F , where VS is as defined in the
statement of Lemma 2.4. By that lemma, VS is homologically benign, and hence
YS is homologically benign in F . Since YS is freely generated by {a, b, h, vs : s ∈ S},
it is easy to see that G ∩ YS is freely generated by {gw : w ∈ N}. (Recall that
vs = cs0c

s
1 · · · csl de

s.) Hence G∩YS is homologically benign. The subgroup generated
by G∩YS and the finite set {c0, . . . , cl, d, e, h}, which is equal to N∗〈c0, . . . , cl, d, e, h〉,
is therefore also homologically benign and the intersection of this group with L is
equal to N .

We are now ready to complete the proof of Theorem 1.1. By the Higman-
Neumann-Neumann embedding theorem [6,8], any countable group can be em-
bedded in a 2-generator group. This 2-generator group is isomorphic to L/N for
some normal subgroup N . By Corollary 2.6, N is homologically benign, and so by
Lemma 2.2, L/N can be embedded in an FP2 group.
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3 Closing remarks

An opinion attributed to Gromov [4, Ch. 1] is that any statement that is valid
for every countable group should be trivial. With this in mind, is there an easier,
more direct proof of Theorem 1.1? Is there one that is not modelled on a proof of
the Higman embedding theorem and that does not does not rely on Theorem 1.3,
or other results from [1,7]?

To prove Theorem 1.1, we only need the groups J(l, S) for some fixed l ≥ 4.
Our motivation for allowing l to vary comes from the above question. For any l ≥ 4
and any S with 0 ∈ S ⊆ Z, define a group J ′(l, S) by the presentation

J ′(l, S) = 〈j1, . . . , jl : js1js2 · · · jsl = 1 s ∈ S〉.

If one could show that J ′(l, S) embeds in a group of type FP2 and that js1j
s
2 · · · jsl 6=

1 if s /∈ S without invoking [1,7], one would obtain a different proof of Theorem 1.1.
If l ≥ 13, the given presentation for J ′(l, S) satisfies the C′(1/6) small cancellation
condition [8, Ch. 5]. This can be used to give a different proof that js1j

s
2 · · · jsl 6= 1

for s /∈ S.
The proof of the Higman-Neumann-Neumann embedding theorem in [8, IV.3]

implies that any FP2 group embeds in a 2-generator FP2 group. It follows that
every countable group embeds in a 2-generator FP2 group.

The groups J = J(l, S) in Theorem 1.3 may be chosen to have cohomological
dimension cd J = 2 in addition to the stated properties. By keeping track of the
cohomological dimension at each stage of the argument one obtains the follow-
ing strengthened version of Corollary 2.6, and hence a strengthened version of
Theorem 1.1:

Corollary 3.1 For every subgroup N of the free group L = 〈a, b〉, the HNN-extension

〈L, t : t−1nt = n n ∈ N〉 embeds in an FP2 group of cohomological dimension five.

Theorem 3.2 Every countable group G embeds in a 2-generator FP2 group G∗, with

cdG∗ ≤ cdG+ 5. Every torsion element in G∗ is conjugate to an element of G.

The proof of the Higman embedding theorem in [8, IV.7] shows that every re-
cursively presented group G of finite cohomological dimension embeds in a finitely
presented group G∗ of finite cohomological dimension. However, cdG∗ increases
with the complexity of the Diophantine equation used to encode the relators in G.
Applying Sapir’s aspherical version of the Higman embedding theorem [10] gives
the following.

Theorem 3.3 For every recursive subgroup N of the free group L = 〈a, b〉, the HNN-

extension 〈L, t : t−1nt = n n ∈ N〉 embeds in a finitely presented group of cohomologi-

cal dimension two.

Combining this with the Higman rope trick [8, IV.7.6] gives a version of the Higman
embedding theorem which is an analogue of Theorem 3.2, but with a better bound
on cdG∗.

Theorem 3.4 Every recursively presented group G embeds into a finitely presented

2-generator group G∗ with cdG∗ ≤ cdG+2. Every torsion element in G∗ is conjugate

to an element of G.
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