
Approaching the basis set limit for DFT calculations using an
environment-adapted minimal basis with perturbation theory:
formulation, proof of concept and a pilot implementation

Yuezhi Mao,1 Paul R. Horn,1 Narbe Mardirossian,1 Chris-Kriton Skylaris,2 Teresa Head-Gordon,3, 4, 5

and Martin Head-Gordon1, 5, a)

1)Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry,
University of California at Berkeley Berkeley, CA 94720, USA
2)School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ,
UK
3)Department of Chemistry, University of California at Berkeley Berkeley, CA 94720,
USA
4)Department of Chemical and Biomolecular Engineering, University of California at Berkeley Berkeley,
CA 94720, USA
5)Chemical Science Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720,
USA

(Dated: 13 March 2016)

Recently developed density functionals have good accuracy for both thermochemistry (TC) and
non-covalent interactions (NC) if very large basis sets are used. To approach the basis set limit
with potentially lower costs, a new SCF scheme with minimal adaptive basis (MAB) functions
variationally optimized on each atomic site is presented, and the desired accuracy can be obtained by
applying a perturbative correction (PC). Compared to exact SCF results, using this MAB-SCF (PC)
approach with the same target basis set produces < 0.15 kcal/mol RMS errors for most of the tested
TC datasets, and < 0.1 kcal/mol for most of the NCs. The performance of density functionals near
the basis set limit can be well reproduced with slight discrepancies. With further improvement to its
implementation, MAB-SCF (PC) could be a promising substitute for its conventional counterpart
to viably approach the basis set limit of modern density functionals.

I. INTRODUCTION

Kohn-Sham density functional theory1–3 (KS-
DFT) has become the most widespread electronic-
structure method because of its reasonable balance
between accuracy and computational cost. Func-
tionals using the generalized gradient approxima-
tion (GGA)4,5 are usually regarded as the sim-
plest that can give acceptable accuracy for chem-
istry. To overcome the plague of self-interaction
error, new variables have been introduced, leading
to meta-GGA6–8, global hybrid (GH)9 and range-
separated hybrid (RSH)10,11functionals. On the
other hand, a variety of models have been devel-
oped to account for van der Waals (vdW) interac-
tions within DFT12, including the empirical DFT-D
methods13–15 and nonlocal correlation (NLC) func-
tionals (e.g. vdw-DF-1016, VV1017). Most recently,
Mardirossian et al. developed two combinatori-
ally designed functionals: ωB97X-V18 (RSH+VV10)
and B97M-V19(meta-GGA+VV10), which demon-

a)Electronic mail: mhg@cchem.berkeley.edu

strated impressive accuracy on both thermochem-
istry (TC) and non-covalent interactions (NC), with
an accessible complete basis set (CBS) limit, and low
grid sensitivity.

With finite atomic orbital (AO) basis sets20, one
prerequisite for attaining such accuracy is to ap-
proach the CBS limit. This issue has been carefully
investigated21–24, but is often neglected in practical
applications, as exemplified by the prevalence of the
“B3LYP9,25,26/6-31G(d)” model chemistry. A ba-
sis set of at least triple- and preferably quadruple-
ζ quality is often required by hybrid functionals
(e.g. B3LYP) to obtain adequately converged ther-
mochemistry results. Even for the semi-local B97M-
V functional, the acceptable alternatives to aug-cc-
pVQZ27,28 (which almost represents the CBS limit)
are still of least triple-ζ quality. Turning to the eval-
uation of NCs, a similar study on the A2429 and
S6630,31 complexes indicates that augmented triple-
ζ basis sets (e.g. aug-cc-pVTZ, def2-TZVPD32) are
in general required by B97M-V to properly con-
verge the binding energies. Their double-ζ counter-
parts (e.g. aug-cc-pVDZ, def2-SVPD) should only be
carefully used with counterpoise (CP) corrections33.
For ωB97X-V, the requirement on basis set quali-
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FIG. 1: Basis set dependence of RMS errors for G2
atomization energies against benchmark values from
Ref. 35). Data for 5 functionals are collected: B97-D

(GGA), B97M-V (meta-GGA), B3LYP (GH), M06-2X
(GH)38, and ωB97X-V (RSH). Dunning’s augmented
correlation-consistent basis sets (D, T, Q) are used to

systematically approach the CBS limit.

ties might be even higher due to the slower basis set
convergence of RSH functionals18.

Figure 1 demonstrates the basis set convergence
of several modern density functionals in terms of
their RMSDs for the G2 set34(atomization energies
of 148 neutral molecules, whose reference values re-
computed by Ref. 35). Apart from B97M-V, us-
ing aQZ instead of aTZ for the other 4 functionals
reduces their RMSDs by 0.8–1.4 kcal/mol, includ-
ing the semi-local B97-D14 functional (GGA). Us-
ing aDZ yields very poor accuracy (usually over 10
kcal/mol RMSDs) for all these functionals, which
defeats the purpose of using state-of-the-art density
functionals. One way to tackle this problem is by
directly training a functional in a small basis, such
as the EDF1 functional36, which was parameterized
at the 6-31+G(d) level. By relying on a cancellation
balance between the functional error and basis set
error, their transferability can be limited, and fur-
ther empirical corrections seem necessary to achieve
useful accuracy for relative energies37.

Each self-consistent field (SCF) cycle of a KS-DFT
calculation involves two computationally significant
steps: (1) Fock matrix construction with a given
density, and (2) Fock matrix diagonalization to up-
date the density. For fixed system size, the compu-
tational cost of the Fock build scales as O(n4) with
respect to the basis size (n) when conventional AO
algorithms are used, and the cost of the diagonaliza-
tion step scales as O(n3). This steep cost increase

inhibits large basis sets (e.g. QZ size) from being
routinely employed in DFT calculations. The scal-
ing of cost vs. basis size is largely independent of
the development of linear scaling (with system size)
Fock build algorithms39–45 and many diagonaliza-
tion replacements46,47. Moreover, near-complete ba-
sis sets are not favored by linear-scaling algorithms,
especially when diffuse functions are included, since
matrix element sparsity is diminished and the over-
lap matrix starts to be ill-conditioned, which in turn
destroys the sparsity of the density matrix48,49.

One successful strategy to make large basis KS-
DFT calculations more tractable is to compute the
full Coulomb (J) and exchange (K) matrices more
efficiently by approximating two-electron repulsion
integrals (ERIs) with the aid of auxiliary basis func-
tions or grid points. The resolution-of-the-identity
(RI) method50–52 expands the product of AO func-
tion pairs with a preoptimized auxiliary basis. RI
algorithms do not improve the system-size scaling
unless local fit regions are applied53,54, but they
reduce the basis set size scaling from O(n4) to
O(n3). Therefore, state-of-the-art RI algorithms
(e.g. MARI-J55, occ-RI-K56) can speed up large
basis Fock matrix construction step for small- to
medium-sized systems significantly, while retaining
numerical accuracy. The diagonalization step is un-
affected.

A second successful approach to accelerating large
basis calculations is to perform the iterative SCF
procedures in a primary (small) basis and then ap-
proximate the secondary (target) basis results by
utilizing perturbation theory. This idea was intro-
duced for post-SCF methods (e.g. MP2)57,58, and
was then developed for SCF methods59–66. With
a careful choice of primary/secondary basis set pair-
ing, these methods can provide satisfactory accuracy
for both TC59,65,66 and NC63 with significantly re-
duced computational costs (roughly 10 times faster),
although system-size scaling remains unchanged.
One limitation is the need to develop and validate
the basis set pairings63, which determines accuracy
and speedup. Also, as the secondary basis ap-
proaches the CBS limit, the size of the primary basis
needed to achieve a given accuracy increases: for in-
stance the optimized primary basis for cc-pVQZ is
roughly cc-pVTZ size60.

A related approach is the use of small adaptive
basis sets. The idea of encoding chemical envi-
ronment information into atomic/quasiatomic ba-
sis functions to understand chemical bonding dates
back to early tools67–72, as well as more contem-
porary methods73–78. Apart from interpretive pur-
poses, the merits of utilizing small adaptive bases
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in KS-DFT calculations have been recognized with
the development of fast (especially linear-scaling)
SCF algorithms, leading to renewed interest in the
concept of “polarized atomic orbitals” (PAOs), first
put forward by Adams in the 1960s79,80. These
adaptive sets usually have very tiny (often mini-
mal) spans, which leads to vastly fewer variational
degrees of freedom. In addition, an adaptive basis
constructed with spatial confinement contributes to
a well-conditioned overlap matrix, which is a prop-
erty favored by O(N) scaling methods.

The Adams PAO scheme treats atoms in a
molecule as fragments and solves projected equa-
tions self-consistently on each of them, which is
similar, in spirit, to projected SCF methods using
fragment-localized, non-orthogonal MOs to evalu-
ate intermolecular interactions (SCF-MI)81–83. In
practice this scheme only works for weakly inter-
acting atoms (e.g. rare-gas clusters) or ionic com-
pounds (e.g. LiH, NaCl)84. Later, the PAO ap-
proach was recast to form a minimal atom-centered
adaptive basis as an atom-blocked contraction of
the secondary basis functions on each atom85. The
molecular energy is minimized simultaneously with
respect to the atom-blocked contraction coefficients
and the density matrix in the adaptive basis85. The
PAO-SCF energy can be improved using perturba-
tion theory86, similar to the dual basis approaches
discussed above. The minimal rank of the PAO basis
and its atomic locality makes it promising for linear-
scaling algorithms49, but the “double” optimization
problem is challenging.

Significant progress on tractable adaptive basis
schemes for KS-DFT have been made in the con-
densed matter physics community. Similar to the
PAOs, Ozaki and Kino87,88 and others89,90 used nu-
merical solutions to the atomic Kohn-Sham equa-
tions as the secondary basis, and a scheme resem-
bling geometry optimization to obtain the adap-
tive basis. The CONQUEST program91 forms lo-
cal “support functions” (an adaptive basis) from
either functions akin to plane waves92 or pseudo-
atomic orbitals93. The ONETEP package94,95

forms non-orthogonal generalized Wannier func-
tions (NGWFs)96 as the environment-adapted basis,
which a linear combination of periodic sinc functions
confined in an atom-centered sphere of fixed radius.
The NGWFs are efficiently optimized via a precon-
ditioned conjugate-gradient algorithm97.

Recently, adaptive basis schemes that do not re-
quire the global Hamiltonian or density matrix have
been presented. The localized filter diagonalization
(LFD) method builds an adaptive basis on-the-fly
by contracting the atomic Gaussian functions within

a local region, with contraction coefficients deter-
mined by diagonalizing a block of the Hamiltonian
matrix corresponding to that region98,99. This al-
gorithm has also been used to construct multisite
local support functions100, and the general philos-
ophy has been extended by Lin et al.101, including
another model with more rigorous optimization102.
While clearly promising, to our knowledge, the accu-
racy and performance of these methods on chemical
systems have not been systematically assessed yet.

In the present work, we propose an inexpensive
version of the PAO method (Sec. II). Instead of
energy-optimizing the adaptive basis and density si-
multaneously, an inexpensive converged SCF solu-
tion (density matrix) in a projected reference basis
(PRB) is utilized as a reference (Sec. II A). Based on
this reference, an atom-centered minimal adaptive
basis (MAB) is found by minimizing a judiciously
chosen objective function (Sec. II B), which is com-
putationally inexpensive to evaluate. The converged
MAB is then used as the basis set for another SCF
calculation, which requires small computational ef-
fort as well, and has the promise of providing com-
parable accuracy to PAO-SCF. Akin to the PAO
case, perturbation corrections can be applied to the
MAB-SCF energy for improved accuracy (Sec. II E).
Details about the pilot implementation and the fol-
lowing benchmark calculations are summarized in
Sec. III, and the accuracy of this approximate SCF
scheme is assessed on a broad range of TC and NC
datasets in Sec. IV.

II. THEORY

The notation used throughout this paper is as
follows: |ω〉: generic atomic basis functions; |ψ〉:
generic molecular orbitals; capital Roman indices
X, Y ,...: atomic centers; lowercase Greek letters µ,
ν, λ,...: secondary (large) AO basis indices; α, β,
γ,...: primary (small, contracted) AO basis indices;
lowercase Romans i, j, k,...: occupied MO indices;
a, b, c,...: virtual MO indices; p, q, r,...: generic
MO indices. For introducing the MAB optimization
scheme, i, j,... are also employed to denote the vec-
tors retained in the MAB subspace, a, b,... for the
vectors in MAB’s complementary subspace, and p,
q,... are the generic ones, which is analogous to the
partitioning of MO space in SCF.

To concisely show the character of quantities
within a nonorthogonal basis, tensorial notation will
be used in the derivation, i.e., covariant (subscript)
and contravariant (superscript) indices are distin-
guished, following Ref. 103 and the appendix of
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Ref. 85. For instance, a matrix element denoted by
BXµ

Xα indicates that matrix B has rows correspond-
ing to contravariant secondary basis functions and
columns corresponding to covariant primary basis
functions, and these basis functions belong to the
same atomic center X. Einstein summation conven-
tion is applied for contractions between contravari-
ant and covariant indices, except for summations
over different atomic centers, which will be written
out explicitly.

A. SCF in a small projected reference basis (PRB)

The search for the MAB described in Sec. II B
requires an inexpensively calculated reference den-
sity matrix in the target basis. A converged SCF
solution in a small PRB serves this purpose, where
atom-blocked operations62 are performed to project
the reference basis functions into the space spanned
by the target (large) basis:

|ωAα〉 = |ωAµ〉
(
S−1
A

)AµAν
(S12)

AνAα

= |ωAµ〉BAµ

Aα. (1)

Here, S12 is the overlap between the (unprojected)
RB and the target basis functions. Throughout this
paper, B will be an atom-blocked matrix contain-
ing atomic contraction coefficients of the large basis
functions.

Since the reference basis is small (to be specified
later) and the target basis is close to the CBS limit,
then the atom blocks of B will be very sparse since
the contraction coefficients for the high angular mo-
mentum components of the secondary basis all van-
ish during the projection procedure. At this stage,
an SCF calculation is performed in the PRB, by solv-
ing the following KS equations:

FC = SCε, (2)

F and S can be transformed from their counterparts
in the target basis using the B matrix:

F = BTFB, S = BTSB (3)

In reverse, the PRB density matrix, P, can be pro-
jected into the target basis via the following trans-
formation:

P̃ = BPBT (4)

Since the PRB is an exact subset of the secondary
basis, no information in P is lost upon projection
into the large basis (Eq. (4)). We call this special

property of P̃ “B-representability”. The final PRB
density matrix P becomes the reference used in the
search for the MAB.

B. Finding the minimal adaptive basis (MAB)

The previous sub-section employs a basis defined
by a fixed atom-blocked transformation (the PRB)
and optimizes a density matrix in it. Now our pur-
pose is different. Given the fixed reference density
matrix, our goal is to optimize an energy-like func-
tion with respect to a variable B matrix which de-
fines the MAB. (Note: in the following discussion B
denotes the MAB coefficients.) Since a single diag-
onalization minimizes Tr[PF] for a chosen number
of electrons60 when F is given, we shall by anal-
ogy minimize Tr[P̃F], where P̃ = BPBT is a B-
representable density matrix in the secondary ba-
sis that derives from the fixed reference density (de-
noted as P here).

However, the MAB has smaller rank than the
PRB, and the spaces spanned by them are rather
different, so the reference density in the target basis
(eq. 4) will not be representable by the MAB. There
exist many ways to construct the B-representable
counterpart of P. We choose to project P into the
space spanned by the MAB first (form P), and then
transform it back into the large basis:

P = (σ−1)BTSPSB(σ−1), (5)

P̃ = BPBT

= B(σ−1)BTSPSB(σ−1)BT . (6)

Recognizing that the projector into the MAB
space is:

R = B(σ−1)BT (7)

then our objective function becomes:

E = Tr [RSPSRF] . (8)

We note that the B-representable density matrix P̃
usually does not contain exactly the right electron
count. While the exact Nelec is given by Tr[PS],
based on the idempotency of R, we have

Tr[P̃S] = Tr[RSPSRS]

= Tr[RSPS] 6= Tr[PS], (9)

The inequality arises because the reference density
matrix P is usually not B-representable.

Gradient-based optimization can locate the op-
timal B as the minimizer of Eq. (8). The initial
guess for the MAB (and its complementary basis,
denoted by V), is obtained by diagonalizing atomic
blocks of the reference density matrix, appropriately
transformed71 as P′A = XT

ASAPASAXA, where SA
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is the overlap matrix of the secondary basis func-
tions on A, and XA is the canonical orthogonalizer
for them. Denoting UA as the eigenvectors of P′A,
the initial B and V are set to:

(Binit

A )AµAi = (XA)AµAp(UA)ApAi (10a)

(V init

A )AµAa = (XA)AµAp(UA)ApAa, (10b)

The partitioning of the Hilbert space can be rep-
resented symbolically as

IA = XA = BA ⊕VA,

I =

NA⊕
A=1

IA. (11)

Since the MAB functions (and the complementary
ones) are constructed by on-site contractions of the
secondary basis, the variables that parameterize the
MAB are intra-atomic orbital rotations. Akin to
Ref. 49, a single on-block unitary transform is pa-
rameterized by the exponential of an antisymmetric
matrix104, which ensures that the updated atomic
orbitals stay on the same manifold:

[B(θ)]
Xµ

Xi
= CXµ

Xr exp (θXrXi) , (12)

where CXµ
Xr denotes the union of the MAB and the

complementary functions on atom X. To enforce
antisymmetry of θ, it is further parameterized by
∆ which actually contains all the independent vari-
ables:

θXrXi =
[
∆XrXs − (∆†)XrXs

]
σXsXi

= [∆XrXs −∆XsXr]σXsXi. (13)

The desired gradient, evaluated at ∆ = 0 is

∂E

∂∆ZpZq
=
∑
X,Y

∂E

∂RXµY ν

∂RXµY ν

∂∆ZpZq

=
∑
X,Y

(SPSRF + FRSPS)Y νXµ
∂RXµY ν

∂∆ZpZq
.

(14)

E is invariant with respect to orbital rotations
within the MAB space (p = i, q = j), or within the
space of complementary excluded vectors (p = a, q =
b), as these rotations leave R unchanged. Therefore,
the non-zero gradient comes only from variations of
∆ZiZa. Using the identities

∂BXµ
Xj

∂∆ZiZa
= −V Xµ

Xaδ
X

ZσXiXj (15)

and

∂(σ−1)

∂∆
= −(σ−1)

∂σ

∂∆
(σ−1), (16)

the desired gradient expression is given by

∂E

∂∆ZiZa
= −2σZiZj

[
(σ−1)BTG(I −RS)

]Zj
Zµ
V Zµ

Za,

(17)
where, for brevity, G = ∂E/∂R as defined in Eq.
14. More details about the derivation of Eq. (17) is
provided in Appendix A.

Once the gradient at the current position is com-
puted, the optimization algorithm will generate a
new step (∆) based on it (and the previous gradi-
ents and steps). The equations for the exponential
transformation were derived by Ref. 104. The up-
date for the MAB can be represented as

B(n) = B(n−1)

(
U cosp1/2UT

−∆†Up1/2 sinp1/2UT

)
. (18)

U and p stand for eigenvectors and eigenvalues of
the matrix quantity ∆∆†, respectively, and note
that the unitary transformations are atom-blocked
operations. When the iterative optimization con-
verges, B represents a minimal basis energetically
adapted to the chemical environment described by
the reference density matrix (from PRB-SCF). Fig-
ure 2 illustrates the MAB optimization procedure.
Finally, we note that for unrestricted cases, the
MABs for α and β electrons are optimized separately
(they are completely decoupled), using the same ob-
jective function form.

With the MAB defined, a converged SCF solu-
tion can be obtained in this basis. The SCF energy
in the fixed MAB will be an approximation to the
energy evaluated by PAO-SCF, which directly mini-
mizes the SCF energy with respect to the generators
of the MAB as well as the variables defining the den-
sity matrix. These two approaches will be compared
in Sec. IV A.

C. Modified definition of the minimal adaptive basis

The size of a minimal basis only depends on the
principal quantum number of the atom’s valence
shell, since a complete set of angular momentum
functions are needed to fulfill the requirement of
spatial isotropy. This definition usually works very
well, but there are two types of exceptions. First, in
some cases, the standard rank of the minimal basis
includes redundant functions. For example, the min-
imal basis of lithium (n = 2) consists of 5 functions,
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FIG. 2: Illustration of the MAB optimization
procedure. X and Y are two distinct atom blocks. Xi,
Yi represent the MAB functions, and Xa, Ya are the

excluded basis functions.

although only two of them are required to describe
its 1s22s1 configuration. The same applies to some
other electron-deficient species like cations and rad-
icals. The presence of redundant functions causes
difficulties in converging the MAB optimization pro-
cedure. Second, in some cases, the standard rank of
the minimal basis is too small to accurately describe
the bonding. Examples include some hypervalent
molecules (e.g. SO3, ClF3, etc), and, occasionally,
molecular anions. In such cases, the standard rank
of the MAB will lead to larger errors in molecular
properties, which can be greatly reduced if a certain
number of additional MAB functions are judiciously
added to the appropriate atomic centers.

In both cases, we can adjust the rank of the MAB
appropriately based on information that is already
available from the initial PRB-SCF calculation. The
resulting procedure, shown in Algorithm 1, can ei-
ther truncate or augment the MAB dimension on
each atom. The number of significant eigenvalues
(NSig) for each atom is set to the number of eigenval-
ues of P′A that are above a first threshold (thresh1
has a default value of 0.01). The MAB dimension
will be reduced to NSig if that is smaller than a
minimal basis (Nmin). On the other hand, when
Nmin < NSig, the algorithm expands the MAB di-
mension by the number of eigenvalues beyond Nmin
that satisfy EA(i)/EA(Nmin) > thresh2 (thresh2
has a default value of 0.02, i.e., eigenvalues that are
larger than EA(Nmin)/50 will be included), which
will allow a lower optimized MAB-SCF energy.

for atom A = 1, NA do
Compute P′A = XT

ASAPASAXA

Diagonalize P′A, get its eigenvalues EA

i = 1, NSig = 0
while EA(i) ≥ thresh1 do

i = i+ 1, NSig = NSig + 1

mA = NA
min

if NSig < NA
min then

mA = NSig (truncated)
else

i = NA
min + 1

while EA(i)/EA(NA
min) ≥ thresh2 do

mA = mA + 1 (augmented)
i = i+ 1
if i > dim(EA) then

break

mA becomes the span of MAB on atom A

Algorithm 1: Algorithm that flexibly adjusts
(truncates or augments) the size of the MAB for

special systems, based on quantities already
computed when generating the initial guess for

the MAB optimization.

D. Modified MAB objective function

The objective function given by Eq. (8) can be
rewritten as follows:

E = Tr
[
RSCoC

T
o SRF

]
= Tr

[
CT
o SRFRSCo

]
= Tr[C̃T

o FC̃o], (19)

where C̃o = RSCo represents the PRB-optimized
occupied MOs after projection into the MAB space.
For stable species, the energies of occupied MOs
should all be negative, and thus minimizing E corre-
sponds to retaining as many of the bound electrons
as possible.

A disaster occurs in the MAB optimization if an
occupied MO has a positive energy, because mini-
mization will result in loss of those electrons. With
inexact functionals, this occasionally happens for
anions. For example, the energy of the 2p or-
bitals in F− is 0.001 Eh with the B3LYP functional
(hybrid), and 0.056 Eh with the B97-D functional
(pure). With these functionals, the resulting value

of Tr[RSPS] (number of electrons captured by P̃)
is close to 2 when the MAB is optimized, which in-
dicates that the six 2p electrons are missing! This is
completely unphysical, and causes the SCF energy
computed with the MAB to be qualitatively incor-
rect.
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Such difficulties can be avoided by modifying the
eigenvalue structure of F to ensure that all occupied
levels are negative. This can be done by applying a
uniform shift to all the eigenvalues:

F′ = F− λS (20)

using CTSC = I. The shift, λ, is set to be:

λ = ε(HOMO) + 0.75 [ε(LUMO)− ε(HOMO)] ,
(21)

so that the zero energy lies between the PRB-SCF
HOMO and LUMO. Replacing F with F′ in Eq. (8)
gives a modified objective function for the MAB:

E = Tr [RSPSR(F− λS)]

= Tr[RSPSRF]− λTr[RSPS]. (22)

When λ > 0, the new term resembles a penalty
for losing electrons, which can be made explicit by
adding an additional constant, λNelec, to the RHS:

E = Tr[RSPSRF] + λ (Nelec − Tr[RSPS]) . (23)

E. Perturbation correction schemes

Based on the data presented in Ref. 85 and 86, a
significant difference exists between PAO-SCF and
exact SCF results. To reduce this gap, compu-
tationally inexpensive correction schemes based on
perturbation theory are useful. Analogous to the
dual-basis method, the converged MAB-SCF solu-
tion serves as the primary basis reference, and the
contribution of non-Brillouin singles to the second-
order perturbative (PT2) energy correction is given
by59

δE = Tr
[
F(1)

OV T(1)

V O

]
. (24)

Here F denotes the Fock matrix built upon the
MAB-SCF density projected into the secondary ba-
sis: F = F(P̃). The first-order T -amplitude satisfies
the following equation:

F(1)

V O + F(0)

V V T(1)

V O −T(1)

V OF(0)

OO = 0(1)

V O. (25)

In the pseudo-canonicalized MO basis (obtained by
diagonalizing FOO and FV V separately, see Ap-
pendix C), Eq. (25) reduces to a simpler form:

T (1)

ai = −F (1)

ai /
(
ε(0)a − ε

(0)

i

)
. (26)

Correspondingly, the perturbative energy lowering
becomes

δE = −
∑
ia

|F (1)

ai |
2/
(
ε(0)a − ε

(0)

i

)
, (27)

which can be interpreted as an energy-weighted
steepest descent (approximate Newton) step59,86.
Alternatively, other corrections that involve a full
diagonalization of the Fock matrix can be applied,
such as the aforementioned DBDF (only slightly dif-
ferent from PT2) and DFPC methods. The latter
performs a single update of the density matrix in
the secondary basis (by diagonalizing F), and then
recomputes the full SCF energy based on that (the
result will thus be variational).

III. COMPUTATIONAL DETAILS

To summarize, the full MAB-SCF scheme consists
of three stages:

1. Project the target basis onto a small basis to form
the PRB; perform the first-stage SCF calculation
within its span (PRB-SCF), and collect P and
F(P) at convergence.

2. Based on the reference provided by PRB-SCF,
optimize the MAB for each atom using gradient-
based algorithms; perform the second-stage SCF
calculation with the optimized MAB (MAB-
SCF).

3. On top of the MAB-SCF solution, apply a pertur-
bation correction to further approach the exact
SCF result in the target basis.

A pilot implementation of this method is accom-
plished in a development version of the Q-Chem
4.3 package105. A preconditioned limited-memory
BFGS (L-BFGS) algorithm106,107 is implemented for
solving the MAB optimization problem efficiently.
The inverted on-diagonal blocks of the Hessian ma-
trix for the objective function (second derivatives
with regard to orbital rotations on the same atomic
site) are employed as the preconditioner of the L-
BFGS algorithm. In most scenarios, this precondi-
tioning strategy leads to convergence of the MAB
optimization in a reasonable number of iterations
(101 ∼ 102), while the additional cost for evaluating
the preconditioner is moderate. More details about
the preconditioned L-BFGS algorithm and the eval-
uation of the on-diagonal blocks of the Hessian are
provided in Appendix B.

In the current implementation, all the density ma-
trix updates are computed by diagonalizing F (Fock
matrix in the dimension of PRB or MAB), and the
only diagonalization in the large basis dimension
(Nv×Nv to be exact) is required by the perturbation
correction. However, to obtain F , it still requires the
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contraction of the ERI tensor in the secondary basis
with the B-representable density matrix for the time
being, as

(Fα)µν =hµν + (µν|λσ) P̃λσtot − κ (µσ|λν) P̃λσα

+
[
Vxc(P̃α, P̃β)

]
µν
. (28)

for the α electrons (κ is the proportion of exact ex-
change in the employed functional). Then F is trans-
formed back into the primary basis through Eq. 3.
This choice is actually less efficient, because quan-
tities in the primary basis, like Pαβ , Cαi, can be
directly utilized, which significantly reduces the di-
mension of the contraction. Therefore, with our pre-
liminary implementation, we will focus on validating
the accuracy of MAB-SCF (PC) in this work, and
the potential efficient implementation of this method
will be briefly discussed in Sec. V.

All the results for TC and NC datasets are gen-
erated with the KS-DFT routines in Q-Chem 4.3
as well. A (75, 302) grid (75 radial shells with 302
Lebedev points in each) is used for all employed
exchange-correlation (XC) functionals, and the SG-1
grid108 is used for the VV10 NLC functional. Un-
less otherwise noted, 6-31+G(d) is used as the ref-
erence basis in PRB-SCF, and the optimization of
the MAB converges to 10−6 while all the SCF cal-
culations converge to 10−8. To determine the ap-
propriate dimension of the MAB, the default values
of thresh1 and thresh2 adopted by Algorithm 1 are
set to 0.01 and 0.02, respectively. We note that in
this work, the “adding vector” strategy is by default
turned off and only utilized for user-specified hyper-
valent molecules.

IV. RESULTS AND DISCUSSIONS

A. Preliminary tests on G2 set

1. Comparison with PAO-SCF

We start investigating the accuracy of our method
by performing a series of preliminary tests on the G2
set34. To demonstrate the quality of the optimized
MAB, the performance of MAB-SCF on the G2 set
is compared to PAO-SCF, since the latter gives the
limiting behavior of an atom-centered minimal ba-
sis. For the reasons discussed in Sec. II C, the mini-
mal basis models (including MAB and PAO) are not
sufficient for describing the hypervalent molecules.
Thus, we designate the molecules centered by Al–
Cl and coordinated by highly electronegative atoms

B97-Da B97M-Vb B3LYPc

SCF energies
MAB PAO MAB PAO MAB PAO

MAX 25.11 25.48 26.70 26.96 24.39 24.85
RMSD 7.07 7.27 8.06 8.07 7.05 7.18
MSE 5.59 5.72 6.54 6.49 5.62 5.66

With PT2 correction
MAB PAO MAB PAO MAB PAO

MAX -0.26 -0.14 -0.14 -0.08 0.84 0.91
RMSD 0.06 0.03 0.03 0.02 0.18 0.20
MSE -0.02 0.00 -0.02 -0.01 0.14 0.15

a Convergence failures: ·CCH
b Convergence failures: SO2, ClF3, ·SH
c Convergence failures: NaCl

TABLE I: Summary of the PAO-SCF and MAB-SCF
results (with and without PT2 correction) on the

“pruned” G2 set. 6-31+G(d) is used as the reference
basis in PRB-SCF, while 6-31++G(d,p) is used for the

atomic energy of H (not for H atoms in molecules).
Errors (in kcal/mol) are evaluated with respect to the

conventional SCF results (aQZ is the target basis).
Molecules that fail to converge their PAOs (listed in

the footnotes) are excluded when evaluating the
statistical errors.

(e.g. O, F, Cl) as hypervalent ones, including SO,
ClO, SO2, AlF3, AlCl3, SiF4, SiCl4, PF3, ClF3, and
(CH3)2SO, and exclude them from the test set tem-
porarily. The results for this “pruned” G2 set (138
molecules) computed with three distinct function-
als are collected in Table I (aug-cc-pVQZ is the tar-
get basis). To make it a fair comparison, molecules
that fail to converge their PAOs (listed in the ta-
ble footnotes) are also excluded when reporting the
statistical errors. At the SCF level (without PT2
correction), PAO- and MAB-SCF show similar ac-
curacy with respect to the exact SCF results for
all the three tested functionals, and in general the
MAB-SCF results are slightly better as a result of
error cancellation (PAO-SCF is exact for atomic en-
ergies). Applying the PT2 correction significantly
reduces the errors for both schemes. For the two
tested pure functionals (B97-D and B97M-V), the
RMSDs of MAB+PT2 are smaller than 0.1 kcal/mol
(∼ 0.05 kcal/mol), and they are close to those of
PAO+PT2; for B3LYP, the RMSDs of both schemes
remarkably increase, which may indicate the dimin-
ished effectiveness of PT2 when hybrid functionals
are used. Nevertheless, we notice that the perfor-
mance of MAB+PT2 is rather similar to that of
PAO+PT2 (the former slightly outperforms here).
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To accurately compute the energies of those hy-
pervalent molecules, we increase the dimensions of
their MAB based on Algorithm 1. The MAB+PT2
results computed thereof are compared with those
using the standard MAB and PAO model. The im-
provement on their atomization energies are exhib-
ited in Table II. For a majority of these molecules
(ClO, SiF4, SiCl4, PF3, (CH3)2SO, and presum-
ably SO2 and ClF3), the errors are reduced by
over 10 times by using the “adding vector” strat-
egy, compared to those utilizing the standard PAO
or MAB models. The demonstrated inadequacy of
the conventional minimal basis models can be used
to characterize molecular hypervalency. Among
these molecules, species like SiF4, PF3 do not for-
mally violate the “octet” rule, which indicates that
molecular hypervalency may exist beyond its tra-
ditional definition. On the other hand, AlCl3 and
AlF3 seem not to be typical hypervalent species,
because the minimal basis models do not entirely
break down as on the other molecules listed in Ta-
ble II (PAO+PT2 achieves almost the same accu-
racy as the modified MAB+PT2 approach). Com-
bining these specially treated hypervalent molecules
with other 138 molecules computed with the stan-
dard MAB model, the overall RMSD for the G2 set
is 0.033 kcal/mol, which is only minimally different
from the result for the “pruned” G2 set (with B97M-
V), while the largely increased standard MAB+PT2
and PAO+PT2 errors when hypervalent molecules
are included further reveals the necessity of modi-
fying their MAB dimensions. In the following tests
performed on G2, unless otherwise specified, statis-
tics evaluated with all the molecules will be reported
with the hypervalent ones separately treated.

Table III shows how the dimensions of the MAB
are increased on the central atoms of these hyper-
valent molecules after applying Algorithm 1. Ac-
cording to the rightmost column, the modified MAB
function counts are usually close to those of a mini-
mal basis with one set of d (polarization) functions.
One interesting fact is that although AlF3 and AlCl3
do not show typical hypervalent character according
to Table II, in both the Al atom tends to add more
vectors into the MAB, although they only make
small differences energetically. However, we notice
that the situation becomes different when B3LYP
is used. Significant improvement on the AlCl3
molecule is achieved by using the modified MAB
model, in terms of the errors vs. exact SCF results
(modified MAB+PT2: 0.03 kcal/mol; PAO+PT2:
0.21 kcal/mol). A similar situation occurs on the
SO molecule as well (modified MAB+PT2: 0.08
kcal/mol; PAO+PT2: 0.46 kcal/mol). We see the

MAB+PT2 MAB+PT2
PAO+PT2

(normal) (add vec)

SO 0.049 0.022 0.085
ClO -0.182 0.010 -0.120
SO2 -0.990 0.001 N/A
AlF3 -0.030 0.002 0.002
AlCl3 0.050 -0.016 -0.017
SiF4 -0.214 -0.007 -0.268
SiCl4 -0.445 -0.009 -0.544
PF3 -0.720 0.009 -0.544
ClF3 -1.857 -0.020 N/A
SO(CH3)2 -1.173 -0.026 -1.061

G2 statistics (all molecules)
MAX -1.857 -0.141 -1.061
RMSD 0.238 0.033 0.114
MSE -0.058 -0.017 -0.024

TABLE II: Errors (in kcal/mol) for the atomization
energies of the hypervalent molecules in the G2 set.
Results of unmodified MAB+PT2, MAB+PT2 with

the “adding vector” strategy, and PAO+PT2 are
compared. All the calculations are performed with the
B97M-V functional, using aug-cc-pVQZ as the large

basis. The corresponding statistical errors for the full
G2 set (including these molecules) are also reported.

Molecule
Central dim (MAB) dim (MAB)
atom (original) (add vec)

AlF3 Al 9 16
AlCl3 Al 9 13

SiF4 Si 9 15
SiCl4 Si 9 15

PF3 P 9 14

SO S 9 13
SO2 S 9 13

(CH3)2SO S 9 12

ClO Cl 9 12
ClF3 Cl 9 14

TABLE III: Modifications of the MAB dimensions on
the central atoms of the studied hypervalent molecules

in the G2 set, after the “adding vector” policy is
applied. The number of the MAB functions for the

coordinating atoms are not necessarily remaining the
same.

merits of Algorithm 1 from these scenarios since it
consistently generates small errors regardless of the
choice of functionals.

The efficiency for the two schemes to obtain the
optimized adaptive basis is also investigated. In gen-
eral, the optimization problem for the MAB is con-
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Num of opt steps Num of Fock builds
Molecules PAO MAB PAO PRB MAB

CH 277 93 277 27 6
Na2 1219 23 1219 7 3
Si2 145 20 145 16 22
NaCl 3208 47 3208 9 5
SO2 N/A 212 N/A 11 8
COS 148 146 148 10 7
ClF3 N/A 83 N/A 12 8
C2Cl4 614 80 614 9 5
C4H6 (2-butyne) 490 149 490 10 7
C2H4O 109 111 109 9 6
SH N/A 60 N/A 48 8
CH3CH2O 450 156 450 44 9

TABLE IV: Molecules in the G2 set that require over
100 iterations to converge their PAOs. Number of

iterative optimization steps and Fock builds required to
reach the convergence of PAO-SCF and MAB-SCF are
compared. For several radicals (CH, ·SH, CH3CH2O·),
considerably larger number of iterations are required by

the PRB-SCF step because GDM algorithm109 is
employed to circumvent the unstable SCF solutions.

siderably easier to converge compared to the “dou-
ble” optimization required by PAO-SCF. No con-
vergence failure for MAB is detected for the entire
G2 set with all three tested functionals. Moreover,
in contrast with the formulation of PAO-SCF, the
search for the MAB is decoupled with any density
matrix optimization, and thus its iteration counts
will not directly affect the required number of SCF
cycles. This is extremely important because of the
much more significant cost per iteration for the lat-
ter. Table IV lists molecules in the G2 set that
require over 100 iterations to converge their PAOs
(with B97M-V/aQZ). Besides those that fail to con-
verge, for molecules such as NaCl, the PAO-SCF
scheme also runs into major convergence difficulties,
which in turn requires an enormous number of Fock
matrix constructions. The MAB scheme, on the
other hand, attains the optimized adaptive basis in
less number of iterations for most of these molecules.
In the scenarios as the COS and C2H4O (oxirane)
molecules, although the iteration counts for the two
schemes are very close, MAB-SCF is still far more ef-
ficient because much fewer Fock builds are required.
Therefore, MAB-SCF can be regarded as a more fea-
sible adaptive basis SCF scheme compared to PAO-
SCF, with comparable accuracy remained.

2. Functional and basis set transferability

So far the formulation of MAB-SCF does not in-
volve any functional-specific parameter. However,

according to the results in Table I, the perfor-
mance of MAB+PT2 is not completely functional-
independent. A clear difference exists between us-
ing pure and hybrid functionals. Therefore, it will
be meaningful to investigate the performance of this
method when different flavors of density functionals
are employed.

Table V collects the RMSDs for the MAB+PT2
approach (vs. exact SCF) with various density func-
tionals evaluated on the G2 set (aQZ is used as the
target basis). The first seven studied functionals do
not contain exact exchange, including three GGAs
(B97-D, BLYP25,26, PBE5) and four meta-GGAs
(TPSS8, MGGA MS1110, M06-L111, B97M-V); and
the remaining six are hybrid functionals, including
TPSSh (10%)112, B3LYP (20%), PBE0 (25%)113,
M06-2X (54%), ωB97X-D (RSH)114, and ωB97X-
V (RSH) (“%” denotes the proportion of exact ex-
change). Results of MAB-SCF with another pertur-
bation correction scheme, DFPC, are also presented
for comparison. In general, the MAB+PT2 scheme
demonstrates good accuracy for the tested GGA
and meta-GGA functionals, while the RMSDs com-
puted by MAB+DFPC are roughly twice as large,
which indicates that PT2 is the preferable perturba-
tion correction scheme for pure functionals. M06-L
seems to be the only outlier whose RMSD is over 0.1
kcal/mol, which is related to the unbalanced perfor-
mance of MAB+PT2 on atoms and molecules with
this functional (the MSE for the absolute atomic en-
ergies is +0.05 kcal/mol, while that for the molecules
is -0.09 kcal/mol).

The situation turns out to be different for the hy-
brid functionals. The PT2 approach undershoots the
exact SCF energy in general, and the size of errors
grows with the increased amount of exact exchange,
which results in unsatisfactory accuracy (RMSD >
0.2 kcal/mol) for functionals that contain more ex-
act exchange than B3LYP. The MAB+DFPC ap-
proach, on the other hand, manifests comparatively
more robust performance across all the tested hy-
brid functionals (RMSDs are around 0.1 kcal/mol),
and it consistently outperforms the undershooting
PT2 approach. For the two RSH functionals, the
results of MAB+DFPC are 5–6 times more accu-
rate than MAB+PT2. Based on these results, we
currently suggest that DFPC be used as the correc-
tion to MAB-SCF when hybrid functionals are em-
ployed, at the expense of one more Fock build in the
secondary basis, while MAB+PT2 is more favorable
for pure functionals. Further study will be required
to improve the accuracy of MAB-based methods for
hybrid functionals without involving additional cost.

In practice, different basis sets can be employed
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Functionals MAB+PT2 MAB+DFPC

B97-D 0.053 0.115
BLYP 0.074 0.148
PBE 0.065 0.132
TPSS 0.055 0.119

MGGA MS1 0.042 0.108
M06-L 0.144 0.156

B97M-V 0.033 0.079

TPSSh 0.099 0.086
B3LYP 0.181 0.083
PBE0 0.220 0.066

M06-2X 0.458 0.076
ωB97X-D 0.645 0.119
ωB97X-V 0.668 0.133

TABLE V: RMSDs (in kcal/mol) of MAB-SCF with
two different perturbation correction schemes (PT2 and
DFPC) for G2 set. Different pure (B97-D, BLYP, PBE,

TPSS,MGGA MS1, M06-L, B97M-V) and hybrid
(TPSSh, B3LYP, PBE0, M06-2X, ωB97X-D, ωB97X-V)

functionals are investigated. aQZ is employed as the
target large basis for all the calculations.

for KS-DFT calculations, based on the balance
between accuracy and efficiency, available bench-
mark results from references, and also user pref-
erence. With the B97M-V functional, we as-
sess the performance of MAB+PT2 with several
widely used basis sets, including those in Dunning’s
correlation-consistent series (aTZ, QZ, aQZ)27,28,
Jensen’s polarization-consistent series (apc-2, pc-
3, apc-3)115–117, and the Karlsruhe def2 series
(TZVPPD, QZVPP, QZVPPD)32. The popular
“large Pople” basis set 6-311++G(3df,3pd)118,119 is
also included. All the tested basis sets are of or
above augmented triple-ζ quality, because the goal
of our method is to approach the results of modern
density functionals near the CBS limit.

The RMSDs for the G2 set using different target
basis sets are displayed in Figure 3. The errors
are below 0.1 kcal/mol for most of the tested basis
sets, which indicates the excellent transferability in
general. The best performance is achieved by two
quadruple-ζ basis sets with diffuse functions, aQZ
and QZVPPD. And for their unaugmented coun-
terparts, QZ and QZVPP, the RMSDs are slightly
larger, while the accuracy is still considered to be
satisfactory. For ordinary bonded interactions, the
diffuse functions usually have no major impact on
the accuracy of evaluated energetics, so the compat-
ibility of MAB+PT2 with these unaugmented basis

sets is also meaningful. The largest RMS errors are
produced by Jensen’s pc-3 and aug-pc-3 basis sets,
mostly due to the poor performance of MAB+PT2
for the Li atom when these target basis sets are used.
The RMSDs are reduced to 0.063 (pc-3) and 0.059
(apc-3) kcal/mol if we exclude three Li-containing
molecules (Li2, LiF, and LiH) from the G2 set, which
are actually similar to the results of the quadruple-
ζ sets in Dunning and Karlsruhe series. The out-
lier might be related to the poor compatibility of
pc-3/apc-3 with the employed reference basis, 6-
31+G(d), for the Li atom. Without considering
about the computational cost, aQZ and QZVPPD
should be recommended as the target basis, for the
purpose of approaching the true CBS limit and also
the top accuracy of our method.

3. Basis set convergence of density functionals with
MAB

Ultimately, MAB-SCF with a certain perturba-
tion correction scheme (MAB-SCF (PC)) is sup-
posed to replace conventional SCF in KS-DFT cal-
culations when large AO basis sets that are close to
the CBS limit are employed. It is important to see
how MAB-SCF (PC) approaches the basis set limit
when we increase the size of the target basis. For
that purpose, we extend Figure 4 (which motivates
this work) with the functional RMSDs evaluated by
MAB+PT2 (for B97-D, B97M-V) and MAB+DFPC
(for B3LYP, M06-2X, ωB97X-V), as demonstrated
by Figure 4. The performance of these functionals
at different basis set levels is reproduced by MAB-
SCF (PC) with minimal differences, and the trend
for each functional to reach the basis set conver-
gence in a stepwise way (D, T, Q) is also precisely
reflected. At the aQZ level, the largest difference
between MAB-SCF (PC) and exact SCF results is
only about 0.03 kcal/mol (for B97-D and B3LYP),
which is below 1% of the functional RMSDs and thus
considered negligible. More appreciable differences
between these two sets of results exist at the aDZ
level (the largest gap is 0.26 kcal/mol for ωB97X-
V/aDZ), while at the same time, it is barely mean-
ingful for a double-ζ basis set to be the target of
MAB-SCF (PC). These results, in general, are also
consistent with the conclusions of the basis set trans-
ferability test presented above (Figure 3).
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FIG. 3: Assessment of the performance of MAB+PT2 with 10 basis sets. RMSDs (vs. exact SCF) for the G2 set
calculated with the B97M-V functional are reported. Different colors are utilized for different basis categories:
augmented triple-ζ (red), unaugmented quadruple-ζ (light green), and augmented quadruple-ζ (dark green).

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

16	
  

18	
  

B97-D B97M-V B3LYP M06-2X ωB97X-V 

R
M

S 
E

rr
or

s (
kc

al
/m

ol
) 

MAB (aDZ) Exact (aDZ) 

MAB (aTZ) Exact (aTZ) 

MAB (aQZ) Exact (aQZ) 

FIG. 4: Basis set convergence of the functional RMSDs for the G2 set evaluated by MAB-based methods (solid)
and conventional SCF (translucent). The reference values are provided by Ref. 35. Dunning’s augmented

correlation-consistent basis sets are utilized to approach the CBS limit (D: red, T: green, Q: blue). PT2 and DFPC
correction schemes are applied on top of the MAB-SCF results of local (B97-D, B97M-V) and hybrid (B3LYP,

M06-2X, ωB97X-V) functionals, respectively.

B. Additional TC and NC tests

1. Thermochemistry

Since all the tests so far are performed on the G2
atomization energies, it will be necessary to assess
how the performance of MAB-SCF (PC) transfers to
other thermochemistry (TC) datasets. Three den-
sity functionals (B97-D, B97M-V, B3LYP) are em-
ployed to examine the accuracy of MAB-SCF (PC),
and aQZ is used as the target basis for all the follow-
ing TC tests. The choice of perturbation correction

schemes is consistent with that in Figure 4.

First we discuss the results for the W4-11
dataset120, which consists of about 1000 data
points, including 99 bond dissociation energies
(BDE99), 707 heavy-atom transfer reaction energies
(HAT707), 20 isomerization energies (ISO20), 13 nu-
cleophilic substitution reaction energies (SN13), and
140 total atomization energies (TAE140). Among
the molecules requested for generating all the data
points, the following 13 are separately treated as
hypervalent molecules: AlF3, AlCl3, SiF4, P4, SO,
SO2, SO3, S2O, S2, S3, S4, ClO, and OClO (see
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B97-D B97M-V B3LYP

BDE99 0.061 0.038 0.070
HAT707 0.101 0.061 0.100
ISO20 0.068 0.048 0.085
SN13 0.034 0.018 0.053

TAE140 0.071 0.046 0.096

Overall 0.093 0.057 0.096

TABLE VI: RMSDs (in kcal/mol) of MAB-SCF (PC)
for the W4-11 dataset (vs. exact SCF) evaluated by
three different functionals. PT2 is applied for B97-D

and B97M-V while DFPC is used for B3LYP.
aug-cc-pVQZ is the target large basis.

the previous discussion for the G2 set). Table VI
contains the RMSDs of the MAB-SCF (PC) ap-
proach (vs. exact SCF) for W4-11, where different
categories of TC have been separated. The over-
all performance is similar to that for the G2 set,
which demonstrates the transferability of the accu-
racy of MAB-SCF (PC) to this more comprehensive
TC dataset. Taking B97M-V as an example, the
smallest and largest RMSDs of MAB+PT2 (vs. ex-
act SCF) are obtained on SN13 (0.02 kcal/mol) and
HAT707 (0.06 kcal/mol), respectively, while the cor-
responding functional RMSDs (vs. W4 reference)
are 1.39 kcal/mol and 3.90 kcal/mol. Therefore,
the errors caused by replacing conventional SCF
with MAB-SCF (PC) are usually smaller than the
size of typical functional errors by one or two or-
ders of magnitude. A more straightforward com-
parison is provided by Figure 5: for B97M-V, the
functional RMSDs computed via the MAB+PT2 ap-
proach show almost no difference compared to those
by normal SCF method.

Besides W4-11, the performance of MAB-
SCF (PC) is also examined on other categories of
TC datasets, including: adiabatic ionization poten-
tials and electron affinities (21 for each) of atoms
and small molecules (G21IP and G21EA)121,122, 38
hydrogen transfer and 38 heavy-atom transfer bar-
rier heights (NHTBH38123 and HTBH38124), and 14
alkane isomerization energies (Pentane14125). The
computational details are identical to the previous
calculations for W4-11, except for the anions in
G21EA, HTBH38 and NHTBH38, where the mod-
ification of MAB objective function introduced in
Sec. II D is applied to avoid unphysical results.
The RMSDs of MAB-SCF (PC) are presented in
Table VII. According to these results, HTBH38
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FIG. 5: B97M-V’s RMSDs for W4-11 (vs. reference
values) evaluated by MAB+PT2 (blue) and

conventional SCF (red). Very close accuracy is
obtained by these two SCF schemes at the

B97M-V/aug-cc-pVQZ level of theory.

and Pentane14 are relatively easier cases for MAB-
SCF (PC) to approximate the exact SCF result; and
for G21IP and NHTBH38, the size of the RMSDs is
similar to that for the W4-11 subsets (e.g. BDE99,
SN13, etc.). The largest RMSDs for thermochem-
istry so far appears on the G21EA dataset. Al-
though none of the results are qualitatively incorrect
with the modified MAB objective function, there
still exist several molecular anions whose absolute
energies evaluated by MAB-SCF (PC) are rather un-
satisfactory: NO−, PO−, O−2 , and S−2 . Based on
the discussions in Sec. II C, the “adding vector”
strategy may also be applied onto these electron-
abundant species, and the absolute energies of these
molecules computed thereof are significantly im-
proved, as shown in TableVIII. With these 4 molec-
ular anions specially treated, the RMSDs for the
G21EA dataset are also recalculated and the results
are also presented in Table VII, which turn out to be
more comparable to the RMSDs for other categories
of TC.

2. Non-covalent interactions

One of the most important features of modern
density functionals is their capability to account
for non-covalent interactions (NC). Therefore, we
proceed by examining the performance of MAB-
SCF (PC) on several representative NC datasets,
including: A24 (24 small NC complexes)29, S22
(22 small to medium NC complexes at the equi-
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B97-D B97M-V B3LYP

G21IP 0.050 0.036 0.040

G21EA
0.598 0.412 0.455

(0.101) (0.027) (0.078)

HTBH38 0.016 0.035 0.031
NHTBH38 0.099 0.071 0.118

Pentane14 0.005 0.007 0.002

TABLE VII: RMSDs (in kcal/mol) of
MAB-SCF (PC) for TC datasets other than W4-11
(G21IP, G21EA, HTBH38, NHTBH38, Pentane14).

The computational details are the same as in Table VI
except for the modification of MAB scheme for the

involved anions. The numbers in parentheses are the
RMS errors for G21EA after applying the “adding

vector” strategy for NO−, PO−, O−2 , and S−2 .

Normal Add Vec
B97-D B97M-V B3LYP B97-D B97M-V B3LYP

NO− -2.36 -1.63 1.60 -0.13 -0.06 0.10
PO− -0.52 -0.55 0.92 -0.02 -0.02 0.17
O−2 -2.04 -1.25 1.66 -0.01 -0.02 0.07
S−2 -0.41 -0.16 0.23 -0.01 0.02 0.02

TABLE VIII: Errors in kcal/mol (vs. exact SCF) for
the absolute energies of 4 molecular anions (NO−,

PO−, O−2 , and S−2 ) evaluated by normal
MAB-SCF (PC) (“Normal”) and that with the “adding

vector” strategy (“Add Vec”). Other computational
details are the same as in Table VII.

librium geometries)126,127, HB15 (15 ionic hydrogen
bond interactions)128, H2O6Bind8 (binding energies
of 8 configurations of water hexamers)129,130, and
FmH2O10 (binding energies of 10 configurations of
F−(H2O)10

129,130). Since many of these interactions
have smaller magnitudes compared to the common
energy scale in TC datasets (the strongest interac-
tion in S22 is about −20 kcal/mol), and modern den-
sity functionals with some certain dispersion correc-
tion schemes are able to achieve very small errors for
them (e.g. B97M-V’s overall RMSD for NC is 0.22
kcal/mol19), higher requirement on accuracy will be
imposed on the MAB-based approaches to match the
exact SCF results.

As in the previous discussions on TC, three
density functionals (B97-D, B97M-V, B3LYP-D3)
are employed to assess the performance of MAB-
SCF (PC) on these NC datasets. Based on the ar-
guments in Sec. I, to avoid the necessity of using
counterpoise (CP) corrections, we choose QZVPPD
as the target basis which has less functions than aQZ

but generates even smaller BSSE. Table IX contains
the resulting RMSDs (vs. exact SCF) for these NC
datasets. Very small errors are yielded by utiliz-
ing the MAB-SCF (PC) approximation for the tested
dimer binding energies (including data points in
A24, S22, and HB15), with all the three functionals.
Its good performance on A24 and S22 validates the
accuracy of this method in evaluating the most com-
mon non-covalent interactions as a replacement of
conventional SCF. Larger errors appear on the clus-
ter binding energies (H2O6Bind8, FmH2O10), due
the larger magnitude of these interactions in gen-
eral (H2O6Bind8: −40 to −50 kcal/mol; FmH2O10:
about −170 kcal/mol) and the uniformity of their in-
teraction types (systematic errors accumulate in one
single direction through all the data points). One
outlier is the RMSD for FmH2O10 when B3LYP-D3
is employed, which is caused by the less accurate
MAB-DFPC result for F− with that functional (the
error vs. exact SCF is 0.292 kcal/mol). As an al-
ternative, MAB+PT2 generates an RMSD about 3
times smaller for that specific dataset, although sta-
tistically it is less preferable for hybrid functionals.

The accurate description of these non-covalent in-
teractions by B97M-V can also be reproduced us-
ing MAB-SCF (PC), and the resulting RMS errors
(vs. reference) are compared with the exact SCF
results in Figure 6. Only minimal differences ex-
ist between two sets of RMSDs for the dimer bind-
ing energies, while the monotonic deviations of the
MAB-SCF (PC) results for each single data point
contribute to more pronounced differences for the
clusters. Nevertheless, even for H2O6Bind8 where
the largest deviation occurs, the RMSD vs. exact
SCF results (0.085 kcal/mol) is only 0.1–0.2% of the
magnitude of the corresponding binding energies. In
terms of the accurate evaluation of relative energies,
the errors caused by using MAB-SCF (PC) are still
negligible.

Finally we are going to examine the accuracy of
MAB-SCF (PC) on large non-covalent complexes.
The recently proposed L7 data set131 is employed,
which is comprised with seven large complexes
that are mostly stabilized by dispersion interactions
(the abbreviations for their names simply follow
Ref. 131): stacked circumcoronene-adenine dimer
(C3A), stacked circumcoronene with a Watson-Crick
G-C base pair (C3GC), parallel displaced coronene
dimer (C2C2PD), stacked Watson-Crick G-C base
pairs (GCGC), stacked guanine trimer (GGG), par-
allel stacked octadecane dimer (CBH), and pheny-
lalanine residue trimer (PHE). Due to the tremen-
dous computational effort required by these systems,
calculations are performed with two pure function-
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B97-D B97M-V B3LYP-D3

A24 0.009 0.005 0.009
S22 0.015 0.023 0.025
HB15 0.021 0.027 0.023
H2O6Bind8 0.061 0.085 0.118
FmH2O10 0.078 0.026 0.350 (0.121)

TABLE IX: RMS errors (in kcal/mol) of
MAB-SCF (PC) for 5 NC datasets: A24, S22, HB15,

H2O6Bind8, and FmH2O10. Data points computed by
conventional SCF using the def2-QZVPPD basis set
(noCP) provide the reference values. The number in
the parenthesis shows the RMSD of the alternative

MAB+PT2 method.
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FIG. 6: B97M-V’s RMSDs for 5 NC datasets
(vs. reference values) evaluated by MAB+PT2 (blue)

and conventional SCF (red), respectively.
def2-QZVPPD is employed as the basis set without

using counterpoise corrections.

als (B97-D, B97M-V) using aTZ (which is smaller
than QZVPPD) as the target basis. Table X con-
tains the absolute errors and unsigned percent errors
for the 7 binding energies (measured against exact
SCF results). For most of them, the errors resulting
from the MAB-SCF (PC) approach are much smaller
than 1% of the magnitude of their binding energies,
which indicates the satisfactory accuracy of this ap-
proximate SCF scheme for the non-covalent interac-
tions in these large systems. The only exception is
the guanine trimer (GGG), which is mostly due to
the very weak binding (−2.33 kcal/mol by B97M-
V/aTZ) of that complex. Due to the lack of reli-
able reference values, the comparison of functional
RMSDs evaluated by MAB-SCF (PC) and conven-

B97-D B97M-V
Complexes Error Error (%) Error Error (%)

C3A 0.009 0.05% -0.022 0.13%
C3GC 0.008 0.03% -0.079 0.26%
C2C2PD 0.011 0.05% -0.012 0.06%
GCGC 0.006 0.04% -0.053 0.34%
GGG -0.046 1.80% -0.063 2.63%
CBH 0.005 0.03% 0.003 -0.02%
PBH 0.021 0.09% -0.005 0.02%

TABLE X: Absolute errors (in kcal/mol) and
unsigned percent errors of the MAB-SCF (PC)

approach (vs. exact SCF results) for the L7 binding
energies. The performance is assessed with using two

pure density functionals with corrections for dispersion
(B97-D, B97M-V). aug-cc-pVTZ is the target basis.

tional SCF is currently not available for the L7
dataset.

V. DISCUSSION AND FUTURE WORK

So far we have assessed the accuracy of MAB-
SCF (PC) on a broad range of TC and NC datasets.
Although using the MAB will inevitably bring an
additional source of error to KS-DFT calculations,
the overall accuracy of this new approximate SCF
method seems to be encouraging. When approach-
ing the basis set limit, the functional RMSDs for sev-
eral representative TC and NC datasets (G2, W4-11,
S22) evaluated by MAB-SCF (PC) show very small
differences compared to the exact SCF results, as
demonstrated in Figures 4, 5, and 6. In particu-
lar, we would like to point out that “B97M-V/aQZ
(or QZVPPD)/MAB+PT2” could be a promising
model chemistry, because of B97M-V’s great accu-
racy for both TC and NC, moderate computational
cost as a semi-local functional, and high compatibil-
ity with the MAB+PT2 approach.

Challenges still exist in applying MAB-SCF (PC)
for hybrid functionals. Although the resulting accu-
racy of MAB+DFPC is satisfactory in most of the
tested cases, one extra Fock build upon the density
matrix in the large basis (not a B-representable one)
is required, which should be preferably avoided (the
reason will be elucidated below); on the other hand,
the accuracy of MAB+DFPC slightly degrades for
RSH functionals as well (Table V) despite its re-
markable advantage over MAB+PT2. We also need
to note that hypervalent molecules are treated sep-
arately in this work by modifying the MAB di-
mensions in a semi-automated way (on/off of the
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“adding vector” approach is user-specified), because
our current choice of the algorithm and the related
thresholds focuses on attaining the desired accuracy
for those hypervalent molecules exclusively, which
might therefore be excessive for the other molecules:
convergence difficulties of the MAB optimization can
take place when unnecessary vectors are added, and
the cost of MAB-SCF gets increased as well. Method
that treats all the molecules more consistently could
be devised with further investigations.

Although this paper is mainly about the formu-
lation MAB-SCF (PC) and the validation of its ac-
curacy, we should recall that the ultimate goal of
this approximate SCF method is to achieve the ac-
curacy of modern density functionals at the basis set
limit with lower costs, and eventually it serves as an
inexpensive substitute for conventional SCF. In con-
trast with normal KS-DFT calculations within large
basis sets, our method solves for the SCF energy
within much lower degrees of freedom (the dimen-
sion of PRB or MAB). The cost of a single density
matrix update, if achieved by diagonalizing the Fock
matrix, can be reduced by up to a factor of (n/m)3,
where n is the size of the secondary basis, and m is
the size of the PRB or MAB. For example, given a
model system (CH2)n, there will be 129 basis func-
tions per –CH2– unit if QZVPPD is employed as the
target basis, which is roughly 6 times as large as the
PRB (22 functions/unit), and about 18 times as the
MAB (7 functions/unit). Therefore, the prefactor
of the computational cost of this cubic scaling step
is significantly reduced in our scheme. One single
diagonalization of the large-basis F, however, is still
required by performing the perturbation correction
(either PT2 or DFPC). New approaches (perturba-
tive or variational) that utilize a more compact rep-
resentation of the virtual MOs are under develop-
ment to further reduce the computational prefactor
of that step.

Alternatively, O(N) scaling electronic structure
methods can be easily applied to the MAB-SCF
step, since the overlap matrix of the MAB is ex-
tremely well-conditioned, as demonstrated by Ta-
ble XI. The diagonalization-free density matrix
update algorithms introduced by Ref. 49 can be
adopted due to the similarity of the PAO and MAB
models, while the feasibility of these methods for
PRB-SCF needs to be further investigated because
diffuse functions are explicitly contained in the PRB.

In practice, however, even for systems as large as
the L7 complexes, the Fock matrix construction step
still dominates the computational cost of each SCF
cycle due to its large prefactor, although asymptot-
ically that step scales quadratically132 (or even lin-

N(MAB) N(aTZ) λ(MAB) λ(aTZ)

C3A 343 3473 12.17 5.07 × 1012

C3GC 393 4002 12.57 7.93 × 1012

C2C2PD 264 2760 13.50 4.32 × 1011

GCGC 210 2208 9.02 1.39 × 108

GGG 180 1863 8.55 1.25 × 108

CBH 256 3404 15.63 1.45 × 109

PHE 267 3036 13.87 6.24 × 108

TABLE XI: Comparison of sizes (N) and overlap
matrix condition numbers (λ) of the MAB and the
target aug-cc-pVTZ basis set on the L7 complexes.

early with special algorithms)39–45 with respect to
system size. In our pilot implementation, F is built
upon PRB or MAB density matrix projected into
the secondary basis, which costs almost the same
as that in a conventional SCF calculation within
the same large basis. Therefore, to speed up these
Fock build steps by taking advantage of the proper-
ties of the PRB and MAB becomes the most urgent
task for MAB-SCF (PC) to outperform conventional
SCF in terms of computational efficiency, especially
for medium-sized systems. PRB-SCF can be refor-
mulated as a conventional SCF calculation within
a basis set whose size and shell structure are iden-
tical to 6-31+G(d), due to the elimination of high
angular momentum functions during the projection
procedure, and the cost of the involved Fock builds
thereby can be significantly reduced without using
many other techniques. For MAB-SCF, instead of
using Eq. 28, the MAB Fock matrix can be con-
structed by forming the ERI tensor in the primary
basis first then contracting with the MAB density,
as

(Fα)αβ =hαβ + (αβ|γδ)Pγδtot − κ (αγ|βδ)Pγδα
+ [Vxc(Pα,Pβ)]αβ . (29)

And it is promising to us that quantities like (αβ|γδ)
can be efficiently computed (and stored) using the
RI approximation, due to the highly compact and
atom-blocked structure of the MAB. An algorithm
that targets the fast evaluation of the Fock matrix
in the context of SCF-MI (where the MO coeffi-
cients are block-diagonal) is under development in
the Head-Gordon group recently, which can be read-
ily adjusted for the demands here. An optimized
implementation of MAB-SCF (PC) and the result-
ing timings vs. conventional SCF will be presented
by a forthcoming paper.
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VI. CONCLUSION

In this work, we proposed a new adaptive basis
SCF method that can be used in KS-DFT calcula-
tions. The key aspects of this paper can be summa-
rized as follows:

• The search for the MAB is based on an inexpen-
sively obtained description of the electronic struc-
ture provided by PRB-SCF, and the variational
minimization of the energy-like MAB objective
function. Compared to the PAO model, MAB gen-
erates similar total energies and even closer rela-
tive energies, while the adaptive basis optimiza-
tion procedure is decoupled with SCF iterations
and encounters less convergence issues in general.
Therefore, the MAB model can serve as a more
tractable replacement of the PAO model in real
applications.

• A preconditioned L-BFGS algorithm that requires
the gradient and the on-diagonal blocks of the Hes-
sian of the objective function is implemented to
solve the MAB optimization problem; also, an ap-
proach that flexibly determines the MAB dimen-
sion based on the chemical environment is pro-
posed. These can be adopted by PAO and other
adaptive basis models as well.

• Perturbation corrections are applied on top of the
MAB-SCF solutions to approach the desired accu-
racy, which resembles dual-basis SCF approaches
but has no need to select or develop the paired
basis subset. Instead, with the reference basis un-
changed, the performance of MAB-SCF (PC) us-
ing different secondary basis sets is investigated on
the G2 set, and the best accuracy is achieved with
basis sets that are close to the CBS limit. The
preferable correction scheme depends on the func-
tional type. Based on the preliminary tests on the
G2 set, PT2 demonstrates its effectiveness for pure
functionals (GGAs, meta-GGAs), while DFPC is
currently suggested for hybrid functionals.

• To demonstrate the versatile usefulness, the ac-
curacy of MAB-SCF (PC) is assessed on G2 and

many other TC and NC datasets. Compared to
the exact SCF results, MAB-SCF (PC) generates
< 0.15 kcal/mol RMSDs for most of the TCs, and
even smaller errors (usually < 0.1 kcal/mol) for
the NCs. Meanwhile, the functional RMSDs on
several representative datasets (G2, W4-11, S22)
are reproduced by MAB-SCF (PC) with only mini-
mal differences from the conventional SCF results.
• Future work includes further refining the MAB-

SCF (PC) model itself and its efficient implemen-
tation, as discussed in Sec.V. Based on its accu-
racy and the computational advantage of using an
atom-centered minimal basis, MAB-SCF (PC) can
be a promising substitute for conventional SCF to
approach the basis set limit performance of mod-
ern density functionals with a more tractable cost.
We hope to report the further progress on this re-
search in due course.
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Appendix A: More details about the gradient of the
MAB objective function

Using the same notations as in Sec. II B, the most
general form of the gradient of the MAB objective
function is given by

∂E

∂∆ZpZq
=
∑
X,Y

∂RXµY ν

∂∆ZpZq
GY νXµ, (A1)

where G = SPSRF + FRSPS. With the parame-
terization of B by equations (12) and (13),
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∂RXµY ν

∂∆ZpZq
=
[
CXµ

Xpδ
X
ZσXqXi − CXµ

Xqδ
X
ZσXpXi

]
(σ−1)XiY j(BT ) Y ν

Y j

+BXµ

Xi(σ
−1)XiY j

[
CY ν

Y pδ
Y
ZσY qY j − CY ν

Y qδ
Y
ZσY pY j

]
−
∑
W

(RS)XµWσ

[
CWσ

Wpδ
W
ZσWqWl − CWσ

Wqδ
W
ZσWpWl

]
(σ−1)WlY j(BT ) Y ν

Y j

−
∑
W

BXµ

Xi(σ
−1)XiWl

[
CWσ

Wpδ
W
ZσWqWl − CWσ

Wqδ
W
ZσWpWl

]
(SR) Yν

Wσ . (A2)

and correspondingly the gradient becomes

∂E

∂∆ZpZq
=− 2σZpZj

[
(σ−1)BTG(I −RS)C

]Zj
Zq

+ 2σZqZj
[
(σ−1)BTG(I −RS)C

]Zj
Zp

(A3)

When ∆ stands for the orbital rotations within the
MAB space, i.e., p = i, q = j, matrix C reduces
to B, and the gradient vanishes because evidently
we have (I − RS)B = 0. On the other hand, or-
bital rotations within the complementary space of
the MAB (p = a, q = b) have no effect on the objec-
tive function value either, simply due to the enforced
on-atom orthogonality (σZaZj = 0). Therefore, the
only non-zero block of this gradient is resulted from
the rotations between these two subspaces. If we set

p = i, q = a, only the first term in Eq. (A3) remains
based on the arguments above, which leads to the
gradient represented by Eq. (17).

Appendix B: The preconditioned L-BFGS algorithm

The basic idea of L-BFGS is to construct the ap-
proximate Hessian (inverse Hessian in practice) for
the current iteration with gradients and steps com-
puted in the most recent m steps, where m is the
user-defined subspace size (number of “memorized”
steps). If we define the gradient and displacement at
kth iteration as gk and sk, and yk = gk+1 − gk, the
kth approximate inverse Hessian can be evaluated
as106:

Hk =
(
VT

k−1 · · ·VT
k−m

)
H0

k (Vk−m · · ·Vk−1)

+ ρk−m

(
VT

k−1 · · ·VT
k−m+1

)
sk−msT

k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
VT

k−1 · · ·VT
k−m+2

)
sk−m+1sT

k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·+ ρk−1sk−1sT
k−1. (B1)

where

ρk =
1

yT
k sk

, Vk = I− ρkyksT
k . (B2)

In practice, a “two-loop” algorithm which only
requires vector-vector products is implemented to
compute Hk acting on gk. H0

k is the preconditioner
for the approximate inverse Hessian. By default,
a constant scaling factor is used for H0

k, which is
considered as the unpreconditioned case here. Once
H0

k contains more information about the true in-
verse Hessian, the step generated by L-BFGS be-

comes closer to a Newton step (more efficient de-
scending) from the current position, which acceler-
ates the convergence.

If we still denote G = SPSRF + FRSPS, the
Hessian of the MAB objective function (Eq. (8))
can be formally represented as follows (only on-block
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mixings are allowed):

HXiXa,YjYb
=

∂2E

∂∆XiXa∂∆YjYb

∣∣∣∣
∆=0

=R∆SPSR∆F + R∆∆G

=2(Pov)XiYb(Fov)YjXa + 2(Fov)XiYb(Pov)YjXa

+2(Poo)XiYj (Fvv)YbXa + 2(Foo)XiYj (Pvv)YbXa

−2(Sov)XiYb(Gov)YjXa − 2(Gov)XiYb(Sov)YjXa

+2(Soo)XiYj (Gvv)YbXa − 2(Goo)XiYj (Svv)YbXa ,

(B3)

where R∆ and R∆∆ stands for first- and second-
order derivatives of R with respect to ∆. The first
four terms in the result of Eq. (B3) come from the
R∆R∆ term, while the rest from the R∆∆ term.
The explicit forms of the involved matrix elements
are:

(Poo)XiY j = σXiXk
[
σ−1BTSPSBσ−1

]XkY l
σY lY j

(Pov)XiY a = σXiXj
[
σ−1BTSPS(I −RS)

]Xj
Y ν
V Y ν

Y a

(Pvv)XaY b = (V T ) Xµ

Xa [(I − SR)SPS(I −RS)]
XµY ν

V Y ν

Y b,

(B4)

(Foo)XiY j = σXiXk
[
σ−1BTFBσ−1

]XkY l
σY lY j

(Fov)XiY a = σXiXj
[
σ−1BTF (I −RS)

]Xj
Y ν
V Y ν

Y a

(Fvv)XaY b = (V T ) Xµ

Xa [(I − SR)F (I −RS)]
XµY ν

V Y ν

Y b,

(B5)

(Goo)XiY j = σXiXk
[
σ−1BTGBσ−1

]XkY l
σY lY j

(Gov)XiY a = σXiXj
[
σ−1BTG(I −RS)

]Xj
Y ν
V Y ν

Y a

(Gvv)XaY b = (V T ) Xµ

Xa [(I − SR)G(I −RS)]
XµY ν

V Y ν

Y b,

(B6)

and

(Soo)XiY j = σXiXk(σ
−1)XkY lσY lY j

(Svv)XaY b = (V T ) Xµ

Xa [S(I −RS)]
XµY ν

V Y ν

Y b

(Sov)XiY a = σXiXj
[
(σ−1)BTS

]Xj
Y ν
V Y ν

Y a, (B7)

and in fact σXiXj = δij when on-block orthogo-
nality is enforced. More details about the Hessian
derivation (especially the R∆∆ term) can be found
in Ref. 133, which carefully derived the orbital ro-
tation Hessian for SCF-MI. The preconditioner we
apply to the L-BFGS algorithm is the inverted on-
diagonal blocks of the Hessian, i.e., the inverse of

HXX for all the different atom blocks (X). Within
the “two-loop” implementation, H0

k acts on vector
v = Vk−mVk−m+1 · · ·Vk−1gk, which can be seg-
mented into contributions from each atom block.
Therefore, the application of the preconditioner is
equivalent to solving the following linear equation
on each atom block:

HXiXa,XjXbu
XjXb = vXiXa, (B8)

where u is the preconditioned vector: u =
H0
kv. Based on the property of the Hessian ma-

trix (symmetric positive-definite), a preconditioned
conjugate-gradient (CG) algorithm is implemented
to solve Eq. (B8) iteratively on each atom block.
The implemented preconditioner for CG is actually
the inverse of the on-diagonal part (X = Y ) of the
last two terms in Eq. (B3).

Appendix C: Construction of pseudo-canonicalized
MOs upon MAB-SCF solution

Once MAB-SCF converges, a Fock matrix in the
secondary basis can be built upon the MAB density
matrix projected into the secondary basis:

F = F(P̃), P̃ = BPBT . (C1)

To form the pseudo-canonicalized occupied and vir-
tual MOs, in theory we need to diagonalize FOO
and FV V separately. In fact, the occupied ones are
already available in this case, since we can simply
project the occupied MOs optimized by MAB-SCF
into the large basis: (Co)

µ
i = Bµα(Co)αi. Obviously,

Co diagonalizes F:

(CTo ) µi Fµν(Co)
ν
j = (CTo ) αi Fαβ(Co)βj = εiδij . (C2)

To obtain the eigenvalues and eigenvectors of FV V ,
we first form an orthonormal basis that spans the
virtual space. If the full but non-redundant span of
the secondary basis is represented by X (XTSX =
I), the demanded vectors can be generated by pro-
jecting out the space spanned by occupied MOs:

V = (I− P̃S)X. (C3)

The vectors in V can be orthonormalized again by
performing a canonical orthogonalization (diagonal-
izing VTSV will be required). Also, after doing this,
the linear dependency of vectors in V will be elimi-
nated and its column dimension reduces to Nv. We
denote the resulting orthonormal basis as V′. Solv-
ing the following standard eigenvalue problem

(V′TFV′)C′v = εvC
′
v, (C4)
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the energies of the pseudo-canonicalized virtual or-
bitals (εa’s in Eq. 27) are given by εv, and their co-
efficients Cv = V′C′v. The Fock matrix elements
coupling between occupied and virtual pseudo-
canonicalized MOs (FOV ) can be evaluated as

F
(1)
ia = (CTo ) αi (BT ) µα Fµν(Cv)

ν
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