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GRAVITATIONAL SELF-FORCE AND THE WEAK COSMIC CENSORSHIP

by Marta Colleoni

We study the scenario in which a massive, non-spinning, uncharged particle is captured
by a rapidly rotating Kerr black hole, so that the final state does not contain an event
horizon—in what would be a violation of weak cosmic censorship. We work in black-hole
perturbation theory, and focus on particles sent in on equatorial orbits.

We first identify the complete parameter-space region in which overspinning occurs when
back-reaction effects from the particle’s self-gravity are ignored. Gravitational self-force
effects may prevent particles with suitable parameters from ever entering the black hole—
by radiating away a sufficient amount of the particle’s angular momentum (“dissipative
effect”) and/or by increasing the effective centrifugal repulsion (“conservative effect”).

We analyze the full effect of the self-force and derive a necessary and sufficient “cen-
sorship” condition that includes the effect of the full, first-order self-force. Our criterion
involves certain self-force quantities calculated on the one-parameter family of unbound
critical orbits in the extremal limit.

A self-force computation along such orbits is currently unavailable in Kerr spacetime.
However, we argue that it is possible to reformulate the problem in terms of variables
computed on circular orbits, relying on a certain variational law that goes under the name
of “first law of binary black-hole mechanics”. We obtain the required self-force data, and
present strong evidence to suggest that captured particles never drive the black hole beyond
its extremal limit and can at most saturate it. To entirely rule out such a possibility would
require information about higher-order self-force corrections.

Here we also start developing the computational methods required to perform calcu-
lations of the self-force along unbound orbits, in order to eventually allow a rigorous test
of our results. As a first example, we develop method and code to compute the self-force
along a marginally bound critical orbit in Schwarzschild spacetime. We compute the shift
in the frequency of the innermost bound circular orbit, and the shift in the critical value
of the angular momentum of a zero-binding-energy critical orbit. Both calculations require
knowledge of the gravitational self-force along a parabolic-like orbit. We show that the
frequency shift computed by integrating the self-force along a marginally bound orbit is
consistent with the result obtained applying the first law. Thus, our calculation provides
reassurance that our reformulation of the overspinning condition is indeed correct; it also
paves the way to the computation of new self-force invariants in the high-energy regime,
such as deflection angles for hyperbolic-like orbits.
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Chapter 1

Introduction

On February 11th 2016, the LIGO collaboration made a historic announcement: for the

first time, gravitational waves (GW) had been detected by the interferometers located in

Livingston and Hanford [1]. The signal was sourced by a binary system composed of two

black holes, with initial masses ∼ 36M� and ∼ 29M�, which coalesced into a black hole of

mass ∼ 62M� releasing a stunning ∼ 3M�c2 in gravitational radiation’s energy.

The detection not only represents the first direct measurement of GW (whose existence

had been previously inferred indirectly from the study of the Hulse-Taylor system); it also

heralds the beginning of a new era in astronomy. The information encoded in GW might

shed light on many astrophysical problems: it could allow, for instance, to characterise

neutron stars’ equation of state [2], constrain models of formation and evolution of compact

stars and black holes [3], and test fundamental aspects of General Relativity, such as the

weak cosmic censorship conjecture [4].

Advanced LIGO can only detect signals emitted by compact objects of at most a few

solar masses; events involving massive and supermassive black holes sit outside its fre-

quency range, as their signals are overpowered by seismic noise. It is hoped that these

phenomena will be detected in the near future by the space-borne interferometer eLISA,

whose launch is currently scheduled for 2034. A preliminary mission, LISA pathfinder,

was successfully launched in December 2015 and is currently being used as a test bed for

eLISA’s technologies.

Among eLISA’s main targets, of particular interest are extreme mass-ratio inspirals

(EMRIs), where a stellar-mass compact object of mass µ slowly spirals towards a mas-

sive black hole of mass M ∼ 105M� − 108M�. During the inspiral, the compact object

typically emits O(105) cycles of GW, thus providing a detailed map of the strong-field
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region around massive black holes. EMRIs are therefore excellent probes of fundamental

aspects of General Relativity. Based on the GW’s phase evolution during the inspiral,

for instance, it should be possible to constrain with good precision the mass, spin and

quadrupole moment of the central object [5]. This would provide a test of uniqueness the-

orems and possibly discriminate between Kerr and quasi-Kerr solutions [6, 7]. In fact, the

mass and current multipoles of a Kerr black hole with spin parameter a satisfy the relation

Ml + i Sl = M(ia)l [8]. Thus, a measurement of the mass, spin and quadrupole moment

would provide a consistency check of no hair. It has also been pointed out [9] that an

analysis of GW’s propagation would allow to distinguish between General Relativity and

some modified theories that allow massive modes, which are absent in the classical theory
1.

From a theoretical perspective, a natural framework to study EMRIs is that of the

self-force approximation, which models back-reaction effects in terms of a perturbative

expansion in the small parameter µ/M , around a background geometry determined by the

central black hole. In this work we will rely on the first-order self-force formalism to address

a fundamental issue in General Relativity, namely how the cosmic censorship conjecture is

enforced in an EMRI-like system, where the central object is a nearly-extremal Kerr black

hole. By ‘first-order’ we mean that only perturbative corrections O(µ/M) will be considered

(this statement will become clearer in Sec. 1.1.2). After providing some basic notions about

the self-force formalism (Sec. 1.1) as well as an overview of the weak cosmic censorship

conjecture (Sec. 1.2) we will describe how one can “overspin” a Kerr black hole, and thus

expose a naked singularity, by throwing in a test mass with suitable orbital parameters (Ch.

2). We will then provide a mathematical condition for the gravitational self-force (GSF)

to prevent overspinning (Ch. 3). In Ch. 4, we will then evaluate such condition using

state-of-the-art self-force codes. We will show that, generically, back-reaction contributes

to preserve cosmic censorship, although there is a subset of orbits that can saturate the

black hole’s spin.

Our “no-overspinning” conditions will involve some integrals of the gravitational self-

force along unbound, critical orbits (i.e. orbits sitting on the threshold between capture

and scattering). However, since a direct numerical computation of these quantities in Kerr

spacetime is not available yet, we will reduce the problem to that of calculating the self-

force along circular orbits, by taking advantage of a certain variational law that goes under
1In their recent work [10], the LIGO collaboration estimated an upper limit on the graviton’s mass

mgrav < 10−22eV .
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the name of “first law of binary black-hole mechanics”. The law holds when the perturbed

spacetime is helically symmetric [11,12], and therefore it is applicable to circular orbits.

An interesting feature of the first law is that it provides simple expressions to compute

the first-order corrections to the binding energy and total angular momentum of the binary,

which can prove useful to establish comparisons among different frameworks (in fact, con-

served energies and angular momenta are commonly computed both in the post-Newtonian

approximation and Numerical Relativity).

So far, a numerical computation of globally conserved quantities had never been tack-

led within the self-force scheme, where notions of globally conserved energy or angular

momentum are not usually introduced 2. However, it was suggested [13] that unbound

orbits should offer a natural way to compute the binary’s conserved energy and angular

momentum: intuitively, it should be possible to extract these quantities from the self-force

corrected orbital parameters when the small mass µ is at an infinite distance from the

central object.

In this work, we will lay the foundation to accomplish this goal. We will focus on

the special family of marginally bound, marginally stable (MBMS) orbits in Schwarzschild

spacetime. In Ch. 5 we will characterise these orbits, first at the geodesic level (Sec. 5.1),

and subsequently in the context of the first-order self-force approximation (Sec. 5.2). We

will also present results for the conservative corrections 3 to the azimuthal frequency of the

innermost bound circular orbit and to the critical angular momentum of a MBMS orbit.

Our work aims at paving the way for self-force calculations in the high-energy regime,

where one could establish new cross-comparisons with other frameworks currently used to

model compact binaries, such as the post-Newtonian approximation and Numerical Rel-

ativity. Cross-validations among these schemes are crucial to establish confidence in our

mathematical modelling of binaries and progress towards a more reliable and efficient gen-

eration of gravitational waveforms. A future development of the work described here might

be, for instance, the computation of deflection angles for hyperbolic-like encounters [14].

Furthermore, we will show how our calculation can be used to calibrate the conservative

sector of the effective-one-body model (EOB), a semi-analytical framework which is widely

used to generate gravitational waveforms [15]. We will cover this topic in Sec. 5.6.
2Note that the geodesic constants of motion cease to be conserved in the perturbative problem.
3As we will explain later, the term “conservative” refers to the backreaction from the time-symmetric

part of the metric perturbation.
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1.1 Self-force preliminaries

In this section we introduce relevant results from the theory of self-forced motion, which

will be used in Ch. 3 to derive conditions for capture and overspinning under the full GSF

effect.

Early derivations of the first-order self-force aimed at extending the validity of the point-

particle approximation beyond the geodesic level. It is clear, in fact, that neglecting the

internal structure of the small body should simplify the treatment of the problem; however,

the non-linear nature of Einstein’s field equations implies that distributional stress energy-

tensors are not allowed in the full theory [16], and thus the point-particle approximation

is not justified in that context. Work by Mino, Sasaki and Tanaka [17],and subsequently

by Quinn and Wald [18] showed that, at first order, it is still mathematically meaningful

to model the source as a distribution. As the physical retarded solution to the linearised

Einstein’s field equations diverges at the particle’s location, one has to properly take care of

such singularities. We will briefly explain how this can be achieved in the next subsection.

While the derivation provided by Quinn and Wald assumed the validity of the point-

particle picture, Mino, Sasaki and Tanaka adopted a different perspective, which is both

more rigorous and directly applicable to higher orders in perturbation theory: they derived

the equations for the self-forced motion using matched asymptotic expansion [19, 20] (see

Subsec. 1.1.2). This approach provides solid justification to the use of the point-particle

approximation in the linearised theory, without assuming a priori its validity. The upshot

of the analysis is that, at first post-geodesic order, the motion of the small mass µ can be

interpreted as an accelerated motion in the background spacetime, subject to an effective

GSF (∝ (µ/M)2). In Subsec. 1.1.3 we will describe a practical method to numerically

compute the finite, local self-force acting on the particle. We will then explain how this

local force can be used to model radiative losses of energy and angular momentum, as well

as non-dissipative effects related to backreaction (Subsec. 1.1.4).

1.1.1 First-order self-forced motion: early derivations

We have already mentioned that a formula for the GSF at linear order in perturbation

theory was first derived by Mino, Sasaki and Tanaka, and subsequently by Quinn and

Wald. Let us assume that the metric tensor describing the perturbed spacetime is of the
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form

g̃µν = gµν + hµν ,

where gµν represents the metric of the unperturbed background and hµν encodes the effects

due to the presence of the small mass µ. Then the linearised Einstein’s equations, in Lorenz

gauge, read

Eµν [h̄] : = ∇α∇αh̄µν + 2Rσ τ
µ ν h̄στ = −16πµ

∫ ∞
−∞

1√
|g|
δ4(x− x′(τ))ûµ(τ)ûν(τ)dτ, (1.1)

Lβ[h̄] : = ∇αh̄αβ = 0, (1.2)

where x denotes a generic field point, x′(τ) and ûµ are the particle’s position and four-

velocity in the perturbed spacetime, g is the determinant of the background metric and we

have introduced the trace-reversed metric perturbation h̄µν := hµν − 1/2gµνhαα. Note also

that the differential operator ∇α is taken with respect to the background metric. Both

the advanced and retarded solutions to the above equation diverge along the worldline,

due to the presence of a point-like source. The singular structure of the solution can be

studied via an Hadamard expansion of the Green’s function associated to (1.1) 4: such an

analysis leads to the conclusion that the full metric perturbation can be split into a direct

field, coming from the intersection of the past light cone of x with the worldline Γ (see

Fig. 1.1.1) and a tail field, which is determined by the entire past history of the particle’s

motion:

h̄retαβ = h̄dirαβ + h̄tailαβ . (1.3)

The last term is given by the tail integral

h̄tailαβ (x′(τ0)) = 4µ lim
ε→0

∫ τ0−ε

−∞

(
G+αβα′β′(x, x′)−

1
2gαβG

γ
+ γα′β′(x, x

′)
)
ûα
′
ûβ
′
dτ, (1.4)

where primed quantities refer to the particle’s location, G+αβα′β′(x, x′) is the retarded

Green’s function and the integral is cut off at a proper time τ0−ε smaller than the retarded

time u. The first-order self-acceleration is then expressed in terms of the above “tail” field,
4We refer here to the expansion of a certain biscalar V (x, x′), which represents the “tail” part of the

Green’s function, in powers of the so-called Synge’s world-function σ(x, x′), which is proportional to the
squared geodesic distance between x and x′.
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Figure 1.1: The direct field has support only on the light cone (highlighted in red), whereas
the tail field is sourced by all the points along Γ that lie inside the light cone. Tail effects
arise due to back-scattering of gravitational waves off the spacetime curvature.

in the so-called MiSaTaQuWa equation

Fαself := ûβ∇βûα = −
(
gαβ + ûαûβ

)(
∇σhtailβγ −

1
2∇βh

tail
σγ

)
ûσûγ . (1.5)

It should be noticed that htailαβ is not smooth along the worldline and is not a solution to the

homogeneous field equations (similarly, hdirαβ does not satisfy the inhomogeneous linearised

Einstein’s field equations). In Lorenz gauge, the singular field is akin to a Coulomb-like

field, which is isotropic and moves with the particle, without exerting any force on it. The

tail field is instead a free radiation field, and as such can exert a force on the particle exactly

like any other external field.

In order to recover an interpretation of the back-reacted motion closer to the spirit of

the Equivalence Principle, Detweiler and Whiting [21] devised an alternative splitting of

the metric perturbation

h̄retαβ = h̄Sαβ + h̄Rαβ, (1.6)

where the first term, the singular field, is constructed from a singular Green’s function

with no support either on the future or past light-cone of x (see Figure 1.2) and the

second term, the regular field, is defined as the residual of the subtraction h̄retαβ − h̄Sαβ.

Unlike htailαβ , the Detweiler-Whiting regular field has the property of being a homogeneous
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Figure 1.2: In the Detweiler-Whiting decomposition, both the singular and regular field
depend on points along Γ that are spacelike separated from x; in addition, the regular field
also depends on points along Γ that lie inside the past light cone of x.

solution to the linearized Einstein’s field equations. Therefore, in this formalism, one can

interpret the motion of the small mass as being geodesic in the perturbed “effective” metric

g̃αβ := gαβ + hRαβ. Furthermore, it can be shown that the self-acceleration with respect to

gαβ can be written once again in the form of Eq. (1.5), with the replacement htailαβ → hRαβ.

This is not in contradiction with our previous statement that the small mass moves along

a geodesic in g̃αβ: in fact, it can be shown that the MiSaTaQuWa equation reduces to the

geodesic equation (up to O(µ2) corrections) when re-expressed in terms of the proper time

measured in g̃αβ [22].

1.1.2 Construction of the SF via matched asymptotic expansions

There now exists a rigorous formulation of the equations of motion for compact objects

in curved spacetime, valid through first post-geodesic order in perturbation theory—see

[23, 23–25] and references therein, and [19, 20] for recent reviews. We will be concerned

mainly with results regarding the first order self-force: an extension of the formalism to

second order 5 involves additional technical difficulties, and work to numerically implement

it is under way [26].

Such formulation relies on the technique of matched asymptotic expansions. The key
5Such extension is not a merely academic problem, but it is motivated by the need to generate accurate

templates for gravitational waveforms. In fact, a first-order approximation introduces systematic errors
in the orbital phase that will accumulate in the course of the inspiral and eventually result in an O(1)
dephasing.
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idea is to construct two different asymptotic solutions to the Einstein’s field equations. The

first of these solutions is given by an inner expansion, valid in the region r � M , (where

r is a suitable coordinate that measures the distance from the small body) expressed in

terms of some rescaled coordinates x̄a := xa/µ 6

gintαβ(x̄, µ) = g0,int
αβ (x̄a) +

∞∑
n=1

ηnH
(n)
αβ (x̄), (1.7)

where η := µ/M and g0,int
αβ is the metric sourced by the small object in vacuum. The second

solution is represented by an outer expansion in some coordinates x, valid in the region

r � µ, of the form

gextαβ (x, µ) = g0,ext
αβ (x) +

∞∑
n=1

ηnh
(n)
αβ (x), (1.8)

where g0,ext
αβ is a vacuum solution sourced by the massive black hole and higher order

corrections capture the gravitational effects produced by the small mass µ. Since we are

working under the assumption that µ/M � 1, there will be a buffer region, µ � r � M ,

where both expansions will be approximations of the same solution to the field equations.

In this region, the inner expansion can be expanded for r � µ and the outer one for r �M :

the two expansions can then be matched order by order in r and η. We will now sketch how

the matching procedure works, following [22]. First, one expands the metric perturbation

of the outer solution

ηnh
(n)
αβ (x) = ηn

∑
k

rkh
(n)k
αβ (ni), (1.9)

where ni := xi/r. In the buffer region, the above expansion needs to be matched to the

inner solution, expressed in some rescaled coordinates. Note that, by requiring regularity

of the metric in the limit µ→ 0, one can deduce that the most negative power of r in Eq.

(1.9) must be r−n (in fact, r−n = r̄−nµ−n, and therefore more negative terms would give a

divergent expansion in the limit µ→ 0).

The iterative scheme to solve Einstein’s field equations in the buffer region schematically

proceeds as follows 7: the Ricci tensor is expressed as a sum of terms of increasing order

in hαβ: Rµν = δRµν [h] + δ2Rµν [h, h] + .... Then, using the definition of the operator Eµν
6This rescaling has the effect of “zooming in” on the particle: in fact, in the limit µ→ 0, all the distances

r � µ are sent to infinity and the geometry is determined only by the small compact object.
7Crucially, since the field equations are solved in the buffer zone, i.e. in vacuum, there are no issues

related to the mathematical representation of the small object’s stress-energy tensor, in contrast with the
point-particle approximation described earlier.
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given in (1.1), one gets

Eµν [h̄(1)] = 0, (1.10)

Eµν [h̄(2)] = 2δ2Rµν [h(1), h(1)], (1.11)

...

Eµν [h̄(n)] = S[h(1), ..., h(n−1)], (1.12)

where by S we denote an effective source given by all the non-linear terms in Rµν involving

lower orders of the metric perturbation. The above equations need to be supplemented by

similarly expanded gauge conditions (see Eq.(1.2)).

At each perturbative order n, the metric perturbation is then expanded into symmetric,

trace-free multipole moments (see Eq. (1.9)) and Eqs. (1.10)-(1.12) are solved order by

order in r. It can be shown that, by matching the inner and outer expansions in the buffer

zone, some of these multipole moments can be identified with the multipoles of the small

object (i.e., with its mass, mass dipole and so on). The remaining multipole moments are

either higher order products of the small object’s multipoles or arbitrary functions that can

be fixed by imposing boundary conditions.

The metric perturbation hαβ obtained following the above procedure can then be split

into a singular and regular piece hαβ = hRαβ +hSαβ, consistently with the Detweiler-Whiting

decomposition. In doing so, one finds that it is possible to define a regular field such that

the small body moves along a geodesic in the effective metric heffαβ := g0,ext
αβ + hRαβ, with h

eff
αβ

being a vacuum solution to the Einstein’s field equations. The upshot of this analysis is

that, at first order, one recovers once again the MiSaTaQuWa equation, with the R-field

replacing the tail field. Unlike the axiomatic derivation of Quinn and Wald, the method

described in this subsection is directly applicable to second order and it is thus best suited

to study the self-forced motion, especially in view of applications to gravitational wave

astronomy.

Gauge dependence of the SF

It is important to keep in mind that the self-force is a gauge-dependent notion and it does

not carry any physical information per se: a meaningful description of the system must

include knowledge of the metric perturbation hαβ.

Under a gauge transformation of the form xµ → x′µ = xµ + ξµ, where ξµ is an infinites-
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imal displacement vector, Barack and Ori [27] showed that, at first order, the gravitational

self-force changes by an amount

δFα = −µ
[(
gαλ + ûαûλ

)
ûµûν∇µ∇νξλ +Rαµλν û

µξλûν
]
, (1.13)

where gαλ is the inverse background metric and Rαµλν is the Riemann tensor computed

with respect to gαβ; note that, in the above expression, the perturbed metric can always

be replaced with the background one, as O(µ2) terms are being neglected.

1.1.3 The mode-sum scheme

The main outcome of the previous subsection is that it is possible to write the first-order

GSF in terms of a certain regular metric perturbation:

F βself (x′) = µ∇̄βγδh̄Rγδ(x′), (1.14)

where, to be more concise, we rewrote the operator in Eq. (1.5) as

∇̄βγδ = 1/2
(
gβσûγ − 2gβγ ûσ − ûβûγ ûσ

)
ûδ∇σ. (1.15)

In practice, hRαβ is computed by subtracting from the retarded field hretαβ the singular field

hSαβ, whose local structure in a neighbourhood of the particle is known analytically. Thus,

a numerical computation of the gravitational self-force has to deal with the problem of

computing the finite quantity Fαself starting from fields that diverge along the worldline:

F βself (x′) = lim
x→x′

(
F βret(x)− F βS (x)

)
= µ lim

x→x′

(
∇̄βγδh̄retγδ (x)− ∇̄βγδh̄Sγδ(x)

)
. (1.16)

To overcome this difficulty, Barack and Ori devised a scheme that goes under the name of

“mode-sum method”, which relies on the observation that, although the total singular and

retarded self-force are infinite at the particle’s location, their individual multipole modes

are finite. Thus, the self-force can be computed as follows

Fαself (x′) =
∞∑
`=0

(
Fα`ret/±(x′)− Fα`S/±(x′)

)
, (1.17)

where the ± sign reminds that, although finite at x′, the modes of the retarded and sin-

gular fields are generically discontinuous there and their value depends on the direction
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the worldline is approached from (in particular, adopting Boyer-Lindquist coordinates, a

plus/minus sign denotes r → r′±, keeping the remaining coordinates fixed).

The retarded and singular modes of the self-force diverge as ∼ ` when `→∞, whence

the idea of introducing some “regularisation” functionsHα` := ±(`+1/2)Aα+Bα+Cα/(`+

1/2), such that the sum over ` of the quantity Fα`ret/± −H
α`
± is finite. One can then write

Fαself (x′) =
∞∑
`=0

(
Fα`ret/±(x′)−Hα`

± (x′)
)
−Dα

±, (1.18)

where we defined Dα
± :=

∑∞
`=0

(
Fα`S/±(x′)−Hα`

± (x′)
)
. This sum also converges if the first

sum in the above equation does. The regularisation parameters Aα±, Bα, Cα, Dα have been

obtained analytically by Barack and Ori for arbitrary geodesics in Kerr spacetime, for

scalar, electro-magnetic and gravitational self-forces [28]. Their calculation relied on a local

analysis of the multipolar expansion of the singular force and also showed thatDα = Cα = 0

in Lorenz gauge [29] (and in gauges that can be obtained from it by sufficiently regular

transformations).

It should be stressed that the Barack-Ori regularisation parameters act on the spherical

harmonic modes of the full force. This implies, for instance, that the gravitational self-

force, which is normally expanded in tensor harmonics in numerical evolutions, needs to

be re-expanded into scalar harmonics modes before applying the mode-sum regularisation

scheme. As a consequence of this re-expansion, a single scalar mode of the force bears

contributions from multiple tensorial modes: in Schwarzschild spacetime, for instance, a

single scalar mode ` takes input from all the tensorial modes ` − 3 ≤ l ≤ ` + 3; the situ-

ation is even more complicated in Kerr, where the coupling involves an infinite number of

modes. This constitutes a disadvantage from a computational perspective. Recently, ten-

sorial regularisation parameters have been calculated for circular orbits on a Schwarzschild

background [30], but an extension to generic orbits and/or Kerr spacetime is yet to come.

We also note in passing that the efficiency of the mode-sum scheme can be improved by

including higher-order regularisation parameters [31], which accelerate the convergence rate

of the sum in Eq. (1.18).

As we briefly mentioned earlier, the mode-sum scheme applies only to a specific class

of gauges (among them, the Lorenz gauge, which we will be adopting in our numerical

implementation in Sec. 5.3). The extension of Eq.(1.18) to other gauges used in the self-

force literature, such as the radiation gauge, is highly non-trivial and requires a careful

analysis of the local structure of the singular field in the gauge that is being used. We refer
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the reader to [32] for a thorough treatment of this problem.

1.1.4 Conservative and dissipative self-force

For reasons that will be clarified below, it is convenient to split the total self-force into a

dissipative (time antisymmetric) and conservative (time symmetric) piece, as follows

Fαcons := 1
2 (Fαret + Fαadv) , (1.19)

Fαdiss := 1
2 (Fαret − Fαadv) . (1.20)

In the above equations, Fαret/adv denote the self-forces constructed from the retarded (ad-

vanced) metric perturbations (see Eq.(1.16)). The two pieces affect the orbital motion in

different manners. The dissipative self-force encodes information about radiation-reaction

effects, such as energy and angular momentum losses, which accumulate in the course of

the evolution; the conservative piece instead shifts the orbital phases from their geodesic

value. Example of physical effects produced by the conservative self-force are the periastron

advance for eccentric binaries [33] and spin precession [34]. Other conservative corrections

have been investigated as they constitute useful tools of comparisons with post-Newtonian

results: these include the self-force corrections to the frequency of a circular orbit [35, 36]

and tidal effects for quasi-circular orbits [37]. In the next subsection, we will provide further

details about a number of conservative effects that are going to play an important role in

our analysis.

Constructing the dissipative and conservative pieces of the self-force in the time-domain,

which is the numerical framework we will be using later on (Ch.5), is rather straightforward

for equatorial or circular orbits. Due to the symmetry of the Kerr metric under the isometry

t→ −t, φ→ −φ and to the properties of diffeomorphisms [38] one has

Fµret (−ût, ûr, ûθ,−ûφ; τ) = εµF
µ
ret (ût, ûr, ûθ, ûφ; τ) , (1.21)

where there is no summation over µ on the right hand side and εµ = (−1, 1, 1,−1). More-

over, by definition one has

Fµret (−ûµ; τ) = Fµadv (ûµ; τ) , (1.22)
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whence it follows that

Fµadv (ût, ûr, ûθ, ûφ; τ) = εµF
µ
ret (ût,−ûr,−ûθ, ûφ; τ) . (1.23)

At the same time, by inspecting the equations of motion for geodesics in the equatorial

plane, and denoting by τ the proper time elapsed from a turning point of the motion (i.e.

a point where dr/dτ = 0), it is readily verified that

Fµret/adv (ût, ûr, ûθ, ûφ;−τ) = Fµret/adv (ût,−ûr,−ûθ, ûφ; τ) (1.24)

so that

Fµret/adv(τ) = εµF
µ
adv/ret(−τ). (1.25)

Combining all the above results, one can conclude that the conservative and dissipative

pieces of the self-force along equatorial orbits can be constructed as follows

Fµcons(τ) = 1
2 (Fµret(τ) + εµF

µ
ret(−τ)) ; (1.26)

Fµdiss(τ) = 1
2 (Fµret(τ)− εµFµret(−τ)) . (1.27)

Notice also that, by applying the mode-sum scheme to Eqs. (1.26)-(1.27), one obtains

Fµcons =
∞∑
l=0

(
Fµ`cons± ∓ (`+ 1

2)Aµ −Bµ
)
, (1.28)

Fµdiss =
∞∑
l=0

Fµ`±diss , (1.29)

whence it follows that the dissipative self-force, as computed from the retarded field, does

not need to undergo any regularization procedure.

1.1.5 Effects of the conservative self-force

In this subsection we will focus on some effects produced by the conservative GSF which

will be relevant for later discussions. Following work by Detweiler [39], physical conser-

vative effects have been increasingly studied to establish comparisons between numerical

self-force results and a number of analytical predictions formulated in the context of the

post-Newtonian approximation and other frameworks [40, 41]. Clearly, due to the gauge-

dependence of the self-force, such cross-comparisons need to be based on suitable gauge-

invariant quantities.
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Circular orbits are particularly suited for this purpose, as the circularity assumption

significantly reduces the level of complexity of the calculations. We should note though

that EMRIs will be in general eccentric and thus circular orbits are mainly stepping stones

towards more realistic systems. In what follows we will introduce some conservative cor-

rections that will be relevant for our discussion of the overspinning problem, as well as for

our numerical study of MBMS orbits.

As shown by Detweiler [39], in the case of quasi-circular motion, each component of the

small body’s four-velocity is gauge-invariant, whence it follows that the orbital frequency

observed by an asymptotic observer Ω := ûφ/ût is also invariant, as long as one works in

a gauge that respects the helical symmetry of the system, generated by the Killing vector

kα = ∂t + Ω∂φ.

Another conserved gauge invariant quantity (at first order) is given by the contraction

−kαûα = E − ΩL = 1/ût, where the last equality simply follows from the fact that ûα =

ûtkα. In the self-force literature, this variable is commonly referred to as the redshift

z := 1/ût: The name originates from the fact that z corresponds to the redshift of a light

signal emitted by a source comoving with the small mass, as measured by a distant observer

along the z-axis, in a fictitious metric hRαβ:

z = E∞
Ep

, (1.30)

where E∞, Ep denote the photon’s energy at infinity and at the particle’s position respec-

tively8.

We will now show how the conservative self-force affects the frequency Ω: this informa-

tion will prove useful in Ch. 5. Let us consider a circular orbit of radius R in the perturbed

spacetime and let us assume that the particle’s four-velocity is normalised with respect to

the background metric. Then, the equations for the self-forced motion Fαself = ûβ∇βûα, to-

gether with the four-velocity normalisation condition ûαûα = −1, imply that the first-order

GSF-corrected azimuthal frequency reads [42]

Ω =

√
M

R3

(
1− R2 (R− 3M)

2µM (R− 2M)F
r(R)

)
, (1.31)

Using Eq.(1.13), one can verify that the shifts in δR and Fr(R) induced by a gauge trans-
8Although Ω and z are gauge invariant, it is important to bear in mind that any comparison between

different gauges must take into account the intrinsic ambiguity in the choice of coordinates that characterize
the perturbative problem. Stated otherwise, fixing the particle’s coordinates in the background geometry
is not sufficient to specify unambiguously an orbit in the perturbed spacetime.
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formation exactly cancel out, confirming that Ω is indeed a gauge invariant quantity.

The conservative self-force also shifts the total, conserved energy and angular momen-

tum of a binary system, for a fixed azimuthal frequency. These shifts can be computed

using the first law of black hole binary mechanics [12]. The first law has known several

reformulations: we will mention here only one, which will feature later on in our analysis

of the overspinning problem. Let us consider a binary system composed of point particles

with masses mi, corotating at a fixed frequency Ω. Assuming that the particles are non-

spinning, the first law relates infinitesimal variation in the individual masses of the point

particles to those of the total Bondi energy EB and angular momentum J of the system:

δEB − ΩδJ =
∑
i

ziδmi, (1.32)

where zi = 1/ûti. Although the above equation was originally derived by differentiation of

high order post-Newtonian expansions [12], it is in fact a specialization of a broader result

obtained by Friedman et al. [11], which applies to perfect fluid spacetimes endowed with a

global helical symmetry. Further details will be given in Sec. 3.9, where we will apply the

first law in the context of the overspinning problem.

1.2 The weak cosmic censorship conjecture

In 1939 Oppenheimer and Snyder pioneered the idea that black holes can form in astro-

physical contexts as a result of gravitational collapse [43]. Although their analysis assumed

spherical symmetry, theorems by Hawking, Penrose and Geroch later established that sin-

gularities can occur in completely generic spacetimes [44,45]. These findings raised a funda-

mental question: would these singularities ever be visible to distant observers? In order to

exclude this possibility, which would undermine the predictive power of General Relativity,

Penrose conjectured that singularities are always cloaked by event horizons [46]. This con-

jecture, which is known as the weak cosmic censorship conjecture (WCCC), has gradually

become a cornerstone of classical General Relativity. It is typically invoked, for instance,

in proofs of uniqueness theorems for four-dimensional, asymptotically flat spacetimes 9

Despite being strongly motivated on physical grounds, the WCCC’s precise extent of
9We stress the fact that, in this work, we will never be concerned with the strong cosmic censorship con-

jecture, which postulates that maximal Cauchy developments for the Einstein equations are inextendible
(the conjecture is thus relevant only for those spacetimes that admit non globally-hyperbolic analytic ex-
tensions, such as the Kerr and Reissner-Nordström solutions). The precise degree of such “inextensibility”,
i.e. the regularity of the metric extension across the Cauchy horizon, has been extensively studied, most
recently, by Dafermos [47].
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validity remains unclear. Over the past decades, several counter-examples have been inves-

tigated in order to make the statement of the conjecture more precise. Naked singularities

have been found in the collapse of dust and null fluid shells [48]; however, these occurrences

are not generally considered problematic, as they are not regarded as realistic representa-

tions of gravitational collapse.

It was later shown that they can also be produced in the presence of scalar matter

fields, via careful fine-tuning of the initial conditions. This interesting feature first emerged

in numerical evolutions of the spherically symmetric Einstein-Klein-Gordon equations [49],

and was later proved analytically in a number of papers by Christodoulou (see [50] and

references therein). Crucially, Christodolou showed that small perturbations of initial data

evolving to a spacetime containing a naked singularity result in a perfectly regular final

state. In other words, the occurrence of naked singularities appears to be non-generic.

In order to account for the aforementioned exceptions, a more precise, and yet still

provisional, formulation of the weak cosmic censorship conjecture is the following:

Weak cosmic censorship conjecture. Generic, asymptotically flat initial data for a

solution to the Einstein’s field equations, involving suitable matter fields, have maximal

future developments possessing a complete future null infinity [51,52].

In a spacetime containing naked singularities, some of the geodesics reaching future

null infinity are incomplete, i.e. they interact with the singularity during their past his-

tory (this can be clearly seen, for instance, by looking at the Carter-Penrose diagram

of a Schwarzschild spacetime with negative mass). Therefore, in non-rigorous terms, the

above conjecture requires that no singularities can be visible from infinity: if a singular-

ity is present, it must be hidden behind an horizon, where all future causal curves get

trapped. Notice that the possible counter-examples mentioned earlier do not actually vi-

olate the above formulation of the conjecture: the singularities explored by Choptuik and

Christodolou are not generic in nature; also, one can argue that dust and null fluids should

not be considered suitable forms of matter, but rather approximations of physical fields.

As it is far from settled whether further restrictions should be applied to the conjecture,

thought experiments represent valuable tools to improve our understanding of the WCCC

and refine its formulation. In this work, we will focus on a scenario where a particle is sent

into a nearly-extremal rotating black hole, in an attempt to drive it beyond extremality.

The first use of this framework as a test bed for cosmic censorship can be found in a paper

by Wald [53], where an exactly extremal Kerr–Newman black hole was considered. Wald
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examined whether the capture of a test mass could bring the final system to a new Kerr–

Newman spacetime with massMf , charge Qf and spin Jf satisfyingM2
f < (Jf/Mf)2+Q2

f : In

this case a naked singularity would be exposed, in direct violation of WCCC. Wald showed

that under his assumptions the naked-singularity scenario is ruled out: Electrostatic and

centrifugal repulsion would prevent a particle carrying sufficient charge and/or angular

momentum from entering the black hole. The same conclusion was shown to hold true

also for a spinning test particle dropped from rest at infinity along the symmetry axis of an

extremal Kerr black hole, with its spin aligned along the axis. In this case, it is the repulsion

force from spin-spin coupling that prevents suitable particles from ever entering the black

hole. Whether the equations of classical GR permit the occurrence of naked singularities

in similar scenarios, under relaxation of the extremality condition, has since been subject

of much investigation. It is usually assumed that the particle’s energy and electric charge

are much smaller than those of the black hole, which then places the problem within the

realm of black-hole perturbation theory.

In fact, later work has demonstrated that over-extremality is achievable when the initial

black hole is taken to be nearly extremal—if back-reaction effects on the particle’s trajectory

are ignored. This was first shown by Hubeny [54] for a nearly extremal Reissner-Nordström

black hole, and more recently by Jacobson and Sotiriou [55] for a nearly extremal Kerr

black hole (“overcharging” and “overspinning” scenarios, respectively). The nearly extremal

Kerr-Newman case was subsequently studied in Ref. [56]. In all cases, all orbits identified

as capable of driving the black hole beyond the extremal limit lie very close, in the relevant

parameter space, to the separatrix between orbits that are captured by the black hole

and ones that are scattered off it. In Hubeny’s analysis of a radially falling electric charge,

electrostatic repulsion only marginally fails to prevent the particle from falling into the hole:

The particle’s radial velocity upon crossing (what would have been) the event horizon is

proportional to the ratio η̃ � 1 between the particle’s energy and the black hole’s mass.

The amount of post-capture excess charge, Qf−Mf , is found to be quadratic in η̃. Similarly,

in Ref. [55]’s analysis of equatorial-plane captures, overspinning particles clear the peak of

the effective potential barrier with radial velocities ∝ η̃, and the post-capture excess spin,

Jf −M2
f , is quadratic in η̃.

This suggests that back-reaction effects cannot be ignored and may well change the

outcome of the gedanken experiment. Heuristically, effects of the (electromagnetic and/or

gravitational) self-force enter the analysis in two ways. First, the dissipative piece of the

self-force continually removes some of the particle’s energy and angular momentum, send-
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ing them to infinity and down the event horizon in gravitational waves. In the Kerr case,

dissipative effects may accumulate as the particle “lingers” over the peak of the effective

potential on a nearly circular orbit. Second, the conservative piece of the self-force might

supply just the right amount of additional repulsive force to prevent would-be overcharg-

ing/overspinning particles from ever entering the black hole. For particles sent in from

infinity in the Kerr case, this second effect may be formulated in terms of a shift in the

critical impact parameter for capture: If the GSF shifts the critical impact parameter in-

ward by a sufficient amount (for a given energy-at-infinity), then would-be overspinning

particles may end up being scattered away rather than captured.

There have been several recent attempts to quantify the effect of back-reaction in the

problem. Focusing on the Reissner-Nordström case, Isoyama, Sago and Tanaka [57] ar-

gued that the full effect can be properly taken into account by considering the quasi-

equilibrium configuration of a charged particle placed precisely on the capture-scatter sep-

aratrix. An exact solution is known for this configuration—the static double Reissner-

Nordström spacetime—and the authors calculated that its total energy is always greater

than its total charge. They have also established that radiative losses during the final

plunge are negligible, hence concluding that (under the assumption that the true capture

system does indeed go through a quasi-equilibrium state) the final configuration cannot be

a naked singularity.

In a later work, Zimmerman, Vega and Poisson [58] took up the challenge of directly

calculating the charged particle’s trajectory including the full effect of the electromagnetic

self-force. Analyzing numerically a large sample of orbits within the domain identified

by Hubeny, the authors found no example of successful overcharging: all particles with a

combination of charge and energy suitable for overcharging the black hole were found to

be repelled before reaching the horizon. This analysis, however, neglected the potentially

important effect of back-reaction from the gravitational perturbation sourced by the parti-

cle’s electromagnetic energy-momentum. A complete analysis would require calculation of

the corresponding GSF, but techniques for calculating self-forces in the coupled problem

are only now starting to be developed [59,60].

In that respect, the Kerr setup provides a cleaner environment, in which the perturbative

problem is purely gravitational (at the obvious cost of abandoning spherical symmetry).

Barausse, Cardoso and Khanna [61, 62] studied the dissipative GSF effect in the Kerr

overspinning problem, focussing on ultra-relativistic particles on equatorial orbits (but

excluding fine-tuned orbits that get trapped on the separatrix sufficiently long that they
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radiate away a large portion of their initial energy). Using analytic arguments backed

by numerical calculations of the energy and angular-momentum fluxes, they showed that

dissipation averts the overspinning for some but not all of Jacobson–Sotiriou’s orbits. If the

initial spin of the black hole is sufficiently high, the dissipative effect is always negligible

and cannot prevent overspinning. This result highlights the importance of accounting for

the full effect of GSF. To reach a definitive conclusion necessitates an actual calculation of

the full local GSF acting on the captured particles.

In the next chapter, we will review basic properties of Kerr geodesics and identify the

complete “window” in the parameter space in which overspinning occurs if the GSF is

ignored. We will then formulate a condition for this window to be eliminated by the effect

of the full GSF. The condition will take the form of an inequality that is required to hold

for each member of a certain 1-parameter family of geodesics, and it will involve the GSF

calculated along such orbits.
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Chapter 2

Overspinning with geodesics

Our initial configuration involves a Kerr black hole of mass M and angular momentum

J = aM < M2. A point-like test particle of rest mass µ�M is sent in on a geodesic orbit

of the background Kerr geometry. As in [55], we restrict our attention to prograde orbits

in the equatorial plane, so that the orbital angular momentum is aligned with the spin of

the black hole (this configuration is a priori most favourable for successful overspinning).

Notice also that we will consider only non-spinning particles. Including spin poses

a number of challenges. At the geodesic level, finite-size effects need to be taken into

account (Jacobson and Sotiriou found that only deeply-bound, oblate bodies can overspin

in this case [55]). Beyond the geodesic approximation, the situation is even more delicate.

An analysis of spin-curvature coupling effects on generic Kerr orbits has been recently

performed [63]. For compact objects, such effects enter the equations of motion at the

same order as the gravitational self-force. Models including both the GSF and the spin-

orbit coupling are under development, but so far they have been applied only to simplified

scenarios, such as quasi-circular orbits in Schwarzschild spacetime [64, 65]. In order to

simplify our analysis of the self-force effects later on, we chose to focus on particles carrying

exclusively orbital angular momentum.

We denote the particle’s specific energy and angular momentum by E and L, respec-

tively; these are constants of the motion. For the geodesic approximation to make sense,

we must assume µE �M and µL� J . Then, clearly, overspinning could only be possible,

in principle, if the black hole is nearly extremal. We write

a/M = 1− ε2, (2.1)
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where ε� 1.1

Below we study the overspinning scenario in the above setup, but we begin with a

survey of some essential properties of timelike Kerr geodesics in the equatorial plane.

2.1 Relevant results for Kerr geodesics

Let uα denote the particle’s four-velocity. In Boyer-Lindquist coordinates {t, r, θ, φ} we

have uθ ≡ 0, and

u̇t = 0, u̇φ = 0, (2.2)

where an overdot denotes differentiation with respect to proper time along the geodesic.

The last two equalities express the conservation of energy E = −ξα(t)uα = −ut and angular

momentum L = ξα(φ)uα = uφ, where ξα(t) := ∂αt and ξα(φ) := ∂αφ are Killing vectors associated

with the time-translation and rotational symmetries of the Kerr background. The pair

{E,L} parametrizes the family of equatorial geodesics (up to initial conditions).

The normalization uαuα = −1 now gives the radial equation of motion, which we write

in the form

ṙ2 = B(r) [E − V−(L, r)] [E − V+(L, r)] . (2.3)

Here r is the Boyer-Lindquist radius of the particle, B(r) := 1 + a2(r + 2M)/r3, and (for

MaL 6= 0)

V±(L, r) := 2MaL

Br3

1±

√
1 + Br3[L2(r − 2M) + r∆]

4M2a2L2

 , (2.4)

with ∆ := r2 − 2Mr + a2. For prograde orbits, the potential V− is manifestly negative

definite, so the factor B(r)(E − V−) in Eq. (2.3) is manifestly positive definite. Thus,

V+ plays the role of an effective potential for the radial motion: motion is allowed for

E ≥ V+(L, r), with an equality identifying radial turning points.

Stationary points of V+(L, r) outside the black hole, when they exist, correspond to

circular orbits. These satisfy the simultaneous conditions

E = V+, ∂rV+ = 0 (circular orbits). (2.5)

Substituting from Eq. (2.4) and solving for E and L in terms of the circular-orbit radius,
1Note, to avoid confusion, that in [55,61,62] one has instead a/M = 1− 2ε2.
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r = R, gives E = Ec(R) and L = Lc(R), with

Ec(R) = 1− 2R̃−1 + ãR̃−3/2√
1− 3R̃−1 + 2ãR̃−3/2

, (2.6)

L̃c(R) = R̃1/2(1− 2ãR̃−3/2 + ã2R̃−2)√
1− 3R̃−1 + 2ãR̃−3/2

. (2.7)

Here an overtilde denotes a-dimensionalization using M , i.e., R̃ := R/M , ã := a/M and

L̃ := L/M ; we shall adopt this notation from now on. Timelike circular-orbit solutions

exist only for R > Rph(a), the radius of a photon’s unstable circular orbit (“light ring”).

Rph(a) is the (unique) root of 1− 3R̃−1 + 2ãR̃−3/2 = 0 greater than the event horizon’s

radius, R̃eh(a) = 1 + (1− ã2)1/2.

The number of stationary points of V+ and their location depend on L. There are

none outside the black hole when L is below a certain critical value Lisco(a), and there

are two for L > Lisco(a): a maximum representing an unstable circular orbit, and, further

out, a minimum representing a stable one. The critical value Lisco(a) marks the innermost

stable circular orbit (ISCO). It is given by Lisco = Lc(Risco), where the ISCO radius Risco

is found by solving Eqs. (2.5) simultaneously with ∂2
rV+(L, r) = 0. The ISCO may also be

said to represent the outer boundary of unstable circular orbits. (This statement becomes

somewhat subtle in the extremal limit, ã→ 1, as we discuss below.)

The radii of unstable circular geodesic orbits span the interval Rph(a) < R < Risco(a).

This 1-parameter family of orbits will feature dominantly in our analysis, because it defines

the capture–scatter threshold where much of the relevant physics occurs. Members of

the family may be parametrized by either E or L, both being monotonically decreasing

functions of R between Rph (where E,L→∞) and Risco for any ã < 1. This monotonicity

can be readily established from Eqs. (2.6) and (2.7). Hence, the radius R itself is also a

valid parameter.

To each unstable circular orbit there correspond non-circular critical geodesic orbits that

join the circular orbit asymptotically in either their infinite past or their infinite future, or

both. Nearly-critical orbits exhibit a “zoom-whirl” behavior [66]: an episode of prolonged

rotation (“whirl”) about the location of the associated unstable circular orbit. We will

see that all orbits relevant to the overspinning problem fall in that category. Unstable

circular orbits may be divided into “bound” (E < 1) and “unbound” (E > 1). The radius

of the innermost bound circular orbit (IBCO) is obtained by solving Ec(R) = 1, giving

R̃ibco = [1 + (1− ã)1/2]2.
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Figure 2.1: Circular equatorial orbits around a nearly extremal Kerr black hole, shown
here for a = 0.99M . The plot shows specific angular momentum versus Boyer-Lindquist
radius. Orbits with r > Risco (magenta) are stable, while these with r < Risco (blue) are
unstable. Also indicated are the innermost bound circular orbit (IBCO, E = 1) and the
photon orbit (“light ring”, E,L→∞). In the extremal limit, a→M , the radii Risco, Ribco
and Rph all coincide with the horizon radius Reh.

Figure 2.1 illustrates the range of stable and unstable circular orbits, and the location

of the various special orbits mentioned, in a particular example (ã = 0.99). For easy later

reference, we note here the ordering

Reh < Rph < Ribco < Risco, (2.8)

which applies for any ã < 1.

Let us now specialize to a near-extremal Kerr background with spin as in Eq. (2.1).

One finds

R̃eh = 1 +
√

2 ε+O(ε2) , (2.9)

R̃ph = 1 +
√

8/3 ε+O(ε2) , (2.10)

R̃ibco = (1 + ε)2 (exact) , (2.11)

R̃isco = 1 + (2ε)2/3 +O(ε4/3) . (2.12)
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The function Ec(R) in Eq. (2.6) can be inverted perturbatively in ε to obtain the radius of

an arbitrary unstable circular orbit in terms of its energy E. We find

R̃ = 1 + ερ1(E) + ε2ρ2(E) +O(ε3), (2.13)

where the first two coefficients, needed below, read

ρ1 = 2
√

2E√
3E2 − 1

, ρ2 = 2(2E4 − E2 + 1)
(3E2 − 1)2 . (2.14)

Equation (2.11) is the special case of (2.13) with E = 1, giving ρ1 = 2 and ρ2 = 1.

It follows that, in the extremal limit ε → 0, the Boyer-Lindquist radii of the light-ring

and the ISCO both coincide with the horizon radius, and so do the radii of all unstable

circular orbits enclosed between them. Also peculiar is the fact that the ratio of coordinate

differences (R̃isco − R̃eh)/(R̃ibco − R̃eh) diverges as ε→ 0. A careful inspection [67] reveals

that the light ring, IBCO and ISCO remain well separated from the horizon, and from

each other, when examined on a Boyer-Lindquist t=const slice. On that slice, the proper

radial distance between the light-ring and the horizon is finite, and so is the distance

between any finite-E unstable circular orbit and the light ring. On the other hand, the

proper radial distance between the ISCO and any unstable circular orbit diverges on the

t=const slice, and so does the distance between the ISCO and any circular orbit of radius

R > Risco; the geometry of the t=const hypersurface appears to “stretch” infinitely around

the ISCO location [67]. The situation, however, is rather different when examined on a

horizon-crossing time slice. As emphasized recently by Jacobson [68], on any such slice,

the light ring, IBCO and ISCO all actually coincide with horizon generators, so from that

perspective they—and all unstable orbits in between them—are “at the same place” in the

extremal limit.

These subtleties will not affect our analysis directly: ε will be kept small but nonzero,

and the strict ordering (2.8) will therefore apply on any time slice. However, we must

take note of the degeneracy of R as a parameter for unstable circular orbits when ε → 0.

The energy E, on the other hand, remains a good parameter even in this limit, spanning

the entire range ∞ > E > 1√
3 . We will thus generally adopt E for labelling unstable

circular orbits, with the added benefit of it allowing us a gauge-invariant description of the

overspinning conditions in the self-force case. Given E, the angular momentum Lc(R(E)),

which we henceforth write as Lc(E), is obtained by substituting Eqs. (2.1) and (2.13) in
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Eq. (2.7) and then expanding in ε. The result is

L̃c(E) = 2E + (6E2 − 2)1/2ε+O(ε2). (2.15)

We note that to determine the O(ε) term here required the explicit values of both ρ1 and

ρ2 of Eq. (2.14).

2.1.1 Exclusion of deeply bound orbits

Heuristically, if we assume our point particle represents a compact object—say, a Schwarz-

schild black hole—then its effective proper “diameter” is ∼ µ. Below it will become clear

that a successful overspinning requires µ ∼ ε, and so relevant objects have proper diameters

∼ ε. Now consider placing such an object in a deeply bound orbit with an outer turning

point at r < Risco [and with L > Lc(E)]. Such an object (it can be checked) will plunge

through the horizon within a proper time of O(ε) (at most), comparable to its own “light-

crossing time”. It is not clear whether the object can be made to initially “fit” in its entirety

outside the hole. At the very least, it is not clear if the simple model of a point particle

and a stationary horizon provides a faithful description of the physics in this case.

To avoid such subtleties, we wish to exclude deeply bound orbits from our analysis. We

achieve this by requiring that, if the orbit possesses an outer radial turning point at some

r = rout, then

rout > Risco(ε). (2.16)

It can be checked that, under this condition, the proper-time interval along any timelike

equatorial geodesic connecting r = rout to r = Reh is finite (nonzero) even in the limit ε→ 0

(taken with fixed E,L). The condition (2.16) demands that eligible particles must clear

the peak of the effective potential as they plunge into the black hole. This requirement

excludes from the analysis orbits starting off between the peak of the potential and the

horizon, for which finite-size effects are expected to be non-negligible.

2.2 Overspinning domain

Given the restriction (2.16), a necessary and sufficient condition for a falling particle of

specific energy E to be captured by the black hole is

L < Lc(E). (2.17)
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A captured particle would overspin the black hole if and only if

(M + µE)2 < aM + µL. (2.18)

Using ã = 1− ε2 and introducing the small mass ratio η := µ/M , this condition becomes

ε2 + ηW + η2E2 < 0 , (2.19)

where we have introduced2

W := 2E − L̃. (2.20)

Note that Eq. (2.19) sets an upper bound on L (for given E, η, ε), while Eq. (2.17) sets

a lower bound. Also note that Eq. (2.19) implies the necessary condition W < 0 for

overspinning to occur.

Our goal now is to identify the complete domain in the space of {η,E, L} for which the

conditions (2.17) and (2.19) are simultaneously satisfied, assuming ε� 1 and the condition

(2.16). For easy reference, let us call this domain “OS”, for “overspinning”.

We first show that orbits with L ≤ Lisco all fall outside OS. To this end, consider first

the ISCO itself, where W = 2Eisco − L̃isco =: Wisco. Using Eqs. (2.6), (2.7) and (2.12) we

obtain Wisco = −ĉε4/3 +O(ε2), where ĉ = 21/3√3 > 0. Thus, Wisco is negative as required,

but it can be easily checked that (2.19) is always violated for sufficiently small ε: Replacing

W → −ĉε4/3 in Eq. (2.19) and considering the left-hand side as a quadratic function of η,

we find this function is positive definite for any ε < (2Eisco/ĉ)3. [Since Eisco is bounded from

below by Eisco(ε = 0) = 1√
3 , we find that (2.19) is always violated for ε < 4

27 .] This rules

out the ISCO itself, and it immediately rules out also all orbits with {E > Eisco, L = Lisco},

for which W > Wisco. Orbits with {E < Eisco, Lisco} can potentially satisfy Eq. (2.19), but

they are always deeply bound in the sense of failing to satisfy Eq. (2.16): For any E < Eisco,

the orbit has an outer radial turning point at a radius rout < Risco.

The upshot is that orbits with L = Lisco are all outside OS. For orbits with L < Lisco

we would need to require E < Eisco in order for W to be sufficiently negative. But, once

again, such orbits are excluded on account of their being deeply bound. We conclude that

orbits with L ≤ Lisco are all outside OS.

Let us focus therefore on orbits with L > Lisco. For such an orbit to be in OS, we
2Heuristically, W/2 may be interpreted as the specific energy in a co-rotating frame with Ω̃ = 1/2, i.e.,

the common angular velocity of all unstable circular geodesics in the extremal limit.
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require that (given E, η, ε) L is bounded from above by Lc(E) and simultaneously from

below via Eq. (2.19):

ε2 + 2ηE + η2E2 < ηL̃ < ηL̃c(E; ε). (2.21)

We have made here the ε dependence of Lc explicit, for clarity. The span of the permissible

range is η∆L := −ε2 − η[2E − L̃c(E; ε)]− η2E2, or, using Eq. (2.15),

η∆L = −ε2 + ηε
√

6E2 − 2− η2E2, (2.22)

where we have omitted terms of O(ηε2). OS is populated if and only if we can find E, η, ε

for which ∆L > 0.

A few conclusions can be drawn immediately. First, considering η∆L in Eq. (2.22) as a

quadratic function of η, we find it has a maximum value

max
η

η∆L = ε2(E2 − 1)
2E2 . (2.23)

This is positive only for E > 1. Therefore, all orbits with E ≤ 1 fall outside OS. Bound

orbits cannot overspin.

Second, for any E > 1, we can obtain ∆L > 0 by choosing the mass ratio η from within

the interval

εη−(E) < η < εη+(E), (2.24)

where

η± = 1√
2E2

[√
3E2 − 1±

√
E2 − 1

]
. (2.25)

In other words, overspinning can be achieved for any E > 1, as long as η satisfies (2.24).

Since the condition ∆L > 0 is both necessary and sufficient, the converse also holds: All

orbits in OS satisfy E > 1 with Eq. (2.24).

Third, from Eq. (2.24) it follows that η must be chosen to be of O(ε) (assuming E �

1/ε). One can check that η+ has a maximal value of

max
E

η+ =
√

3/2, (2.26)

obtained for E = 2/
√

3. Therefore, the range η ≥
√

3/2 ε lies outside OS. The bandwidth
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of admissible mass ratios, for given E and ε, is

∆η := εη+ − εη− = ε
√

2(E2 − 1)/E2, (2.27)

which is maximal for E =
√

2. Figure 2.2 depicts the permissible range of η/ε as a function

of E.

Fourth, from Eqs. (2.23) and (2.27) we learn that an E = const(> 1) slice of OS has

maximal dimensions ∆L ∼ ε2/η ∼ ε and ∆η ∼ ε. OS is thus a narrow “tube” in the

{E,L, η} parameter space, of a cross section ∼ ε × ε, whose boundary is tangent to the

surface of unstable circular orbits, L = Lc(E).

To summarize, we have found that OS is a narrow tube-like region of the {E,L, η} space,

described by E > 1, Lc(E; ε)−∆L(E, η; ε) < L < Lc(E; ε) and εη−(E) < η < εη+(E), where

∆L and η± are given in Eqs. (2.22) and (2.25), respectively. A neater description of the

OS window is obtained in terms of the quantity W defined in Eq. (2.20): Rearranging Eq.

(2.21) and using (2.15), we find

εW−(E) < W < εW+(E, η/ε), (2.28)

where

W− = −
√

6E2 − 2, W+ = −
(
ε

η
+ η

ε
E2
)
. (2.29)

This domain is illustrated in Figure 2.3 for a sample of η/ε values. To overspin a black hole

of given M and ε� 1, one should pick an E greater than 1, choose any η from within the

interval (2.24), and then choose W (hence L) from within the interval (2.28).
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Figure 2.2: Domain of mass ratios η for which overspinning is possible in the geodesic
approximation. η is shown divided by the near-extremality parameter ε = (1 − a/M)1/2,
and E is the particle’s specifi c energy. The boundaries η±(E) are given in Eq. (2.25).
Overspinning is not possible for E < 1 or η >

√
3/2 ε. However, for any value E > 1 there

is a range of η for which the black hole may be overspun. This happens if the particle’s
angular momentum is chosen from within the range indicated in Eq. (2.24).
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W

W

W

W_

W

Figure 2.3: The overspinning window, shown in the plane of E,W (whereW = 2E−L/M)
for several values of η/ε. Note W is shown divided by ε. The boundaries W± are given
in Eq. (2.29). The lower boundary W−(E) (which does not depend on η) arises from
the requirement that the particle is captured by the black hole. The upper boundary
W+(E, η/ε) comes from the requirement that the final object is an over-extremal black
hole. Overspinning is possible with any E > 1, provided η is chosen from within the range
shown in Eq. (2.28).
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Chapter 3

Overspinning with the full

self-force

Because the width of the overspinning window is of O(η), self-gravity effects may potentially

shut this window close, and they must therefore be included in the analysis. Specifically,

the gravitational self-force modifies the capture condition (2.17) by changing the functional

relation Lc(E) at O(η). It also modifies the overspinning condition (2.18) by dissipating

away some of the system’s initial energy and angular momentum. The key results of

this chapter will be given in Sec. 3.4, where we will provide conditions for capture and

overspinning under the full GSF effect.

As we explained in the introduction, the equations of motion including the leading-order

GSF, may be written in the form

µûβ∇βûα = Fα. (3.1)

Here ûα is the particle’s four-velocity, tangent to the (accelerated) trajectory in the back-

ground spacetime (Kerr, in our case) and normalized using

gαβû
αûβ = −1, (3.2)

where gαβ is the background (Kerr) metric. The covariant derivative in (3.1) is taken with

respect to gαβ, and Fα is the first-order GSF, proportional to µ2. The GSF is normal to

the four-velocity, gαβûαF β = 0, so that the rest mass µ remains constant 1.
1The situation is different for a scalar charge, where the inclusion of the self-force can source a time-

dependent shift in the particle’s mass. A study of this phenomenon in cosmological spacetimes can be found
in [69].
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Now consider a particle sent in along the equator of the Kerr black hole, i.e. with

θ = π/2 and ûθ = 0 at the initial moment, where hereafter τ is proper time along the

self-accelerated orbit in gαβ. In any reasonable gauge, the component F θ would vanish

from symmetry and the motion will remain equatorial. Let us then define

Ê := −ût, L̂ := ûφ, (3.3)

in analogy with E and L of the geodesic case. Here, however, Ê and L̂ are not constants

of the motion. Rather, Eq. (3.1) tells us they evolve (slowly) according to

µ
dÊ

dτ
= −Ft, µ

dL̂

dτ
= Fφ, (3.4)

where Fα = gαβF
β. With these definitions, Eq. (3.2) produces the radial equation of

motion

ṙ2 = B(r)
(
Ê − V−(L̂, r)

) (
Ê − V+(L̂, r)

)
, (3.5)

whose form is identical to that of Eq. (2.3)—except that here Ê and L̂ are slow functions

of τ along the orbit.

The results of the previous section lead us to focus attention on particles sent in from

infinity, i.e., ones with r(τ → −∞)→∞. For such particles, we define

E∞ := Ê(τ → −∞), L∞ := L̂(τ → −∞). (3.6)

From Eq. (3.4) we have

Ê(τ) = E∞ + ∆E(τ), L̂(τ) = L∞ + ∆L(τ), (3.7)

where

µ∆E(τ) = −
∫ τ

−∞
Ft dτ, µ∆L(τ) =

∫ τ

−∞
Fφ dτ. (3.8)

In principle, the coupled set (3.5) with (3.7) determines the self-accelerated orbit, given the

initial values E∞, L∞ and a method for calculating the GSF along the orbit.
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3.1 Conservative and dissipative GSF for quasi-circular or-

bits

Using Eqs.(1.26)-(1.27), one can immediately conclude that, for circular orbits, for which

Fα(r, ṙ) = Fα(r,−ṙ), F t, Fφ are purely dissipative while F r is purely conservative. In gen-

eral, however, each component has both dissipative and conservative pieces. Of particular

interest to us will be nearly-circular orbits with |ṙ| � 1. Along such orbits we may write,

to leading order in |ṙ|,

Fαcons ' ṙFα1 (r), Fαdiss ' Fα0 (r) (3.9)

for α = t, φ, and

F rcons ' F r0 (r), F rdiss ' ṙF r1 (r), (3.10)

where Fα0 and Fα1 are some functions of r only.

Equations (1.26)–(1.27) and (3.9)–(3.10) are applicable, at leading order in η, even for

an orbit that is slowly evolving under the GSF effect. In that case the GSF depends also on

the instantaneous self-acceleration, but that dependence appears only at subleading order

in η.

The GSF integrals ∆E and ∆L can be related, in certain situations, to asymptotic fluxes

of energy and angular momentum in gravitational waves. This was established rigorously

in Ref. [18] for a trajectory starting and ending at infinity.2 A similar balance relation

has been argued to hold also for adiabatic inspiral orbits around a black hole, subject to

a suitable averaging over many orbital periods [70,71]. In both scenarios, the contribution

from Fαcons to the integrals ∆E and ∆L (taken from τ = −∞ to τ = +∞) vanishes at

leading order, by virtue of the orbital symmetry expressed in Eq. (1.26). This guarantees

that the radiated fluxes balance the work done by the dissipative piece of the self-force

alone, as expected.

3.2 ADM energy and angular momentum

Our analysis in the next section will require knowledge of the total, conserved ADM energy

and angular momentum contents of the spacetime in the above setup. Specifically, we will

need expressions for EADM and LADM in terms of E∞ and L∞ (and the two masses, M
2The configuration considered in Ref. [18] had no black hole in it, but the authors argue convincingly

that a similar conclusion would hold also in the black hole case, if fluxes down the event horizon were
accounted for in the balance equation.
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and µ), correct through O(µ2). A subtlety is that ADM quantities are most conveniently

evaluated in a “center-of mass” system (and, at the required order, would include a contri-

bution from the black hole’s “recoil” motion), whereas E∞ and L∞ are components of the

particle’s four-velocity, defined in a coordinate system centred around the black-hole.

In our setup, the ADM quantities are most easily evaluated on a hypersurface of constant

t � −M , where the binary separation is r � M . In the limit t → −∞ (r → ∞), the

gravitational interaction energy vanishes and does not contribute to EADM. Working at

that limit, we assume that, for the purpose of calculating ADM quantities, the black hole–

particle system may be replaced with that of two relativistic point-like particles in flat

spacetime. EADM is then simply the sum of the two relativistic energies in the center-of-

mass frame, and LADM is similarly the sum of two angular momenta (with respect to the

center of mass), plus the spin of the black hole.

Appendix A gives the details of this calculation, which is straightforward. The result is

EADM = M

[
1 + ηE∞ −

1
2η

2(E2
∞ − 1)

]
+ o(η2), (3.11)

LADM = M
(
a+ ηL∞ − η2L∞E∞

)
+ o(η2). (3.12)

3.3 Critical orbits

In the geodesic case we have introduced the function Lc(E), which we now interpret as the

critical value of the angular momentum for a given energy: Geodesic orbits with L > Lc(E)

scatter back to infinity, while ones with L < Lc(E) fall into the black hole. This type of

critical behavior carries over to the GSF case, though radiation losses then introduce a sub-

tlety, since orbits that are initially scattered may fall into the black hole at a subsequent

approach. However, we may still speak of a critical threshold for an immediate capture,

which separates (in the space of initial conditions) between orbits that scatter at first ap-

proach and orbits that do not. A detailed analysis of this critical behavior was given in

Ref. [72] for orbits in Schwarzschild spacetime (working in the first-order GSF approxima-

tion, as here), and in the following discussion we assume the same qualitative behavior

applies in the Kerr case too.

In particular, we assume there exists a critical value L∞ = L∞,c(E∞) that separates

between the two possible outcomes. The initial conditions {E∞, L∞,c(E∞)} thus define

a one-parameter family of “critical orbits”. Let us denote by Êc(τ ;E∞) and L̂c(τ ;E∞)
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the functions Ê(τ) and L̂(τ) corresponding to a critical orbit with a given E∞ [so that

Êc(τ → −∞;E∞) = E∞ and L̂c(τ → −∞;E∞) = L∞,c(E∞)]. Unlike in the geodesic

case where critical geodesics of different E are disjoint, in the GSF case all critical orbits

join a global attractor, which is the perfectly fine-tuned orbit that evolves radiatively along

the sequence of unstable circular orbits starting at the light ring and ending at the ISCO,

where it plunges into the black hole. Figure 1 in Ref. [72] illustrates the evolution of the

critical orbit along the attractor, and see also Fig. 3.1 below.

Let us define the “GSF correction”

δLc(τ ;E∞) := L̂c(τ ;E∞)− Lc(E∞), (3.13)

and then

δL∞(E∞) := δLc(τ → −∞;E∞). (3.14)

δL∞ is the GSF-induced shift in the critical value of L∞ at a fixed E∞. It may also be

interpreted in terms of a GSF correction to the critical impact parameter.

We assume that the difference δLc(τ ;E∞) remains small [O(η)] during the approach,

which should be the case in any reasonable gauge. However, clearly, that difference ceases

to remain small as the critical orbit joins the global attractor and evolves along it; then

the meaning of δLc(τ ;E∞) as a small GSF correction is lost.

For our analysis of overspinning orbits in the next section, we will require an explicit

expression for δL∞(E∞) in terms of GSF quantities. It is instructive to derive this relation

first with the dissipative piece of the GSF turned off, i.e. replacing the full GSF with its

conservative piece (in which case the global attractor disappears, and critical orbits of

different E∞ remain disjoint). Let us call the resulting quantity δLcons
∞ (E∞). As a second

step we will restore dissipation and consider its effect.

3.3.1 Conservative GSF effect

With dissipation turned off, the critical orbit becomes exactly stationary at τ →∞, where it

joins an unstable (nongeodesic) circular orbit of radius R̂(E∞) = R(E∞)+δR. Here R(E∞)

is the geodesic relation given in Eq. (2.13), and δR is a conservative GSF correction. To

obtain δLcons
∞ we first substitute Ê and L̂ from Eq. (3.7) into the radial equation of motion

(3.5), replacing L∞ with Lc(E∞)+δLcons
∞ (E∞), where Lc(E∞) is the geodesic relation given

in Eq. (2.15). We then demand dr/dτ = 0 as well as d2r/dτ2 = 0 at r = R̂ through O(η).
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At leading order in ε this yields two algebraic equations for the two O(η) unknowns δLcons
∞

and δR, given E∞ and the GSF. The solution is

δLcons
∞ (E∞) = 2M∆Econs(∞)−∆Lcons(∞), (3.15)

and δR(E∞) = O(ε)O(η). Here ∆Econs and ∆Lcons are the same as ∆E and ∆L of Eq.

(3.8), but with Fα → F cons
α , and with the GSF integrals evaluated along the critical orbit

with energy-at-infinity E∞. The precise dependence of δR on the GSF will not be needed,

but we note that the O(εη) GSF correction to the radius of the critical circular orbit is

reassuringly small compared to the O(ε) radial distance to the light ring.

To simplify the appearance of subsequent equations, let us from now on use units in

which M = 1. This, in particular, makes our “tilde” notation redundant (with L̃ = L,

etc.) and µ becomes interchangeable with η. Recalling our W notation from Eq. (2.20),

we rewrite Eq. (3.15) as

δLcons
∞ (E∞) = ∆W cons(∞), (3.16)

where ∆W cons represents the conservative piece of

∆W (τ) := 2∆E(τ)−∆L(τ)

= −η−1
∫ τ

−∞
(2Ft + Fφ) dτ. (3.17)

The quantity ∆W cons(∞) is the limit τ →∞ of ∆W cons(τ). Does this limit actually exist?

The answer is positive, since both F cons
t and F cons

φ vanish exponentially fast in τ as the

orbit approaches the limiting circular orbit at τ →∞.

To make this last statement more precise, let us split the τ integral into an “approach”

piece,
∫ τc
−∞, and a “quasi-circular” piece,

∫∞
τc
, with τc chosen so that δr(τc), where δr(τ) :=

r(τ) − R̂, is already very small. For a small δr we have the form F cons
t ' ṙF1t(r) [Eq.

(3.9)] and similarly for F cons
φ . Thus

∫∞
τc
F cons
t dτ ' −F1t(R̂)δr(τc), and similarly for the φ

component. A local analysis of Eq. (3.5) near the limiting circular orbit gives δr ∼ e−λτ ,

with a Lyapunov exponent λ = M−1(3E2
∞ − 1)1/2 at leading order in ε (and ignoring the

small effect of the GSF). The choice τc = −λ−1 log η, for example, gives δr(τc) ∼ η, and

the quasi-circular piece of ∆W cons does not contribute to δLcons
∞ at leading order in η.

Our discussion assumes that ∆E(τc) and ∆L(τc) [hence also ∆W (τc)] are O(η) quanti-

ties, i.e. that the accumulated GSF-induced positional shift in the orbit during the approach

is a small, O(η) quantity. This should be the case in any reasonable gauge. Under this
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assumption, we note that the value of the integral ∆W remains unchanged, at leading order

in η, if in Eq. (3.17) we replace the integration along the actual, GSF-perturbed orbit, with

an integration along the critical geodesic of energy E∞. This can be exploited to simplify

actual calculations: To compute δLcons
∞ at leading order in η requires only an evaluation

of the GSF along a fixed geodesic, and there is no need to consider the back-reaction from

the GSF on the orbital trajectory.

3.4 Full GSF effect

Now restore dissipation. The fine-tuned critical orbit no longer settles into a strictly station-

ary motion, but rather it continues to evolve radiatively, in an adiabatic fashion, through

a sequence of unstable circular orbits of decreasing energies (hence increasing radii). With

a perfect fine-tuning, the orbit can reach the ISCO before plunging into the black hole—a

scenario illustrated in Fig. 3.1.

A relation between the degree of fine-tuning and the amount of energy loss was derived

in Ref. [72] (for the Schwarzschild case): Rewriting their Eq. (124) in terms of angular

momentum, we have the scaling δL/L∞,c ∼ exp[(Ef −Ei)/η], where δL (not to be confused

with the GSF shift δL∞) is any small perturbation in the value of the initial angular

momentum off the critical value L∞,c, and Ef −Ei is the resulting change in specific energy

as the orbit progresses along the global attractor. To achieve an O(1) change in the specific

energy requires an “exponentially delicate” fine-tuning, δL/L∞,c ∼ exp(−1/η).

For our analysis we do not require knowledge of the perfectly fine-tuned angular momen-

tum at that level. We need L∞,c through O(η) only. Fine-tuning at O(η) [corresponding to

δL = o(η)] guarantees only Ef −Ei = O(η ln η). Therefore, for the purpose of determining

L∞,c through O(η), it is sufficient to restrict attention to the early part of the critical

orbit, where ∆E and ∆L (specific values) are still O(η ln η) at most, and have not yet

accumulated O(1) changes.

Consider a critical orbit parametrized by E∞(≥ 1), and an arbitrary moment τ =

τ0 after the orbit had settled into quasi-circular motion, but before ∆E(τ0) and ∆L(τ0)

have accumulated O(1) changes [specifically, assume ∆E(τ0),∆L(τ0) = O(η ln η) at most].

Evaluate the full-GSF radial equation of motion (3.5) at time τ0, subject to the near-

circularity condition dr/dτ = O(η), substituting for Ê(τ0) and L̂(τ0) from Eq. (3.7), and

replacing L∞ with Lc(E∞) + δL∞(E∞). At leading order in η and in ε one obtains the
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Figure 3.1: Schematic illustration of the evolution of orbital energy along a perfectly
fine-tuned critical orbit (solid blue curve). The orbit approaches from infinity, becomes
trapped on an unstable circular orbit, and then evolves adiabatically in a quasi-circular
fashion before transiting to plunge around the ISCO location. Radiative losses are small
during the approach and plunge, but, through fine-tuning, the orbit can be made to lose
“all” its energy during the quasi-circular stage. Intermediate values of the final energy
Ef may also be obtained by fine-tuning (dashed magenta line). Note the orbital radius
increases through radiation losses during the quasi-circular stage. In the near-extremal
case, ε � 1, the quasi-circular evolution occurs within a small range of coordinate radii,
∆r = O(ε).
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Figure 3.2: Sequence of effective potentials along the global attractor. A strongly fine-
tuned orbit (black dashed line) emits energy and angular momentum so that it hovers
on the peak of a sequence of effective potentials with decreasing L. Notice that, while L
decreases, the location of the peak moves further away from the horizon (vertical dashed
blue line) and so does the orbit, as indicated by the arrows. A perfectly fine-tuned orbit
follows the global attractor until it reaches the ISCO (blue line on the bottom of the plot),
where the curvature of the potential is such that the small mass is then forced to plunge
into the black hole. Here we show the effective potential V+(L, r) of Eq. (2.4) for a = 0.99
and a sample of values of L = LISCO(a = 0.99) + n, with n = 0...3 (note that the green
line represents LISCO + 3).
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solution

δL∞(E∞) = ∆W (τ0), (3.18)

where ∆W is the GSF integral defined in Eq. (3.17). This result can only make sense if (i)

the expression on the right-hand side is in fact independent of τ0 at leading order; and (ii)

the quantity ∆W (τ0) = 2∆E(τ0)−∆L(τ0) remains of O(η) even for τ0 large enough that

the individual terms ∆E(τ0) and ∆L(τ0) are already of O(η ln η). We now argue that both

conditions are satisfied.

To make the argument, let us split ∆W (τ0) into an “approach” piece ∆W (τc), and a

“quasi-circular” piece

∆W (τc, τ0) := ∆W (τ0)−∆W (τc)

= −η−1
∫ τ0

τc
(2Ft + Fφ) dτ. (3.19)

Here the end-of-approach time τc can be taken to be any moment τc < τ0 after the orbit

had settled into quasi-circular motion, in the sense that ṙ(τc) = O(η) at most. We will now

show that

∆W (τc, τ0) = O(ε)O(η ln η) (3.20)

at most, for any choice of τ0 and of τc. Assuming ε| ln η| � 1, this would mean that ∆W (τ0)

is dominated by its approach piece ∆W (τc), so that (i) ∆W (τ0) does not depend on τ0 at

leading order, and (ii) ∆W (τ0) ' ∆W (τc) = O(η) as argued above.

To establish the scaling in (3.20), we use the orthogonality relation ûαFα = 0 to write

Ft + ΩFφ = −(ur/ut)Fr, where Ω = uφ/ut, and the replacement ûα → uα does not affect

the expression at leading order in η. We wish to evaluate this relation for τc ≤ τ ≤ τ0,

when the orbit is quasi-circular. At leading order in η, Ω = Ω(E; ε) is then equal to

the angular velocity of an unstable circular geodesic of specific energy E = Ê(τ). At

fixed energy, the angular velocity admits the small-ε expansion Ω = 1
2 −

1
4b(E)ε + O(ε2)

with b = 6E(6E2 − 2)−1/2 [see Eqs. (3.62) and (3.63)]. Thus, omitting terms that are

subdominant in ε, the integrand in Eq. (3.19) is 2Ft + Fφ = −2(ur/ut)Fr + 1/2(bεFφ), or,

equivalently,

2Ft + Fφ = −2(ur/ut)Fr − bεFt. (3.21)

Let us denote the contributions to ∆W (τ0, τc) from the first and second terms on the right-

hand side of (3.21) by ∆W(r) and ∆W(t), respectively. In what follows we consider each of
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the two contributions in turn.

Start with ∆W(r), given by

∆W(r) = (2/η)
∫ r(τ0)

r(τc)

(
Fr/u

t
)
dr. (3.22)

Note r(τ0)− r(τc) = O(ε), since both radii belong to unstable circular geodesics. From Eq.

(3.10) we recall that for |ṙ| � 1 the radial component Fr is dominated by its conservative

piece, F cons
r ' F0r(r), which is approximately constant within the integration domain and

may therefore (as we only keep track of the leading term in ε) be pulled out of the integral.

A simple calculation gives 1/ut ∝ ε (at fixed E), and this factor can likewise be taken

out of the integral. We thus obtain the scaling ∆W(r) ∼ ε2F0r/η, where F0r is evaluated,

e.g., at r = r(τc), the end of approach. It remains to determine the ε-scaling of F0r.

Numerical evidence suggests the scaling F0r ∼ ε−1. This is consistent with what one would

obtain by assuming that the GSF components in a normalized coordinate basis are finite:

F0r = F0r̂(grr)−1/2 ∼ ε−1 (or smaller), assuming the normalized component F0r̂ is finite

and noting grr ∼ ε2. Assuming, therefore, that F0r does not diverge faster than ∼ ε−1, and

recalling F0r ∝ η2 as usual, we arrive at

∆W(r) = O(ε)O(η) (3.23)

(or smaller).

Next, consider the contribution ∆W(t):

∆W(t) = (ε/η)
∫ τc

τ0
b(E)Ftdτ = −ε

∫ E(τ0)

E(τc)
b(E)dE

= − ε
√

6E2 − 2
∣∣∣E(τ0)

E(τc)
. (3.24)

In the second equality we have used Ft = −µdE/dτ , and in the third we have substituted

for b(E) and integrated explicitly. Since the energy difference E(τ0) − E(τc) is at most of

O(η ln η), we conclude that

∆W(t) = O(ε)O(η ln η) (3.25)

(or smaller).

The combination of Eqs. (3.23) and (3.25) leads to the scaling stated in Eq. (3.20).

The upshot is that the contribution to ∆W (τ0) from the quasi-circular part, ∆W (τc, τ0),

is negligible compared to the contribution from the approach part, ∆W (τc) = O(ε0)O(η)
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(assuming ε| ln η| � 1). In other words, the GSF integral ∆W (τ0) in Eq. (3.18) may be

truncated at the end-of-approach time τc, with the latter taken to be any instance after the

orbit had settled into quasi-circular motion [but before the specific energy has accumulated

O(1) changes]. Hence one has

δL∞(E∞) = ∆W (τc) +O(ε)O(η ln η), (3.26)

in analogy with the “no dissipation” case, Eq. (3.16). Here, ∆W (τc) is the full-GSF integral

shown in Eq. (3.17), evaluated along the orbit from infinity and up to the “end of approach”

time τc, when the orbit settles into a quasi-circular motion. Crucially, the contribution to

∆W from the quasi-circular part of the orbit is suppressed by a factor of ε, so that the

precise choice of τc does not affect the value of ∆W (τc) at leading order. This assumes

only that ε � | ln η|−1, so that the error terms in Eq. (3.26) are negligible compared to

∆W (τc) = O(ε0)O(η). All we require of τc is to be sufficiently late that |ṙ| is already very

small [specifically, ṙ(τc) = O(η)], but sufficiently early that ∆E is O(η ln η) at most. In

practice, ∆W may again be evaluated along the critical geodesic of energy-at-infinity E∞,

with the integral in Eq. (3.26) truncated after, say, 4–5 orbital revolutions. Truncating

instead after (e.g.) 10 revolutions should change the result by a negligible amount of only

O(ε)O(η).

The dissipative piece of ∆W (τc) [call it ∆W diss, defined by replacing Fα → F diss
α in Eq.

(3.26)] may be expressed in terms of radiated quantities. Let E(apr) and L(apr) be the total

energy and angular momentum in gravitational waves radiated out to infinity and down

the black hole during the approach. We shall assume that the balance relation3,4

W(apr) := 2E(apr) − L(apr) = −η∆W diss(τc) (3.27)

holds at leading order in η and in ε. Equations (3.16) and (3.26) then lead to

δL∞ = δLcons
∞ −W(apr)/η, (3.28)

3The balance (3.27) does not follow directly from the theorem of Ref. [18], because the approach part
of the critical orbit does not end at infinity. It may be possible to construct a proof by considering a
small outward deformation of the orbit (such that the new orbit starts at infinity and scatters back to
infinity), then invoking the approximate symmetry about the periapsis, together with the ε-suppression of
the quasi-circular contribution to ∆W diss. We shall not endeavour to provide the details of such a proof
here.

4One cannot expect to be able to similarly balance E(apr) and L(apr) individually, because the dissipative
pieces of ∆E(τc) and ∆L(τc), unlike ∆W diss(τc), are sensitive to the choice of τc already at leading order.
However, such individual balance relations will not be needed in our analysis.
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where subleading terms have been omitted. This reexpresses δL∞ as a sum of conservative

and radiative contributions, the motivation for which will become clear in the next section.

Finally, let us further write E(apr) = E+
(apr) + E−(apr) and similarly for L(apr) and W(apr),

where hereafter superscripts ‘+’ and ‘−’ denote contributions from fluxes to infinity and

down the black hole, respectively. The following argument, based on the first law of black

hole mechanics, suggests thatW−(apr) must vanish in the limit ε→ 0. If we assume the black

hole is not overspun during the approach, its horizon’s area should increase by an amount

δA satisfying
κ

8πδA = E−(apr) − ΩHL−(apr), (3.29)

where κ = ε/
√

2 +O(ε2) is the horizon’s surface gravity, and ΩH its angular velocity. Since

ΩH = 1
2 + O(ε), we identify the right-hand side of (3.29) as W−(apr) at leading order in ε.

We thus have, in the ε→ 0 limit, W−(apr) ' ε(c1δA+ c2L−(apr)), with c1, c2 certain numerical

coefficients. Since δA and L−(apr) must remain bounded even in the ε→ 0 limit, we conclude

that W−(apr) vanishes in that limit. Thus, at leading order in ε, Eq. (3.28) becomes

δL∞ = δLcons
∞ −W+

(apr)/η, (3.30)

which now features only outgoing fluxes.

With this we have completed the necessary groundwork for our overspinning analysis,

to be presented next.

3.5 General form of the censorship condition and reduction

to near-critical orbits

Starting with a near-extremal Kerr geometry with a/M = 1 − ε2, consider a particle sent

in from infinity with specific energy E∞ and specific angular-momentum L∞ at t → −∞.

The ADM mass and angular momentum of the spacetime are given in Eqs. (3.11) and

(3.12) through O(η2). We assume the particle crosses the event horizon5 at some retarded

time uh, and we let E+ and L+ be the total energy and angular momentum radiated to

null-infinity up until uh (with uh →∞ if the post-capture geometry relaxes to a Kerr black

hole). Then the Bondi mass and angular-momentum of spacetime at retarded time uh are
5More pedantically, we refer here to the crossing of a marginally trapped surface; spacetime need not

contain a global horizon.
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EADM − E+ and LADM − L+, respectively. Overspinning is avoided if and only if6

(EADM − E+)2 ≥ LADM − L+. (3.31)

To rule out the overspinning scenario, we need to show that this inequality holds for all

E∞, L∞ and for all η, ε. The restriction to orbits coming from infinity follows from our

analysis of the geodesic scenario: we will not examine bound orbits, as our implicit as-

sumption is that the self-force should disfavour overspinning. Since we work in first-order

perturbation theory, we only demand that (3.31) is satisfied at leading order in η. We

also assume ε � 1 and keep only leading terms in ε, but we do not a priori restrict the

magnitude of ε relative to that of η. We shall refer to the inequality (3.31) as the censorship

condition.7

Substituting from Eqs. (2.1), (3.11) and (3.12), the censorship condition becomes

ε2 + ηW∞ + η2(1 + L∞E∞ − E2
∞) + (ηE∞ − E+)2 −W+ ≥ 0, (3.32)

whereW∞ := 2E∞−L∞,W+ := 2E+−L+, and we have omitted subleading terms of o(η2).

Note how the various terms here scale with η. The quantities E∞ and L∞ (hence alsoW∞)

are specific values, thus a priori they are O(η0). The radiated energy E+ is generically

O(η2), but may accumulate at O(η) for orbits that are fine-tuned to evolve along the global

attractor; it is to allow for such orbits that we have kept the terms 2ηE∞E+ and (E+)2 in

Eq. (3.32). The quantityW+ is likewise O(η2) generically and up to O(η) with fine-tuning,

but, as will be shown below, in the latter case the O(η) term is also proportional to ε.

Inspecting Eq. (3.32), we observe that, for all captured orbits that are not sufficiently

close to criticality, the term ηW∞ is O(η) and positive, so the censorship condition (3.32)

is trivially satisfied at leading order in η and ε. Violation of (3.32) (hence overspinning)

may only be achieved, potentially, if L∞ is tuned so that L∞ = 2E∞ + O(ε, η), giving
6We do not know, and for our purpose do not need to know, the future evolution of spacetime beyond

retarded time uh in the hypothetical case where (3.31) is not satisfied. The likely scenario involves the
formation of a naked singularity and a breakdown of predictability for u > uh [53]. If (3.31) is satisfied,
then, by “no-hair” theorems, geometry should relax to a Kerr black hole.

7It may be argued that (3.31) is guaranteed to hold (with a strong inequality) by virtue of the third
law of black-hole mechanics [73], though some of the third-law’s assumptions are not satisfied within our
model: for instance, a distributional source does not comply with the hypothesis that the matter considered
should have a bounded stress-energy tensor [58]; it was also pointed out that the process leading to the
formation of an extremal black hole through the capture of a test body cannot actually take place in a finite
time through a continuous process [74]. However, we observe that all these arguments apply only to some
approximations to the full non-linear evolution of the system, and thus cannot be considered conclusive. In
any case, it is still of interest to explore the physical mechanism that enforces the third law in our setup,
which is what our study aims to achieve.
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W∞ = O(ε, η). It is therefore sufficient to restrict attention to this class of orbits, to

be referred to in what follows as “near-critical”. Formulated on near-critical orbits, the

censorship condition takes the sufficient form

ε2 + ηW∞ + η2(1 + E2
∞) + (ηE∞ − E+)2 −W+ ≥ 0, (3.33)

where we have dropped O(εη2, η3) terms. This is required to hold for each member of the

reduced two-parameter family {E∞, L∞} with L∞ − 2E∞ = O(ε, η).

To proceed, we need to make more precise the distinction between “weakly fine-tuned”

orbits and “strongly fine-tuned” near-critical orbits. Referring to Fig. 3.1, let Ef be the final

value of the specific energy with which the particle plunges into the hole; and let L∞,c(E∞)

be the perfectly fine-tuned value of L∞, for which the orbit joins the global attractor and

evolves along it to the ISCO. Assuming the universal scaling L∞−L∞,c(E∞) ∼ exp[(Ef −

E∞)/η] [72], near-critical orbits as defined above generically have Ef − E∞ = O(η ln ηε)

[here we neglect the O(η) difference between E∞ and Ei]. Calibrating L∞ at higher order

in η, ε [so that L∞−L∞,c = O(ηn, εk) with some n, k > 1] does not qualitatively change this

generic scaling of Ef −E∞. To achieve Ef −E∞ = O(1) requires an exponentially accurate

tuning, i.e. L∞ − L∞,c ∼ exp(−1/η). In what follows we use the η scaling of Ef − E∞
to distinguish between weakly and strongly fine-tuned members of the near-critical family:

The former admit Ef −E∞ = O(η ln ηε), and the latter Ef −E∞ = O(1). This distinction

can also be formulated in terms of the radiated quantities E+ or L+:

E+,L+ = O(η2 ln ηε) (“weakly fine-tuned”), (3.34)

E+,L+ = O(η) (“strongly fine-tuned”). (3.35)

3.6 Further reduction to critical orbits

The inequality (3.33) is still a condition on a two-parameter family of orbits. Ignoring

fine-tuned orbits for now, it is possible—and beneficial—to reduce it further to a sufficient

condition formulated on a one-parameter family. We achieve this by minimizing the left-

hand side of Eq. (3.33) over all near-critical orbits for a given E∞. We argue that the

minimizing orbit is one with L∞ tuned to its critical value at least through O(η, ε), namely

L∞ = 2E∞ + ε
√

6E2
∞ − 2 + δL∞(E∞) + o(η, ε), (3.36)
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where we have recalled Eq. (2.15), and δL∞(E∞) is the O(η) GSF term derived in the

previous section.

To see this, note first that W∞ = 2E∞−L∞ is trivially minimized by L∞ = L∞,c(E∞),

since L∞,c(E∞) maximizes L∞ (over all captured orbits of a fixed E∞) by definition of

a critical orbit. This means that, to minimize W∞ through O(η, ε) (higher orders are

irrelevant in our approximation) it suffices to demand L∞−L∞,c(E∞) = o(η, ε). Then also

note that the two radiative terms on the left-hand side of (3.33) are insensitive, at relevant

order, to variations of L∞ within the family of nearly-critical orbits for a fixed E∞. For

weakly fine-tuned orbits, the term (ηE∞−E+)2 is simply η2E2
∞ at leading order, recalling

Eq. (3.34). As for the term −W+, we note that the contribution to that term from the

approach part of the orbit, which is already O(η2), is not sensitive, at that order, to O(η, ε)

variations in L∞. Meanwhile, the contribution to W+ from the quasi-circular part of the

orbit is of O(ε)O(η2 ln ηε) at most (the occurrence of the factor ε will be explained below)

and hence negligible in Eq. (3.33), assuming only ε� | ln η|−1.

Thus, discounting fine-tuned orbits, we find that the entire left-hand side of Eq. (3.33)

is minimized by L∞ as given in Eq. (3.36). A new sufficient version of the censorship

condition may therefore be written as

ε2 − ηε
√

6E2
∞ − 2− η δL∞ + η2(1 + E2

∞) + (ηE∞ − E+)2 −W+ ≥ 0, (3.37)

which, at the relevant, leading order, is a condition on the one-parameter family of (generic)

critical orbits parametrized by E∞ alone.

It should now be noted that the condition (3.37) also applies to fine-tuned orbits

[whether or not they minimize the left-hand size of (3.33)], simply because such orbits

always satisfy Eq. (3.36). However, for fine-tuned orbits the condition still involves two

parameters, conveniently chosen as E∞ and Ef . Different values of Ef correspond to

a fine-tuning of L∞ at an exponential level. In principle, any value of Ef in the range

Eisco . Ef . E∞ may be obtained this way. To rule out overspinning by fine-tuned orbits,

the censorship condition (3.37) must hold for all {E∞, Ef} with Ef in the above range.

Observe that in Eq. (3.37) we have

ηδL∞ +W+ = η δLcons
∞ +W+ −W+

(apr)

= η δLcons
∞ +W+

(qc) +W+
(end), (3.38)
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where in the first line we have recalled Eq. (3.30), W+
(qc) is the piece of W+ coming from

the evolution along the quasi-circular part of the orbit, andW+
(end) is the piece coming from

the transition to a final plunge into the black hole and from the plunge itself. It follows

that only the conservative piece of the shift δL∞ actually enters our condition:

ε2 − ηε
√

6E2
∞ − 2− η δLcons

∞ + η2(1 + E2
∞) + (ηE∞ − E+)2 −W+

(qc) −W
+
(end) ≥ 0. (3.39)

In this last form, conservative and dissipative terms of the GSF feature separately. The

former are associated with the approach leg of the orbit, and the latter accumulate during

the adiabatic evolution along the attractor. In Appendix B we combine results by Ori and

Thorne [75], Kesden [76] and Mino and Brink [77], to argue that the term W+
(end) is always

subdominant and negligible in Eq. (3.39). We shall therefore omit that term in the rest of

our discussion.

In section 3.8 below we will show that the radiative termW+
(qc) scales as O(ε)O[η(E∞−

Ef )]. This term can thus feature at leading order in Eq. (3.39) only for fine-tuned orbits, for

which E∞−Ef = O(1). Likewise, terms involving E+ feature only for fine-tuned orbits and

are negligible otherwise. On the other hand, the conservative term ηLcons
∞ is always O(η2),

featuring in the censorship condition regardless of fine-tuning. An important consequence

is that dissipative effects of the GSF enter the censorship condition only for fine-tuned

orbits. This seems consistent with suggestions made in earlier analyses [62,76,78] (in which

fine-tuning has not been considered).

Below we further simplify the condition (3.39), and reformulate it explicitly in terms of

E∞ alone (for weakly fine-tuned orbits) or E∞ and Ef alone (for strongly fine-tuned ones),

without reference to η and ε. We shall consider separately the cases of weakly and strongly

fine-tuned orbits, starting with the former, simpler case.

3.7 Censorship condition for weakly fine-tuned orbits

As mentioned above (and shown in the next section), without strong fine-tuning the ra-

diative terms E+ and W+
(qc) become subdominant in Eq. (3.39) and drop out of it. The

censorship condition then reduces to

ε2 + ηεF + η2H ≥ 0, (3.40)
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with

F := −
√

6E2
∞ − 2 , (3.41)

H := 1 + 2E2
∞ − δL̆cons

∞ . (3.42)

Here we have made the η-scaling of δLcons
∞ explicit by introducing the shift-per-eta

δL̆cons
∞ := η−1 δLcons

∞ , (3.43)

which should have a finite (nonzero) limit η → 0. We observe that the conservative self-

force modifies the geodesic censorship condition through the term δL̆cons
∞ . The GSF will

disfavour overspinning if δL̆cons
∞ < 0, which is equivalent to decreasing the upper bound

given in Eq. (2.21).

For the overspinning scenario to be ruled out, the inequality (3.40) must be satisfied

for all η, ε > 0 and all E∞ ≥ 1. The condition can be written in the equivalent form

Φ := α2 + αF + H ≥ 0, with α := ε/η > 0. At fixed E∞, Φ is quadratic in α, with a

minimum value Φ(α = −F/2) = H − F 2/4. To guarantee Φ ≥ 0 for all E∞ and all α > 0

(hence all η, ε > 0) we must demand H ≥ F 2/4; if H < F 2/4 for some E∞, then for that

E∞ there exist η, ε values for which overspinning is achieved. In that way, H ≥ F 2/4 is

both sufficient and necessary for overspinning to be avoided. Inserting the values of F and

H, the censorship condition takes the simple form

δL̆cons
∞ ≤ 1

2(E2
∞ + 3). (3.44)

Overspinning is averted (for orbits that are not fine-tuned) if and only if (3.44) is satisfied

for each member of the one-parameter family of critical orbits with E∞ ≥ 1, in the limit

η, ε→ 0.

Equation (3.44) states our final result for weakly fine-tuned orbits. As already men-

tioned, it involves only conservative GSF effects, specifically the shift in the critical value of

the angular-momentum-at-infinity (at fixed E∞) due to the conservative piece of the GSF.

For easy reference, we give here the explicit formula for δL̆cons
∞ in terms of GSF components:

δL̆cons
∞ (E∞) = lim

ε→0

1
µ2

∫ ∞
Rε

(
2M F cons

t + F cons
φ

)
dr/ṙ, (3.45)

where we have recalled Eqs. (3.16) and (3.17). The integration is carried out along the
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critical geodesic of specific energy E∞ on a background with spin a/M = 1 − ε2, starting

at the unstable circular orbit of radius Rε = Rε(ε, E∞) and ending at infinity.

Inspecting Eq. (3.44), it may seem peculiar that overspinning may be averted even for

some positive values of δLcons
∞ : A positive δLcons

∞ would seem to mean that the GSF increases

the critical impact parameter, allowing in particles that would otherwise be scattered away.

However, we must recall that the shift δLcons
∞ is defined not with respect to the physical,

ADM angular momentum, but with respect to the quantity L̂ = ûφ, which (while convenient

to work with in practice) does not have a clear invariant meaning beyond the geodesic

approximation. To rewrite (3.44) in a more physically insightful way, let us, then, recast it

in terms of ADM quantities, as follows.

First, let us introduce the specific quantities Ep
ADM and Lp

ADM defined through

µEp
ADM := EADM −M,

µLp
ADM := LADM −Ma, (3.46)

which may be thought of as the particle’s contributions to the total ADM energy and

angular momentum of the system. Then, denote by δLp
ADM(Ep

ADM) the shift, due to the

conservative GSF, in the critical value of Lp
ADM for a fixed Ep

ADM. A short calculation,

based on Eqs. (3.11) and (3.12), gives

δLp
ADM(Ep

ADM) = δLcons
∞ (E∞)− η(E2

∞ + 1) +O(η2). (3.47)

Thus, in terms of δL̆p
ADM := η−1 δLp

ADM, the censorship condition (3.44) becomes

δL̆p
ADM ≤

1
2(1− E2

∞), (3.48)

where on the right-hand side E∞ may be replaced with Ep
ADM at relevant order.

The alternative form (3.48) is now more intuitive: For unbound orbits (E∞ ≥ 1),

the GSF averts overspinning if it shifts the critical value of the (ADM-related) angular

momentum by a sufficiently negative amount, which depends only on E∞. In the marginal

case of E∞ = 1 (where overspinning is marginally prevented already in the geodesic case),

the shift δL̆p
ADM need only be nonpositive. We are not aware of any a priori argument to

suggest that δL̆p
ADM must necessarily be nonpositive for all E∞ ≥ 1.

Let us make a few more points about the condition (3.44). First, in its form (3.48) it is

manifestly gauge invariant (within a class of suitable asymptotically flat gauges) despite the
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gauge dependence of the local GSF featuring in δL̆cons
∞ [Eq. (3.45)]. The condition involves

only quantities that are defined and evaluated at infinite separation, namely the specific

energy E∞ (or Ep
ADM) and angular-momentum shift δL̆p

ADM, each having a clear gauge-

invariant physical meaning. The evident invariance of our final condition is reassuring.

Second, as already mentioned, the condition that (3.44) is satisfied for all E∞ ≥ 1 is both

sufficient and necessary for overspinning to be avoided within the scenario considered here.

It is a sufficient condition only in the sense that it guarantees no overspinning occurs for

sufficiently small mass-ratio η; since we work in the first-order self-force approximation, we

cannot make the statement any stronger. Equation (3.44) describes a necessary condition

in the sense that its violation for any E∞ would mean there exist (small) η values for which

overspinning occurs.

Finally, the condition (3.44) involves the single parameter E∞, and the task of testing

whether it is satisfied amounts to evaluating a single function of E∞, namely δL̆cons
∞ (E∞).

The perturbative parameters themselves, η and ε, do not feature in the final condition.

This is expected, given our first-order perturbative treatment and the fact that GSF effects

(including ADM terms) appear in the overspinning condition already at leading order. It

is precisely because of this “order mixing” that one cannot neglect the GSF in considering

the overspinning problem, and why there is no sense in which the geodesic limit may be

said to provide a useful approximation here.

3.8 Censorship condition for fine-tuned orbits

It is not a priori clear whether fine-tuning favours the overspinning scenario or disfavours it:

The answer depends on the details of the radiative evolution along the attractor. Indeed,

for fine-tuned orbits the radiative terms E+ and W+
(qc) feature already at leading order in

Eq. (3.39), and cannot be neglected. We may again write Eq. (3.39) in the form (3.40),

with F and H replaced with, respectively,

F̄ = −
√

6E2
∞ − 2− W̆+

(qc) ,

H̄ = 1 + E2
∞ + (E∞ − Ĕ+)2 − δL̆cons

∞ . (3.49)

Here we have introduced the rescaled quantities

Ĕ± := η−1E±, W̆±(qc) := (εη)−1W±(qc), (3.50)
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which should have finite (nonzero) limits ε, η → 0 for fine-tuned orbits [that W±(qc) =

O(ε)O(η) will be discussed in the next two paragraphs].

It will prove beneficial to reexpress F̄ and H̄ in terms of the absorption-related quantities

Ĕ− and W̆−(qc), in place of Ĕ+ and W̆+
(qc). This is easily done for H̄, noting E∞−Ĕ+ = Ef+Ĕ−

at the relevant, leading order. As for F̄ , we start by writing W+
(qc) =W(qc)−W−(qc), where,

under the assumption of adiabaticity, the total W(qc) may be expressed as an integral over

the local GSF8:

W(qc) =
∫ Ef

E∞

(
2F diss

t + F diss
φ

)
dE/Ė. (3.51)

Here we have used Eq. (3.17), changing the integration variable from τ to specific energy E,

and assumed a balance relation as in Eq. (3.27). We have also neglected the subdominant

[O(η2)] amount of radiated energy during the approach, replacing the initial energy of the

quasi-circular motion with E∞. Then, following similar calculations to the ones that lead

to Eq. (3.21) and using uαF diss
α = 0 one obtains

F diss
t + F diss

φ /2 = −(ur/ut)F diss
r − 3E√

6E2 − 2
εF diss

t , (3.52)

where subdominant terms in ε have been omitted. The contribution from the term ∝ F diss
r

to the integral in (3.51) can be shown to be of only O(ε)O(η2) [see the paragraph containing

Eq. (3.22)], and hence entirely negligible. The contribution from the term ∝ F diss
t can be

evaluated explicitly upon replacing Ft = µĖ, giving

W(qc) = −ηε
(√

6E2
∞ − 2−

√
6E2

f − 2
)
. (3.53)

Thus, Eqs. (3.49) are obtained in their alternative form

F̄ = −
√

6E2
f − 2 + W̆−(qc) ,

H̄ = 1 + E2
∞ + (Ef + Ĕ−)2 − δL̆cons

∞ . (3.54)

We note that Eq. (3.53) establishes the scaling W(qc) = O(ε)O(η) for fine-tuned orbits.

The first-law argument used in the previous section (see the discussion around Eq. (3.29))

can also be used to show W−(qc) = O(ε)O(η). This then establishes the scaling W+
(qc) =

O(ε)O(η) assumed above.

In both Eqs. (3.49) and (3.54), the radiative quantities Ĕ± and W̆±(qc) should be thought

8In this section we set M = 1 once again, for convenience.
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of as functions of E∞ and Ef only. While Ĕ+ is necessarily positive, the absorbed energy

Ĕ− may be either positive, or—due to superradiance—negative, depending on E∞ and Ef .

We will elaborate on this point in Sec. 4.4.1. The quantity W̆+
(qc), on the other hand, is

easily shown to be negative definite. In fact, Eqs. (3.59) and (3.64), given below, imply

− W̆+
(qc) > Ĕ

+ > 0. (3.55)

Note this means that F̄ in Eq. (3.49) may change sign, depending on E∞, Ef .

To proceed, we once again write the condition (3.40) (for the barred quantities) in

the form Φ̄ := α2 + αF̄ + H̄ ≥ 0, with α = ε/η. Here, however, the sign of F̄ is not

known a priori, which somewhat complicates matters. For F̄ < 0, Φ̄ has its minimum at

Φ̄(α = −F̄ /2) = H̄ − F̄ 2/4, so the condition becomes H̄ ≥ F̄ 2/4 as before. However, for

F̄ ≥ 0 the condition Φ̄ ≥ 0 is satisfied trivially for all H̄ ≥ 0, and violated trivially for

all H̄ < 0 (by choosing a sufficiently small α). In that case, therefore, a necessary and

sufficient condition for Φ̄ ≥ 0 to hold for any η, ε is H̄ ≥ 0. In summary, we obtain

H̄ ≥ (min{F̄ /2, 0})2 (3.56)

as a necessary and sufficient condition for overspinning to be averted for all η, ε. In this

condition, F̄ and H̄ are both functions of the two independent parameters E∞ and Ef . To

rule out overspinning we must require that (3.56) is satisfied for all E∞ > Ef (> Eisco).

Evaluation of the condition (3.56) requires knowledge of the radiative quantities Ĕ±

and W̆±(qc) (in addition to δL̆cons
∞ ). To conclude our discussion, we now give convenient

expressions for these two quantities in terms of a single function of one variable, namely

the ratio

R(E) := Ė
−(E)
Ė+(E)

, (3.57)

where Ė+/−(E) are the outgoing/incoming fluxes of energy in gravitational waves sourced

by a particle on a circular geodesic, evaluated in the ε→ 0 limit9 at a fixed specific energy

E. [In deviation from our notation elsewhere, here and in the next two paragraphs an

overdot denotes differentiation with respect to (any suitable) coordinate time.] We note

R < 0 for E < 2√
3 , the superradiance regime in the extremal limit (see Sec. 4.4.1).

9Note that all the numerical results presented in this work are obtained for small, but non-zero values
of ε. Thus, whenever we mention taking the ε → 0 limit, we only wish to remind that our analysis keeps
track of the leading order terms in ε.
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First, we use the specific energy E as a parameter along the global attractor, to write

Ĕ+ =
∫ Ef

E∞

Ė+

ηĖ
dE = −

∫ Ef

E∞

Ė+

Ė+ + Ė−
dE, (3.58)

where we assumed the balance relation ηĖ = −(Ė+ + Ė−) applies during the adiabatic

evolution along the attractor. Thus,

Ĕ+(E∞, Ef ) = −
∫ Ef

E∞

dE

1 +R(E) , (3.59)

and, similarly,

Ĕ−(E∞, Ef ) = −
∫ Ef

E∞

R(E)
1 +R(E) dE, (3.60)

which should be evaluated in the extremal limit, ε → 0. Note Ė± → 0 in the extremal

limit [62], while the ratio R admits a finite, nonzero limit, as we will see in Sec. 4.5. Thus,

by writing Ĕ± as in Eqs. (3.59) and (3.60) we have made it possible for the limit ε→ 0 to

be taken before the integration, which is advantageous in practice.

As for W±(qc), we start by writing

Ẇ±(qc) := 2Ė± − L̇± = −εb(E)Ė±, (3.61)

where L̇± are the angular-momentum fluxes corresponding to Ė±, and

b(E) := 6E√
6E2 − 2

. (3.62)

To derive the second equality in (3.61), which is valid to leading order in ε, we have used

the small-ε expansion of the orbital angular velocity at fixed E,

Ω = 1
2 −

1
4b(E)ε+O(ε2), (3.63)

together with the general relation Ė± = ΩL̇± applicable to the radiation from any circular

orbit [79]. Thus, proceeding as with Ĕ+, we obtain

W̆+
(qc) = lim

ε→0

∫ Ef

E∞

Ẇ+

εηĖ
dE =

∫ Ef

E∞

b(E)
1 +R(E) dE, (3.64)

and, similarly,

W̆−(qc) =
∫ Ef

E∞

b(E)R(E)
1 +R(E) dE. (3.65)
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Equations (3.59), (3.60), (3.64) and (3.65) express Ĕ± and W̆±(qc) in terms of the single

function R(E), which will be determined numerically in Sec. 4.5.

In the next section, we explore an alternative approach to the determination of δL̆cons
∞ ,

which offers a practical advantage.

3.9 Reformulation in terms of redshift variable

Our final overspinning conditions (3.44) and (3.56) feature the critical angular-momentum

shift δLcons
∞ , whose evaluation, through equation (3.45), requires an integration of the GSF

from infinity along critical geodesics. As we discuss in the next section, this step is the main

stumbling block when it comes to evaluating the conditions using currently available GSF

codes. The integration from infinity comes about, essentially, because of the need to relate

the local properties Ê and L̂ of the particle just before it falls into the black hole, to ADM

properties of spacetime defined at infinity. This would have been unnecessary if we had

available explicit formulas for EADM and LADM (or for the corresponding Bondi quantities

EADM − E+ and LADM − L+), correct through O(η2), for the configuration of a particle

in an unstable circular orbit around a Kerr black hole. Furthermore, given such formulas

we would have been able to relax the requirement that the particle is sent in from infinity,

and explore the possibility of overspinning with “bound” orbits. (We recall our result that

bound geodesics cannot overspin; however, in principle, there remains the possibility that

GSF effects change this situation.)

By good fortune, suitable formulas have been proposed very recently, in Ref. [36]. The

expressions, to be presented below, were obtained using (and in agreement between) two

independent frameworks. One is the Hamiltonian approach of Isoyama and collabora-

tors [80], in which the conservative portion of the orbital dynamics is described (through

first order in η beyond the geodesic approximation) in terms of geodesic motion in a cer-

tain effective smooth spacetime. The other is based on the recently proposed first law

of binary black-hole mechanics (itself a limiting case of the generalized law established

in [11]), which relates globally conserved quantities of a helically-symmetric binary system

of post-Newtonian particles to the redshift of the particles. Neither framework is a priori

guaranteed to correctly describe the strong-field dynamics in the black-hole–particle system

relevant to us, but some evidence suggests that they might, and indeed we will provide a

further confirmation of this expectation in Sec. 5.5.1.

The said results, as they are stated in [36], apply to a particle in a circular equatorial
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orbit (stable or unstable) around a Kerr black hole, ignoring the dissipative piece of the

gravitational interaction (or, more precisely, time-symmetrizing the gravitational pertur-

bation, so that spacetime admits a global helical symmetry). They express the Bondi10

energy and angular momentum of that configuration, through O(η2), in terms of Detweiler’s

redshift variable [70], which we first introduced in Subsec. 1.1.5,

ẑ := (ût)−1, (3.66)

where ût is the t component of the four-velocity on the circular orbit, and overhats, recall,

denote properties of the GSF-corrected orbit. The usefulness of such relations is in the fact

that a computation of ẑ requires only GSF information for circular orbits, and there is no

need to integrate from infinity. Such information is essentially accessible to existing GSF

codes.

Following [36], let us formally expand the redshift ẑ in powers of η, in the form

ẑ = z0(Ω) + ηz1(Ω) +O(η2), (3.67)

where Ω(= dφ/dt) is the circular orbit’s angular velocity,

z0 = (1− aΩ)1/2
[
1 + aΩ− 3(MΩ)2/3(1− aΩ)1/3

]1/2
(3.68)

is the geodesic limit of ẑ, and ηz1(Ω) is the O(η) GSF correction, defined for a fixed value

of Ω. According to Ref. [36], the Bondi energy and angular momentum of the circular-orbit

binary are given, through O(η2), by

Esym
B = M + µEp

B, Lsym
B = Ma+ µLp

B, (3.69)

where

Ep
B = z̃ − Ω dz̃

dΩ , Lp
B = − dz̃

dΩ , (3.70)

with

z̃(Ω) = z0(Ω) + 1
2ηz1(Ω) +O(η2). (3.71)

The label ‘sym’ is to remind us that these Bondi properties are defined in a time-symmetrized
10First-law literature [12, 81, 82] usually alludes to ADM properties, which are defined even in helical

symmetry within the PN context in which these works operate. In the context of black hole perturbation
theory, the first-law results should be interpreted as referring to Bondi properties. See also [83], where
first-law results are formulated directly in terms of Bondi quantities for a black-hole–particle system.
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(“half-retarded-plus-half-advanced”) spacetime. The function z1(Ω) explicitly determines

Esym
B and Lsym

B through O(η2).

We are now reaching the crux of our discussion. Consider a critical orbit, subject to

the conservative GSF alone (dissipation ignored), which asymptotes to a certain unstable

circular orbit at τ → ∞. Let Esym
B (u) and Lsym

B (u) be the Bondi energy and angular mo-

mentum of the corresponding time-symmetrized spacetime, with u a suitable retarded-time

coordinate. At u→∞, these quantities must approach the corresponding Bondi quantities

of the asymptotic circular-orbit configuration, as given in Eq. (3.69). Furthermore,

Esym
B (u→∞) = EADM, Lsym

B (u→∞) = LADM, (3.72)

where on the right-hand side we have the ADM properties of the physical (“retarded”)

critical-orbit spacetime. [That this must be the case follows from Esym
B (u→∞) = Esym

ADM−

F+ = Esym
ADM−F− = EADM, where F+ and F− are the total energies flowing, respectively,

outward at future null-infinity and inward at past null-infinity, in the time-symmetrized

setup where F+ = F−. In fact, in order to keep the small body on an eternal circular

orbit, the same amount of radiation emitted by the system (F+) must be injected back, in

the form of radiation coming from past null infinity (F−). A similar argument applies to

the angular momentum.] As a result, using the first law of binary black hole mechanics,

we can write EADM = M + µEp
ADM and LADM = M + µLp

ADM [as in Eqs. (3.46)], with

Ep
ADM = z̃ − Ω dz̃

dΩ , Lp
ADM = − dz̃

dΩ . (3.73)

These expressions relate the ADM properties of the physical critical-orbit configuration to

the redshift of the asymptotic circular orbit when dissipation is ignored.

The conservative GSF shift δLp
ADM(Ep

ADM) [recall Eq. (3.47)] may now be obtained

simply by considering the O(η) piece of Lp
ADM in Eq. (3.73), for a fixed Ep

ADM. Equations

(3.73) with (3.77) immediately give us the O(η) piece of Lp
ADM for a fixed angular velocity:

δ(Ω)Lp
ADM = −(η/2)dz1/dΩ, where we introduced the operator δ(X) to denote a linear

variation with respect to η at fixed X. To obtain the shift at fixed energy, δLp
ADM ≡
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δ(E)Lp
ADM, we write

δLp
ADM = δ(Ω)Lp

ADM + dLp
ADM
dΩ δ(E)Ω

= δ(Ω)Lp
ADM −

dLp
ADM

dEp
ADM

δ(Ω)Ep
ADM

= δ(Ω)Lp
ADM − Ω−1δ(Ω)Ep

ADM, (3.74)

where in the second line we used δ(E)Ω = −(dΩ/dEp
ADM)δ(Ω)Ep

ADM, and in the third line we

applied dLp
ADM/dE

p
ADM = Ω−1, which is valid for any circular geodesic (omitting subdomi-

nant terms in η). From Eqs. (3.73) and (3.77) we find δ(Ω)Ep
ADM = (η/2) [z1 − Ω(dz1/dΩ)],

and substituting this with the above result for δ(Ω)Lp
ADM, we arrive at the simple expression

δLp
ADM = − η

2Ω z1. (3.75)

Note that in the analysis leading to Eq. (3.75) we have not assumed anything about

the spin a of the central black hole, so the result should apply in general (and suggests an

interesting new interpretation of z1 in terms of a shift in the critical value of the angular

momentum). In the extremal case, Ω = 1/2 +O(ε), so at leading order in ε we obtain

δLp
ADM(E) = −ηZ1(E), (3.76)

where

Z1(E) := lim
ε→0

z1(Ω(E; ε), ε), (3.77)

with the limit taken at fixed energy E. Here, for clarity, we have made explicit the functional

dependence of z1 and Ω on ε, and have parametrized the circular orbits by their geodesic

energy E, noting that the difference between E and Ep
ADM is subdominant in Eq. (3.76).

Indeed, in practice, Z1(E) may be evaluated by considering a sequence of circular geodesics

of diminishing ε (and a fixed E).

Equation (3.76) may then be used with Eq. (3.47) to obtain the sought-for relation

δL̆cons
∞ (E) = E2 + 1− Z1(E), (3.78)

which may then be used in place of (3.45) in both conditions (3.44) and (3.56). The relation

(3.78) relieves us from the need to restrict attention to particles coming from infinity, which

is why we have used in it the argument E in place of E∞. The energy may now take any
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value E > Eisco(= 1/
√

3), and the conditions (3.44) and (3.56) may be evaluated for all

corresponding orbits.

We may also use Eq. (3.76) directly in conjunction with Eq. (3.48), to write the cen-

sorship condition (in the weakly fine-tuned case) in the remarkably simple form

Z1(E) ≥ 1
2(E2 − 1). (3.79)

Overspinning is averted if and only if this inequality holds for all E > Eisco. The evalua-

tion of the condition (3.79) requires only redshift information on unstable circular orbits,

evaluated at the extremal limit ε→ 0 with E held fixed.



Chapter 4

Evaluation of the overspinning

conditions

In the next section we evaluate the censorship condition (3.48), which ignores the possibility

of strong fine-tuning. The latter will be considered in Sec. 4.3. If the inequality can be

shown to hold for all E∞ > Eisco = 1√
3 , then overspinning is ruled out for all orbits (except,

possibly, strongly fine-tuned ones).

The evaluation of (3.48) requires only the function δL̆p
ADM, and we shall use Eq. (3.76)

to calculate it. As will be shown, the evaluation of the redshift correction Z1(E) in Eq.

(3.77) becomes particularly simple in the limit ε → 0, to the effect that the essential part

of the calculation can be done analytically. The only numerical input we shall require is

a verification that a certain perturbative quantity has a finite limit ε → 0; the precise

numerical value of that limit will not be important to us. Below we first present the

analytical part of the calculation, and in subsection (4.2) we discuss the numerical input.

4.1 Weakly fine-tuned orbits: analytical considerations

Isoyama et al. [36] show that the first-order GSF correction to the redshift z can be obtained

via

Z1(E) = −z(0)HR where HR := 1
2h

R,sym
αβ ûαûβ. (4.1)

In the near-extremal limit,

z(0)(E; ε) = ε√
6E2 − 2

+O(ε2), (4.2)
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whence it follows that

δLp
ADM(E) = (6E2 − 2)−1/2 lim

ε→0

[
εHR(E; ε)

]
. (4.3)

Note that, for δLp
ADM(E) to be finite and generally nonzero (as expected) requires HR to

blow up like 1/ε for ε→ 0.

Our calculation ofHR(E; ε) will be based on the strategy and numerical codes developed

by A. Shah and M. Van de Meent in Refs. [84–86]. HR(E; ε) is expressed as a sum of two

contribution:

HR = HR
recons +HR

compl. (4.4)

The “reconstructed” part HR
recons is obtained numerically, starting from frequency-domain

solutions of Teukolsky equation with a circular-geodesic source and retarded boundary

conditions, following through a reconstruction of the multipole modes of the metric per-

turbation, and finally applying a suitable form of mode-sum scheme (see Subsec. 1.1.3) to

extract the R part of the perturbation. (A more detailed description will be given in the

next section.) In our case of a circular-orbit source, the double contraction of hRαβ with ûα

[recall Eq. (4.1)] automatically picks out the time-symmetric part of hRαβ, as desired.

The second contribution to HR in Eq. (4.4) is the “completion” piece HR
compl, which

(by definition) arises from any part of the metric perturbation that is not captured by

the reconstruction procedure. In our problem, this piece corresponds simply to mass and

angular-momentum perturbations of the background Kerr geometry (plus pure-gauge per-

turbations) [84,87]. In the vacuum region r > R outside the particle’s orbit, these stationary

perturbations can be written analytically, in a “Boyer-Lindquist” gauge, as [84]

h
(δM)
αβ = µE

∂gαβ
∂M

, h
(δJ)
αβ = µL

∂gαβ
∂J

, (4.5)

where gαβ = gαβ(xµ;M,J) is the Kerr background metric, ∂M is taken with fixed J :=

Ma, ∂J is taken with fixed M , and both derivatives are taken with fixed Boyer-Lindquist

coordinates xµ. Our particular regularization procedure (see below) does not require the

completion piece for r < R. The quantity HR
compl is given by

HR
compl = 1

2 û
αûβ

(
h

(δM)
αβ + h

(δJ)
αβ

)
, (4.6)

where the perturbations are evaluated in the sided limit r → R+ (with θ = π/2).
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Let us denote by δLcons
c,recons and δLcons

c,compl the contributions to δL
p
ADM(E) fromHR

recons and

HR
compl, respectively, and proceed to obtain δLcons

c,compl analytically. First use Eq. (4.6) with

Eq. (4.5) and with ûα = gαβûβ, where ûβ = {−E, 0, 0, L} (in Boyer-Lindquist coordinates).

This gives HR
compl in terms of the circular-orbit radius R, its energy E and its angular

momentum L. Then substitute the fixed-E expansions (2.13) for R, and L̃c(E) from Eq.

(2.15) for L, along with a = 1− ε2. Finally, expand the result in ε at fixed E. The outcome

is

HR
compl = η

2ε(1− E2)(6E2 − 2)1/2 +O(ε0). (4.7)

Notice this is an O(ε−1) quantity, so, recalling Eq. (4.3), it gives a finite contribution to

δL̆cons
c . We find

δL̆cons
c,compl = 1

2(1− E2), (4.8)

where δL̆cons
c,compl := η−1δLcons

c,compl.

Remarkably, it follows that the completion contribution, on its own, precisely saturates

the censorship condition (3.79). In the next section we will demonstrate numerically that

the reconstructed part, HR
recons(E; ε), has a finite (non-divergent) fixed-E limit ε→ 0. This

will imply

δLcons
c,recons = 0, (4.9)

and therefore

δL̆p
ADM(E) = 1

2(1− E2). (4.10)

The censorship condition (3.79) is precisely saturated. This result and its implications will

be discussed in Sec. 6.

4.2 Numerical input

To validate Eq. (4.9), we will demonstrate numerically that the limit

lim
ε→0

HR
recons(E; ε) =: ĤR(E) (4.11)

(taken with fixed E) exists and yields a finite value. It may be possible to establish this

mathematically through analysis of the reconstructed solutions in the near-extremal near-

horizon approximations (perhaps modelled upon the method of Ref. [88]). Here we content

ourselves with a numerical calculation, which, we find, already illustrates the finiteness of
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ĤR(E) rather convincingly.

Two independent numerical calculations have been performed in our group, using two

different (albeit related) methods. One of the methods performs best at ε values that are

not too small, and the other does best for ε values that are not too large. The combination

of the two methods thus allowed access to a range of ε values wide enough to enable taking

the limit ε→ 0 accurately. The agreement we found between the two sets of results in an

overlapping domain of intermediate ε values provides reassurance.

Both methods tackle the problem of finding solutions to the inhomogeneous Teukolsky

equations, which govern the evolution of generic spin-s fields ψ on a Kerr background:

[(
r2 + a2)2

∆ − a2 sin2 θ

]
∂2ψ

∂t2
+ 4M ar

∆
∂2ψ

∂t∂φ
+
[
a2

∆ −
1

sin2 θ

]
∂2ψ

∂φ2 +

−∆−s ∂
∂r

(
∆s+1∂ψ

∂r

)
− 1

sin θ
∂

∂θ

(
sin θ∂ψ

∂θ

)
− 2s

[
a(r −M)

∆ + i cos θ
sin2 θ

]
∂ψ

∂φ
+

− 2s
[
M(r2 − a2)

∆ − r − ia cos θ
]
∂ψ

∂t
+
(
s2 cot2 θ − s

)
ψ = 4πΣTs, (4.12)

where ∆ was defined below Eq. (2.4), Σ := r2 + a2 cos2 θ and Ts are some source terms,

whose explicit expressions for gravitational perturbations can be found, for instance, in [89].

Teukolsky showed that, remarkably, the above equations can be separated by means of

the following decomposition

ψ =
∑
`m

sR`m(r) sS`m(θ)ei(mφ−ωt). (4.13)

If one similarly decomposes the source terms Ts (and denotes by sT`m(r) the analogue of

sR`m(r) in such a decomposition), then Eq.(4.12) can be rewritten as

∆−s d
dr

(
∆s+1d sR`m

dr

)
+
[
K2 − 2is(r −M)K

∆ + 4 i sωr − λ
]
sR`m = sT`m, (4.14)

1
sin θ

d

dθ

(
sin θdS

dθ

)
+
[
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ+

−2ms cos θ
sin2 θ

− s2 cot2 θ + E − s2
]
sS`m = 0, (4.15)

where K := (r2 + a2)ω − am and λ := E − s(s+ 1) + a2ω2 − 2 amω. The solutions to the

angular equation are the so-called spin-weighted spheroidal harmonics. We are interested

here in the spin s = ±2 solutions to Eq. (4.14), which correspond to the quantities ψ0

(s = 2) and ρ−4ψ4 (s = −2), where ρ := −(r − ia cos θ)−1, and ψ0,ψ4 are the Weyl scalars
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defined below

ψ0 : = Cαβγδl
αmβlγmδ, (4.16)

ψ4 : = Cαβγδn
αm̄βnγm̄δ. (4.17)

In the above definitions, Cαβγδ is the Weyl tensor and l,m belong to a complex null tetrad

wµ = {lµ, nµ,mµ, m̄µ}, where lµ, nµ are the principal null directions of the Kerr spacetime,

and lµnµ = −1,mµm̄µ = 1 [90].

Provided that either ψ0 or ψ4 are known, it is possible to reconstruct the metric pertur-

bation using an intermediate function called the Hertz potential, which is a homogeneous

solution to the Teukolsky radial equation, related to ψ0 and ρ−4ψ4 by certain fourth-order

differential operators. This procedure is sometimes referred to as “CKK metric reconstruc-

tion”, as it was proposed independently by Chrzanowski and by Cohen and Kegeles [91,92].

A review of the CKK reconstruction in Kerr, whose details will not be important for our

analysis, can be found in [93].

We will now illustrate the differences between the two numerical frameworks we took

advantage of to solve Eq. (4.14) for a point-like source on a circular orbit in Kerr spacetime.

The first calculation is based on method and code developed by A. Shah in Refs. [84, 94],

with input from Ref. [85]. In this method, one first numerically integrates in the frequency

domain an alternative formulation of the spin-2 radial Teukolsky equation, called the Sasaki-

Nakamura equation [95], with “retarded” boundary conditions at infinity and on the event

horizon, to obtain the modes of the Weyl scalar ψ0. An appropriate Hertz potential is then

derived, from which the modes of the metric perturbation are reconstructed by applying

a certain differential operator [96]. We use a version of the reconstruction procedure that

yields the metric perturbation in a regular outgoing radiation gauge1 anywhere in the

vacuum region r > R, where R is the Boyer-Lindquist radius of the circular orbit. Finally,

a mode-sum regularization procedure is applied to obtain HR
recons.

The second calculation was based on a code developed by M. Van de Meent in [86], which

follows an approach by Fujita [97], itself based on the semi-analytical formalism of Mano,

Suzuki, and Takasugi (MST) [98,99]. In this approach, the Weyl scalar ψ4 is obtained semi-

analytically rather than numerically. In the MST method, the homogeneous solutions to

the radial Teukolsky equation are expressed as a series of hypergeometric functions, which

are regular at the horizon, but divergent at spatial infinity. This series is then matched to
1An outgoing radiation gauge is defined by the conditions nµhµν = gµνhµν = 0.
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an expansion of the same solutions in terms of Coulomb wave functions, which are instead

well-behaved at the horizon, but not at spatial infinity. The expansion coefficients of the

two series obey a certain continued-fraction equation, which is solved numerically. The

metric reconstruction and mode-sum procedures are essentially as in the first method, but

they are implemented using an independent code.

In the MST-based calculation, working near extremality is computationally advanta-

geous. This is due to the improved convergence properties of the MST formalism for

circular orbits with a ∼ 1 and Ω ∼ 1/2, highlighted in [86]. In this domain, the series

of special functions featuring in MST’s solutions for ψ4 converges faster. Furthermore,

the aforementioned continued-fraction equation is both faster convergent and more easily

solvable (using the analytically-known extremal solution as an initial guess). As a result,

the method is particularly efficient for studying the ε → 0 limit. For our purpose, it was

sufficient to apply it in the range 10−8 ≤ ε ≤ 10−4. Above ε ∼ 10−4, the analytically-known

extremal solution no longer provides an accurate enough initial guess to guarantee finding

the solution of the continued-fraction equation for all frequency modes in the spectrum,

making our implementation of the MST formalism unreliable.

The calculation of ĤR(E) proceeded as follows. We considered a dense sample of E

values in the range Eisco < E < 2. For each value of E in the sample we obtained a

dataset HR
recons(E, ε), where ε is sampled (roughly) uniformly in log ε between ε = 10−1

and ε = 10−8. We switched from our fully numerical method to our MST-based method

at around ε = 10−4. ĤR(E) was then obtained via extrapolation of each of the fixed-E

datasets to ε = 0.

For each pair {E, ε} in our sample, the first 70 multipoles (l-modes) of the metric

perturbation has been computed, for use as input in the mode-sum formula. The remaining

large-l tail of modes was approximated by fitting an inverse-power-law model, as detailed

in [84]. At high values of E, the l-mode distribution becomes skewed towards larger l

values, due to what may be interpreted as a beaming effect. A similar behavior near the

light-ring of a Schwarzschild black hole was discussed by Akcay et al. [41], who pointed out

that the implementation of the mode-sum technique can become problematic in that case,

because the standard inverse-power-law tail may fail to manifest itself until l values larger

than one can feasibly calculate. This effect restricted our calculation here to E values that

are not too large—in practice, to E . 2. However, that should suffice for our purpose here,

which is simply to determine the ε-scaling of HR
recons in the limit ε → 0 at fixed E: it is

perfectly reasonable to assume that the ε-scaling at any fixed E > 2 would be the same as
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it is for lower E.

Figure 4.1 shows HR
recons(E; ε) as a function of ε for a few E values within our sample.

It is evident that HR
recons(E; ε) approaches a finite limit as ε → 0. Figure 4.2 displays the

extrapolated values ĤR as a function of E, using the numerical data provided by A. Shah

and M. Van de Meent. We remind that the details of the function ĤR(E) are unimportant

to us; we needed only establish here that ĤR is finite for any finite E.

Figure 4.1: HR
recons as a function of ε, for a sample of E values. Data points for ε ≥ 10−4

(diamonds) are from the fully numerical computation, while points for ε ≤ 10−4 (squares)
are from the semi-analytical, MST-based method (there is an overlapping data point at
ε = 10−4). Error bars are in all cases too small to be resolved in this figure. Curves (dotted
line) are quartic polynomial fits. At each fixed E, HR

recons(E; ε) appears to approach a
constant value in the extremal limit ε→ 0.

4.3 Effect of strong fine-tuning

We have shown that, within our first-order GSF approximation, any weakly fine-tuned

capture produces a precisely extremal geometry. Can strong fine-tuning push the system

beyond extremality? To answer that question we need to evaluate the condition (3.56).

Any choice of {Ei, Ef} (with Eisco ≤ Ef < Ei) violating that condition would imply that

overspinning is possible via strong fine-tuning. If, on the other hand, we can show that

(3.56) applies for any {Ei, Ef}, then censorship holds even allowing for strong fine-tuning.

The evaluation of (3.56) requires the angular-momentum shift δL̆cons
∞ (Ei) and the flux
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Figure 4.2: The function ĤR(E), obtained by extrapolating our numerical data for HR
recons

to ε → 0 at each fixed E. The actual value of ĤR(E) is not needed in our analysis, only
the fact that it is finite for each finite E.

ratio R(E). For the former we use Eq. (3.47) and our result (4.10). For the latter we will

perform a numerical calculation, to be presented in section 4.5 below. However, much of

what we need to know about R can be deduced from simple analytic considerations, to be

presented first. We will show that it is sufficient to require that R is bounded from below

by −1/3 over the range Eisco ≤ E < 2√
3 in order to guarantee that the censorship condition

(3.56) always holds. Our actual calculation will later show that R lies very comfortably

above that bound.

4.4 Strongly fine-tuned orbits: analytical considerations

4.4.1 Superradiant domain

First, we consider the sign of R(E). We recall that this function, defined for circular

equatorial geodesics, is the ratio of energy flux through the horizon to the energy flux at

infinity. A gravitational-wave mode of the form ∼ e−iωteimφ is known to be superradiant

if and only if 0 < ω < mΩH , where ΩH = a/(2Mr+) is the horizon’s angular velocity, with

r+ = M + (M2 − a2)1/2. For circular equatorial orbits the gravitational-wave spectrum is

simple: ω = mΩ, where Ω is the orbital angular velocity. Thus, all modes of the radiation
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are superradiant for Ω < ΩH , giving R < 0 in that case. For Ω > ΩH all modes are instead

non-superradiant, giving R > 0.

Let us now specialize to a near-extremal geometry, and reexpress the above in terms

of a condition on the specific energy E of the circular geodesic. For ε � 1, MΩH =
1
2 −

1√
2ε + O(ε2). Combining this with Eq. (3.63) translates the superradiance condition

Ω < ΩH to E(6E2 − 2)−1/2 >
√

2/3 (at leading order in ε), leading to

E <
2√
3

=: Esr (4.18)

as the superradiant domain in the extremal limit. Thus

R < 0 for Eisco ≤ E < Esr, (4.19)

R > 0 for E > Esr. (4.20)

This will be confirmed numerically in section 4.5.

4.4.2 Sufficient lower bound for R(E)

We now show that the censorship condition (3.56) is satisfied for all Ei > Ef ≥ 1√
3 if R(E)

is bounded from below by −1/3. The condition involves F̄ and H̄, given in Eqs. (3.49),

where we now replace δLcons
∞ (Ei) by δL̆pADM(Ei) (using Eq. (3.47)) and take advantage of

Eq. (4.10). We do not know the sign of F̄ (for given Ei, Ef ) a priori, so we proceed by

considering the two options F̄ ≥ 0 and F̄ < 0 in turn.

Case F̄ ≥ 0:— The censorship condition (3.56) becomes

H̄ = −1
2(1− E2

i ) + (Ei − Ĕ+
(qc))

2 ≥ 0. (4.21)

This is trivially satisfied for Ei ≥ 1, so it remains to consider Ei < 1, in which case the

condition becomes

Ĕ+
(qc) ≤ Ei −

√
(1− E2

i )/2 =: ν1(Ei). (4.22)

Recalling (3.59), we may bound Ĕ+
(qc) from above using

Ĕ+
(qc) ≤

∫ Ei

1√
3

dE

1 +R(E) ≤
Ei − 1√

3
1 +Rm

=: ν2(Ei), (4.23)
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where in the first inequality we used the positivity of the integrand together with Ef ≥ 1√
3 ,

and in the second inequality we assumed R is bounded from below by some number Rm(>

−1). Since ν1 = ν2(= 0) at Ei = 1√
3 , establishing the inequality in (4.22) requires only

showing that ν ′1(Ei) ≥ ν ′2(Ei) = (1 +Rm)−1 for all 1√
3 < Ei < 1. But the minimal value of

ν ′1 over this domain is 3/2, so the condition becomes (1 +Rm)−1 ≤ 3
2 , or Rm ≥ −

1
3 . We

have thereby shown that the censorship condition (4.21) holds for any Ei > Ef ≥ 1√
3 with

F̄ (Ei, Ef ) ≥ 0, under the sole assumption

R(E) ≥ −1
3 . (4.24)

Case F̄ < 0:— The censorship condition (3.56) becomes H̄ ≥ F̄ 2/4, or, explicitly,

0 ≤ −1
4W̆

+
(qc)

(
W̆+

(qc) − 2φ(Ei)
)

+ Ĕ+
(qc)

(
Ĕ+

(qc) − 2Ei
)

=: ∆(Ei, Ef ), (4.25)

where φ(Ei) = −(6E2
i − 2)1/2. Since W̆+

(qc) = 0 = Ĕ+
(qc) for Ei = Ef , we have ∆(E,E) = 0

for all E ≥ 1√
3 . Thus, to establish ∆ ≥ 0 it suffices to show ∂∆(Ei, Ef )/∂Ei ≥ 0 for all

Ei ≥ Ef ≥ 1√
3 .

With the aid of Eqs. (3.59) and (3.64), we find

[1 +R(Ei)]
∂∆
∂Ei

= Ei +R(Ei)

3EiW̆+
(qc)

φ(Ei)
− 2Ĕ+

(qc)

 . (4.26)

Consider the cases R(Ei) ≤ 0 and R(Ei) > 0 separately. For R(Ei) ≤ 0, we use W̆+
(qc) >

φ(Ei) (following from F̄ < 0) to bound the right-hand side of (4.26) from below by Ei[1 +

3R(Ei)] − 2R(Ei)Ĕ+
(qc). Since the last term here is non-negative, it is sufficient to require

R(Ei) ≥ −1
3 in order to guarantee ∂∆/∂Ei > 0 and hence ∆(Ei, Ef ) ≥ 0. If, instead,

R(Ei) > 0, one can first use −2Ĕ+
(qc) > W̆

+
(qc) [which follows from Eqs. (3.59) and (3.64),

noting b(E) > 2], then again W̆+
(qc) > φ(Ei), to bound the right-hand side of (4.26) from

below by Ei + R(Ei) [φ(Ei) + 3Ei]. This is non-negative for all Ei ≥ 1√
3 if and only if

R(Ei) ≥ −1
3 . Thus, the condition (4.24) always implies ∆ ≥ 0 and, in turn, that the

censorship condition (3.56) holds also for F̄ < 0.

We conclude that it is sufficient to show that the flux ratio R is bounded from below by

−1
3 in order to guarantee that the censorship condition (3.56) is always satisfied. In fact,

recalling (4.20), we see that it is sufficient to obtain such a bound for R on the restricted
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superradiant domain Eisco ≤ E < Esr. Our numerical calculation, to be presented below,

shows that R is comfortably bounded above the value of −1/3.

4.5 Numerical input

To compute the flux ratio R one can use the MST-based method described above, as imple-

mented in [86]. The gravitational-wave energy fluxes to infinity and down the horizon are

obtained directly from the semi-analytical solutions for ψ4, with no need to reconstruct the

metric perturbation. Thanks to the improved convergence properties (already mentioned

above) of the MST formalism at ε � 1 and Ω ∼ 1/2, one can obtain the energy fluxes to

essentially any accuracy we desire using arbitrary-precision computer algebra.

To determine R for a given E, the ratio between the flux down the horizon and the flux

to infinity has been calculated for a sequence of fixed-E orbits with ε values that decrease

to 10−8 in exponential steps. The value of R(E) was then found by extrapolating to ε = 0.

The results, which have been computed by M. Van de Meent, are presented in Fig. 4.3.

As expected, R(E) is negative only in the range Eisco ≤ E < Esr. The minimum of R(E)

appears to be attained at Eisco with a value of −0.13744 ± 3 · 10−5. This is comfortably

above the value of −1/3 required to assure that the censorship condition (3.56) is satisfied

and therefore conclude that strongly fine-tuned orbits cannot overspin.

4.5.1 Zoom-whirl orbits

We have implicitly excluded from our discussion orbits exhibiting a zoom-whirl type be-

haviour, i.e. orbits that reach the strong-field region, whirl, and then zoom out to some

finite radius (possibly repeating this multiple times before plunging). In fact, we assumed

that (near-)critical orbits would plunge immediately after their whirling phase. Let us now

consider instead a small mass coming from infinity that joins the global attractor, emits

enough radiation so that its specific energy drops to some value E < 1, and then zooms out

to a finite radius. Until the moment it leaves the attractor, such an orbit will be equivalent

to a strongly fine-tuned one (because the effects related to the transition and plunge are

negligible at first order) and thus our analysis indicates that, during this part of the evolu-

tion, the orbit cannot overspin. After leaving the attractor the orbit will be bound. Bound

orbits were not in position to overspin in the geodesic approximation and we assume here

that the self-force will not favour overspinning. Under this assumption it then appears safe

to conclude that zoom-whirl orbits are not in position to overspin.
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Figure 4.3: Numerical values for the flux ratio R, as a function of specific energy E, for
unstable circular equatorial geodesic orbits in the extremal Kerr limit. Each dot represents
a numerical measurement, with error bars being much smaller than the size of the dots.
Orbits with E < Esr = 2/

√
3 are superradiant, with R < 0. The inset expands the area

around the minimum at Eisco = 1/
√

3. We find a minimum value ofR = −0.13744±3·10−5,
safely above what is required for the censorship condition (3.56) to hold (dashed red line).



Chapter 5

Gravitational self-force along

MBMS orbits

In Sec. 3.9 we took advantage of some relations obtained using the Hamiltonian formalism

of [36] to conveniently reformulate our overspinning conditions. The underlying assumption

was that a spacetime containing a critical, unbound orbit has the same Bondi energy and

angular momentum of one containing the corresponding unstable circular orbits. We also

mentioned that it would be important to verify that the results obtained following this

method can be exactly reproduced by a full self-force calculation along unbound orbits.

A numerical computation of the gravitational self-force is now well established for ec-

centric orbits in Kerr spacetime [100], but is currently unavailable for unbound orbits. On

the other hand, a framework to numerically compute the self-force along generic orbits in

Schwarzschild was elaborated several years ago by Sago and Barack [101], and it is therefore

suited to perform a first self-force calculation along unbound orbits in the simpler environ-

ment provided by the Schwarzschild spacetime. A future development of the work present

here would be an extension of the calculation to Kerr spacetime, which would have direct

applications to the overspinning problem.

In this chapter we will focus, in particular, on marginally bound, marginally stable orbits

(MBMS), i.e. zero-binding-energy orbits that asymptote to the IBCO (which has specific

energy E = 1) either in the infinite future or in the infinite past. There are two MBMS

orbits that share the same conserved energy and angular momentum and are distinguished

by the initial conditions imposed on their motion: we will call “inbound” an orbit starting

from rest at past timelike infinity, and “outbound” its time-reversed counterpart.

Until recently, a direct computation of the GSF along unbound orbits had been hindered
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by the gauge-instability affecting the time-domain evolution of certain non-radiative modes

of the metric perturbation. However, we will show that, in the specific case of MBMS

orbits, it is possible to cure this problem following a strategy based on work by Dolan and

Barack [102] who dealt with a similar issue in the case of circular orbits.

In Sec. 5.1 we will give a formal definition of MBMS orbit, while in Sec. 5.2 we will

illustrate the effects of the conservative GSF on this type of motion. In particular, we

will present numerical results for two GSF effects that have never been examined in the

literature, namely the shift in the azimuthal frequency of the IBCO and the correction to

the critical value of the angular momentum at infinity of a MBMS orbit. We will show

how our computation can be used to establish a comparison with the first law of binary

black-hole mechanics.

An additional bonus of our calculation is that it also allows to calibrate the conserva-

tive sector of the so-called effective one-body theory (EOB)1, a semi-analytical framework

devised to model gravitational wave emission from compact binaries. EOB offers the ad-

vantage of interpolating across the domains of validity of several schemes: in practice, this

can be achieved by calibrating some free parameters of the model using information coming

from Numerical Relativity, the post-Newtonian approximation and the self-force scheme.

In Sec. 5.6, we will show how a computation of the GSF along a MBMS orbit can inform

EOB, and describe future applications of our framework.

5.1 Marginally bound geodesics in Schwarzschild spacetime

The motion of a test mass moving on the equatorial plane of a Schwarzschild background

with ADM mass M is governed by the following equations:

ut = E

f(r) , (5.1)

(ur)2 = E2 − V (r, L), (5.2)

uφ = L

r2 , (5.3)

uθ = 0, (5.4)

Ė = L̇ = 0, (5.5)

1The name stems from the fact that the two-body dynamics is replaced with that of a point particle
moving in a certain “effective” geometry. We will come back to this point in Sec. 5.6.



Marginally bound orbits in the self-force approximation 91

where we defined V (r, L) := f(r)
(
1 + L2

r2

)
, f(r) := (1 − 2M/r) and an overdot denotes

differentiation with respect to proper time. As in Sec. 2.1, E and L represent the conserved

specific energy and angular momentum of the test body. From Eq. (5.2) it follows that the

radial acceleration has the simple form

r̈ = −∂rV (r, L)
2 . (5.6)

A MBMS orbit is defined by the conditions that the particle is at rest when r → ∞

and that its motion approaches circularity either in the infinite past (for the outbound

MBMS orbit) or future (for the inbound MBMS orbit). Note that, given that uθ = 0 and

limr→∞ u
φ = 0, the first condition is equivalent to requiring that the particle has zero radial

velocity when r →∞. Hence, a MBMS orbit needs to satisfy the following constraints

ur(r →∞) = 0, (5.7)

ur(R) = 0, (5.8)

r̈(R) = 0, (5.9)

where R denotes the radius of the IBCO.

Making use of Eqs.(5.1)-(5.3), one obtains

E0 = 1, L0 = 4M, R0 = 4M, (5.10)

where a subscript “0” denotes that these parameters characterise a MBMS in the geodesic

approximation. Plugging the above results into Eqs. (5.1) and (5.3), it is straightforward

to compute the azimuthal frequency of the IBCO in the geodesic case:

Ω0 := dφ

dt

∣∣∣∣
r=4M

= 1
8M . (5.11)

5.2 Marginally bound orbits in the self-force approximation

We turn next to examining the behaviour of a MBMS orbit when the first-order gravita-

tional self-field exerted by the mass µ is taken into account. In what follows we will focus

on conservative effects (see Sec. 1.1.4) and for brevity we will denote the conservative GSF

simply by Fα. As we did in Ch. 3, we choose to normalise the four-velocity with respect

to the background metric, so that Eqs. (5.1)-(5.3) remain unchanged, and again we define
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Ê := −ût, L̂ := ûφ. Ê and L̂ evolve according to Eq. (3.4) and (5.6) becomes

r̈ = −∂rV (r, L)
2 + F̃ r, (5.12)

where we adopted the notation F̃α := Fα/µ.

We can now define a MBMS orbit in the perturbed spacetime along the lines of Sec.

5.1, by imposing the conditions (5.7)–(5.9), with the only difference that the circularity

conditions (5.7)–(5.8) will have to be evaluated at some perturbed radius R = R0 + δR.

Expanding the energy and angular momentum of the orbit around their background values

Ê = E0 + δE(r(τ))), L̂ = L0 + δL(r(τ)), and taking the first-order variation of (5.7)–(5.9)

with respect to the small mass µ, one obtains

2E0δE(∞)− ∂rV (∞, L0)δR− ∂LV (∞, L0)δL(∞) = 0, (5.13)

2E0δE(R0)− ∂rV (R0, L0)δR− ∂LV (R0, L0)δL(R0) = 0, (5.14)

∂2
rV (R0, L0)δR+ ∂L∂rV (R0, L0)δL(R0) = 2F̃ r(R0). (5.15)

The above equations imply

δE(∞) = 0, (5.16)

δE(R0) = Ω0δL(R0), (5.17)

δR+ δL(R0) = −32M2F̃ r(R0). (5.18)

Two extra constraints can be formulated by integrating Eqs. (3.4) along an inbound MBMS

orbit:

δE(R0)− δE(∞) = −
∫ R0

∞
F̃t
dr

ṙ
:= ∆E, (5.19)

δL(R0)− δL(∞) =
∫ R0

∞
F̃φ
dr

ṙ
:= ∆L. (5.20)

Eqs. (5.16)-(5.20) represent a closed system of equations for the unknown variables δE(R0),

δE(∞), δL(R0), δL(∞), δR. It is easy to see that Eqs. (5.16)–(5.20) imply

δR = −8M∆E − 32M2F̃ r(R0), (5.21)

δL(∞) = 8M∆E −∆L. (5.22)
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Plugging R = R0 + δR into Eq. (1.31) and expanding in η, the azimuthal frequency of a

circular orbit in the perturbed spacetime can be written as

Ω2 = Ω2
0

(
1− 3δR

4M − 8MF̃ r(4M)
)
, (5.23)

where the radial self-force can be evaluated, in our case, at the unperturbed radius 4M ,

as we are only keeping linear in η corrections. Using Eq. (5.21) the above result can be

rewritten in the convenient form

Ω2 = Ω2
0

(
1 + 6∆E + 16MF̃ r(4M)

)
. (5.24)

Eq. (5.24) tells us that the IBCO frequency shift can be directly computed from two

complementary pieces of information: one is the local radial self-force acting on the IBCO,

and the other is an integral of the conservative self-force along an inbound MBMS orbit.

Both quantities can be extracted from the self-force code we will describe later on.

Note that, as an inbound MBMS orbit is nothing but a time-reversed outbound MBMS

orbit, the time-symmetric part of the self-force acting on it can be easily constructed as

follows

F t/φcons(r) =

(
F
t/φ
ret,in(r)− F t/φret,out(r)

)
2 , (5.25)

where “ret” stands for retarded, “in” denotes the inbound orbit and “out” the outbound

one. In practice then, one needs to compute the self-force along two distinct orbits, and

construct F t/φcons(r) using the above formula. In the next section, we will describe the self-

force code that has been developed to obtain the numerical input required by Eqs. (5.22)

and (5.24).

5.3 A time-domain code for generic orbits in Schwarzschild

Our numerical scheme is largely based on work by Barack and Sago [101] but, while their

framework is specifically designed to deal with bound orbits, ours is capable of handling

generic orbits. The local self-force acting on the particle is computed in the time-domain,

after solving the linearised Einstein’s field equations in Lorenz gauge (1.1). The gauge

constraints

Zα := h̄ ;β
αβ = 0 (5.26)
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are guaranteed to be satisfied in the continuum limit, provided that they are satisfied

initially: in fact, for a Ricci-flat spacetime, taking the divergence of Eq. (1.1) gives �Zα =

0, which implies that, if the gauge conditions are initially satisfied, i.e. Zα = 0, then they

will be for the entire evolution. However, in the discrete case, round-off and truncation

errors will eventually give rise to gauge violations that will propagate over the numerical

grid. To tackle this problem, Barack and Lousto [103] added to Eq. (1.1) a constraint

damping term in the form

∇µ∇µh̄αβ + 2Rσ τ
α βh̄στ − κ(r) (tαZβ + tβZα) = −16πTαβ, (5.27)

where tµ is a future-directed vector field and κ = 2M/r2. It can be verified that the gauge

constraints evolve now according to a damped wave equation�Zα−κ∇β (tαZβ + tβZα) = 0;

thus, one can expect that any gauge violation produced by discretization errors will be

eventually suppressed.

In the Barack-Sago implementation, the retarded (trace-reversed) metric perturbation

is first decomposed onto a basis of tensor harmonics

h̄αβ = µ

r

∑
l,m

10∑
i=1

ailh̄
i,lm(t, r)Y i,lm

αβ (θ, φ); (5.28)

the numerical coefficients ail and the tensor harmonics Y i,lm
αβ were originally given in [101,

103] and are listed in Appendix C. The above decomposition has the effect of decoupling

the two-dimensional evolution of the h̄i,lm(t, r) from the angular part of the field equations.

By taking linear combinations of the metric components (5.28), the field equations can be

recast in the form

(
∂uv + U l(r)

)
h̄i,lm +Mi,l

j h̄
j,lm = Si,lm(rp(τ), φp(τ))δ(r − rp(τ)), (5.29)

U l(r) : = f

4r2

(
l(l + 1) + 2M

r

)
, (5.30)

where we introduced the null coordinates u := t − r∗ and v := t + r∗, with r∗ := r +

2M log(r/2M − 1). In the above equation, i = 1...10 and rp(τ), φp(τ) denote the particle’s

radial and angular positions in Schwarzschild coordinates. The quantitiesMi,l
j are certain

linear differential operators acting on the metric perturbation and the Si,lm are source

terms that depend on the particle’s position (both are explicitly defined in Appendix D).

The form of (5.29) is particularly convenient from a numerical point of view, as the
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first two terms on the left hand side also appear in the field equation for the spherical

harmonics modes of a scalar field: thus, for each index i, Eq. (5.29) corresponds to a scalar

wave equation with additional coupling terms. It follows that one can test the robustness

of a gravity code by switching off these couplings and comparing the results with scalar

codes, which are typically developed first, as a stepping stone towards the electro-magnetic

and gravitational problems.

The ten equations of (5.29) split into two subsets of coupled PDE’s: the first set includes

equations i = 1...7, and the second equations i = 8...10. The two groups are referred to as

the even and odd parity sectors respectively.2.

We chose to evolve the field equations (5.29) on a two-dimensional grid of null coor-

dinates. In this formulation, one does not need to impose boundary conditions, but only

initial ones. The initial data need to decay sufficiently fast both at the horizon and at infin-

ity (a convenient choice is that of setting h̄i,lm = 0); also, they do not need to be solutions

of the constraint equations, as any spurious radiation resulting from incorrect initial data

is going to be dissipated away at late time. As our numerical setup is largely based on the

one devised in [101], we will outline here only some essential features of the scheme, and

refer the reader to [101] for a more detailed description of its construction.

The first step is that of integrating equations (5.29) over each grid cell3, and then solving

them iteratively using a fourth-order convergent finite-difference scheme, which is derived

by approximating the field and its derivatives with some suitable Taylor expansions. To

exemplify how this works, let us suppose the field equations are being solved in the top cell

of Fig. 5.1, which will be denoted by C. Then, for a single l,m mode (in what follows we

will suppress these two indices, for convenience), an integration of Eq. (5.29) over C gives

h̄i(0) = h̄i(4) + h̄i(1)− h̄i(5) +
∫
C

(
−M̃i

j h̄
j + Siδ(r − rp(τ))

)
du dv, (5.31)

where the M̃i
j include now also the potential term U l(r) of Eq.(5.38) and the numbers in

brackets denote the grid point at which the field is evaluated. The sources are known exactly

and can thus be integrated numerically in a straightforward manner; the terms M̃i
j h̄
j can

be Taylor-expanded around the centre of C and then integrated semi-analytically, as we

show in Appendix E.
2In black hole perturbation theory, the two subsets are sometimes denoted as “polar” and “axial”, as

perturbations belonging to the first group are invariant under φ→ −φ, while those belonging to the second
are not, and are related to frame-dragging effects.

3This conveniently solves the problem of dealing directly with distributional sources. The strategy was
proposed for the first time by Lousto and Price [104].
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Figure 5.1: Illustration of a portion of the numerical domain of our time-domain code.
The green curvy line represents a timelike geodesic crossing the null grid. The numerical
scheme used to integrate the field equations over the top cell with vertices 0 − 1 − 4 − 5
takes input from all the grid points 1-14. Hypersurfaces of constant radius are represented
by vertical lines, whereas horizontal lines represent t = const slices.
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As the numerical variables h̄i are only C0, one has to deal with a non-smooth problem

whenever the particle’s worldline crosses the integration domain. In [101], this problem was

circumvented by defining two different Taylor expansions, one in the region r > rp(τ) and

one in the region r < rp(τ). In our implementation we chose to follow a slightly different

strategy. This relies on the fact that the jumps in the h̄i and their derivatives can be

computed analytically, by integrating the field equations along null rays in a neighbourhood

of the worldline. To exemplify how this can be done, let us rewrite Eq. (5.29) in the form

(
∂uv + U l(r)

)
h̄i +Mi,l

j h̄
j =

∫ ∞
−∞

2E
f2 S

iδ(u− up(τ))δ(v − vp(τ))dτ, (5.32)

where we used Eq. (5.1) and the definitions of u, v. First, we write the solution to the field

equations in the form h̄i = h̄i+θ(r − rp) + h̄i−θ(rp − r), where a subscript “+” denotes a

homogeneous solution valid in the domain r > rp(τ) and a subscript “−” denotes a solution

valid in the domain r < rp(τ). Direct substitution of this expression into (5.32) gives

h̄i+ = h̄i−, i.e. in Lorenz gauge the metric is continuous across the worldline. Now suppose

one wants to compute the junction conditions on the u−derivatives of the field variables, i.e.

the quantities [h̄i,u] := ∂u
(
h̄i+ − h̄i−

)
|r=rp . This can be achieved by integrating Eq.(5.32)

along a null ray u = up, over an interval (vp − ε, vp + ε), with ε� 1:

h̄i,u|
vp+ε
vp−ε +

∫ vp+ε

vp−ε

(
U l(r)h̄i +Mi,l

j h̄
j
)

=

=
∫ vp+ε

vp−ε
dv

∫ ∞
−∞

2E
f2 S

iδ(u− up(τ))δ(v − vp(τ))dτ, (5.33)

which, in the limit ε→ 0, gives

[h̄i,u] =
[
2E Si

f2u̇

]
p

, (5.34)

where we used the facts that all the functions linear in h̄i are bounded at the particle’s

location and the metric perturbation is continuous there.

Higher order junction conditions can be similarly computed and this information can be

directly incorporated in the finite-difference scheme, as suggested in [105]. In fact, suppose

that one wishes to approximate a non-smooth function, say g(u, v), in the neighbourhood

of a point (uc, vc), knowing that the grid is intersected at the point (ξu, ξv) by the worldline
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(see Fig. 5.1). Then, if the jumps

Ja b := lim
ε→0

(
∂au∂

b
vg(ξu, ξv + ε)− ∂au∂bvg(ξu, ξv − ε)

)

are known, it can be shown that g can be written as a piecewise series

g(u, v) =
N−1∑
a+b=0

(
∂a∂bg(uc, vc)

(u− uc)a(v − vc)b

a!b! +

+ (θ(v − u− ξv + ξu)− θ(vc − uc − ξv + ξu)) Jab
(u− ξu)a(v − ξv)b

a!b!

)
+O(hN ),

(5.35)

where N depends on the convergence rate that is being sought (in our case, N ≤ 5); in [101]

one has instead

g(u, v) =
N−1∑
a+b=0

(
∂a∂bg

±(uc, vc)
(u− uc)a(v − vc)b

a!b!

)
+O(hN ), (5.36)

where ∂a∂bg+(uc, vc) are expansion coefficients valid in the r > rp(τ) region while

∂a∂bg
−(uc, vc) are the ones to be used in the r < rp(τ) domain. In both cases, the function

g and its derivatives at the point (uc, vc) need to be determined by numerically solving a

suitable linear system of algebraic equations that follows from applying Eq. (5.35) to the

grid points 0−14. It is clear that the use of Eq. (5.35) halves the dimension of the system’s

unknown variables (N(N + 1)/2, compared to the N(N + 1) required by Eq. (5.36)), and

should thus be advantageous from a computational point of view.

Once the field has been computed along the orbit, the local gravitational self-force

can be obtained using Eq. (1.14) and subsequently regularised, following the procedure

described in Sec. 1.1.3.

5.4 Treatment of non-radiative modes

Typically, the correct initial conditions for Eq. (5.27) are not known, and the simplest choice

is to set the field to zero on the initial null surfaces, which will result in a burst of “junk”

radiation in the numerical evolution. This does not represent an issue for radiative modes

(` > 1) as in this case the spurious radiation is completely radiated away in the course
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Figure 5.2: Time-derivatives of the monopole, retarded field along an inbound MBMS
orbit. In the region rp ∼ 4 the physical metric perturbation should approach stationarity:
what we observe is instead a solution with constant time-derivatives, which suggests the
evolution here is dominated by a linear-in-time homogeneous gauge mode. Note that we
set M = 1 for convenience.

of the numerical evolution 4. Furthermore, all the regular, homogeneous gravitational

perturbations with ` > 1 are known to decay at late time like ∼ t−2`+3, and thus growing-

in-time behaviour are a priori excluded [106]. However, time-dependent instabilities are

known to affect the evolution of the modes ` = 0, 1 [35]: in our numerical implementation,

we find that the full retarded fields solving the ` = 0 and the ` = 1,m = 1 equations are

contaminated by spurious Lorenz-gauge solutions, which are globally regular and exhibit a

linear-in-time behaviour (see Fig. 5.2). This issue was extensively explored by Dolan and

Barack [102] in the context of the time-evolution of circular orbits 5. The authors proposed

two different approaches to tackle this problem. The first is a numerical filtering procedure:

as we will describe in Subsecs. 5.4.1 and 5.4.2, for the modes ` = 0 and ` = 1,m = 1 it is
4The issue is problematic only for highly relativistic objects, as junk radiation will closely trail the orbit

along its evolution.
5The numerical framework used by Dolan is quite different from ours: in fact, it relies on the so-called

“puncture scheme”, where instead of dealing with the full, retarded metric perturbation, one evolves a
regularised field, obtained by subtracting from the full field an analytical approximation of the singular field.
Also, while we solve the field equations in 1 + 1 dimensions, taking advantage of the spherical symmetry of
the Schwarzschild background, Dolan’s code makes use of a 2 + 1 scheme, where the field is decomposed in
azimuthal m-modes. However, the gauge instabilities we are describing in this section have been observed
in several independent self-force codes and appear to be generic features of time-domain evolutions.
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possible to find analytical, homogeneous solutions with a linearly growing in time behaviour,

on the basis of simple symmetry and regularity arguments. These solutions come with two

degrees of freedom that can be fixed using numerical data, provided one can disentangle

the physical metric perturbation from any spurious gauge excitation. The task is relatively

straightforward whenever the physical metric perturbation is known to be stationary: in

this case, any time dependence in the data is a clear signature of homogeneous gauge modes.

Along MBMS orbits, the physical perturbation is not, in general, stationary; however, it

closely approaches stationarity as the orbit asymptotes to the IBCO. Thus, the numerical

filtering technique described above can be applied to our case (and, in general, to any

critical unbound orbit).

A complementary approach is that of stabilising the evolution of the field equations, in

order to prevent ab initio the excitation of non-physical solutions. A first way to achieve

this is that of imposing correct initial conditions, when these are known analytically. We

verified that this method can be successfully applied to evolve the monopole equations for

an outbound MBMS orbit; however, analytical initial conditions are not known in general,

and thus this strategy has a limited domain of applicability. A second approach relies on

the use of a generalised Lorenz gauge, i.e. a gauge of the form ∇αh̄αβ = Hβ, where the

right hand side is generically different from zero, but such that Hβ → 0 when t � M .

This method was also tested in [102] with partial, but not complete success and we will not

investigate it further in what follows.

5.4.1 Monopole solution

The Lorenz-gauge monopole perturbation sourced by a circular orbit is known analyti-

cally [107] and we observed that it provides sufficiently accurate initial conditions for an

outbound MBMS: in fact, gauge instabilities are efficiently suppressed.

The same method cannot be applied to an inbound MBMS, which starts off at r �M ,

and so we proceeded to apply a numerical filtering technique that will be now described

in detail. The gauge metric perturbation contaminating our numerical evolution grows

linearly in time, but has a constant trace: We then seek Lorenz-gauge solutions of the form

hαβ = ξα;β + ξβ;α, (5.37)

where ξα = ∂αφ(t, r), with φ(t, r) featuring at most quadratic terms in t. It can be shown
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that this choice implies ∂αh = 0 6 and guarantees that the metric components grow at most

linearly in time, consistently with the behaviour of our numerical solution. Our ansatz for

φ(t, r) is the following:

φ(t, r) = a0t
2 +

∫
F (r)dr + tG(r), (5.38)

where F and G are two arbitrary functions, to be determined by imposing the Lorenz

gauge conditions ∇αh̄αβ = 0. Fixing the gauge gives two separate second order differential

equations for F and G, which can be solved to give

G(r) = c0 + c1
2 log(f), (5.39)

F (r) = c2
r2f

+ c3r

f
+ 2a0(82 + 12r + 3r2 + 24 log(−2 + r))

3r2f
, (5.40)

where we set M = 1 for convenience. The trace of the metric perturbation generated by

the potential (5.38) is found to be h = −4a0. We set c3 to zero to prevent the gauge vector

ξα from diverging when r →∞, which will then result in a severe pathological behaviour of

the metric at infinity 7. Further constraints on the free parameters left can be obtained by

imposing metric regularity at the horizon. As the Schwarzschild coordinates are ill-behaved

at r = 2, we require the ingoing Eddington-Finkelstein components of the metric to remain

finite as the horizon is approached. The only non-zero components in this case are

hEFvv = htt,

hEFvr = −htt
f

+ htr,

hEFrr = htt
f2 − 2htr

f
+ hrr.

The above components take a finite value at the horizon provided that

c1 = −2h, c2 = 2
3(6c0 + h(11 + log 64)).

It follows that the non-zero components of the trace-reversed gauge metric perturbation
6To see this, note that the Lorenz-gauge conditions implies �ξα = 0, and that h,α = 2(�φ),α = 2�ξα.
7With this choice, our gauge solution will only have htt → const: this does not constitute a major

problem though, as the metric can be “flattened” at infinity by a suitable gauge transformation away from
Lorenz, which results in a translation of the asymptotic coordinate time. This observation will be relevant
for our calculation of the IBCO frequency shift.
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can be written as

hGtt = −a1 + h
(
r
(
r3 − r − 4

)
− 4t+ 12 + 8 log 2− 8 log(r − 2)

)
2r4 ,

hGtr =
−a1

4 + h(2 log f + t− 4)
2r(2− r) ,

hGrr = (a1 + 8h log(r − 2))(3− 2r) + h(r(−5r − 8t+ 36 + 16 log(2)))
2(r − 2)2r2 +

+ 12h(t− 3− log(4))
2(r − 2)2r2 ,

hGφφ = a1 + h(r(r + 4) + 4(t− 3− log(4))) + 8h log(r − 2)
2r , (5.41)

where we defined a1 := 8c0.

We will now describe how to extract a1 and h from the numerical data. In order to do so,

we will look at the metric perturbation and its time-derivatives on a t = const hypersurface

along the final whirl of an inbound MBMS, where the metric should be, with a very good

approximation, a superposition of the circular orbit solution and of the gauge perturbation

(5.41). Numerical experiments suggest that, in order to extract the free parameters a1, h of

the gauge perturbation, it is advantageous to look at the metric in the near-horizon region,

as this yields a more accurate fit.

If we denote by rp the radius of the circular orbit, the metric perturbation sourced by

the particle is of the form hCαβ = hC,+αβ θ(r− rp) +hC,−αβ θ(rp− r) (we refer the reader to [102]

for a thorough discussion of the analytical construction of this solution). To carry out a

near-horizon expansion, we only need hC,−αβ : in terms of our evolution variables this reads

h̄
(1)
C = 2

√
π(r − 2)3(r + 2)(1 + log(2))

3r3 , (5.42)

h̄
(3)
C = 4

√
π
(
r3 − 8

)
(1 + log(2))

3r2 , (5.43)

h̄
(6)
C = −2

√
π
(
r3 + 16

)
(1 + log(2))

3r2 , (5.44)

with all the other components being identically zero. We then fit our numerical h̄(i) to a

solution of the form h̄
(i)
S = h̄

(i)
C + h̄

(i)
G , where the h̄(i)

G are obtained from Eq. (5.41) using
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the reconstruction formulae given in Appendix A of [101]. The non-zero h̄iS are

h̄
(1)
S =

√
π

3r3

[
3
(
h
(
8(r − 1)(log 4− t+ 2 log(−2 + r))− 24 + r

(
r3 − 6r − 8t+ 32

)))
+

+2(r − 2)3(r + 2)(1 + log(2))− 6a1(r − 1)
]
, (5.45)

h̄
(2)
S = −

2
√
π(a1

4 + 2h log(r − 2)− 2h log(r) + h(t− 4))
r

, (5.46)

h̄
(3)
S = 2

√
π

3r2 (3(a1 + h(r(r + 4) + 4(t− 3− log(4))) + 8h log(r − 2))+

+2
(
r3 − 8

)
(1 + log(2))

)
, (5.47)

h̄
(6)
S =

√
π

3r2 (6a1 + 3h(r(r(r + 2) + 8) + 8(t− 3− log(4))) + 48h log(r − 2)+

−2
(
r3 + 16

)
(1 + log(2))

)
, (5.48)

Conveniently, in the limit r → 2, the time-derivatives of the h̄(i) approach a set of

constants

lim
r→2

(
∂h̄(1)

∂t
,
∂h̄(2)

∂t
,
∂h̄(3)

∂t
,
∂h̄(6)

∂t

)
=
√
π (−h,−h, 2h, 2h) . (5.49)

Thus, one can estimate h by fitting the time-derivatives of the numerical metric pertur-

bation; subsequently, the field itself can be used to estimate a1. Once the spurious gauge

mode has been identified, we subtract it from our numerical data. In Fig. 5.3, we show

the results of this numerical filtering procedure, for an inbound MBMS orbit evolved with

a numerical grid step of hs = 0.025. We fitted the four metric variables h̄(1), h̄(2), h̄(3), h̄(6)

independently, in order to have an internal consistency check of our method, and averaged

the corresponding values of a1,h. Our numerically filtered metric could potentially accu-

mulate large errors at late time (t � M), due to the imperfect estimation of the gauge

parameters. To estimate such effects, we compared the values of the field and its deriva-

tives computed at two different resolutions, h1 = 0.05 and h2 = 0.025. We found that

the relative differences between the two data sets are typically ∼ 10−4 for the field and its

derivatives, which is acceptable for our purposes.

5.4.2 Dipole solution

When studying the ` = 1,m = ±1 mode, one can again take advantage of the background’s

symmetry properties to write down a parametric form for a generic linear-in-time homoge-

neous solution. Static solutions of the dipole equations can be straightforwardly obtained

by solving once again �φ = 0, this time using the ansatz φ = F (r)Y 11, and then look-
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Figure 5.3: Numerical filtering of the monopole solution along an inbound MBMS orbit.
The main plot shows our numerical variables, after subtraction of a suitable linear-in-t
gauge mode (h̄(i)

F ). The inset shows the difference between our numerically filtered solution
and an exactly circular one. As the orbit approaches circularity, this quantity should
converge to zero: however, we observe fluctuations due to the numerical error affecting our
fit.
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ing at the metric perturbation generated by ξα = ∂αφ. The wave equation admits two

independent solutions, F (r)+ = c0(r − 1), which is regular at the horizon but diverges for

r → ∞ and F (r)− = c1(2 + (r − 1) log f), which is regular at spatial infinity but diverges

at the horizon. One might then try to construct a linear-in-t solution from a potential of

the form φ = F (r)+(1 + k1t) + F (r)−(1 + k2t): however, this fails to produce a globally

regular metric perturbation. It turns out that this can be achieved by adding to the ansatz

for ξµ a term of the form G(r)δtµY 11, which corresponds to one of the static homogeneous

solutions obtained by Ori [108]. Our full ansatz for ξµ will thus be

ξµ = ∂µ
((
F (r)+(1 + k1t) + F (r)−(1 + k2t)

)
Y 11

)
+G(r)δtµY 11. (5.50)

Imposing the Lorenz-gauge condition, as well as global regularity, gives G(r) = −c1rf ,

k1 = c1
2c0

, k2 = 0.

It follows that the most general linear-in-t, globally regular Lorenz-gauge solution to

the dipole equations reads

h̄
(1)
G = −8c1

r3 ,

h̄
(2)
G = 2 c1(−3 + r)

r
,

h̄
(3)
G = −

2
(
2c0r + c1rt+ 2c1r log

(
r−2
r

)
+ 4c1

)
r2 ,

h̄
(4)
G = 4 c1,

h̄
(5)
G =

4
(
2c0r − 4c0 + c1rt− 4c1 log

(
r−2
r

)
+ 2c1r log

(
r−2
r

)
− 2c1t+ 4c1

)
r2 ,

h̄
(6)
G = −

2
(
2c0r + c1rt+ 2c1r log

(
r−2
r

)
+ 4c1

)
r2 ,

h̄
(7)
G = 0, (5.51)

where c0, c1 are two complex parameters.

In analogy with the monopole case, we compare our numerical results in the region r ∼ 4

to a solution of the form h̄
(i)
S = h̄

(i)
C +h̄(i)

G , where by h̄(i)
C we denote the circular orbit solution,

which we computed semi-analytically, following work by Poisson and Detweiler [107]. The

construction of a circular orbit solution proceeds as follows: starting from an analytical,

asymptotically flat, singular solution to the dipole equations hSαβ [109], one numerically

calculates the gauge vector ξµ such that hαβ = hSαβ− ξα;β− ξβ;α is a Lorenz gauge solution,

i.e. satisfies ∇αh̄αβ = 0. Due to the symmetry of the background, the sought gauge vector
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can be written as

ξmµ = {ξmt (t, r), ξmr (t, r), ξm(t, r)∂θ, ξm(t, r)∂φ}Y 11, (5.52)

where the superscript m denotes the sign of the magnetic mode considered (m = ±1). If

one introduces the complex functions Am(r), Bm(r), Cm(r) defined through

ξmt (t, r) = −µE
√

8π
12 ιΩR

Am(r)
r

e−sgn(m) iΩt,

ξmr (t, r) = −sgn(m)µE
√

8π
12

Bm(r)
r − 2 e−sgn(m)iΩt,

ξm(t, r) = −sgn(m)µE
√

8π
12
Cm(r)
r

e−sgn(m)iΩt,

the problem of finding ξµ reduces to that of numerically solving a set of ODE’s for the

unknown functions Am, Bm, Cm. Once these are known, the corresponding metric variables

h̄i read

h̄
(1)
C =

2
√

2π
3 Ee

−i(Ω t−φ) (r RΩ2Am(r) + (r − 2)∂rBm(r)−Bm(r)
)

r
,

h̄
(2)
C = −

2i
√

2π
3 EΩe−i(Ω t−φ) (−(r − 2)R∂rAm(r) + r0A

m(r) + rBm(r))
r

,

h̄
(3)
C =

4
√

2π
3 Ee

−i(Ω t−φ)(Bm(r)− Cm(r))
r

,

h̄
(4)
C =

4i
√

2π
3 EΩe−i(Ω t−φ)(RAm(r)− r Cm(r))

r
,

h̄
(5)
C =

4
√

2π
3 Ee

−i(Ω t−φ) (rBm(r) + (r − 2) (r ∂rCm(r)− 2Cm(r)))
r2 ,

h̄
(6)
C =

2
√

2π
3 Ee

−i(Ω t−φ) (r2RΩ2Am(r) + (r − 2) (Bm(r)− r ∂rBm(r))
)

(r − 2)r , (5.53)

where Ω represents in our case the frequency of the IBCO. In practice, since the physical

solution on the whirl has a purely harmonic time-dependence, the linear-in-t gauge mode

can be identified by looking at the linear combination h̄(i)− i/ω∂th̄(i). In fact, this is iden-

tically zero on a circular orbit and thus will not encode any information about the physical

metric perturbation in the limit r → 4. By fitting our numerical data, we can estimate

c0, c1, and subsequently subtract the mode of Eq. (5.51) from our full retarded solution.

After the subtraction, the field approaches stationarity along the whirl, an indication that

our numerical filtering has been successful (see Fig. 5.4). 8

8In analogy with the monopole case, we tried to evolve the dipole equations starting from the semi-
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Figure 5.4: Numerical filtering of the dipole mode for an outgoing MBMS orbit. The plot
shows the dipole field along the orbit, after subtraction of a gauge mode of the form (5.51),
where c0, c1 have been extracted from data in the region 10−7 . rp − 4 . 10−4. As shown
in the inset, the filtered solution approaches the circular one in the limit rp → 4.
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5.5 Results

We will now provide results obtained by applying the numerical framework described in

the previous sections to the study of a MBMS orbit. The data presented in this section

have been computed at a maximal resolution of h3 = 0.0125M9. We used data at lower

resolutions (h1 = 0.05M, h2 = 0.025M) for convergence tests and error estimates. We

evolved both an ingoing MBMS orbit starting off at r = 150M and an outgoing one

starting from r = (4 + 10−13)M and subsequently computed the conservative GSF using

Eq.(5.25).

As we explained in Sec.1.1.4, the conservative self-force acting on the particle is obtained

by an infinite sum of suitably regularised spherical harmonics modes. It is clear that, in

practice, such an infinite sum will be truncated at some ` = `max (in this work, for instance,

we take `max = 15). To account for the contribution of higher modes (the so-called “tail”),

we implement a point-wise fitting procedure, following, for instance, [101]. We approximate

the infinite sum in Eq.(1.28) as

Fµcons ≈
`max∑
l=0

Fµ`R +
∞∑

l=`max+1
Fµ`tail, (5.54)

where by Fµ`R we denote the conservative, regularised GSF obtained from our numerical

data, and by Fµ`tail we denote an approximation of the higher modes of Fµ`R obtained by

fitting the modes 10 ≤ ` ≤ 15 to a function of the form a0/(`+1/2)2 +a1/(`+1/2)4, where

a0, a1 are two numerical coefficients, to be determined numerically. Such an expansion, in

fact, captures the large-` behaviour of the singular field, as shown in [110]. The tail-fitting

leaves one with an error on the GSF of order ∼
∑∞
l=`max+1 `

−6 = O(`−5
max): given that in

our computation `max = 15, this translates into an absolute error ∼ O(10−6).

The integrals of Eqs.(5.19)-(5.20) formally extend over an infinite domain, but of course

numerical data are available only over a finite range. Therefore, we integrated the GSF

along the orbit semi-analytically, as explained below. Denoting by Rmin and Rmax the

minimum and maximum radii for which we have robust numerical data, we approximate

∆E as follows

∆E ≈ −
∫ Rmin

Rmax
F̃numt

drp
ṙp
−
∫ Rmax

∞
F̃ fart

drp
ṙp
, (5.55)

analytical solutions given in [107], but we could not successfully stabilise our numerical evolution: whether
or not this might be achieved remains an open question.

9In this section we reintroduce M , for the sake of clarity.
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Figure 5.5: The conservative GSF along a MBMS orbit. The plot shows the t and φ
components of the force (in blue and magenta respectively). As the IBCO is approached,
both components tend to zero, in line with Eq.(3.9). In the weak field, the force exhibits a
simple power-law behaviour, whose leading order terms are given in Eqs.(5.56)-(5.57).

Here, F̃numt denotes a function interpolating among our numerical data for F̃t between

Rmin = (4 + 10−6)M and Rmax = 100M , while F̃ fart denotes an extrapolation of the GSF

obtained by fitting our data in the range 100M < r < 130M . Since for the conservative

part of the GSF one has limr→R0 F̃t/φ = 0, we neglect the term
∫ 4M
Rmin

F̃t/φdrp/ṙp: with our

choice of Rmin, one can see, using Eq. (3.10), that this produces an error of order O(10−6),

comparable to the one coming from the large-` tail fitting. We proceed in an analogous

way to compute ∆L.

We find that, in the far field, the conservative GSF behaves, at leading order, like the

following inverse powers of r:

F̃ tfar ∼
−1.25
r̃5/2

η

M
, (5.56)

F̃ φfar ∼
27.75
r̃9/2

η

M2 , (5.57)

where r̃ := r/M . Fig. 5.5 shows the numerical conservative GSF along a MBMS orbit, as

a function of the orbital radius.

The last piece of information needed in order to compute the conservative shift to the
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IBCO frequency is F̃ r(4M): we report here the most accurate result we have up to date,

which has been computed by Sago [111]:

F̃ r(4M) = −0.00309(3) η
M
. (5.58)

Before proceeding further, we shall return to the observation made in Sec. 5.4 regarding

the asymptotic properties of the Lorenz gauge: as we have already mentioned, the tt

component of the monopole metric perturbation tend to a constant for r → ∞. For

circular orbits, there exists a unique Lorenz-gauge perturbation hαβ which possesses the

correct mass and is regular both at infinity and at the horizon. This solution is such

that [107,112]

lim
r→∞

htt = − 2µ√
R0(R0 − 3M)

:= −2α. (5.59)

Since a MBMS orbit approaches a circular orbit either in the infinite future or infinite past

and the above result is time-independent, we expect the metric sourced by a MBMS orbit to

exhibit the same asymptotic behaviour. We verified this statement by examining our data:

although our growing-in-time solution is asymptotically flat, the gauge metric perturbation

that needs to be subtracted from it (see Eq.(5.41)) is indeed such that limr→∞ h
G
tt = 2α.

Therefore, in order to obtain the conservative shift to Ω in physical units, i.e. within

the class of asymptotically flat gauges, we need to asymptotically “flatten out” our gauge.

As explained in [112], this can be achieved by means of a gauge transformation, away

from Lorenz gauge, of the form xµ → x′µ = xµ + δµt tα: in fact, this generates a metric

perturbation that asymptotically tends to 2α, as can be seen by inspecting Eq. (5.37). It

is easy to see that such a gauge transformation shifts the azimuthal frequency dφ/dt by an

amount −αΩ0. It then follows from Eq.(5.24) that the self-force corrected frequency in an

asymptotically flat gauge, which we will denote by ΩF satisfies

Ω2
F = Ω2

0

(
1− η + 6∆E + 16MF̃ r(4M)

)
, (5.60)

where we used the fact that, for a MBMS orbit, α = 1/2. We can then evaluate the first-

order self-force corrections to the critical angular momentum at fixed energy at infinity and
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azimuthal frequency as given by Eqs.(5.22) and (5.24):

δL(∞) = −3.22(2)µ, (5.61)

δΩ : = ΩF − Ω0 = 0.069(2) η
M
. (5.62)

To estimate the error affecting our results, we compared data computed at two different

resolutions (h3 = 0.0125M and h2 = 0.025M).

5.5.1 IBCO frequency shift: comparison with the first law

We now proceed to compare our result for δΩ with the one obtained using the first law

of binary black-hole mechanics. Let us introduce the dimensionless parameter (“invariant

mass over distance”)

x := ((1 + η)MΩ)2/3. (5.63)

Then the shifts in x and Ω, for a fixed value of an arbitrary orbital parameter B, are related

via

δx(B) = 2
3

(
ηΩ0 + δΩ(B)

Ω1/3
0

)
, (5.64)

whence it follows, in particular, that

δΩ(x) = −Ω0η. (5.65)

We also note that the frequency shift at fixed energy can be computed once the shift at

fixed x is known, given that δΩ(E) = δΩ(x)− ∂Ω
∂E δE(x). For a MBMS orbit, this gives

δΩ(E) = − 1
8M (η + 3δE(1/4)) , (5.66)

where we used Eq.(5.65), together with Ω0 = 1/(8M). Ref. [81] provides an explicit

expression for the conservative first-order correction to the binary’s (binding) energy, at

fixed x, which relies on the use of the first law:

δE(x) = z1(x)
2 − 1

3x
∂z1(x)
∂x

+ x(7− 24x)
6(1− 3x)3/2 +

√
1− 3x− 1, (5.67)
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where z1(x) denotes the first-order correction to the redshift variable (see Eq.(3.67)). We

extract the value of z1(1/4) and dz1/dx(1/4) implementing the fitting procedure described

in [41], where knowledge of the metric perturbation along a sequence of circular orbits in

the range 1/150 < x < 1/3 was used to fit z1(x) to a global analytical model incorporating

constraints coming from the post-Newtonian approximation. Combining Eqs. (5.66) and

(5.67) we get

δΩ(E) = 0.0692008 η
M
, (5.68)

which is consistent with our numerical result (Eq.(5.62)). We wish to stress the fact that the

agreement obtained here is far from trivial, as the first law has been shown to rigorously

apply only in the weak field regime, whereas our self-force computation tests the strong

field one. Furthermore, Eq. (5.68) receives input exclusively from the metric perturbation

computed along circular orbits, whereas our numerical result (5.62) rests on an integration

of the conservative GSF along a MBMS orbit. Thus, our work provides a strong check of

the validity of the first law in the strong field regime.

5.6 Calibration of EOB

We will now explain how our computation can assist in calibrating the EOB model [15].

In the EOB formalism, the two-body problem is replaced by that of a particle of effective

mass m := µM/(µ+M), moving in a deformed Schwarzschild metric

ds2
eff = −A(r; ν)dt2 + B̄(r; ν)dr2 + r2

(
dθ2 + sin θ2 dφ2

)
, (5.69)

where ν = µM/(µ + M)2 and A(r; ν) and B̄(r; ν) are two a priori unspecified functions.

The total energy of the system, defined as the sum of the rest masses µ,M plus their

binding energy, is given by the EOB Hamiltonian

HEOB = (M + µ)
√

1 + 2ν
(
Ĥeff − 1

)
, (5.70)
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where Ĥeff := Heff/m represents a (specific) effective Hamiltonian that governs the par-

ticle’s motion, as we will see below. Its explicit form is

Ĥeff =

√√√√A(r̂; ν)
(

1 + j2

r̂2 + p̂2
r

B̄(r; ν)
+ Q̂(r̂, p̂r)

)
, (5.71)

where we introduced the rescaled quantities r̂ := r/(µ + M), p̂r := pr/m (pr being the

effective radial momentum of the particle) and j := J/(µM), where J can be identified with

the total conserved angular momentum of the system. The function Q̂(r̂, p̂r) := Q(r, pr)/m2

represents a deformation of the mass-shell condition, defined through

0 = m2 + gµνeffpµpν +Q(r, pr), (5.72)

and is at least quartic in p̂r. Knowledge of the precise form of the functions A, B̄ can be

obtained by comparing their expansions, either in 1/r̂ or ν, with results coming from the

post-Newtonian and self-force approximations respectively.

To illustrate how this works, we will review a strategy proposed by Damour [13] to

obtain information about the EOB effective metric using a GSF calculation along a MBMS

orbit. This is, by definition, a zero-binding-energy orbit and thus HEOB = (M+µ), whence

it follows that Ĥeff = 1. On the whirl, r̂ → r̂IBCO and p̂r → 0. Then, using Eq. (5.71),

one has A(r̂IBCO; ν)(1+j2/r̂2
IBCO) = 1, as well as A′(r̂IBCO; ν)+j2(A′(r̂IBCO; ν)/r̂2

IBCO−

2A(r̂IBCO; ν)/r̂3
IBCO) = 0, where we denoted with a prime differentiation with respect to

r̂. It is easy to see that these two conditions imply

A2(r̂IBCO; ν) = A(r̂IBCO; ν)− r̂IBCO
A′(r̂IBCO; ν)

2 . (5.73)

In the limit µ � M , ν is a small parameter, and thus one can write A(r̂; ν) = 1 − 2/r̂ +

a(r̂)ν +O(ν2), where a(r̂) is an unknown function. Inserting this expansion into Eq.(5.73)

gives

4− r̂IBCO
r̂2
IBCO

+ r̂IBCO
2 a′(r̂IBCO)ν = 0. (5.74)

In the EOB literature results are most often expressed in terms of the inverse distance
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û := 1/r̂. Changing variables in the above equation and using ûIBCO = 1/4 +O(ν) gives

ûIBCO = 1
4

(
1 + ν

2∂ua(1/4)
)
. (5.75)

Damour showed that, for a zero-binding-energy orbit, the invariant mass over distance

defined in Eq. (5.63) is given by

x(u) = u

(−∂uA(u)
2

)1/3
. (5.76)

Plugging into the above equation an expansion in ν of A(u) and using (5.75), together with

(5.63), the above result can be translated into a shift in the IBCO frequency Ω which, when

expressed in an asymptotically flat gauge, reads

Ω2
F = Ω2

0 (1 + ν (∂ua(1/4)− 2)) . (5.77)

Noting that, when µ�M , ν ∼ η, we can compare Eq.(5.77) with Eq.(5.60), obtaining

∂ua(1/4) = 2
(

1 + δΩ
ηΩ0

)
= 3.10(8). (5.78)

We can compare the above result with the one obtained in [41], where a fit for a(u) was

computed by interpolating self-force data on unstable circular orbits:

∂ua(1/4) = 3.10720606064. (Akcay et al.)

The calculation relied on results by Barausse et al. [113], which establish a simple rela-

tionship between the redshift z and the function a(u), by making use of the first law of

binary black-hole mechanics. Our framework does not rely at any point on this law and

thus represents a completely independent tool to calibrate the EOB model.

5.6.1 Future directions

An interesting extension of the work presented here would be a computation of δLp
ADM for

a MBMS orbit: however, the task is not as straightforward as it might seem, as the notion

of angular momentum is intrinsically ambiguous in General Relativity. In Sec. 3.2 we

provided expressions to compute an ADM-like angular momentum under the assumption

that, when the two bodies are at an infinite distance, the system can be modelled as a
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pair of relativistic point-particles in flat spacetime. We also assumed that the gauge used

to carry out our self-force computation could be somehow considered “black-hole-centred”

(whereas ADM quantities are computed in a centre-of-mass frame). However, there are

several aspects under which the Lorenz gauge appears to violate these assumptions: the

metric perturbation is not asymptotically flat and it is not clear a priori where the system’s

centre of mass lies. Furthermore, the dipole solution for a static particle in Lorenz gauge

does not reduce, in the limit r →∞ to the flat-space solution, as it was pointed out in [114].

We are currently investigating these aspects in order to gain a full understanding of how to

convert our result (5.61) into a conserved, gauge-invariant quantity suitable to be compared

with Refs. [36, 81].

A possible future application of our numerical framework is the computation of deflec-

tion angles χ(EADM , LADM ) := φ(τ → ∞) − φ(τ → −∞) − π for hyperbolic-like orbits

scattered off Schwarzschild black holes. Elastic scattering of equal-mass black holes in the

strong field region has been recently investigated to establish a cross-comparison between

EOB and Numerical Relativity [14]. A similar study could be carried out for extreme-mass-

ratio binaries, such as the ones modelled by the self-force approximation, once a rigorous

method to compute EADM , LADM has been established (knowledge of these quantities is in

fact necessary to identify in an unambiguous manner an orbit in the perturbative problem).
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Chapter 6

Conclusions

We studied the scenario in which a massive particle is thrown into a nearly-extremal Kerr

black hole on an equatorial trajectory, working consistently in the first-order self-force

approximation, i.e. taking into account all finite-η effects (radiative and other) to one

order in η beyond the geodesic approximation. In our work, we focussed on two types of

captured orbits near the capture–scatter separatrix: (i) weakly fine-tuned orbits, which

execute O(ln η) quasi-circular revolutions below the ISCO prior to falling into the black

hole, radiating O(η2 ln η) of gravitational-wave energy in the process; and (ii) strongly

fine-tuned orbits, which execute O(η−1) revolutions and emit O(η) of energy. Proceeding

under the assumption that the self-force should disfavour overspinning, we focused on orbits

coming from infinity, as these appear to threaten the cosmic censorship conjecture in the

geodesic approximation. We also restricted our attention to non-spinning bodies, in order

to simplify our analysis.

In Sec. 4.1 we found that, within our first-order GSF approximation, any weakly fine-

tuned capture leads to a precisely extremal geometry. This implies that “generic” captures

produce sub-extremal geometries. In Sec. 4.3 we further established that strong fine-tuning

promotes censorship: all strongly fine-tuned captures produce subextremal geometries.

Thus, one can at best reach extremality, using weakly fine-tuned orbits (any such orbit

would do), but there is no way of overspinning the black hole. In summary:

Within the first-order self-force approximation (and excluding deeply bound

orbits), equatorial captures generically result in a subextremal post-capture ge-

ometry. One can at best achieve extremality, through weak fine-tuning, but

overspinning is not possible.

That overspinning appears to be possible in the geodesic approximation [55] is simply



118 Conclusions

an artefact of ignoring important GSF terms that appear already at leading order in the

relevant overspinning conditions.

We note that the above conclusions were arrived at almost entirely via analytical consid-

erations. We required only two pieces of numerical input, one confirming the boundedness

of the extremal limit in Eq. (4.11), and another establishing the bound (4.24) for the flux

ratio. Both numerical computations involve only circular geodesic orbits, and neither re-

quires particularly high precision. The above general conclusions are entirely robust with

respect to numerical error.

However, it is important to remember that here we have been working strictly within

the framework of the first-order GSF approximation, with no control whatsoever over high-

order GSF corrections. Since the first-order analysis appeared to allow for an exact sat-

uration of the overspinning condition, higher-order effects may qualitatively change the

outcome. A second-order analysis may potentially yield any possible result: that the final

geometry is always subextremal, or that overspinning is possible, or (once again) that the

black hole can at most be brought to extremality. In that respect, our first-order GSF

analysis—just like the geodesic analysis of Ref. [55]—does not provide a conclusive answer

to the question of overspinning. It is not clear if the question can be fully resolved at

second-order or at any other finite order in perturbation theory.

It would be desirable to repeat the calculation of the angular momentum shift δL̆cons
∞

using a direct integration of the GSF, via Eq. (3.45). This would eliminate our reliance [in

deriving Eq. (3.76)] on the effective Hamiltonian formulation of Refs. [36, 80, 115], which

is axiomatic in nature. In fact, an explicit demonstration of agreement between the direct

formula (3.45) and redshift formula (3.76) (related by Eq. (3.47)) would constitute an

important test of the Hamiltonian formulation.

In Ch. 5 we started developing the computational tools to achieve this. In the simplified

context of the Schwarzschild geometry, we provided strong evidence in support of the

applicability of the first law of binary black-hole mechanics to the calculation of invariants

in the strong field regime. We presented a first numerical computation of the full self-force

along marginally bound, marginally stable orbits, i.e. orbits that start off at rest at r →∞

and asymptote to a marginally stable circular orbit of radius r = 4M either in the infinite

future or the infinite past. In particular, we computed for the first time a new strong-field,

gauge-invariant quantity, namely the conservative shift to the azimuthal frequency of the

innermost bound circular orbit (Eq. (5.62)). This required, in particular, computing the

integral of the conservative GSF along a MBMS orbit: the calculation presented here is
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thus analogous to the one required in the overspinning problem. We verified that the our

numerical result is consistent with the one obtained relying on the first law: the latter only

requires knowledge of the metric perturbation along circular orbits and thus the agreement

between the two calculations is highly non-trivial.

As we mentioned in Subsec. 5.6.1, work is under way to extract from our numerical data

the total conserved angular momentum of a spacetime containing a MBMS orbit. Once a

rigorous procedure to do so is in place, our framework could be exploited to calculate new

strong-field gauge invariant quantities, such as scattering angles for hyperbolic-like orbits.

This would create new possibilities for the the self-force scheme to inform semi-analytical

frameworks modelling compact binary systems.
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Appendix A

ADM energy and angular

momentum

This appendix gives a detailed derivation of Eqs. (3.11) and (3.12). We consider two

relativistic point particles in flat space, representing the black hole–particle system at an

infinite separation. We are given the two rest masses, M and µ, and the particle’s energy

µE∞(> µ) and angular momentum µL∞ in a reference frame attached to the mass M .

The mass M has an intrinsic spin Ma perpendicular to the orbital plane, and the mass µ

is spinless. Our goal is to obtain the system’s total energy and angular momentum in a

center-of-mass (CoM) frame.

First, we note that, in the limit of infinite separation, both black-hole frame and CoM

frame are inertial, and they are related via a simple Lorentz boost. Let xα = (t, x, y, z)

be a Cartesian frame centred at M , so that the spin of M is aligned with the z direction,

and the particle’s orbit lies in the x–y plane. Denote the four-momenta of µ and M in the

black-hole frame by

pα(µ) = (µE∞, px(µ), p
y
(µ), 0),

pα(M) = (M, 0, 0, 0). (A.1)

The magnitude of particle’s 3-momentum satisfies

|p(µ)|2 = (px(µ))
2 + (py(µ))

2 = µ2(E2
∞ − 1). (A.2)

The CoM system x̃α is related to xα via a Lorentz boost Λαβ in the x–y plane. Let

p̃α(µ) = Λαβp
β
(µ) and p̃α(M) = Λαβp

β
(M) denote the 4-momenta of µ and M in x̃α. The CoM
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condition,

p̃(M) + p̃(µ) = 0, (A.3)

yields two nontrivial equations for the two boost parameters βx = vx/c and βy = vy/c

(where vx and vy are components of the boost velocity). One finds βi = pi(µ)(M +µE∞)−1

for i = x, y. Thus, using (A.2),

β = [(βx)2 + (βy)2]1/2 = η(E2
∞ − 1)1/2

1 + ηE∞
, (A.4)

where η = µ/M .

Now that we have at hand the boost Λαβ(β), the relativistic energies of µ and M in the

CoM system are obtained as p̃0
(µ) = Λ0

βp
β
(µ) and p̃0

(M) = Λ0
βp

β
(M). The sum of these two

energies is the total, ADM energy of the system. A short calculation gives

EADM = p̃0
(µ) + p̃0

(M) = M(1 + 2ηE∞ + η2)1/2. (A.5)

This result is valid for any mass ratio η. For η � 1, an expansion in η through O(η) gives

Eq. (3.11).

To obtain the total angular momentum in the CoM system, we need first to relate the

particle’s CoM position x̃(µ) and black hole’s CoM position x̃(M) to their separation x in

the black-hole frame. This is achieved by solving the CoM condition

x̃(µ)p̃
0
(µ) + x̃(M)p̃

0
(M) = 0, (A.6)

simultaneously with |x̃(µ)|+ |x̃(M)| = |x̃|, where x̃i = Λiβxβ (i = x, y) is the separation in

the CoM frame. The particle’s CoM orbital angular momentum is then given by L̃(µ) =

x̃(µ)p̃
y
(µ)−ỹ(µ)p̃

x
(µ), and similarly for the massM . The total, ADM angular momentum of the

system (with respect to the CoM) is the sum of L̃(µ), L̃(M) and the spin angular momentum.

A short calculation, using Eqs. (A.2) and (A.4) and the relation µL∞ = xpy(µ)−yp
x
(µ), gives

LADM = M (a+ µL∞/EADM) . (A.7)

This is valid for any η. Substituting for EADM and expanding through O(η2) produces Eq.

(3.12).
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Radiation from transition to

plunge and final plunge

In this appendix we argue that the term W+
(end) in Eq. (3.39) is subdominant for η, ε � 1

and may therefore be dropped within our leading-order analysis. Recall W+
(end) = 2E+

(end)−

L+
(end), where E+

(end) and L+
(end) are the energy and angular momentum radiated out to

infinity during the transition from adiabatic inspiral along the attractor to a final plunge

into the black hole, and during the plunge itself.

Critical orbits may transit into plunge in one of two ways: If the orbit is perfectly fine-

tuned, the transition will occur around the location of the ISCO, and will then be similar

to the transition at the end of a physical adiabatic inspiral (on a stable orbit) that has

already been studied in detail [75, 76, 78, 116]. With any less than perfect fine-tuning, the

particle will slide off the peak of the effective potential and into the black hole before the

ISCO is reached (cf. Fig. 3.1). It is reasonable to expect the former scenario (transition

through the ISCO) to yield the maximal radiation output, because (i) orbits linger much

longer around the ISCO location, where the potential is very flat, than they do around

the peak of the potential; and (ii) the remaining distance to the horizon is maximal when

the transition is at the ISCO. Below we start by looking at the “worse case” scenario of

transition through the ISCO, and argue that, even in that case, W+
(end) is negligible in Eq.

(3.39). We then also examine the more generic scenario of a transition from an unstable

orbit, and, as expected, arrive at a similar conclusion.
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B.1 Plunge from the ISCO

For a transition through the ISCO, we use results by Ori and Thorne [75], who studied

radiation from the transition regime at the end of a quasi-circular inspiral. An inspection

of their analysis reveals that the main results are insensitive to whether the particle arrives

the transition regime along stable or unstable orbits. In particular, their equation (3.26)

for the deficits in (specific) energy and angular moment over the entire transition should

hold in either case. We write it here in the form

(∆L)trans = −A(a)η4/5,

(∆E)trans = −ΩiscoA(a)η4/5, (B.1)

where A(a) is a certain (positive) function of the spin a only, given explicitly in [75]. These

expressions hold for any a, at leading order in η � 1. The factor η4/5 arises, essentially,

from the fact that the transiting orbit spends an amount of proper time ∝ η−1/5 whirling

around the ISCO location on a nearly circular orbit [cf. Eq. (3.20) of [75]].

The function A(a) involves a certain a-dependent dimensionless factor, denoted Ė

in [75] (not to be confused with our E±), which describes corrections to the leading-order

quadrupole emission formula for circular orbits, and is to be determined numerically. Kes-

den [76] used numerical data by Hughes (from a code presented in [117]) to estimate, in

the near-extremal case, Ė ∝ ε2/3, a scaling previously suggested by Chrzanowski [118].

We have confirmed this scaling using much more accurate numerical results by M. van

de Meent [119]. We also note that the scaling Ė ∝ ε2/3 follows simply from a regularity

assumption, namely that dE/dτ must remain bounded (and nonzero) even in the limit

ε→ 0: Noting that the Ori-Thorne function Ė is defined with respect to coordinate time t

(not proper time τ), and that (dτ/dt)isco ∝ ε2/3, we obtain Ė ∝ (dE/dτ)(dτ/dt)isco ∝ ε2/3.

Assuming this scaling, and expanding the remaining a-dependence of A(a) in ε, we obtain,

at leading order in ε,

(∆L)trans = −a0ε
−2/15η4/5,

(∆E)trans = −a0Ωiscoε
−2/15η4/5, (B.2)

with some (positive) numerical coefficient a0 whose explicit value will not be needed here.

Refs. [76,78] discuss the reason for the non-physical divergence of (∆E)trans and (∆L)trans

when ε → 0 is taken with a fixed η, but this will not concern us here. We are in-
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stead interested in the combination (∆W )trans := 2(∆E)trans − (∆L)trans, which, noting

Ωisco = 1
2 +O(ε2/3) and keeping only the leading term, reads

(∆W )trans = b0ε
8/15η4/5, (B.3)

with some (positive) numerical coefficient b0. Assuming the usual balance between the

local dissipative GSF and the flux of energy and angular momentum in gravitational waves

emitted during the transition, we have W+
trans = −η(∆W )trans and thus

W+
trans = −b0ε8/15η9/5. (B.4)

Now examine the magnitude ofW+
trans compared to that of other terms in the censorship

condition (3.39). If ε > η, we have ε8/15η9/5 < ε7/3, which, for ε � 1, is smaller than the

ε2 term in Eq. (3.39). If instead we have ε ≤ η, then ε8/15η9/5 ≤ η7/3, which, for η � 1, is

smaller than the O(η2) terms in that equation. The conclusion is that the contribution to

W+
(end) from the transition regime,W+

trans, is always subdominant in Eq. (3.39) for η, ε� 1.

It remains to assess the contribution to W+
plng from the final plunge into the hole. In

general (when the black hole is not near-extremal) one identifies a final stage, extending

smoothly from the transition regime, where radiation reaction is negligible and the orbit

plunges into the black hole on a nearly geodesic trajectory [75,77]. The picture may change

a little in the near-extremal case, because the radial velocity remains small, |ṙ| ∝ ε � 1,

all the way to the horizon. This can mean that the conditions that define the transition

regime never quite break down before the the horizon is reached. In other words, there is

a possibility that the particle crosses the horizon while still in the transition regime.1

That possibility can be assessed using Eq. (3.20) of [75], according to which the radial

extent (∆r)trans of the transition regime, in the near-extremal case, is ∝ ε4/15η2/5, with a

coefficient of order unity. This should be compared with the radial distance from the ISCO

to the horizon, ∆r ' (2ε)2/3. It follows that for ε/η smaller than a number of order unity,

the transition regime extends to the horizon. In such cases, the amplitude of W+
trans in Eq.

(B.4) serves as an upper bound for the amplitude of W+
(end), and it follows immediately

that the entire term W+
(end) is negligible in Eq. (3.39).

Let us then consider the case where the transition ends before the horizon is reached, so

that a plunge regime is identifiable. In the plunge regime, by definition, the motion is very
1This possibility was studied in some detail in Ref. [76]; see, in particular, Fig. 5 therein, in which ‘δ’ is

equivalent to our ε2.
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nearly geodesic, and the near-horizon analysis of Mino and Brink [77] should be applicable.

Ref. [77] obtained (among other things) an analytic expression for the energy output from

the final plunge, by analyzing solutions to Teukolsky equation in the near-horizon, low-

frequency, quadrupole approximations. They find (in our notation)2,3

E+
plung ∝ η

2ε5(rinit − reh)(E − ΩHL)−2 (B.5)

at leading order in ε, where rinit is the radius at the start of the plunge, and reh is the

horizon’s radius (denoted Reh in the main text). For a plunge following a transition at the

ISCO, rinit−reh = O(ε2/3) and E−ΩHL = O(ε), giving E+
plung = O(η2ε11/3). Thus E+

plung is

strongly suppressed at small ε. Since the motion is nearly circular even during the plunge,

we have L+
plung ' Ω−1E+

plung ' 2E+
plung and the radiated angular momentum is similarly

suppressed. The combination W+
plung := 2E+

plung − L
+
plung is even more strongly suppressed

at small ε, and clearly contributes negligibly to W+
(end).

In conclusion, we have found that, for a transition through the ISCO,W+
(end) =W+

trans +

W+
plunge ' W

+
trans is always negligible in Eq. (3.39) for η, ε � 1. That radiation from the

transition to plunge should have a negligible effect on the conditions for overspinning was

previously suggested by Kesden [76] and Harada and Kimura [78].

B.2 Plunge from an unstable circular orbit

This scenario is rather different from—and much simpler than—a transition through the

ISCO. As the orbit is perturbed away from unstable equilibrium, its subsequent evolution is

almost immediately controlled by the “geosedic” radial force (proportional to the derivative

of the effective potential), and back-reaction corrections become negligible. Let us state

this point more precisely. Suppose r = rend is the radius at which the particle leaves the

attractor (for concreteness, this may be chosen as the radius of the last turning point along

the attractor). Note that the radial acceleration due to the geodesic potential is ∝ (r−rend),

with a coefficient of order unity [since the second derivative of the effective potential at

rend is of O(ε0)]. Since rend− reh = O(ε), the magnitude of the geodesic radial acceleration

is of O(ε) throughout much of the plunge. This should be compared with the magnitude of
2See Eq. (4.3) of [77], noting their κ is

√
2 ε in our notation. The discussion following that equation seems

to ignore the ε dependence implicit in the factors exp[−κ(T − t0)/r+] ∼ (rinit − r+)/r+ and (E − ΩHL).
3It is not clear to us whether the low-frequency and quadrupole approximations, introduced in [77]

to enable analytic calculation, are justifiable for near-horizon orbits in the near-extremal case (where the
dimensionless angular velocity is ∼ 1/2). We prefer to regard the form of Eq. (B.5) as indicative only, but
this should suffice for our purpose.
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the radial self-acceleration, which is of O(ηε).4 We may define the onset of plunge as the

point where the geodesic acceleration takes over from the GSF in controlling the motion;

this happens near a radius r = rplng satisfying rplng − rend = O(ηε). For r . rplng, the

motion is governed by the geodesic equation of motion (2.3) to a good approximation.

We wish to bound the magnitude of W+
(end) sufficiently well to show that it contributes

negligibly in Eq. (3.39). Let us first consider the contribution to W+
(end) from the pre-

plunge orbital segment rplng ≤ r ≤ rend. The proper-time interval along this segment is

∆τ ∼ (rend − rplng)/ṙ = O(η0ε0) (at most), since ṙ = O(ηε) along the attractor, where the

evolution is driven by radiation reaction. Hence, the change experienced by the specific

energy and angular momentum along this segment is ∆E ' Ω∆L = O(η). Recalling

Ω = 1/2 + O(ε), this gives ∆W = O(εη) and thus a contribution of O(εη2) to W+
(end),

negligible compared to the O(η2) terms in Eq. (3.39).

Next consider the contribution to W+
(end) from the plunge segment reh ≤ r < rplng.

Using the geodesic equation of motion (2.3), one finds that the proper-time interval along

that segment is ∝ ln[(rend−reh)/(rend−rplng)] ∼ ln η. The corresponding change in specific

energy is ∆E = O(η ln η). Since the radial velocity remains small, ṙ = O(ε), throughout

the entire plunge, we have ∆L ' Ω−1∆E, giving ∆W = O(εη log η) and a contribution of

O(εη2 log η) to W+
(end). Once again, this is negligible compared to the O(η2) terms in Eq.

(3.39), assuming only ε� 1/| ln η|.

We conclude that, whether the plunge from the attractor occurs at the ISCO or earlier,

the term W+
(end) in Eq. (3.39) is always sub-dominant and negligible for ε, η � 1. Within

our approximation, the energy the particle carries with it as it crosses the horizon is the

energy with which it has left the attractor.

4This can be seen in one of two ways. First, by noting that the shift in the radial location of the unstable
equilibrium due to the GSF is of O(εη) [see the discussion below Eq. (3.15)]; and, second, by using the
regularity argument presented below Eq. (3.22) to show that F r must be ∝ ε (in addition to being ∝ η2).
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Appendix C

Metric decomposition: basis of

tensor harmonics

We provide here explicit expressions for the basis of tensor harmonics appearing in Eq.

(5.28):

Y 1
αβ = 1√

2



1 0 0 0

0 f−2 0 0

0 0 0 0

0 0 0 0


Y l m, Y 2

αβ = f−1
√

2



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


Y l m,

Y 3
αβ = 1√

2



f 0 0 0

0 −f−1 0 0

0 0 0 0

0 0 0 0


Y l m, Y 4

αβ = r√
2l(l + 1)



0 0 ∂θ ∂φ

0 0 0 0

∂θ 0 0 0

∂φ 0 0 0


Y l m,

Y 5
αβ = r f−1√

2l(l + 1)



0 0 0 0

0 0 ∂θ ∂φ

0 ∂θ 0 0

0 ∂φ 0 0


Y l m, Y 6

αβ = r2
√

2



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 s2


Y l m,

Y 7
αβ = r2√

2λ l(l + 1)



0 0 0 0

0 0 0 0

0 0 D2 D1

0 0 D1 −s2D2


Y l m,
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Y 8
αβ = r√

2l(l + 1)



0 0 s−1∂φ −s∂θ
0 0 0 0

s−1∂φ 0 0 0

−s∂θ 0 0 0


Y l m,

Y 9
αβ = r√

2l(l + 1)



0 0 ∂φ
s −s∂θ

0 0 0 0
∂φ
s 0 0 0

−s∂θ 0 0 0


Y l m,

Y 10 lm
αβ = r2√

2λl(l + 1)



0 0 0 0

0 0 0 0

0 0 D1
s −sD2

0 0 −sD2 −sD1


Y l m,

where λ := (l+2)(l−1), s := sin θ, D1 := 2(∂θ− cot θ)∂φ and D2 := ∂θθ− cot θ∂θ−s−2∂φφ.

The functions r, f(r) = (1− 2M/r) were introduced to guarantee regularity at infinity and

at the horizon of the numerical variables h̄i,lm.

The coefficients a(i)l in Eq. (5.28) read

a(i)l = 1√
2
×


1, i = 1, 2, 3, 6,

[l(l + 1)]−1/2, i = 4, 5, 8, 9,

[λl(l + 1)]−1/2, i = 7, 10.

(C.1)



Appendix D

Coupling terms and sources in the

field equations

We provide here the coupling terms and sources appearing in Eq.(5.29), as given in [101].

In what follows, a prime will denote differentiation with respect to r, so that f ′ = 2M/r2.

The coupling termsMi,l
j h̄

j,lm read (we will omit the indices l,m for the sake of brevity):

M1
j h̄
j = ∂

∂r∗

(1
2ff

′h̄3
)

+ (r − 4M)f
2r3 (h̄1 − h̄5)− (r2 − 10Mr + 20M2)f

2r4 h̄3+

− (r − 6M)f2

2r3 h̄6, (D.1)

M2
j h̄
j = ∂

∂r∗

(1
2ff

′h̄3
)

+ ∂

∂v

[
f ′(h̄2 − h̄1)

]
− 3Mf

r3 h̄1 + (r + 2M)f
2r3 h̄2+

+ (3r − 8M)Mf

r4 h̄3 − f2

2r2 h̄
4 + ff ′

2r h̄
5 + f2f ′

r
h̄6, (D.2)

M3
j h̄
j = − f

2r2

[
h̄1 − h̄5 −

(
1− 4M

r

)(
h̄3 + h̄6

)]
, (D.3)

M4
j h̄
j = ∂

∂v

[
f ′

2 (h̄4 − h̄5)
]
− l(l + 1)f

2r2 h̄2 − Mf

2r3 h̄
4 − 2Mf

r3 h̄5 − l(l + 1)ff ′

4r h̄6 + ff ′

4r h̄
7,

(D.4)

M5
j h̄
j = f

r2

[(
1− 9M

2r

)
h̄5 − 1

2 l(l + 1)
(
h̄1 − fh̄3

)
+ 1

2

(
1− 3M

r

)(
l(l + 1)h̄6 − h̄7

)]
,

(D.5)
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M6
j h̄
j = − f

2r2

[
h̄1 − h̄5 −

(
1− 4M

r

)(
h̄3 + h̄6

)]
, (D.6)

M7
j h̄
j = − f

2r2

(
h̄7 + λ h̄5

)
, (D.7)

M8
j h̄
j = ∂

∂v

[
f ′

2 (h̄8 − h̄9)
]
− Mf

2r3 h̄
8 − 2Mf

r3 h̄9 + Mf

2r3 h̄
10, (D.8)

M9
j h̄
j = f

r2

(
1− 9M

2r

)
h̄9 − f

2r2

(
1− 3M

r

)
h̄10, (D.9)

M10
j h̄

j = − f

2r2

(
h̄10 + λ h̄9

)
. (D.10)

Below we give the source terms appearing on the right hand side of Eq.(5.29). E and

L denote the particle’s energy and angular momentum and a subscript p indicates that the

corresponding quantities need to be evaluated along the worldline. Y lm are the standard

spherical harmonics and an asterisk denotes complex conjugation.

S1 =
4πf2

p
Er3

p

(
2E2r2

p − fpr
2
p − L2fp

)
Y ∗lm(π/2, φp), (D.11)

S2 = −
8πf2

p
rp

urY ∗lm(π/2, φp), (D.12)

S3 = 4π
Er3

p
f2

p(r2
p + L2)Y ∗lm(π/2, φp), (D.13)

S4 =
8πimf2

pL

r2
p

Y ∗lm(π/2, φp), (D.14)

S5 = −
8πimf2

pu
rL

r2
pE

Y ∗lm(π/2, φp), (D.15)

S6 =
4πf2

pL
2

r3
pE

Y ∗lm(π/2, φp), (D.16)

S7 =
[
l(l + 1)− 2m2

]
S6, (D.17)

S8 =
8πf2

pL

r2
p

Y ∗lm,θ(π/2, φp), (D.18)

S9 = −
8πf2

pu
rL

r2
pE

Y ∗lm,θ(π/2, φp), (D.19)

S10 =
8πimf2

pL
2

r3
pE

Y ∗lm,θ(π/2, φp). (D.20)



Appendix E

Semi-analytical integration of

piece-wise continuous series

Let us suppose that the field equations are being integrated on a cell crossed by the particle

as shown in Fig. E.1. The orbit enters and leaves the cell from two different u = const

lines, splitting the integration domain in two regions: if we denote by rp(τ) the orbit’s

position, then one has r > rp(τ) in the L region and r < rp(τ) in the R region. Eq.(5.35)

contains terms of the form ∼ (u− u0)a(v − v0)b which need to be integrated separately in

the two domains. In the L region:

IL :=
∫ vc+h

vγ(u)

∫ uc+h

uc−h
(u− u0)a (v − v0)b du dv = P (vc + h;x0)−NI(x0), (E.1)

where x0 := (u0, v0), and we introduced

P (x;x0) :=
(
(h− u0 + uc)a+1 − (−h− u0 + uc)a+1) (x− v0)b+1

(a+ 1)(b+ 1) , (E.2)

as well as

NI(x0) :=
∫ uc+h

uc−h
(u− u0)a (vγ(u)− v0)b+1

b+ 1 du. (E.3)

In the R region a similar calculation returns IR = NI(x0) − P (vc − h;x0). As one of the

Heaviside functions in Eq.(5.35) is sensitive to the position of the cell’s centre, one needs

to consider two distinct cases, i.e. (uc, vc) ∈ L and (uc, vc) ∈ R. Denoting by gab the terms
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Figure E.1: Grid cell crossed by a worldline: the particle enters the cell from a u = uc−h
line and leaves from a u = uc +h line. There are three more configurations that need to be
taken into account in the numerical implementation: in fact, the orbit could 1) enter from
a u = uc−h line and leave from a v = vc +h line; 2) enter from a v = vc−h line and leave
from a v = vc + h one; 3) enter from a v = vc − h line and leave from a u = uc + h. Other
configurations are forbidden as they would violate causality.

appearing between brackets in Eq.(5.35), the integration of gab over the cell C gives

∫
C
gabdu dv = ∂a∂bg

±(uc, vc)ha+b+2
(1 + (−1)a)

(
1 + (−1)b

)
(a+ 1)(b+ 1) + Jab (P (vc ∓ h, ξ)−NI(ξ)) ,

(E.4)

where by ξ we denote the particle’s position at the time where the orbit leaves the cell,

and in P (vc ∓ h, ξ) the upper sign refers to the case (uc, vc) ∈ L and the lower to the

case (uc, vc) ∈ R. The integral NI(ξ) needs to be approximated numerically and, to

achieve fourth-order convergence, the truncation error on the approximation has to be

at most O(h6). In our implementation, we approximate NI(ξ) using Boole’s rule, which

gives a O(h7) truncation error. Similar expressions can be obtained for the remaining

configurations, where the orbit either leaves or enter the cell from a v = const line.
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