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ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Doctor of Philosophy

A MIXED PARTICLE-MODE FUNCTIONMETHOD FOR NONLINEAR
MARINE FLUID-STRUCTURE INTERACTION PROBLEMS WITH FREE

SURFACE

by Zhe Sun

In this study, a computational model which couples particle method for fluid
part and modal superposition for structure part is developed to investigate the
Fluid Structure Interaction problems with free surface.

As a Lagrangian mesh-free method, the MPS (Moving Particle Semi-implicit)
method is very suitable for simulating violent flows such as breaking waves on
free surface. However, despite its wide range of applicability, the original MPS
algorithm suffers from some inherent difficulties in obtaining an accurate fluid
pressure in both spatial and time domain. Different modifications to improve
the method have been proposed in the literature. In this study, the following
modifications are proposed to improve the accuracy of pressure calculations and
the stability of the method: i) A density error compensation source term in the
pressure Poisson equation with no artificial term in the formulation, ii) New
solid and free surface boundary handling methods, iii) Particle position shifting
and collision handling, and iv) A new version of “cell-link” neighbour particle
searching strategy, which reduces about 6.5/9 ( 72%) of the searching area
compared with traditional “cell-link” algorithm. For problems where violent
free surface deformation only occur in a constrained area, the efficiency of MPS
is further improved byweakly couplingwith BEM (Boundary ElementMethod).

For the structure that undergoes very large rigid motions and relatively small
elastic deformation, an efficient computational model that couples the rigid-
body and flexible modes in the same set of formulation. Unlike the traditional
modal analysis, this model takes into account the mutual effect between rigid-
body motion and flexible deformation. It is more efficient compared with FE
(Finite Element) method, regardless of the size of the structure. For 2D cases,



iv

if only the first three modes are chosen to represent the flexible deformation of
the structure, it only results in a 6× 6 equation system to be solved.

For the fluid structure interaction coupling, the Gauss-Seidel iteration with
Aitken relaxation scheme is used.

The effectiveness of the proposed modifications for MPS method is validated
by a 2D Dam-break flow. Furthermore, various typical impact flow problems
in marine engineering are simulated to test the applicability of the modified
MPS method. It includes 2D/3D Dam-break with different boundary condi-
tions (such as obstacle in themiddle of the tank, spring supported rigidwall and
flexible cantilever beam), liquid sloshing, wedge-shape and ship-section-shape
dropping problems. The weak coupling scheme between MPS and BEM are
also tested by the 2D breaking solitary wave impacting a flexible wall problem.
The coupling of fluid and structure solver is also tested by various problems in-
cluding 2D flexible wedge dropping and 2D/3D floating beam/ship slamming
problems. The numerical results obtained are found to be in good agreement
with the available numerical or experimental results. With the proposed modi-
fications, the stability and accuracy of the pressure field are improved in spatial
and time domains. The proposed structure model also proves to be effective.
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Nomenclature

X−Y system the global coordinates system
xR − yR system the local system attached with rigid-body

part of the whole structure
s− w system the local system attached with flexible part

of the whole structure
α the coefficient defined in Eq. (2.39)
αu the geometry coefficient of Eq. (B.2)
β, β3d the control parameter for free surface parti-

cle identification in Eq. (2.24) and Eq. (2.44),
respectively

γ the control parameter used in Eq. (2.28)
Γ f s, Γwm, Γ f w the boundary of BEM domain
Γk

f si fluid structure interface position at kth time
step

ε the control parameter used in Eq. (2.46)
η the deflection function along the beam
θR, θ f the rotation angle of rigid-body and flexi-

ble parts of the structure in the proposed
model

θb the rotation angle of the rigid wall with
spring hinged joint in Section 5.1.1.2

κ parameter used in beammode function de-
fined by Eq. (3.15)

λ the parameter used in Laplace operator
(Eq. (2.19)) of MPS

Λ vector of the nature frequencies of structure
νd diffusion coefficient used in Eq. (2.15)
ν kinematic viscosity coefficient
ρ0 fluid density
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xx NOMENCLATURE

ρl the line density of beam
σ2

d variance of the diffusion process
σ parameter used in beammode function de-

fined by Eq. (3.17)
Φ = [φ1, φ2, φ3, · · · ] mode functions of structure
ϕ velocity potential
Ψ0, Ψ1 parameters defined in the Eq. (3.51) and

3.52 to simplify the proposed structure
model

τ tangent vector of the solid or free surface
boundary

ω natural frequency
ξ the coordinates of beam central line repre-

sented in s− w system
C speed of sound
Cd the scaling coefficient of beam mode func-

tions
d number of space dimensions
D the vector of generalized position variables

for the proposed structure model defined
by Eq. (3.53)

E Young’s Module
g vector pointing to direction of gravity
i, j index number of a particle or different parts

of structure
Ik
d , Ik

s the integration of distributed dipole and
source over kth element in BEM

IN the N × N identity matrix
IR, I f , Ib rotational inertia of the corresponding

structure
J the 2nd order moment of cross section
k the index number of different time step
Kb the stiffness of the spring in Section 5.1.1.2
l, L, Lb the length of the corresponding structure
M, M f , MR, Mb the mass of corresponding part of structure
n particle density defined by Eq. (2.8)
n normal vector of the solid or free surface

boundary
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Nu particle number in an unit volume
N, Np neighbour particle numbers of a particular

particle in its support domain or the num-
ber of modes that has taken into account

p pressure
Q the vector of generalized forces variables for

the proposed structure model defined by
Eq. (3.54)

q = [q1(t), q2(t), q3(t), · · · ]T generalized coordinates corresponding to
beam mode functions

ri position vector of particle i
rij value of the distance between particle i and

j
r0 initial distance between particles
re the radius of the local support domain
R f , RR the rotation matrix defined by Eq. (3.34)
t, ∆t time or time interval
T viscous stress tensor
T, TR, Tf kinetic energy of the structure
Tb the torque applied on the beam structure in

Section 5.1.1.2
u f an arbitrary scalar function
u f an arbitrary vector function
u fluid velocity
ub solid boundary velocity
U a constant matrix define by Eq. (3.37)
V, VR, Vf potential energy of the structure
V, Vp velocity of the boundary in BEM
w(rij) the weight function
XcR = [XcR, YcR] the coordinates of the mass centre of the

rigid-body part of structure in global X−Y
system

Xc f = [Xc f , Yc f ] the coordinates of the mass centre of the
flexible part of structure in global X − Y
system

xo f = [xo f , yo f ] the coordinates of flexible part mass centre
of whole structure in xR − yR system
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xR = [xR, yR] the coordinates of the rigid-body part mass
centre of whole structure in xR− yR system



Chapter 1

Introduction

1.1 Background and Motivation

The violent free surface flow and structure interactions are very common for
ship and other offshore structures. Some typical phenomena include slamming
between ships and waves, sloshing of the liquid inside the tanks for LNG ships,
the Green Water loading when run-up water impacting the upper structure
on the deck, etc. Generally, the experimental approach is still regarded as the
most reliable way to test the performance of the marine structures. However
experimental study comes with some limitations as well, for example the high
financial and time cost, scale problem due to the restriction of physical size, etc.
The rapid development of the computer sciencemakes the large scale numerical
simulation realistic. This provides the alternative to overcome the shortcomings
of experimental study aforementioned. To simulate and understand these
phenomena, and consequently provide some guidance for the design of the
marine structures to guarantee their performance and safety under various
sea conditions are a vital part of the marine engineering research. Despite
recent advances in numerical methods and computer technology, the numerical
simulation of nonlinear Fluid-Structure Interaction (FSI) problems still remain
as a challenge [156].

Generally, instead of solving a simultaneous set of equation system for both
fluid and structure domain, for most of the engineering problems, two different
solvers will be used to solve each of them separately with a couplingmechanism
to exchange information (A brief review of the FSI coupling strategy will be
given in Section 1.2).

1
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For the fluid part, various types of solvers have been used for different situa-
tions such as potential flow model, mesh-based Navier-Stokes (NS) solver and
the emerging particle methods. The potential flow model is an efficient and
stable approach for many wave-structure interaction problems. However, it
can not handle the situations where breaking waves are involved. The general
CFD (Computational Fluid Dynamics) solvers that are based on Navier-Stokes
equation are capable of dealing with these violent free surface deformations.
Based on the way of domain geometry discretization, the NS type solvers could
be further classified as mesh-based and mesh-less methods (including particle
method). The large free surface deformation can cause mesh distortion or other
problems in the mesh-based approaches such as Volume of Fluid (VOF) [47],
Level Set(LS)method [115] andConstrained Interpolation Profile (CIP) [51]. On
the other hand, the particle method, which is a mesh-less and Lagrangian ap-
proach, is very straightforward and suitable for the aforementioned violent free
surface and structure interaction problems. The SPH (Smoothed Particle Hy-
drodynamics) [35, 97] and MPS (Moving Particle Semi-implicit) [73] are both
representatives of the so-called particle method. Although the rapid develop-
ment of this method, the application to wave and flexible structure interaction
especially the 3D case still needs more research and development.

For the structure part, the Finite Element (FE) method is generally applicable
to both small flexible deformation [139, 167] and large nonlinear deformation
[173]. However it doesn’t mean that it is the most suitable one for all problems.
Actually for a floating structure like a ship hull, the typical feature of motion is a
large rigid-bodymotion plus a relatively small deformation. This feature makes
themodal superposition technique suitable and accurate enough to describe the
flexible deformation, which has already been used in the traditional Hydroelas-
ticity calculation [155]. More specifically, in theHydroelasticity theory, the fluid
force is calculated using potential flow model based on the mean rigid-body
wave-structure interfacewithout considering the structure displacement, which
means the highly nonlinear violent fluid motion and the effect due to the large
structure displacement could not be taken into account. The rigid-body andflex-
ible motions computation are based on these resultant forces separately without
considering the mutual effect between them. Therefore, an efficient modal anal-
ysis model which first considers the coupling between rigid-body and flexible
modes, and then allows the fluid solver to consider the structure displacement
effect in an iterative manner, would certainly improve the capacity of the modal
analysis for marine engineering problems.



Chapter 1 Introduction 3

Motivated by the above considerations, this thesis aims at developing an im-
proved particle method for fluid and model superposition technique for struc-
ture for accurate simulation of complex free-surface fluid flow and floating flex-
ible structure interaction problems. In the following section of this Chapter, a
review of the fluid structure interaction strategy will be given, then the various
ways of simulating nonlinear free surface flow and flexible structure dynam-
ics will be examined. Finally the research objective, thesis structure and major
findings are presented.

1.2 Fluid Structure Interaction dynamics

The Fluid Structure Interaction (FSI) dynamics, as defined in Xing et al. [167,
170], is "an interdisciplinary subject to study the dynamic behaviour of a sys-
tem consisting of both solids (structures) and fluids simultaneously", in which
neither the fluid nor solid variables could be eliminated when solving the other
domain. FSI problems in engineering involves inter-disciplinary studies relat-
ing to fluid, flexible structure and their physical coupling mechanisms. Their
interaction gives rise to a rich variety of physical phenomena in many fields of
engineering, for example, sloshing in LNG tankers, offshore structures, free sur-
face channel flows, ship-wave interaction, etc. For most practical fluid-structure
interaction problems, it is difficult to find analytical solutions and reliance on
numerical methods become the only way forward. However, despite the recent
advances in numerical methods and computer technology, the numerical simu-
lation of fluid-structure interaction problems still remain a challenge, and in par-
ticular for problems characterized by large displacements of the fluid-structure
interface or by a rapidly moving fluid free-surface (which are still highly in-
tractable).

As mentioned before, based on the solving strategy, the FSI problems can be
classified into two categories, i.e. monolithic and partitioned approaches.

In amonolithic method, the governing equations of both fluid and solid domain
are normally formulated in the same mathematical framework (or using a
uniform constitutive relationship for both domains) and then discretized into
a single algebraic system. The boundary conditions (e.g. velocity continuity
condition on the interface) will be substituted into this algebraic system [59].
The resultant linear system will be solved by a single solver [32] (instead of
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one for each part). This approach is suitable for the problems where no clear
interface exist such as flow in porous medium [167].

Since this kind of approach is an inherent implicitmethod, it tends to give amore
stable solution and will allow a relatively large time increment. This approach
is especially suitable for the cases when two subdomains have similar densities
(e.g. the mass ratio is close to one) [122]. However, in this situation, another
problem called “added mass” effect [54] will become important, which can
result in instability or poor convergence. This phenomena is more serious in
biomechanics [54] in which the muscles and arteries are more similar with the
blood (the interacting fluid) in material property than the situations in the field
of marine or aerodynamic engineering. The light-weight structures can suffer
this problem as well [122].

Actually, the mass ratio is also the reason why monolithic approach has diffi-
culty in handling fluid interactingwith stiffer structures [42], such aswater-ship
interaction. Considering that different subsystems have different scaling of vari-
ables in such situations, whichwill result in poorly conditioned couplingmatrix
(e.g. including zero entries on the diagonal [43]), it is difficult to solve this linear
system without any pre-processing [32, 46]. One of the key parts of the exist-
ing monolithic methods is consequently to develop effective pre-conditioners
[45, 46] for the resultant algebraic system after discretization. Another issue
arises in monolithic method is that since the time increment is equal in each
subsystems, the efficiency may not be as good as that in partitioned methods in
which one subsystem can be solved with larger time intervals if necessary [43].

The main advantage of partitioned method, compared with its monolithic
counterpart, is the high code modularity and flexibility which permits to adopt
various, and more importantly—suitable solvers for each sub-domain [174].
The resultant subsystems are smaller and better conditioned [122], which
will be easier to solve. The state-of-the-art achievements for the fluid and
solid computations could be adopted, and the code maintenance is easier, e.g.
keeping the other solver generally unchanged when updating one solver. The
drawback is the convergence and stability problem [45, 174], especially for
the weakly coupling in which the interface compatibility condition may not be
satisfied accurately at each time step. But the introduction of iteration within
each time step can, to a large extent, overcome this problem, although sometimes
the convergence rate is slow.
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Based on the above discussion, the partitionedmethods are supposed to bemore
suitable, at least in marine engineering, for FSI simulation, although monolithic
approach could be effective for other special applications (e.g. bio-engineering
[54]).

For the partitioned approach (sometimes also referred to as iterative approach),
two criteria could be used to classify the various methods: 1) the type of the
boundary condition adopted for fluid and structure solver on the interface; 2)
whether an iterative procedure is employed within one time step. Regarding
boundary conditions, the most commonly used ones for fluid and structure
solver are essential and natural conditions respectively, which means the po-
sition, velocity and acceleration of the interface (from the structure solver) are
used to solve the fluid force, and then the pressure from fluid are applied on
the interface to solve the structure response. There are also some other types of
boundary conditions such as natural boundary for fluid and essential for struc-
ture or using natural boundary condition for both fluid and structure solvers
[174].

For the ways of integrating the two computational domain together, there
are several options. If a linear problem is considered, where the motion of
the interface is relatively small or even negligible, either no coupling (which
strictly speaking is rather a separate fluid or solid mechanics problem instead
of a FSI problem) or weak coupling is accurate enough such as in the field of
Hydroelasticity [10]. But, although the weak (i.e. no iteration) interaction
between fluid and structure solvers have been applied in some situations [9,
116], for most of the cases, in order to reach a certain level of convergence
accuracy, some kinds of iteration between the two solvers are required. As
a consequence, the problem of making the iteration convergent and efficient
arises. The result of each iteration is the new position of interface, therefore
using some forms of preconditioning on this interface before applying it as an
input into the next iteration would be necessary to improve the convergence
property. Various approaches such as Gauss-Seidel method with relaxation
[76, 139], Newton Krylov method [70] or the so-called IQN-ILS [28] ,etc,
are used. Among all these techniques, the Gauss-Seidel iteration with Aitken
relaxation method, as described in Ref [76], “shows very good convergence
properties at surprisingly low cost”. Therefore, this technique is adopted in this
study as well.
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1.3 Nonlinear free surface flow simulation

1.3.1 Potential flow vs. Navier Stokes model

The invisid and irrotational assumption of free surface flow have been exten-
sively used in the field of marine hydrodynamics. The resulting potential flow
model is governed by Laplace equation. The numerical solution strategy of
this equation could be categorized by various criteria such as the geometric dis-
cretization; the Green’s function used on the free surface; and the way of han-
dling the time dimension.

More specially, the computational domain could be directly discretized by
volume mesh and then solved by various numerical scheme such as FE (Finite
Element) [100, 163] or HPC (Harmonic Polynomial Cell) [129]. On the other
hand, by using the Green theorem, the Laplace equation could be transformed
into a boundary integral equation, which is then solved by BEM (Boundary
Element Method) [147]. Clearly the later approach reduces the problem by one
dimension and consequently improves the efficiency, which is alsowhy the BEM
is more popular in the field of hydrodynamics.

Two types of Green function could be used in BEM to solve the free surface
flow problem. One is the so-called free surface Green function which means
it satisfies both the Laplace equation and the free surface boundary condition.
The discretization only requires to be conducted on the solid boundaries. This
approach demands high computational effort and becomes very complicated
for nonlinear cases [31]. An alternative option is the simple Green function
(or Rankine source) which is only the general solution of Laplace equation.
Hence in order to satisfy the free surface boundary condition, a series of this
source function has to be distributed along the whole boundary of the problem
including both the free surface and solid boundaries. A detailed review of these
two approaches could be found in Ref [31].

For the way of handling the time dimension, if the problem under investigation
is a periodic flow with single frequency, the time dimension could then be
separated and the resultant equation is purely about space variable which
depends on the boundary configuration. This is then called frequency domain
problem [24, 84]. However formany nonlinear situationswhere the dynamics of
the system is not necessary periodic, the free surface and solid boundaries have
to be updated to new position at every time step and then solved. This situation
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is called time-domain problem. The MEL(Mixed Euler-Lagrange) algorithm
[31, 39, 41, 94] is one of the most popular one used to solve a time domain
problem.

Although the potential flow model has been successfully applied for many
hydrodynamic problem as mentioned above, one inherent flaw of this model
is that it can not handle the situation where wave breaking or re-entry is
involved. It means the violent free surface deformation, which is quite common
in slamming or sloshing problems, can’t be simulated by potential flow model.
Also the viscosity effect is ignored in the potential flow, although it does not play
a significant role inwave dynamics. On the other hand, as a general approach for
almost any fluid dynamic problem, the CFD (Computational Fluid Dynamics)
method that is based on Navier-Stokes equations provides the possibility of
solving this kind of problem. The review of the traditional mesh-based and the
emerging mesh-less CFD methods are given in the next section.

1.3.2 Meshless vs. Mesh-based CFD methods

1.3.2.1 Current mesh-based CFD methods

For the traditional mesh-based CFD approaches, the grids could be generated
to conform (body-fitted mesh) or not (fixed Cartesian mesh) to the moving
fluid-structure interfaces. The associated numerical schemes such as Finite
Volume (FV) [30, 157], Finite Difference (FD) [50–52, 177] and Finite Element
(FE) [153, 162, 165, 166] are then applied to these grid configurations to solve
the Navier-Stokes equations. In order to simulate the constantly moving free
surface, a simple idea is that the grid could be generated to fit (conform) this
dynamic shape [140]. But, this approach cannot deal with breaking waves.
The main stream strategy of handling free surface, including the post-breaking
phase, is to use a scalar function φ to identify the phase of fluid, air or solid
[177]. A corresponding convective equation with the form of ∂φ/∂t + u · φ = 0
is constructed to calculate the transportation of a particular phase (e.g. fluid
phase). In this category, some of the most popular approaches [157, 177] used
inmesh-based CFD includeMAC [104] (Marker and Cell), VOF [47] (Volume of
Fluid), LS [115] (Level Set), CIP [50, 51, 177](Constrained Interpolation Profile)
etc.
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This type of free surface capturing approaches could be very complicated, espe-
cially for large deformation like wave breaking and water splashing. Moreover,
the main difficulty for the above mentioned free surface capturing method, i.e.
VOF etc., is that the numerical diffusion occurred in the calculation of convective
term will corrupt the accuracy, i.e. the sharp free surface may become thicker
during simulation [128, 177], especially when the deformation of free surface
is very large. Although it is reported that the adoption of a “transformation
function” [177], which will enhance the critical value of the marker function
corresponding to free surface, will avoid the diffusion to a large extent.

For fluid structure interaction problems, the fluid motion is usually described
in an Eulerian frame, where the motion of the mesh (if there it is a dynamic
mesh) is not necessary to be the same of the fluid at that position; while a mate-
rial coordinate system, i.e. Lagrangian description, is assigned to each discrete
solid node and follow its motion. For linear problems [168], The effect of the
fluid structure interface changing due to the displacement of the solid could be
neglected, so that the initial static equilibrium configuration of the fluid-solid
interaction system could be maintained for developing the numerical scheme.
However, for nonlinear problems that involves large interface deformation, the
configuration of the interface has to be constantly updated during the numer-
ical simulation. The difference between Lagrangian and Eulerian descriptions
means there has to be a special scheme to handle the changing of interface. For
the grid generation of fluid part in this situation, one strategy is creating mesh
to conform to the geometric shape of the solid boundaries, and the mesh would
then need to be re-generated at each time step. The Arbitrary Lagrange Eulerian
approach (ALE) [59, 96, 169], which allows the mesh moving in an arbitrary ve-
locity and the corresponding convective terms in governing equations need to
be adapted according to the moving mesh velocity, is the most popular solving
strategy for this situation.

However, for this conforming type mesh [130] (body-fitted grid), the topologi-
cal connectivity between nodes, i.e. elements in FE or control volume in FV etc.
may experience severe distortion (e.g. negative volume) during violent bound-
ary changing, which will terminate the simulation. But these highly non-linear
scenarios such as large motion of surface ships and the consequent ship-water
interface deformation are sometimes inevitable for marine engineering simula-
tion. Additionally, because this kind of mesh is fitted with the boundaries at
each time step, it will need to keep re-generating mesh during the simulation.
This will increase the CPU burden and also the corresponding numerical errors
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when mapping values from old to updated mesh. Even for ALE, where mesh
could move independently from material motion, simulation will also deterio-
rate due to the increased anisotropy or uneven distribution of grid points [95]
when large deformation occurs, and consequently severe error or termination
of calculation would be observed. Moreover, a high order and smooth local in-
terpolation is not convenient for arbitrary geometry in mesh based methods.

For the fixed Cartesian grid (immersed boundary method [105] and CIP-based
approach by Hu et al [50, 51]), the above mentioned free surface capturing
methods, i.e. VOF, CIP or LS etc. are also employed, so it also unavoidably
suffers from the numerical diffusion problem as in body-fitted type mesh. In
addition, local refinement of the grid would be required for some kind of
situations such as high Reynolds number flow [105], and this manipulation
increases the complexity of the algorithm which to some extent counteract the
advantage of the fixed Cartesian grid generation, i.e. simplicity.

Based on the above discussion, for fluid-structure interaction problems involv-
ing disintegration of fluids and large deformation of free surfaces (e.g., breaking
waves, fragmentation of the fluid, fluid-solid separation), mesh-based methods
have limitations.

1.3.2.2 Meshless methods and their advantages

As mentioned above, since the connectivity of mesh between nodes may con-
strain the large geometrical deformation of the computational field, a natural al-
ternative strategy is to discretize the continuum field with a set of independent
particles without the topological constraints (i.e. mesh). The physical values on
a particular particle are then represented by some kind of data interpolation or
fitting (e.g. kernel or MLS approximation) among the values on adjacent parti-
cles. The differential equations (i.e. strong form) or integration equations (i.e.
weak form) are then discretized by the function values on discrete particles into
a linear algebraic system. After solving this algebraic system, the fluid or solid
field could be updated for the next time step under an Eulerian or Lagrangian
frame (the hybrid Eulerian and Lagrangian approaches i.e. the ALE in mesh-
less method, has also been introduced [14]). This is the basic idea of a typical
meshless method.

Since the SPH method [35, 97], which is regarded as a pioneer method in
the category of meshless method, is first developed to deal with astrophysical
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problems in open space (certainly, now it is not limited to this field [36]), many
variations have been introduced into the computational mechanics.

From computational point of view, the meshless methods can be categorized
based on two different criteria [86, 130, 175]: the methods of function approx-
imation, i.e. different interpolating methods; and the form of governing equa-
tions, i.e. strong form and weak form.

a) Field approximation method

Currently, the well-known function approximation strategies in meshless meth-
ods include Kernel integration (e.g. SPH and MPS) and Reproducing Kernel
function method (RKPM); Moving Least Square method (MLS); Radical Basis
Function method (RBF), etc.

In the two landmark papers by Monaghan [35] and Lucy [97], one of the
currently most popular meshless method—Smoothed Particle Hydrodynamics
(SPH) was developed, in which the kernel approximation was introduced. It
utilizes the integration of a kernel function over a compact support domain
to approximate a particular function. This kind of approximation method
has the advantage of a high computational efficiency and easy to implement.
But it also suffers inaccuracies, especially when the particles are irregularly
distributed. This is maybe because, in the discrete form, the unity condition of
kernel sometimes cannot be satisfied for random particle distribution or in the
area which is close to and truncated by the boundaries. In order to tackle this
kind of problem, the Reproducing Kernel ParticleMethod (RKPM) [92, 130] has
been developed. In RKPM, for every particle, the original kernel is multiplied
by a correction function such as a polynomial basis with a series of unknown
coefficients. Then, the modified kernel is substituted into the discrete form of
moment condition, by which the corresponding unknown coefficients in the
correction function can be solved. The same process should be conducted to
every particle to get the modified kernel function for each of them.

MPS (Moving Particle Semi-implicit) method [61, 73] adopts the kernel inte-
gration method to approximate the field value as well. The main distinguished
feature lies on the approximation of gradient and Laplacian operators. In MPS
method, the derivative of kernel function will not be used to calculate these op-
erators, instead, the gradient or Laplacian between each particle pair of center
particle ri and its neighbouring particle rj will be first calculated, and then the
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gradient or Laplacian of this centre particle ri is obtained by the kernel integra-
tion of these “local” ingredients [61]. The details will be discussed in Chapter
2.

Moving Least Square (MLS) approximation exists as a traditional data fitting
technique for quite a long time [78, 130]. The first meshless method which
introduce this MLS method as a function approximation technique is Diffuse
Element Method (DEM) [108, 130][35, 49], and followed by Element-Free
Galerkin Method (EFGM) [7, 130] which applies MLS with a Galerkin weak
form for crack growth simulation. MLS method also conducts the function
approximating within a compact support domain Ω. The difference is MLS
defines the approximation by the summation of a series of linear independent
polynomials [7, 130]. The coefficients of these basis functions are optimized
in the weighted least square sense using the discrete function values on the
particles within the support domain [130]. The first and second derivatives can
be obtained by taking the derivation of the shape functions. Theword “moving”
in the name of MLS means that this least square fitting is in the local sense.

The Radial Basis Functions (RBF) method, just like MLS, also originates from
the scattered data fitting [151]. The basic idea is that different particles interact
with each other through a radial basis function which is defined as the function
of distance between different particles. There are basically two kinds of RBF,
namely “global” and “local” ones. The global RBF is regarded to generate
a large, dense, ill-conditioned linear system [151, 164] for large number of
particles, and this hinders the application of RBF. Consequently, the “local”
RBF is developed, in which the unknown function is approximated based on
the particles within a compact support domain. RBF-FD (RBF-based Finite
Difference) [158] and RBF-DQ (RBF-based Differential Quadrature) [135] are
all under this category. Generally, these MLS and RBF approaches are more
time-consuming than the kernel integration i.e. SPH and MPS.

b) Strong form and weak form

The strong form of governing equation means the differential form, in which
the equations are established on an arbitrary point of a continuum according to
some physical laws. So in the meshless methods, the governing equations are
also established and then discretized on each particle. This is origin of the name
“collocation” method
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The SPH method [35, 97] and its variation MPS method [73], the FPM (Finite
Point Method) [111, 112] are all the examples of the application of strong
form governing equations. Different function approximation methods can be
adopted in solving the strong form equation such as kernel integration (e.g.
SPH, MPS), Moving Least Square (e.g. FPM), hp-cloud [89] etc.

The so-called weak form of governing equations can be derived from the
Weighted Residual Method [90, 175]. The integration form of governing equa-
tion is again could be discretised by different field approximation techniques
as aforementioned. A typical example with this situation is the Element-Free
Galerkin Method (EFGM) [7, 108]. EFGM, adopts MLS approach to represent
the function. This method is mainly applied in structural analysis such as the
propagation of a crack.

If the weight functions are not generated from the same basis functions of trial
functions, which means they are either from different basis functions or have
different support size (definition domain), and the resultant method is Petrov-
Galerkin method.

Meshless Local Petrov-Galerkin (MLPG)method [4, 88] is under the category of
meshless Petrov-Galerkin methods. In MLPG, the most distinguishing feature,
compared with global weak form, is that the weak form equation (the integra-
tion) is performed over a set of local sub-domains which could have arbitrary
shapes and may overlap each other. Normally, each sub-domain is centred by
a particle, so the number of equations is equal to the number of unknown vari-
ables (particles), which ismore straightforward and clear than EFGM in the con-
struction of the final linear system [4].

A distinguishing example of employing MLPG method in water wave and FSI
simulation is the MLPG_R (MLPG based on Rankine source solution) method
[98, 99, 139, 176]. In MLPG_R, the Petrov-Galerkin method is applied to the
pressure Poisson equation which is derived from the projection procedure of
the original Navier-Stokes equation. The weight (test) function is selected to
be a Green’s function, and decayed to be zero on the edge of the sub-domain.
Considering that the Green’s function satisfies the Laplace equation except the
domain centre rI , and after some mathematical operation, the local weak form
can be deduced into a form where no differential operator exists. The most
distinguished feature of the formula is that the Laplacian operation of pressure
and the divergence operation of the velocity in the original Poisson equation are
reduced into the pressure and velocity themselves respectively.
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Finally, it is worth mentioning that the meshless method is only a different
spatial discretization strategy comparedwith conventionalmesh-basedmethod.
It does not imply that the fluid will be solved under Lagrangian or Eulerian
frames. That is to say, when updating the field status from the current time step
to next one, these discrete “points” could either be treated as material particles
(i.e. possessmass, density etc.) whichwill move to next position according to its
velocity or just interpolation points as the nodes in mesh-based method which
is fixed [151] or moving [14] in an ALE scheme. Generally, the Lagrangian
meshless method is referred as “particle” method and meshless or mesh-free
method could also be regarded as Eulerian meshless method in a narrowed
sense.

Themain advantages of meshless methods in Lagrangian or Eulerian frames (in
comparison with the traditional mesh-based methods) could be summarized as
follows [91, 130]:

i) It is easier and more straightforward to deal with large deformation, since
there is no topological connectivity between discrete particles. For the La-
grangian meshless methods, the tracing largely deformable boundaries such as
free surface are more effective.

ii) Adding and eliminating particles during calculation will not affect the adja-
cent particles because there is no restraint between particles. This means that
flexible adaptive refinement is easier.

iii) As different interpolation strategies could be used among particles, to in-
clude a priori knowledge about the local behaviour is possible as well as a high
order interpolation could also be considered.

iv) For the Lagrangianmeshlessmethod, i.e. particle method (e.g. SPH,MPS), it
is easy to simulate the waver breaking and fragmentation without sophisticated
free surface tracking schemes in mesh-based methods.

v) The convection term of the Navier-Stokes equations vanishes in the La-
grangian frame, so the particle method will not suffer the diffusion problem.
In addition, fundamental conservation laws, such as conservation of mass, are
satisfied accurately.

It should be mentioned that there are also some intrinsic drawbacks of many
meshless or particle methods such as the difficulty of imposing boundary con-
ditions, the instability issue when using fully Lagrangian frame, computational
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burden for large scale particle numbers. However, the recent research including
this study have proposed many techniques to tackle these issues.

1.3.2.3 The Lagrangian Meshless method–Particle method

The Particle method is a combination of meshless spatial domain discretization
and Lagrangian type description of advancing the computational points in time
domain. The typical features of the violent free surface flow around floating
bodies (i.e., large deformation of the free surface and the large displacement
of floating body) imply that the Lagrangian frame is more convenient and
straightforward for the description of wave breaking, fragmentation, re-entry
etc. Moreover, meshless spatial discretization will overcome the distortion of
mesh due to large boundary motions and make the free surface tracking easier.
Additionally, the Lagrangian approach also avoids the calculation of convection
termwhichwill appear in the Eulerian formof theNavier-Stokes equations. As a
consequent, the N-S equations could be solvedmore directly without numerical
diffusion, instability or topological problems [157].

SPH and MPS are all widely used particle methods. As one of the oldest mesh-
less method, SPH was first introduced to compute the astrophysical problems.
Later, researchers found out that it is also suitable for the simulation of contin-
uum mechanical problems, i.e. solid and fluid dynamics. In 1994, Monaghan
[106] applied SPH to free surface flow simulation. In this paper and many sub-
sequent ones [18, 19, 25, 33], the fluid is considered to be “weakly” compress-
ible. That means pressure is calculated through the Equation of State (EOS), in
which the pressure evolution is related with density variation. The kind of SPH
which employs this explicit pressure-velocity decoupling approach is referred
as Weakly Compressible SPH (WCSPH). The EOS in this WCSPH requires cali-
bration of sound speed for different cases. And this limitation also restricts the
use of large time step. Another way to impose the incompressibility condition
is introduced by Koshizuka [73] in the so called Moving Particle Semi-implicit
(MPS) method. In MPS the two-step projection approach is adopted, in which
the pressure is calculated by a Pressure Poisson Equation (PPE) in the correc-
tor (second) step of the algorithm. This technique makes it possible to choose
a larger time step (certainly still controlled by stability condition such as CFL
condition). The PPE was also adopted to integrate with SPH methodology by
Rudman [23] and Shao [128]. This new version of SPH is called Incompressible
SPH (ISPH). MPS and ISPHwere all successfully used to calculate many violent
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free surface problems such as Dam-break [61, 128], Sloshing [82], Green water
[134] and Slamming [2, 127] etc. Additionally, MPS adopts a simpler differen-
tial operator (gradient and Laplacian) based on theweighted function averaging
process which avoids the gradient and Laplacian operation of kernel function
in SPH.

In this research, MPS method is employed as a basis to further improve the vio-
lent free surface calculations, especially for suppressing the pressure fluctuation
and numerical instability (which are the major shortcomings in MPS method).
A more detailed review of state-of-the-art MPS is given in the Chapter 2.

1.3.2.4 Brief review of particle methods for FSI problems

Most of the current applications of particle methods in marine engineering lie
in the local violent flow such as Green water, slamming or sloshing etc.

One of the most popular application of particle methods is the simulation
of sloshing phenomena. A comprehensive review could be found in [156].
Some typical examples include: Delorm et al. [29] who used SPH method
to investigate 2D shallow water sloshing and compared the numerical solution
with experimental results; Lee et al. [83] adopted MPS method to calculate
violent free surface and floating body motion as well as impact pressure.

For Green water and slamming phenomena, there are also some studies based
on particle methods. For example, Shibata et al. [133] applied the MPS method
to investigate the pressure on the deck when ships are towed in head waves; Le
Touze et al. [81] applied the SPH method to predict the flow phenomena of
two flooding scenarios; Veen and Gourlay [161] also used the SPH method to
simulate slamming with the emphasis of 2D wedge forms on a hydrostatic tank
with free surface.

The application of particle methods to full-ship interacting with waves is very
limited. However, there are also some work such as that in Patel et al. [120],
who used a coupled SPH and FE method to calculate the ship-wave interaction
including green water.

For the FSI calculations, the particle methods are normally coupled with FE
method (for the structural part), but fully particle approach (where the particle
method is used for both fluid and structure dynamics calculation) exists as well.
In this kind of problem, the data transfer across the interface is the essential
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issue. Some typical approaches are reviewed here. Though they may not
be originally introduced for marine engineering, it is obvious that they are
applicable to this field.

SPH-FE [34]:A straightforward idea is to calculate the average pressure near
the solid boundary and exert this force to the FE nodes to update the positions
and velocities of structure. Consequently, the fluid domain can be updated by
the new structure position. It should be mentioned that the traditional ghost
particles boundary condition is also employed to prevent penetration of the fluid
particle into the structure domain.

SPH-FE [27]:A more sophisticated method introducing a potential between
fluid particles and FE nodes near the interface. The potential is defined based
on the kernel function with some control parameters, and also has a compact
influence domain. The interaction between fluid and solid is realised by adding
a source term, i.e. the interacting force, into the governing equations of both
fluid and solid domain in the area adjacent to the interface. The force is obtained
by calculating the gradient of the potential. The FE nodes are regarded as
particles when calculating the potential gradient.

MPS-FE [85]: In MPS method, the fluid pressure is calculated by a Poisson
equation, and the non-penetration boundary condition (or non-slip condition
for viscous flow) is guaranteed by involving the innermost layer of solid particles
in the pressure calculation, by which to give a repulsive force to the fluid
particles. There are also several layers of “dummy” particles covering the first
layer solid particles to help the “particle density” calculation of the first layer
solid particles. So considering that the pressure is automatically calculated on
the first layer solid particles, this pressure can directly applied to the structure
response calculation.

SPH-SPH [154]: One simple way for viscous fluid is to conduct the kernel
summation regardless of the particle nature (i.e. fluid or solid particle) and this
can automatically satisfy the velocity and normal stress continuity conditions.
However, for inviscid fluid, this kind of approach can not satisfy the non-slip
condition on the interface. Another technique is employed to realise the non-
penetration and normal stress continuity conditions. The location of interface
is captured based on the edge of solid domain i.e. the solid particles closest
to fluid. For the momentum equation, the kernel summation of a boundary
particle (fluid or solid) is only conducted within its own physical domain, and
the force exerted by other domain is added explicitly. The force is first calculated
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from the pressure gradient of fluid field adjacent to the solid domain, and then
the action-reaction principle is applied to get the force exerted by solid to fluid
(i.e. same magnitude but opposite direction). The calculation of this force is
conducted by taking the surface integration into account when deriving the
pressure gradient operator in SPH

SPH-SPH [103]: Covering the boundaries of contacting bodies with small
spheres, which are called “Pinballs” and conducting the interactions, and gen-
erating penalty forces when these pinballs belong to different bodies contact
with each other is the basic idea of “pinball” method. Different methods can be
employed in the penalty forces generating [8, 103].

1.3.3 Hybrid fluid solvers

Both of the Navier-Stokes and the potential flow models have their strength
and weakness [138]. As mentioned above, the potential flow model can
not handle the case where wave-breaking is involved. But it is usually more
efficient and stable for large scale and long time simulation. The Navier-Stokes
model (or often referred as CFD approaches) on the other hand is a general
and robust solver that can simulate the violent and complicated free surface
deformation cases. The disadvantage of the CFD approaches includes the heavy
computational cost and energy loss for long time simulation.

It is a logical choice to combine these two solvers for the problems in which
the violent wave-breaking only occurs in small constrained area and the flow
motion in majority of the fluid domain is relatively gentle. In a hybrid model,
the whole computational domain is divided into sub-domains where different
solvers are applied appropriately. Based on the way of information exchanging
between these two solvers, the hybrid model could be classified as strong and
weak couplings. A detailed review of the hybrid solver can be found in [38, 138].
A brief outline of the representative works about both the strong and weak
couplings is given below.

In the strong coupling, the two solvers aremutually dependent on each other, i.e.
the boundary values of each solver have to be calculated based on information
from the other one. Both themesh-based andmeshless CFDmethods have been
incorporated with potential solvers for free surface flow problems. Colicchio
et al [20] combined a fixed-grid FD (Finite Difference) method (using VOF to
capture the free surface) with BEM method to calculate various free surface
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flow problems. There is an overlap area between two sub-domains where the
information is exchanged and consequently provide the necessary boundary
condition to drive each solver. Grilli [38] implemented the coupling in a
different way in which the Navier-Stokes domain is fully submerged inside
the potential flow domain and the later solver covers the whole computational
domain. The dynamic pressure is included as a source term in the Navier-
Stokes equation. For the coupling with meshless method, Sueyoshi et al.
[141] used the MPS method to model the upper domain which includes free
surface and BEM to simulate the area which is close to the bottom of tank.
The information is exchanged on the interface where MPS particle moves in
Lagrangian way and BEM boundary is fixed in space. Sriram et al. [138]
combined the FE based potential flow model with another particle method
MLPG_R. The communication between the two solvers are conducted via
a moving overlapping area. The velocity of the MLPG_R particle in this
area is determined by linearly interpolating velocity from both solvers. The
strong coupling strategy normally tends to be more accurate since some kind
of convergence criteria is required during the exchanging of information. But
for the same reason, several iterations will also have to be conducted, and
consequently make the simulation more computationally expensive.

Theweak coupling strategymeans one of the solvers covers the whole computa-
tional domain and provide the boundary condition for the other one during the
whole simulation process without the need of any feedback from it. Normally
it is the potential flow model, which acts as the "base" solver to initialize and
drive the Navier-Stokes solver in the sub-domain where the violent free surface
deformation occurs. The notable examples that involve the mesh-based CFD
methods include the weak coupling between FVM (Finite VolumeMethod) and
BEM for breaking of solitary wave on slop [77]. The weak coupling between
meshless method Lattice Boltzmannmethod and BEMwere conducted for solv-
ing the same problem as well [55]. The particle method SPH has also been used
to calculate the post-breakingwaves incorporatedwith Boussinesqmethod [60].

Finally, a summary of themethods used for free surface flow simulation is given
in Table 1.1.



Chapter 1 Introduction 19

Table 1.1: Summary of the methods for free surface flow simulation

Mesh-based Meshless

Potential
flow

Efficient for linear problem, but
can not handle violent free surface
deformation such as wave break-
ing

\

Navier-
Stokes

• Capable of simulating vari-
ous flow situations, typically
FV, FD or FE with VOF or LS
for free surface capturing.

• Lagrangian or ALE type
meshes are capable to handle
small or medium boundary
deformation, but will suffer
from mesh distortion or
frequent remeshing for large
deformation problems.

• Eulerian mesh (fixed in
space) also need complex
free surface capturing al-
gorithm with numerical
diffusion problem.

• Meshless methods
(Eulerian or La-
grangian) are easier
to handle large defor-
mationwithoutmesh
distortion problems.

• Particle methods
(Lagrangian type
meshless methods)
e.g. MPS, SPH, are
very suitable for
violent free surface
deformation prob-
lems. Drawbacks are
high computational
cost, stability issue
etc.

Hybrid

Suitable for improving the effi-
ciency of problems where violent
free surface deformation only oc-
curs locally.

Similar to the mesh-based
cases, however not much
research has been done yet.

1.4 Computation of flexible structure dynamics

For FSI problems with flexible structures, Finite Element (FE) method has been
extensively used to calculate the structure dynamics, in combination with MPS
[85, 144] method or other traditional mesh-based methods [87, 167] for the
calculation of fluid motions. For the cases where large structure displacement is
involved, the non-linearity of the structure dynamics comes from two sources:
the geometric large deformation and non-linear stress-strain relationship. The
geometric effect could be handled by the so-called Total Lagrangian or Updated
Lagrangian FE formulation [6]. And the use of non-linear constitutive relation
could take the special material property into account [6]. As an example, the
co-rotational FE method [49], which follows the idea of Updated Lagrangian
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formulation, is used to solve the beam dynamics under large overall motion but
small deformation.

For a typical ship structure, the overall motion could be described as a large
rigid-body motion (such as a combination of large forward motion, pitch,
heave motions) plus a relatively small flexible bending deformation. This
feature makes the modal superposition theorem adequate and quite suitable for
representing this flexible deformation part. Moreover, it is also more efficient
than its FE counterpart in terms of computational cost. In practice, considering
the geometrically slimness of a ship structure, the beam model is normally
adopted to describe its dynamics response to external excitations. Even for a
non-beam like structure, for example a floating oil drilling platform, as long as
the flexible motion part is relatively small, the modal superposition theorem
is also applicable. What is worth mentioning here is that the mode function
for a general shape structure is normally obtained from FE method rather than
from analytical solution of beam theory, however this only requires one time
prior-calculation instead of solving FE model at each time step during the FSI
computation.

Actually, this modal superposition technique has been successfully used to cal-
culate interaction problems between water and large floating flexible structures
[57, 58, 109]. In these simulations, the fluid domain is computed by potential
flow with linearized boundary conditions, and as such it could not handle the
highly deformable free surface situations. For the structure part, either no rigid-
body modes [57] or only some of them such as heave and pitch [58, 109] are
included in the computation, since the rigid-body motion part is very small and
the elastic deformation is the main concern for these particular problems. In
[143], the rigid-body motion and modal superposition are also coupled in the
problem of elastic cylindrical shell enteringwater. This coupling is only in terms
of force computation, which means that the force for rigid-body motion takes
into account the effect of flexible deformation. However, it is not a “genuinely”
coupling because the rigid-body force (i.e. total force and torque applied on the
structure) will also affect the flexible kinetic parameters (i.e. generalized coor-
dinates of each mode), as shown in Section 3.2.

Similarly, in shipHydroelasticity [11, 15, 155], this idea has also been extensively
applied to compute the structure dynamics in regular and irregular waves
(irregular wave calculation is also based on the regular case using spectral
method). However, this computation is usually based on the small wave
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amplitude assumption (linear wave), and consequently the fluid domain is
calculated using potential flow theory, subject to the boundary conditions at
the mean free surface and structure positions [155]. This means that both the
rigid-body and flexible motion parts can only be relatively small in this method.
Moreover, in the governing equations [155], there are no terms representing the
mutual effect between rigid-body motion and flexible deformation, although
the rigid and flexible variables are solved simultaneously. This way of handling
FSI computations may be accurate enough for small motions, but in the case
of violent water structure interaction, in which the rigid-body motion part is
very large, the effect from structure flexibility to rigid-body motion should be
considered and vice versa (which can be seen from the new structure governing
equations in Section 3.2).

1.5 Research Objective

The aim of the research is to develop an efficient computational model that is
capable to simulating highly nonlinear fluid structure interaction problemswith
violent free surface deformation (including breakingwaves, fluid fragmentation
and separation).

For the fluid part, the MPS method was investigated to improve the pressure
stability and accuracy. For the structure part, the model that couples the rigid-
body and flexible modes, which includes their coupling effects, was developed.

1.6 Thesis structure

The structure of this thesis is organized as follows:

Following this introduction where the general background of this study is il-
lustrated, the methodology of the original MPS method, the proposed modifi-
cations and also the weak coupling between BEM (Boundary Element Method)
andMPS are presented in Chapter 2. In Chapter 3, brief review of the flexibility
computation and the detailed derivation of the coupled rigid-body and modal
superposition model is illustrated. Also, the details of the Gauss-Seidel cou-
pling procedure of the Fluid Structure Interaction computation is given in the
end of this Chapter.
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In Chapter 4 to 6, numerical results using the developed models are analyzed
and compared with the available experimental and numerical results in the lit-
erature. Specifically in Chapter 4, the performance of the proposed modifica-
tions to MPS is validated by the well-known Dam-break problem. In Chapter
5, a variety of different impact problems, which includes Dam-break with var-
ious boundary conditions, sloshing, slamming are simulated to further show
the capability of the proposed models. Then, the weak coupling between MPS
and BEM is investigated and used to simulate the breaking wave impacting on
flexible wall. The hydroelasticity simulation results including flexible wedge
dropping and 2D/3D floating structure slamming are presented in Chapter 6.

Finally, conclusion as well as suggestions for future works are given in Chapter
7.

1.7 Major findings

The major findings of this study could be summarized as follows:

1) The modification of the original MPS method

Despite its wide range of applicability, the original MPS algorithm suffers
from some inherent difficulties in obtaining an accurate fluid pressure in both
spatial and time domain. Different modifications to improve the method have
been proposed in the literature [63, 66, 82, 159]. In this study, the following
modifications are proposed to improve the accuracy of pressure calculations and
the stability of the method:

i) A mixed source term in the pressure Poisson equation with no artificial term
in the formulation.

The combination of velocity divergence and a particle density error compensa-
tion is proposed to control the uneven particle distribution and consequently
improve the pressure calculation and stability.

ii) New solid and free surface boundary handling methods.

The Neumann type boundary condition is applied for the solid boundary
particles instead of applying the pressure Poisson equation directly on them.
The accuracy of the intermediate velocity of the solid boundary particle is also
improved by considering the pressure. For free surface boundary, different
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schemes for 2D and 3D cases respectively are proposed to identify the free
surface particles more accurately.

iii) Particle position shifting and collision handling.

A simple particle shifting scheme is proposed to improve the regularity of the
particle distribution. And to avoid the collision of particles such as between free
surface particles, a scheme to manipulate the relative velocity is adopted.

iv) A new version of “cell-link” neighbour particle searching strategy.

By using a smaller cell size and avoiding repetitively checking of a pair of
particle, the searching area can be reduced by about 6.5/9 ( 72%) comparedwith
traditional “cell-linked” algorithm.

v) Weakly coupling between MPS and BEM

As an attempt to improve the computational efficiency, the weakly coupling
between MPS and the potential solver BEM is investigated and applied to the
problem of breaking solitary wave impacting on a flexible structure. The result
shows that for this kind of problems where the rapid fluid motion occurs in a
constrained area, the coupling with the efficient BEM method in the far field is
an effective way of reducing the computational effort.

2) Coupled rigid-body motion and modal superposition model

A structural dynamic computation model, which is designed for the structure
that undergoes very large rigidmotions and relatively small elastic deformation,
is derived in this study. Unlike the traditional modal superposition analysis,
this model considers the mutual effect between rigid-body motion and flexible
deformation. And the coupled overall rigid-flexible motion is calculated simul-
taneously by a set of small scale equation system. This model is more efficient
compared with FEM, regardless of the size of the structure. For 2D cases, if the
first three modes are chosen to represent the flexible deformation of the struc-
ture, it only results in a 6×6 matrix equation to be solved.
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MPS and modifications

2.1 Original MPS methodology

In this section, the original MPS method [73] is briefly described, including the
governing equations, particle interaction model and time stepping procedure to
enforce the incompressibility.

The problems investigated here are all marine related short duration impact
problems with high Reynolds numbers and rapid changing physical processes,
which means that the viscosity effect is quite small. As such, the Lagrangian
form of incompressible and inviscid Navier-Stokes equations (which is Euler
equations) are employed here as the governing equations of the flow.

Du
Dt

=
u(k+1) − u(k)

∆t
= g− ∇p

ρ0

∇ · u = 0
(2.1)

where u, p and ρ0 are the fluid velocity, pressure and density, respectively. The
superscripts k and k + 1 refer to the kth and (k + 1)th time steps, respectively.
This superscript notation will also be used in the subsequent sections. g is the
vector pointing to the gravity direction, i.e. g = [0,−g], where g is the value of
gravity acceleration. In Eq. (2.1), the time derivative Du

Dt is discretized by a first
order Lagrangian finite difference.

In order to verify the fact that the viscous effect is negligible for the high
Reynolds number problems investigated in this study, the viscous incompress-
ible Navier-Stokes equations Eq. (2.2) are also used to simulate a 2D dam-break
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problem in Chapter 4, and the results compared to those from Euler equations.
The numerical implementation process below is based on Eq. (2.1), though the
same process could be applied to Eq. (2.2).

Du
Dt

=
u(k+1) − u(k)

∆t
= g− ∇p

ρ0
+ ν∇2u

∇ · u = 0
(2.2)

The parameter ν in Eq. (2.2) is the kinematic viscosity coefficient. The value
corresponding to water in the room temperature is used in this study, i.e.
1.0037× 10−6Pa · s.

The numerical implementation of the original MPS method is first described
in the following sections. Next, its drawbacks/shortcomings are discussed.
Then, the sate-of-the-art of MPS method is briefly reviewed. Finally, several
modifications are proposed to improve the performance of the MPS method.

2.1.1 Enforcing incompressibility—Projection method

As a typical approach for the incompressible fluid computation, the two-step
projection method, which is introduced by Chorin [16], is adopted here to
decouple the velocity and pressure calculation:

The first step is to calculate the intermediate velocity without considering
pressure, and then move the particles to the intermediate location according
to this velocity:

u(∗) = u(k) + ∆tg

r(∗) = r(k) + ∆tu(∗) (2.3)

where r represents the location vector of particles. The superscript ∗ indicates
the value of intermediate status of a particular time step. A pressure Poisson
equation is then derived as follows to solve the pressure field:

∇2p(k+1) = ρ0
n0 − n(∗)

n0∆t2 (2.4)

Here, the term n0 and n(∗) are called "particle density", with n0 the desired
value corresponding to uniform particle distribution, and n(∗) the actual value
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at the intermediate status. They are proportional to the physical density and the
definition is provided in Section 2.1.2

After obtaining the pressure, the velocity and location are then updated as:

u(k+1) = u(∗) − ∆t
∇p(k+1)

ρ0

r(k+1) = r(k) + ∆tu(k+1)
(2.5)

2.1.2 Particle interaction model

The function approximation method in MPS is weighted average approach.
Normally, the weight function (or "kernel" as quite often referred in literature) is
chosen as the following form (although other forms have also been successfully
applied):

w(rij) =


re
rij
− 1, 0 < rij ≤ re

0, rij > re

(2.6)

where rij = |ri − rj| is the distance betwen particle i and j, and re is radius of the
local support domain. The distinguished feature of this function [61] is that the
value is infinity at rij = 0, and this is regarded to be helpful to avoid the particle
clustering. It is also infinitely differentiable except at rij = 0. It is easy to check
that this kernel does not satisfy the “unity” property (i.e. the integration of the
kernel over the support domain is not one), which is one of the basic properties
of kernel interpolation in SPHmethodology. Hence, it is more reasonable to call
it “weight function” [136] instead of kernel.

The interpolation of a field function u f (ri) is as follow:

u f (ri) =
N

∑
j 6=i

u f (rj)w(rij)

ni
(2.7)

where N is the particles number in the support domain. The length of the
support domain re is usually different for Laplacian and gradient operators. As
suggested by [73], they are chosen to be 4 and 2.1 times of the initial particle
distance r0, respectively. The notation of ni is defined as:

ni =
N

∑
j 6=i

w(rij) (2.8)
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It is also called a “particle density” in MPS, and it is related to the physical
density. More specifically, if ni is divided by the integration of weight function
over the support domain (except the small centre part occupied by particle i),
the particle number in a unit volume—Nui will be obtained:

Nui =
ni∫

Ωi
w(r)dΩ

(2.9)

The denominator of the above equation could be regarded as ni multiplied with
the volume that occupied by a single particle . As a consequence, the right hand
side of Eq. (2.9) is actually the reciprocal of this “particle volume”, which the
particle number in a unit volume. Furthermore, assuming the mass of each
particle is m, then the physical density could be represented as:

ρi = mNui =
mni∫

Ωi
w(r)dΩ

(2.10)

The continuity condition in Eq. (2.1) will be satisfied if the particle number is
constant everywhere in the domain. The notation of n0 is used to represent this
constant, and defined as the value calculated by Eq. (2.8) based on the initial
regular particle distribution.

In MPS method, the derivative of weight function will not be used to calculate
these operators like in SPH. Instead, the first and second order spatial deriva-
tives between particle pair of centre particle ri and its neighbouring particle rj

will be first calculated, and then the gradient or Laplacian of this centre particle
ri is obtained by the weighted averaging process [61]. The element of gradient
of a scalar variable u f between particle rj and centre ri is:

u f (rj)− u f (ri)

r2
ij

(rj − ri) (2.11)

The gradient at ri is represented by the weighted averaging of these “local
elements”, i.e. by employing Eq. (2.7) and replacing ni with n0:

∇u f (ri) =
d
n0

N

∑
j 6=i

u f (rj)− u f (ri)

r2
ij

(rj − ri)w(rij) (2.12)
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where d is the number of space dimension. Similarly, the divergence of a vector
is:

∇ · u f (ri) =
d
n0

N

∑
j 6=i

(u f (rj)− u f (ri)) · (rj − ri)

r2
ij

w(rij) (2.13)

where u f represents a vector. According to the suggestion in [73], if the particle
distribution is or could roughly be regarded as symmetric, then ∑N

(j 6=i)
rj−ri

r2
ij

w(rij)

very close to zero, which means u f (ri) in Eq. (2.12) or (2.13) would not affect
the final result. As a consequence, in the pressure gradient calculation, if the
value u f (ri) is replaced by the minimum value among all the particles within
the current support domain, the gradient computation will be the same order
of accuracy. That means the pressure gradient is calculated as:

∇p(ri) =
d
n0

N

∑
j 6=i

p(rj)− p̃(ri)

r2
ij

(rj − ri)w(rij) (2.14)

where p̃(ri) is the minimum pressure among all the particles within the current
support domain. This change could make sure that the interaction force (i.e.
the opposite pressure gradient term in Eq. (2.1)) experienced by centre particle
ri from neighboring particle rj, is always repulsive, which is helpful to maintain
the regularity of particle distribution.

For the discretization of Laplacian, the following time-dependent diffusion
problem of u f is used for derivation [73, 149, 160]:

∂u f

∂t
= νd∇2u f (2.15)

where νd is the diffusion coefficient. The quantity of u f will be redistributed
constantly by Eq. (2.15). The basic concept used in the following derivation is
that the variance (i.e. σ2

d ) increase of this redistribution during time interval ∆t
should be equivalent to the analytical result, which is

σ2
d = 2dνd∆t (2.16)

Considering this requirement, in MPS model the quantity transferred from
particle i to j during ∆t is assumed to be [73]:

∆i→ju f =
2dνd∆t

n0λ
u f (ri)w(rij) (2.17)

where λ is a parameter that will be determined by the aforementioned variance
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equivalence principle later. As a consequence, the discretized time derivative at
position ri in Eq. (2.15) could be represented as:

u f (ri)
(k+1) − u f (ri)

(k)

∆t
=

2dνd∆t
n0λ

N

∑
j 6=i

(u f (rj)
(k) − u f (ri)

(k))w(rij) (2.18)

If we compare Eq. (2.18) with Eq. (2.15), the discretization of Laplacian operator
is:

∇2u f (ri) =
2d

n0λ

N

∑
j 6=i

[u f (rj)− u f (ri)]w(rij) (2.19)

The final step is to determine the parameter λ. As mentioned above, it is
calculated based on the variance increase equivalence principle. In order to
simplify the variance calculation at t = (k + 1)∆t, the initial value at t = k∆t
is chosen to be:

u f (rj)
(k) =

0, j 6= i

1, j = i
(2.20)

The value of u f of all the neighboring particles at t = (k+ 1)∆t could be obtained
as:

u f (rj)
(k+1) = u f (rj)

(k) +
2dνd∆t

n0λ

N

∑
m 6=j

(u f (rm)
(k) − u f (rj)

(k))w(rij)

=


2dνd∆t

n0λ w(rij), j 6= i

1− 2dνd∆t
n0λ ∑N

m 6=i(u f (rm)(k) − u f (ri)
(k))w(rij), j = i

(2.21)

The variance increase after the time interval of ∆t is calculated as:

σ2
d =

N

∑
m 6=i

u f (rm)
(k+1)r2

mj =
2dνd∆t

n0λ

N

∑
m 6=i

w(rmi)r2
mi (2.22)

By comparing Eq. (2.16) and (2.22), the parameter λ is obtained as:

λ =
1
n0

N

∑
j 6=i

w(rij)r2
ij (2.23)

2.1.3 Boundary conditions

a) Free surface boundary
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In the pressure Poisson Equation, for the linear system to have a unique solution,
the pressure value of free surface particles should be imposed to be zero (p =

p0 = 0) explicitly as boundary condition. Thus, the particles which are located
at free surface at each time stepmust be recognized. It is worthmentioning that,
unlike in mesh-based methods in which the positions of free surface should be
“calculated”, in MPS, we need just to “find” which particles lie exactly on the
free surface.

As within the neighbor domain of a free surface particle, there would be no
fluid particles in the area which is outside the fluid domain, particle density
n(∗) of these free surface particles will drop dramatically. This difference of the
particle density value between free surface and inner fluid particles makes the
identification of the free surface particle possible. As a consequent, the particles
which satisfy the following condition are identified as free surface particle:

n(∗) < βn0 (2.24)

where β is a parameter slightly smaller than 1 (e.g. 0.97).

b) Solid boundary

The solid particles which lie in the support domain of the adjacent fluid parti-
cles are also included in the pressure Poisson equation calculation. As a conse-
quence, its pressure will push away the fluid particles which are too close to the
solid, and thus avoiding the penetrating of fluid particles into solid boundary.
To compensate the deficiency of neighbour particles for the solid and “near-
solid” fluid particles when calculating n(∗) , two additional layers of dummy
particles are placed just outside the inner solid particle layer. These particles are
only involved in the particle density calculation in standard MPS method. The
Laplacian and gradient discretization do not take these dummy particles into
account.

2.1.4 Shortcomings of the original MPS method

1) Non-physical pressure fluctuation in both temporal and spatial domain

This pressure fluctuation is the biggest problemwhich hinders its application to
practical engineering purpose. Figure 4.5(a) (2D dam-break problem) illustrates
a typical pressure historymonitor at a point which is being impacted. Although
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its main trend coincides with the experimental result, this large amplitude fluc-
tuation implies that it cannot calculate the Fluid Structure Interaction properly.

2) False identification of free surface particle

In the original MPS method, there are many falsely identified particles inside
themain fluid body. And considering that the pressures of free surface particles
are enforced to be zero, this inaccurate free surface identification will produce
wrong pressure distribution result.

3) Improper proximity of free surface particles

Because there is no pressure gradient that exists between the free surface
particles, when they get close enough, they will be identified as inner fluid
particles as a result of the increase of particle density (see Eq. (2.24)). However,
this improper proximity of two fluid particles will cause singularity problem
when solving the pressure Poisson Equation. As a consequence, they will be
pushed away from each other by the extremely high singular pressure between
them. This issue will affect the stability of the computation or even terminate
the simulation under some circumstances.

2.2 State-of-the-art of MPS method

MPS method has been successfully applied to simulate various engineering
problems such as incompressible free surface flow [37, 63, 73], nuclear reactor
safety [74] and even blood flow simulation. Here, a brief review of the
developments is given below:

1) Linear momentum conservation

In the original MPS, the pressure gradient forces between a pair of particles do
not satisfy the Newton’s third law (i.e. the action must be equal to reaction)
which means the momentum will not be exactly conserved during the simula-
tion. So, there are some modifications [63, 82, 152] to revise the gradient op-
eration to meet the linear momentum conservation. One typical example [63]
is:

∇p(ri) =
d
n0

N

∑
j 6=i

p(rj) + p(ri)− ( p̃(ri) + p̃(rj))

r2
ij

(rj − ri)w(rij) (2.25)
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where p̃(ri) and p̃(rj) has the same meaning as in original model, i.e. the
minimum pressure among all the particles within the support domain for
particle i and j respectively. However, asmentioned in [114], the numerical error
arising from the non-exact conservation momentum might be less important
than that caused by an imprecise pressure gradient formulation.

2) Poisson equation

Considering that the pressure fluctuation is quite large in MPS, intensive re-
searches have been conducted to modify the pressure Poisson equation. It in-
cludes two types: modification to the source term (i.e. R.H.S.); and introducing
high order Laplacian operator.

i. Source term modification

This category includes different strategies. First is to replace the n0−n(∗)

n0
with

other forms. One typical example is using material derivative as source term
on R.H.S. [61, 63]. And if the weight function is selected as Eq. (2.6), the source
term for 2D case will be given by:

Dn(∗)

Dt
=

N

∑
j 6=i

Dw(rij)

Dt
= −

N

∑
j 6=i

re

r3
ij
(xiju

(∗)
ij + yijv

(∗)
ij ) (2.26)

Another approach is to add a compressible term into the source term [63], and
the Poisson equation will be changed to the following form:

∇2p(k+1)(ri) =
1

∆t2C2 (p(k+1)(ri)− p(k)(ri)) +
ρ0

∆t
∇ · u(∗)(ri) (2.27)

where C is the speed of sound. This compressible term has a stabilizing effect
on the calculation of pressure.

Moreover, a combination of divergence of the intermediate velocity field and
particle density variation [82, 152] is also introduced into the source term in
order to stabilizing the pressure fluctuation, that is,

∇2p(k+1)(ri) = γρ0
n0 − n(∗)

∆t2n0
+ (1− γ)

ρ0

∆t
∇ · u(∗)(ri) (2.28)

where γ is an artificial coefficient, and normally takes a small value (e.g. 0.01 <

γ < 0.05 [82]).
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This approach actually attempts to include a certain amount of the accumulated
density error arising from the numerical computation. Khayyer and Gotoh [65]
also proposed another scheme based on this idea, namely:

∆t
ρ0
∇p(k+1)(ri) =

1
n0

Dn(∗)

Dt
+

1
n0

Dn(k)

Dt
|n

(k) − n0

n0
|+ ∆t

n0

Dn(k)

Dt
|n

(k) − n0

∆tn0
| (2.29)

where Dn(∗)
Dt is given by Eq. (2.26), which has an analogous effect as the diver-

gence of velocity.

Finally, there is also another proposal which returns to explicit pressure-velocity
de-coupling [124] scheme like inWeaklyCompressible SPH, i.e., using Equation
of State to relate the pressure and density instead of solving Poisson equation.

The aforementioned source term modification is an efficient way of improving
the MPS method; similar technique has also been developed in this study as
illustrated in the next part.

ii. High order Laplacian

A high order Laplacian operator is introduced in [64]. If Eq. (2.6) is selected as
the kernel function, the form in 2D is as follows:

∇2u f (ri) =
1
n0

N

∑
j 6=i

3(u f (rj)− u f (ri))re

r3
ij

(2.30)

However, as admitted by the authors of Ref [64], this kind of modification do
not improve the performance very much.

3) Viscosity

i. Strain-based viscosity model

In the Navier-Stokes equations, the viscous term ν∇2u is normally calculated
by the original Laplacian model as Eq. (2.19). In [61, 62], this is modified to the
following form:

ν∇2u =
1
ρ
∇ · T =

1
ρn0

N

∑
j 6=i

Tij · wij (2.31)

where T is the viscous stress tensor, which could be related to the strain rate.
For more details, one can refer to the work in Ref [62].
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ii. SPS (Sub-Particle-Scale) for high Reynolds number flow

In the traditional mesh-based CFD, the LES (Large-Eddy Simulation) model is
frequently employed to simulate the turbulence flow. In LES, the SGS (Sub-
Grid-Scale) model is used to take the sub grid scale turbulence ingredients into
account. This idea is also introduced in MPS, and the corresponding model is
called SPS (Sub-Particle-Scale) turbulence model. More information is given in
[37].

4) Two-phase flow

The two phase flow model has also been simulated by MPS, for example, wave
generation due to the inflow of sediment and the gas-liquid two phase flow. The
implementation procedure is provided in [37, 125].

5) Improving the interpolation accuracy

i. Different kernel functions

Although the original kernel function, i.e. Eq. (2.6) is predominately used in the
MPS method, other forms of kernel are also tested to compare with the original
one [3, 124, 131]. Ref [131] proposed a new form of "kernel function" that
satisfy the unit condition (which means its integration over whole domain is
one), but no performance comparison with the original form i.e. Eq. (2.6) is
given. Six different kernel functions are investigated in Ref [3], and a piecewise
polynomial function is found to be more stable than others. In Ref [124], a
third-order polynomial spiky function is found to be "slightly" more accurate
than the commonly used one (i.e. Eq. (2.6)) for the water bubble problem. It is
worth to mention that none of the above researches have reported the pressure
calculation accuracy could be affected by choosing different kernel functions.

ii. High order gradient model

Khayyer and Gotoh [65] introduced a corrective matrix in the pressure gradient
formulation. This term is reported to be effective in improving the accuracy of
computation.

iii. MLS-like function approximation

In [71, 150], the 2nd order Taylor series is employed to approximate the
function within the local support domain, and then the unknown coefficients
of the Taylor series are obtained by MLS procedure, i.e. local least square
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fitting. Because the coefficients of the Taylor series are also the first and second
order derivatives of the unknown function, the gradient and Laplacian are
consequently obtained after this MLS fitting procedure. But as mentioned in
[150], this kind of least square approach has to be incorporated with other
measures to guarantee the stability of simulation due to the Lagrangian way
of particle advancing in time domain.

6) Free surface identification

i. Using particle number rather than particle number density

As mentioned in Section 2.1.4, the traditional free surface identification scheme
trends to falsely recognize some inner fluid particles as free surface particles.
One modification [82, 152] of this is using the particle number within its neigh-
bour rather than particle number density n(∗).

ii. “Arc” type

Another approach [71] is proposed based on checking the “arc” which would
be fully covered by its neighbour particles for the inner particles. More detailed
information is given in Section 2.3.2.4.

7) Dynamic Stabilization

In [159], a dynamic stabilization term is introduced in the correction step. This
term produces a repulsive force to avoid the inter-particle penetration and thus
stabilizes the simulation.

2.3 New modifications to MPS

2.3.1 Density error compensation in source term of Poisson
equation

Basically, there are two forms of source term in the Poisson equation [171],
namely the Density Invariant (DI) type and Divergence-Free velocity (DF) type.
The one used in standard MPS (Eq. (2.4)) is the DI type. A heuristic explanation
is given below to show the difference betweenDI andDF types. Themomentum
equation is reformulated and then split into two successive equations as:

u(∗) = u(k) + ∆tg (2.32)
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u(k+1) − u(∗) = −∆t
∇p(k+1)

ρ0
(2.33)

Similarly, the Lagrangian form of the continuity equation is also reformulated
as:

ρ(∗) − ρ(k)

∆t
= −ρ0∇ · u(∗) (2.34)

ρ(k+1) − ρ(∗)

∆t
= −ρ0∇ · (u(k+1) − u(∗)) (2.35)

Different types of Poisson equations could be obtained using different combina-
tions of Eq. (2.32) to (2.35).

The DI type Poisson equation could be obtained by first taking the divergence
of Eq. (2.33) and then substituting the resultant equation into Eq. (2.35). The
incompressibility condition is realized by enforcing ρ(k+1) to be the initial
density ρ0. The final result is Eq. (2.4) (replacing the physical density with
particle density).

On the other hand, if we take the divergence operation of Eq. (2.33) and apply
the incompressibility condition by enforcing the divergence of k + 1 time step
∇ · u(k+1) to be zero, the DF type Poisson equation is obtained as:

∇2p(k+1) = ρ0
∇ · u(∗)

∆t
(2.36)

The relation between DI type (Eq. (2.4)) and DF type (Eq. (2.36)) could be
obtained by substituting Eq. (2.34) into Eq. (2.36) (also replacing the physical
density with particle density), which leads to:

∇2p(k+1) = ρ0
∇ · u(∗)

∆t
= ρ0

n(k) − n(∗)

n0∆t2 (2.37)

The comparison between Eq. (2.4) and Eq. (2.37) shows that theDI form is theDF
form plus the accumulated density error (n0− n(k)) from the last time step. Due
to the inevitable error introduced by any numerical scheme, the accumulated
density error will always exist. As a consequence, the DF approach is reported
to suffer from the particle clustering and void, which will result in density error
accumulation and bad pressure distribution [123, 128]. On the other hand,
the DI type source will lead to large density variation (probably caused by the
full inclusion of accumulated density error), and consequently large pressure
fluctuations in both spatial and temporal domain [53], which reduce the stability
of the pressure computation.
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To tackle this problem, Hu et al. [16] proposed to use theDI andDF conditions in
succession in ISPH. However this approachmeans to solve the Poisson equation
two times, which is more time-consuming than both DI and DF methods. Xu
etal. [172] have shown that the calculation time is 4 to 5 times larger than any of
DF or DI scheme. Another strategy is to combine DF and DI in the source term
[66, 72, 82] as:

∇2p(k+1) = ρ0
∇ · u(∗)

∆t
+ αρ0

n0 − n(k)

n0∆t2 (2.38)

where α is a coefficient which is normally far smaller than 1. Unlike DI scheme,
this strategy attempts to take a certain amount (not all of them like in DI) of
accumulated density error into account. In most of these similar modifications
that have been proposed, the coefficient α needs to be calibrated based on
different cases. One exception is shown in Ref [66], where the authors coupled
the absolute density variation accumulated and the rate of density variation at
the last time step to formulate a density error compensation term. Similarly, a
new density error compensation term is proposed with no artificial coefficient
(which requires no calibration for different cases).

The coefficient α in Poisson equation (Eq. (2.38)) is chosen in the following way:

α =

|
n0−n(k)

n0
|+ ∆t|∇ · u(k)|, (n0 − n(k))∇ · u(k) ≥ 0

|n0−n(k)

n0
|, (n0 − n(k))∇ · u(k) < 0

(2.39)

This form of α could be interpreted as the percentage of the absolute density
variation, which is then multiplied by the density changing rate in the DI term
(i.e. n0−n(k)

n0∆t ).

The condition (n0 − n(k))∇ · un ≥ 0 means that the fluid is compressed, i.e.
(n0− n(k)) ≤ 0 (or expanded, i.e. (n0− n(k)) ≥ 0) in the last time step (t = k∆t),
andwill be further compressed according to themotion trend of particles, that is,
∇ · u(k) ≤ 0 (or expanded, i.e. ∇ · u(k) ≥ 0). Under this situation, an additional
term (∆t|∇ · u(k)|) is added into the coefficient to help to control further the
compression (or expansion).
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2.3.2 Boundary condition

2.3.2.1 Pressure Neumann condition on solid boundaries

In most of the cases, the solid boundary in particle method will normally
be handled by ghost (dummy) particle [128, 171] method , repulsive force
method [142] or the combination of these two [126]. These traditional techniques
require careful handling of the ghost (dummy) particle arrangement or repulsive
force parameter selection according to various cases. In this study, as proposed
in another particle method, MLPG_R [99] (Meshless Local Petrov Galerkin
method with Rankine source solution), instead of applying Poisson equation
(Eq. (2.38)) as in the standardMPS, the followingNeumann condition (Eq. (2.40))
is applied on the inner most layer of solid boundary. The gradient of Pressure is
calculated between the current boundary particle and the nearest fluid particle
(or the linear interpolation between nearest fluid particles), whichwill avoid the
deficiency of particles within its support domain.

n · ∇p(k+1) = ρ0(n · g− n · u̇(k+1)
b ) (2.40)

where u̇b is the acceleration of the boundary, and n is the normal vector of the
boundary. For the FSI case in which the motion of the boundary is determined
by the pressure of the surrounding fluid, the acceleration of next time step
u̇(k+1)

b would be unknown when solving the pressure Poisson equation. As an
approximation, the value from the last time step u̇(k)

b (or the last iteration when
iterative process is involved in the fluid structure interaction) is adopted instead.

2.3.2.2 Laplacian operator compensation near solid boundary

For the fluid particles which are close to the solid boundary, the Laplacian
operator needs to be modified to be consistent with the Neumann condition
on solid boundary and compensate for the insufficiency of neighbour particles.
More specially, as shown in Figure 2.1, if the virtual particle, which is along the
local normal direction and towards the outside of solid boundarywith a distance
of r0, is within the support domain of the fluid particle, this virtual particle will
also be included in the calculation of Laplacian operator. The pressure value is
derived according to Eq. (2.40), i.e.

pv = ps + ρ0(n · g− n · u̇b)r0 (2.41)
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where, pv is the pressure of virtual particle, and ps is the pressure of the
corresponding solid particle.

n

r

re Virtual particle

Boundary particle

Fluid particle 

under concern

r0

r0

Figure 2.1: Demonstration of virtual particle for compensating the Las-
place operator near solid boundary

This virtual particle will only affect the Laplacian coefficients of corresponding
fluid particle.

2.3.2.3 Intermediate velocity of boundary particles

The choice of intermediate velocity u(∗) on solid boundary will affect the
accuracy of pressure which is computed from the Poisson equation (Eq. (2.38)),
since the divergence of intermediate velocity is the source term of this equation
[12]. According to the idea of Ref [12], for the case of viscous flow, the
non-slip condition should be applied. This means the choice of u(∗) should
guarantee that, at k + 1 time step, the fluid velocity on boundary (i.e.u(k+1)|∂Ω)
is equal to the solid body velocity on the fluid-solid interface (u(k+1)

b ). Thus,
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if u(k+1) is replaced by boundary velocity u(k+1)
b in Eq. (2.32), and using ∇p(k)

to approximate ∇p(k+1) (since it is not known at this stage), the intermediate
velocity of boundary particles is:

u(∗)
b |∂Ω = u(k+1)|∂Ω = u(k+1)

b + ∆t
∇p(k)

ρ0
(2.42)

Furthermore, the above equation could be split into two components after
projecting to the tangent (i.e.,τ ) and normal (i.e.,n) directions, respectively. And
Eq. (2.40) could be used to calculate the normal component of the pressure
gradient. The tangent part is calculated by simple finite difference approach
between its neighbour solid particles. Finally, the intermediate velocity of the
boundary particles is chosen as:

∂u(∗)
b

∂n
= n · u(k+1)|∂Ω +

∆t
ρ0

∂p(k)

∂n
= n · u(k+1)

b + ∆t(n · g− n · u̇(k+1)
b )

∂u(∗)
b

∂τ
= τ · u(k+1)|∂Ω +

∆t
ρ0

∂p(k)

∂τ
= τ · u(k+1)

b +
∆t
ρ0

∂p(k)

∂τ

(2.43)

In this study, since the viscosity is not taken into account, the free-slip boundary
condition should be applied. The only difference that should be made is the
tangential part of the fluid velocity on boundary (i.e., τ · u(k+1)|∂Ω) is different
to τ · u(k+1)

b . So in this case the term τ · u(k+1)
b is then replaced by the velocity

projection of the nearest fluid particle on the direction of τ . Also, as mentioned
in Section 2.3.2.1, the solid boundary velocity and acceleration of (k + 1)th time
step is approximated by the value in last time step or last iteration, for the FSI
interface boundaries.

As pointed out in [12], using the above intermediate velocity boundary condi-
tion, the accuracy for both the velocity and the pressure are second-order.

2.3.2.4 Free surface particle identification

a) 2D case

A simplified version of the method used by Koh et al [71] is adopted. As shown
in Figure 2.2, a circle (with radius of 1.05r0) is assigned to each particlewith itself
to be the center. If the "circle" is completely covered by its neighbours, then it
is recognized as an inner fluid particle, otherwise it is a free surface particle.
To realise this checking process, the circle is discretised by 360 points which
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locate evenly along the circle. If all these points are covered by the circles from
its neighbour particles, the centre particle is then regarded as an inner particle.
For example, in Figure 2.2, particle A is recognised as free surface, because the
yellowpoints on its “circle” are not covered by its neighbors. In contrast, particle
B is identified as inner fluid particle.

A

B

Figure 2.2: Demonstration of free surface particle identification for 2D
case

Because the use of Neumann boundary could avoid the discretization of Lapla-
cian operator and the calculation of particle density for the boundary particles
as explained in Section 2.3.2.1, the two layers of dummy particles in the stan-
dard MPS are not required. However, in order to cover the outside of the solid
boundary to prevent them to be falsely recognized as free surface particles, one
additional layer of virtual particles are still have to be placed. The generation of
this layer of particles does not have to fit any pattern sophisticatedly. It is simply
along the inner solid particles to make sure that the inner layer of solid particles
will not be exposed to void area towards the outside of fluid domain and falsely
be identified as free surface particle. It is worth to mention that this additional
layer of particle is not the same as the virtual particle in Section 2.3.2.2, whereas
the virtual particle does not has to be generated in the geometry like this addi-
tional layer of particle.
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This pure geometric free surface identification approach could avoid the situa-
tion asmentioned in Section 2.1.4 that when two particles are close enough, they
will be identified as inner fluid particles as the result of particle density increas-
ing, though they are actually free surface particles. According to this proposed
approach, no matter how close two particles are, they will not be identified as
inner fluid as long as they are not surrounded by enough neighbour particles.
Certainly, instability issue will be caused if two particles are getting too close
even if they are correctly identified as free surface. This problem will be han-
dled by the collision handling approach, which will illustrated in Section 2.3.3.

b) 3D case

The multi-level searching strategy is widely used for free surface identification
because it normally will be more efficient especially for 3D case [101, 150].
Similarly, in this study a two-step scheme is proposed for the 3D case: a
preliminary filtering by neighbor particle number and then a geometric scheme
that employs the same principle of the 2D case. The details are given below:

i) Preliminary filtering by neighbour particle number

The neighbour particle number Np is checked for each particle by the following
equation:

Np < β3dNp0 (2.44)

where Np0 is the neighbour particle number of a typical inner fluid particle
under the uniform particle distribution, which means Np0 = 32; β3d is a tuning
parameter and the value is taken as 0.96 in this study.

The reason of using the neighbour particle number instead of particle density
is the same as explained in part (3) of Section 2.1.4, i.e. for the case when some
particles are very close to each other, the particle density could be very high
although they may still on the free surface. But the neighbour particle number
approach will not suffer from this problem.

ii) Refine the searching by geometric property

For the particleswhose neighbour particle number is less than the threshold, the
following geometrical scheme will be applied for refining the searching. More
specially, a vector nz, which points towards the most sparse particle distribution
of the concerned particle’s neighbour, is determined by a weighted averaged
approach. Then, on the sphere which is centered by the concerned particle,
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a circular patch around nz will be discretised by evenly distributed points, as
shown in Figure 2.3. If these points are all covered by the same spheres of its
neighbor particles, this particle is recognised as inner fluid particle; otherwise
it is regarded as a free surface particle. The radius r and angle θ are selected as
r = 1.05× r0 and θ = π/4;
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Figure 2.3: Demonstration of free surface particle identification for 3D
case

2.3.3 Particle shifting and collision handling

The disorder of particle distribution is one of the main sources of pressure fluc-
tuation suffered by particle method. Many researchers have developed some
techniques to handle this problem [13, 82, 119, 123, 159, 171]. Among these
improvements, rearranging the particle positions after each time step is consid-
ered to be a very effective approach. It could stabilise the pressure calculation
in both spatial and temporal domain [119, 159]. For example, in Ref [159],
a dynamic force is introduced during the evolution of the particle movement.
The force is the summation of all the contributions from the neighbour parti-
cles. For each force component between the pair of the concerned particle and
a neighbour particle, the principle of calculating this force is to guarantee that
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they will be separated and verged on each other by a distance, which is around
r0, for the next particle configuration. However for an arbitrary particle distri-
bution, it is obvious that each force component will affect each other, and con-
sequently makes the final particle configuration not exactly evenly distributed.
But the overall distribution ismuchmore improved and consequentlymakes the
computation more stable and accurate. Following similar idea, in this study, a
simple particle shifting method, which also intends to avoid the improper short
distance between each pair of particles, is proposed to improve the stability of
computation. The difference is that in this scheme the position is manipulated
directly instead of by applying an artificial force.

After each time step, the positions of particles are slightly shifted to regularize
their distribution. This technique could also be regarded as a re-meshing
procedure. Moreover, since the Poisson equation is derived based on the
incompressibility condition (i.e. the second equation in Eq. (2.1)), the resultant
pressure would roughly keep the distance between neighboring particles to be
around the same value (i.e. the initial particle distance r0). As a consequence, the
space left for this further shifting would be very small. Therefore not mapping
the value onto the new positions will not corrupt the result.

The amount of shifting is chosen as:

δri = ∑
j 6=i,|rij≤r̄0|

r̄0 − |rij|
2

·
ri − rj

|rij|
(2.45)

where r̄0 normally is set to be 99% of the initial particle distance.

For the free surface particles which are far away from the main fluid body,
their motions will barely be affected by pressure. Under some circumstances,
they may get extremely close. This unusual and "suddenly-formed" very short
distance between fluid particles will cause singularity problem when solving
pressure Poisson Equations. This situation will not be completely eliminated
by the aforementioned particle shifting. For example, the current distance
between two particles are not very small (which will not activate the particle
shifting scheme), but they have large relative velocities which mean they will
get very close after prediction step Eq. (2.3). As a consequence, similar to the
one proposed in [71], a simple collision handling technique is applied here.
The basic idea of this approach is that the relative velocities between particles
are set to be zero when they are expected to be closer than the threshold before
the prediction step. Accordingly, before the calculation of each time step, we
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apply the following velocity manipulation for each fluid particle:

δui = ∑
j 6=i,(rij−uτij ∆t)≤rmin

−ε(rij)uτij (2.46)

where uτij is the tangential relative velocity between particle i and j, and rmin is
the threshold to activate the scheme. It is selected as roughly 30% of the initial
particle distance in this study. Parameter ε depends on the property of particle j.
If particle j is a fluid particle, ε is equal to 0.5, otherwise, if it is a solid boundary
particle, ε is equal to 1.0. This kind of setting is chosen to make sure that the
solid particles velocity involved will not be affected while the relative velocity
between its neighbor fluid particles will still be set to be zero.

2.3.4 Neighbour particle searching strategy

The discretizing of gradient /divergence and Laplacian operators on the posi-
tion of each particle requires the information of its neighbour particles. Because
of the Lagrangian nature of particlemethod, all the particles are constantlymov-
ing during the computation, and thus the neighbour particle lists need to be
updated after every advance of the particle distribution. This neighbour parti-
cle searching could be very time-consuming if the primitive "all-pair" searching
strategy is used. In terms of computational efficiency, the state-of-the-art neigh-
bour particle searching acceleration strategy could basically be classified into
three types: (1). Verlet list method, whose algorithm complexity is O(N2) [80];
(2). Cell-linked method and the Verlet list enhanced by cell-linked approach.
The "cell-link" and also the Verlet list enhanced by "cell-link" methods have a
linear complexity [17] i.e. O(N). This is proved by the results in Section 4.1 as
well. (3). The so-called "tree algorithm", which uses hierarchically tree-structure
to partition the computational domain into a sequence of squares (in 2D, for 3D,
it becomes cubes) until each square contains only one particle or nothing [137].
It generally has a complexity with the order of O(Nlog(N)) [137]. Furthermore,
this kind of algorithm is designed to handle the situation where the particles
are highly unevenly distributed, which is not the case of this study. As a conse-
quence, only the second type of methods i.e. the linear type is first reviewed in
the following context. And then a new strategy based on the cell-linkedmethod
is proposed.
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Figure 2.4: Demonstration of the neighbour particle searching strategy

In cell-linked method, all particles are distributed into a set of regular square
cells which cover the entire computation domain. The length of the cell side
is at least the cut-off distance of supporting domain for Laplacian operator,
i.e. four times of the initial particle distance (4r0). As a consequence, the
neighbour searching for a particular particle could be conducted just within the
surrounding cells (nine cells in 2D, i.e., the rectangular area constrained by the
yellow and green lines in Figure 2.4).

Alternatively, the Verlet list algorithm establishes a neighbour candidates list
for each particle. This list contains all the particles with a larger distance from
the concerned particle than the exact cut-off length of the Laplacian supporting
domain (e.g., 5r0 or 6r0). Because the radius is chosen to be larger than 4r0,
the neighbour particles will not exceed the scope of this list for the next several
particle distributions, consequently this list could be used as the base pool of
refined searching for several time steps without the need of updating.

The generation of the Verlet list could be accelerated by cell-linked method with
the radius as the cell length instead of using “all-pair” searching. The tricky
problem of Verlet list method is the choice of its radius. If it is too large, the
candidates in the list might bemore than those covered by the nine adjacent cells
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with exact 4r0cell length (in 2D case), which means it would be meaningless to
generate Verlet list since it is more time-consuming than using the cell-linked
approach directly. Actually, the circle with the radius of 6r0 already makes the
area covered byVerlet list circle (shown in Figure 2.4) almost the same as the nine
cells with 4r0 cell length (rectangular area limited by the yellow and green line in
Figure 2.4). The radius of 5r0 will make the Verlet list circle smaller than the nine
cells with exact 4r0cell length. However, if we add the time used on establishing
Verlet list with 5r0 length cells (the green line covered area in Figure 2.4) which
contains more particles than the 4r0 length cells (rectangular area limited by the
yellow and green line in Figure 2.4), the total time consumed would be similar
or even larger. These facts about these two approaches will be further illustrated
in Section 4.1.

There is only one issue remaining, which is in "cell-link" approach, after each
changing of the particle distribution, all the particles need to be "re-registered"
to the cells again. While this is not required in Verlet list approach at every time
when the particle configuration changes (as aforementioned, the Verlet list is
valid for several time steps depending on the size of the list). This seems to be
an advantage for Verlet list, however, as will be shown in Section 4.1, the time
spent on particle registering is almost negligible compared to the time spent
on other processes. As a consequence, the cell-linked method is overall better
than Verlet list method or the combination of these two methods. In this study,
in order to further reduce the computation burden, this cell-linked principle is
further explored by making the cell smaller than the traditional one, i.e. to be
the initial particle distance (r0), as shown in Figure 2.4. This change means the
searching could be performed just within the red line covered area instead of the
area contained by yellow and green lines in Figure 2.4. This reduces about 4/9
of the searching area compared with the traditional cell (with 4r0 cell length). It
is worthmentioning that the time spent on cell establishing is basically the same
for the smaller and traditional cell, because in both of these situations each of the
particles is only required to be checked once for registering them to a particular
cell (no matter larger or smaller cells). This means the cell establishing time is
only proportional to the total particle number regardless of the cell length.

Another strategy was developed to avoid repetitive checking of particle pair
by Crespo [21] for the traditional cell-linked approach. The core idea is that
if particle j is in the neighbour list of particle i, particle i is obviously also
in the neighbour list of particle j. Hence, the repeating of pair interaction
could be avoided if the neighbour list is updated simultaneously for both of the
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particles in the pair when one of them is currently regarded as a centre particle.
And then this centre particle will be excluded during the following neighbour
list generation process for the rest of particles. This means if the checking is
conducted cell by cell (i.e. after the establishment of neighbour list is finished for
all the particles in one cell, and then moving to the next cell), only the particles
in the cells with higher indexes in the related neighbour cells are needed to
be checked (as the particles in the lower-index-cells have already been checked
previously). This idea is also applicable to the new cell model aforementioned.
If the cells are indexed vertically frombottom to top, the generation of neighbour
list could be conducted just in the area covered by blue color in Figure 2.4. This
means that the computation burden is further reduced by half.

To summarise, the new proposed neighbour searching strategy is essentially a
further improvement of the traditional cell-linked approach. It consists of two
parts, i.e. smaller (i.e. r0) andmore economical cell length and the non-repeating
particle pair checking. Generally speaking, this new strategy is applicable for
the improvement of traditional cell-linked model with any cell length (e.g. 4r0,
5r0 or 6r0), and the searching area required by this new strategy is always about
2.5/9 of the corresponding traditional "cell-link" model (the comparison of the
blue color with the yellow and green line covered area is an example for the case
of 4r0 length criteria).

Finally, it is worth to discuss the computational complexity of the methods
mentioned in this section. For the incompressible flow studied in this study,
the particles are roughly evenly distributed (although not regular, that is the
reason of introducing the particle shifting in Section 2.3.3), hence the number of
particles that is required to be checked for neighboring particle searching of a
particular particle would be proportional to the area of the searching.

As discussed above, the searching area of each particle is always the same for a
particular method (e.g. the blue area for the proposed strategy and the yellow
line covered area for the traditional cell-linkedmethod in Figure 2.4). Moreover,
the cell establishing time is only proportional to the total particle number regard-
less of the cell length. Based on these discussions, the number of particles that
needs to be searched is a constant for each particle for any method mentioned
in this section (although this constant is different for different method), so the
overall searching time is proportional to the overall number of particles, which
means the complexity is linear, i.e. O(N).





Chapter 3

Structure Dynamics and FSI
coupling scheme

3.1 Mode theory for beam structure

The beam structure approximation is commonly encountered in the marine
engineering such as ship hull. The elastic deformation of a beam could be well
described bymodal superposition. This approach could significantly reduce the
degrees of freedom for the structure dynamics analysis. A brief review of this
theory for beam structure is given in this section [10, 56].

3.1.1 Euler-Bernoulli equation

For a non-uniform beam shown in Figure 3.1, the deflection along y direction
is defined as y(x, t). The stiffness of cross-sections along x axis is defined as
E(x)J(x). The beam deflection is governed by the following Euler-Bernoulli
equation:

∂2

∂x2 (E(x)J(x)
∂2y(x, t)

∂x2 ) + ρl(x)
∂2y(x, t)

∂t2 = zload(x) (3.1)

where ρl(x) is the line density of beam (i.e. mass per unit length), zload(x) is the
load applied on the beam along x axis. If this external load zload(x) is set to be
zero, the problem becomes the following free vibration equation:

∂2

∂x2 (E(x)J(x)
∂2y(x, t)

∂x2 ) + ρl(x)
∂2y(x, t)

∂t2 = 0 (3.2)

51
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Figure 3.1: Sketch of a non-uniform beam

In order to solve Eq. (3.2), the trial solution is defined in Eq. (3.3).

y(x, t) = φ(x)sin(ωt) (3.3)

After substituting Eq. (3.3) into Eq. (3.2), the following equation then is obtained:

∂2

∂x2 (E(x)J(x)
∂2φ(x)

∂x2 )− ρl(x)ω2φ(x) = 0 (3.4)

The problem represented by Eq. (3.4) is known as an eigenvalue problem. With
boundary conditions being specified on both ends of the beam, a series of
discrete value of the natural frequencies ωi (i = 1, 2, 3, ...) together with a series
of corresponding spatial functions φi(x) (i = 1, 2, 3, ...) could be obtained by
solving this equation. These series of functions φi(x) are defined as the "mode
functions" for the beam.

3.1.2 Orthogonality of natural modes

The most important property for the mode function φi(x) is the orthogonality,
which will be briefly illustrated as follows: If we substitute the mode function
φi(x) corresponding to ωi into Eq. (3.4), then multiply both side of Eq. (3.4) by a
different mode function φj(x) (corresponds to natural frequency ωj), and finally
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apply the integration along the beam (i.e. x axis), we have:

ω2
i

∫ l

0
ρl(x)φi(x)φj(x)dx =

∫ l

0

∂2

∂x2 (E(x)J(x)
∂2φi(x)

∂x2 )φj(x)dx

= [
∂

∂x
(E(x)J(x)

∂2φi(x)
∂x2 )φj(x)]|l0 − [E(x)J(x)

∂2φi(x)
∂x2

∂φj(x)
∂x

]|l0

+
∫ l

0
E(x)J(x)

∂2φi(x)
∂x2

∂2φj(x)
∂x2 dx

(3.5)

The two integrated terms will vanish due to various boundary conditions (e.g.
cantilever, free, simply supported), which means:

ω2
i

∫ l

0
ρl(x)φi(x)φj(x)dx =

∫ l

0
E(x)J(x)

∂2φi(x)
∂x2

∂2φj(x)
∂x2 dx (3.6)

The result in Eq. (3.6) will remain valid if the subscripts i and j are swept, i.e.

ω2
j

∫ l

0
ρl(x)φi(x)φj(x)dx =

∫ l

0
E(x)J(x)

∂2φi(x)
∂x2

∂2φj(x)
∂x2 dx (3.7)

Comparing Eq. (3.6) and (3.7) lead to the following relation:

∫ l

0
ρl(x)φi(x)φj(x)dx =

∫ l

0
E(x)J(x)

∂2φi(x)
∂x2

∂2φj(x)
∂x2 dx = 0 (3.8)

These orthogonality relations means that the modes corresponding to different
natural frequencies satisfy the following equations:

∫ l

0
ρl(x)φi(x)φj(x)dx = aijδij (3.9)

∫ l

0
E(x)J(x)

∂2φi(x)
∂x2

∂2φj(x)
∂x2 dx = ω2

i aijδij (3.10)

where δij is the Kronecker delta function, and aij is simply a constant determined
by the scale of the mode functions.

3.1.3 Modal superposition method

Due to the orthogonality relations between different modes, any elastic defor-
mation of the beam could be represented by the function space expanded by all
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the mode functions, that is:

y(x, t) =
∞

∑
i=0

qi(t)φi(x) (3.11)

where qi(t) is the ith generalized time-dependent coordinate corresponding to
φi(x). If Eq. (3.11) is substituted into Eq. (3.1), the following equation could be
obtained:

∞

∑
i=0

ρl q̈i(t)φi(x) +
∞

∑
i=0

qi(t)
∂2

∂x2 [E(x)J(x)
∂2φi

∂x2 ] = zload(x, t) (3.12)

If we multiply a mode function corresponding to a different natural frequency
i.e. φj(x) to both sides of Eq. (3.12), and then integrate with respect to x along
the beam, the orthogonal relations represented by Eq. (3.9) and (3.10) lead to the
following set of equations:

ajjq̈j + ajjω
2
j qj =

∫ l

0
zload(x, t)φj(x)dx, (s = 0, 1, 2, ...) (3.13)

Although Eq. (3.13) will not be used directly to solve the beam motion in the
model developed in Section 3.2, the core idea of modal superposition in the
above process will be adopted in the derivation of the proposed numerical
model.

3.1.4 Obtaining the mode functions

There are different approaches to obtain the mode functions depending on
different situations such as modal testing experiment, analytical approach and
numerical methods. In this section, the analytical approach for uniform beam
and a numerical approach for non-uniform beam are briefly illustrated.

a) Analytical approach for uniform beam

For an uniform beam, the problem could be solved analytically. Based on the
orthogonality property mentioned in Section 3.1.2, the mode function φ(x) is
assumed to be of the following form:

φ(x) = b1 sin κx + b2 cos κx + b3 sinh κx + b4 cosh κx (3.14)
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where the parameter κ is defined as:

κ = 4

√
ρlω2

EJ
(3.15)

The stiffness EJ is a constant since the beam is uniform. Asmentioned in Section
3.1.1, the four parameters b1, b2, b3, b4 could be solved by substituting Eq. (3.14)
into Eq. (3.4) and using the corresponding boundary conditions. The cases of
free-free beam and cantilever beam are listed below for the later use in Section
3.2

For free-free beam, the boundary conditions are: the 2nd (moment) and 3rd

(shear force) derivatives of the beam deflection φ(x, t), and they are zero at both
ends. The resulting ith mode function is:

φi(x) = Cd[cosh κix + cos κix− σi(sin κix + sinh κix)], i = 1, 2, 3, · · · (3.16)

where
σi =

sin κil + sinh κil
cosh κil − cos κil

(3.17)

The parameter κi is determined by the following equations:

cos κil · cosh κil − 1 = 0, i = 1, 2, 3, · · · (3.18)

In Eq. (3.16), the parameter Cd is a factor to adjust the scale of the function. After
obtaining the parameter κi by solving Eq. (3.18), the natural frequency ωi for this
mode could then be calculated by Eq. (3.15). The parameter κil corresponding
to the first three flexible natural frequency (the rigid-body case κ0l = 0 is not
included) are given by:

κ1l = 4.730041

κ2l = 7.853205

κ3l = 10.995608

(3.19)

For cantilever beam, the boundary conditions are: zero deflection and rotation
(1st order derivative of φ(x)) at the fixed end; zero moment and shear force at
the free end. The mode functions are:

φi(x) = Cd[cosh κix− cos κix− σi(sinh κix− sin κix)], i = 1, 2, 3, · · · (3.20)
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where
σi =

sin κil − sinh κil
cos κil − cosh κil

(3.21)

And the parameter κi in this case is determined by:

cos κil · cosh κil + 1 = 0, i = 1, 2, 3, · · · (3.22)

The parameter Cd in Eq. (3.20) has the samemeaning as the one in Eq. (3.16). For
this case, the parameter κil corresponding to the first three natural frequency are:

κ1l = 1.875104

κ2l = 4.694091

κ3l = 7.854757

(3.23)

b) Numerical method for non-uniform beam

The FE method is obviously able to calculate the mode function by directly
discretizing Eq. (3.4) with the corresponding boundary conditions as afore-
mentioned. There are also some approximate numerical approaches that are
more efficient such as Rayleigh-Ritz andMyklestad’s methods. In Rayleigh-Ritz
method, the deflection is expressed by the expansion of a series of base func-
tions. These known base functions satisfy the required boundary conditions.
The coefficients of the base function in the expansion is determined by mini-
mizing the frequency ω with respect to each of the coefficients. The key part of
this method is to use proper base functions. However it requires experience and
understanding of the system dynamics, which is not always easy to do.

On the other hand, theMyklestad’smethod is purely based on the configuration
of the beam without the requirement of using empirical functions. In this
method, the beam is first discretized as a set of lumped mass that are connected
with massless flexible beams. By using the dynamical equilibrium of the beam
element, the deflection, rotation angle, moment and shear force at each cross
section of the discrete beam could be determined by a recurrence manner from
one end to the other of the beam. More specially, the boundary values at the
starting end are chosen to be compatible with the requirement for the case in
concern. The values at the other end are adjusted by tuning the value of the
natural frequency ω. Finally the deflection value at each discrete position on
the beam, which is mode function for this frequency, could be obtained by the ω
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values. In this study, this Myklestad’s method will be used for the non-uniform
beam case and the details of the implementation are given in Appendix C.

3.2 The proposed model

As discussed before, for a floating structure like a ship hull, the typical feature
of motion is a large rigid body motion plus a relatively small deformation. This
featuremakes themodal superpositionmethod suitable and accurate enough to
describe the flexible deformation. In this section, the 2D Coupled Rigid-body
and Flexiblemode (CRF)model are developed in details in this section. First, the
dynamics of the general equations for a rigid body with flexible beams attached
to it is first derived. Based on this general assumption, the governing equations
for three special cases are derived, i.e. pure rigid body, floating flexible beam (a
reasonable approximation of ship structure) and wedge with flexible bottoms.

3.2.1 Kinetic description

In Figure 3.2, one rigid body with two flexible beam-like structures attached
to it are investigated here. The proposed formulation is, however, generally
applicable for the cases with more beams. The beam-like structures are either
firmly connected with the rigid-body if only one end is attached, or at least
simply supported at both ends if they are all connected to the rigid-body. This
kind of configuration could enforce that the beam-like structure will not freely
rotate with respect to the rigid-body, which is a reasonable assumption for
most of the physical situations in marine engineering. This means the relative
position between these local systems (as will be defined below) will not change
during the movement.

3.2.1.1 Coordinate systems

Two types of coordinate systems are used in this study, which include a global
X − Y system and body-attached (local) xR − yR and si − wi systems (i = A, B,
represents the index of Beams A and B, respectively).

The global X − Y system is fixed in the space, whereas the body-attached
(local) coordinate systems follow the translational and rotational motions of the



58 Chapter 3 Structure Dynamics and FSI coupling scheme

X

Y

sA

xR

yR

wA

sB

wB

OfB

OfA

OR

O

θfA 

θfB 

θR 

ηA 

ηB 

Rigid body

Beam B

Beam A

Figure 3.2: Sketch of general rigid body with flexible beams system

corresponding components, but do not deform with the body if it is attached to
the beam-like structure. The origins of these local coordinate systems are always
chosen to be the mass center of corresponding undeformed substructures.

3.2.1.2 Definition of the motion variables

The motion of the rigid-body part could be described by position of its mass
centre XcR = [XcR(t), YcR(t)]T, which is the coordinate of the xR − yR system
origin (i.e., OR) represented in global system, and the angle θR(t) from O− X
axis (anti-clockwise) to OR − xR axis. For the flexible beam-like part, except for
themass centre (O f A andO f B), positions Xc f i = [Xc f i(t), Yc f i(t)]T and rotational
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angles θ f i (t); additional variables ηi(si, t), which describe the deflection of beam
i with respect to the corresponding beam central lines, are used.

To describe the relation between rigid and flexible parts, the variables xo f i =

[xo f i, yo f i]
T are defined as the vectors from OR to O f i, respectively. Compared

with the aforementioned position vectors, e.g. Xc f i, this xo f i is represented
in the xR − yR system instead of the global X − Y system. As the relative
positions between different local systems are unchanged during the motion,
these vectors would be constants. Moreover, the angular differences between
different systems are constants as well, i.e.

θR(t)− θ f i(t) ≡ const.

xo f i ≡ const.
(3.24)

Thus, their time derivatives of the angular variables are the same, i.e.

θ̇R = θ̇ f i (3.25)

θ̈R = θ̈ f i (3.26)

Similarly, xR = [xR, yR]
T is defined as the vector from the mass centre of the

rigid body OR to each point on the rigid body. And it is also represented in the
local xR − yR system. Hence, for each point, the corresponding representation
of the vector would remain unchanged.

3.2.1.3 Kinetics of each point on structure

With the above definitions, the global coordinates of each point on rigid-body
part, i.e. XR = [XR(t), YR(t)]T could be represented as:

XR = XcR + RRxR (3.27)

where RR is the rotation matrix which relates the local xR − yR system to the
global X − Y system. Its definition is given in Eq. (3.34). For the flexible beam-
like structure, its motion could be described by the coordinates of the points on
the central line X f i = [X f i(t), Yf i(t)]T as:

X f i = Xc f i + R f iξ
T
i (3.28)
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where ξi is the coordinate of the points on ith beam’s central line in the local
si − wi system:

ξi = [si, ηi] (3.29)

where ηi(s, t) is the deflection function along the beam. According to the beam
assumption, the deformation only occurs in the direction perpendicular to the
beam central line, which means that si would not change for each point during
the movement, i.e.

ξ̇i = [0, η̇i]
T (3.30)

ξ̈i = [0, η̈i]
T (3.31)

Xc f i could be related to XcR as:

Xc f i = XcR + RRxo f i (3.32)

By submitting Eq. (3.32) into Eq. (3.28), X f i could be expressed as:

X f i = XcR + RRxo f i + R f iξi (3.33)

Here, R f i is similar to RR, and is also the rotation matrix which converts the
coordinate in local si −wi system to the global X−Y system. The definitions of
RR and R f i are of the form:

Rj =

[
cos θj − sin θj

sin θj cos θj

]
(3.34)

where j indicates different local systems, i.e. R for rigid body; f A for beam A;
f B for beam B. Their first and second order time derivatives, which will be used
in the later derivation, are given as

Ṙj = RjUθ̇j (3.35)

R̈j = ṘjUθ̇j + RjUθ̈j = −Rjθ̇
2
j + RjUθ̈j (3.36)

where U is introduced to simplify the derivation, and it is given by

U =

[
0 −1
1 0

]
(3.37)
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From Eq. (3.34) and (3.37), it can be shown that:

RjRT
j = RT

j Rj = UUT = UTU = I2 (3.38)

UUT = UTU = I2 (3.39)

where I2 is a 2× 2 identity matrix. Using these formulations, the velocity and
acceleration of each point on the rigid body or beam-like structure central line
could be derived as:

ẊR = ẊcR + ṘRxR = ẊcR + RRUθ̇RxR (3.40)

Ẋ f i = ẊcR + ṘRxo f i + Ṙ f iξi + R f iξ̇i = ẊcR + RRUθ̇Rxo f i + R f iUθ̇ f iξi + R f iξ̇i

(3.41)
ẌR = ẌcR + R̈RxR = ẌcR + (RRUθ̈R − RRθ̇2

R)xR (3.42)

Ẍ f i =ẌcR + R̈Rxo f i + R̈ f iξi + 2Ṙ f iξ̇i + R f iξ̈i

=ẌcR + (RRUθ̈R − RRθ̇2
R)xo f i + (R f iUθ̈ f i − R f i θ̇

2
f i)ξi+

2R f iUθ̇ f iξ̇i + R f iξ̈i

(3.43)

In the computation, the perimeter of the whole structure is represented by a
set of discrete points. Each point on the rigid-body part could be defined by
Eq. (3.27), after the corresponding variables are obtained. For the beam-like
structure part, Eq. (3.33) only gives the position of the points on its central
line. The points on its perimeter are determined in the following way: The
coordinates of each point is updated by linearly combining the rigid and flexible
parts. For the rigid part, the position is simply determined as a normal rigid-
body. The flexible deformation is updated based on the assumption that the
beam is made up by multiple layers of materials and each layer will undergo
the same deformation around its own central line. More specifically, for the
points that are not on the beam central line, the flexible deformation is obtained
by shifting the corresponding value from the layer that is on the beam central
line.

3.2.2 Modal superposition approach

By using the modal superposition method mentioned in Section 3.1, the small
elastic deflection part η(s, t) for each beam could be represented as:

η(s, t) = ΦTq (3.44)
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where Φ and q are the vectors of mode shape functions and the corresponding
generalized coordinates. They are defined as follows:

Φ = [φ1(s), φ2(s), · · · , φN(s)]T (3.45)

q = [q1(t), q2(t), · · · , qN(t)]T (3.46)

where N is the number of modes that has been taken into account. Separating
the spatial and time variables in Eq. (3.44), the time derivatives of η(s, t) could
be further expressed as:

η̇ = ΦTq̇ (3.47)

η̈ = ΦTq̈ (3.48)

The mode shape functions are obtained based on the Euler beam equation
with different boundary conditions by either analytical or numerical methods.
Furthermore, the orthogonal relationships should also be satisfied, which is,∫

f
ΦΦTρlds = IN (3.49)

∫
(

d2Φ

ds2 )EJ(
d2Φ

ds2 )Tds = Λ, Λ = diag(ω2
k), k = 1, 2, · · · , N (3.50)

where ωk represents the kth natural circular frequency of the beam, and E, ρl and
J are Young’s module, the line density and the 2nd moment of the beam’s cross
section, respectively. IN is the N × N identity matrix, where N is the number
of modes that is used. The line integration is conducted along the neutral line
of the beam. Unlike the general orthogonal relations in Eq. (3.9) and (3.10), in
order to simplify the derivation in the following section, the mode function is
normalized so that the integration in Eq. (3.49) is 1 for each frequency.

As mentioned in Section 3.1.3, introducing the modal superposition model
makes it possible to use the generalized coordinates q to represent the flexible
deformation of the beam. This would enable us to use the desirable orthogonal
properties of Eq. (3.49) and (3.50) to further simplify the form of these equations
in the following content.

Moreover, in order to simplify the equations derived in Section 3.2.3, the follow-
ing definitions are introduced:

Ψ0 = [ψ01, ψ02, ψ03, · · · , ψ0N] =
∫

Φρlds (3.51)
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Ψ1 = [ψ11, ψ12, ψ13, · · · , ψ1N] =
∫

sΦρlds (3.52)

In this work, two types of methods are used to obtain the mode shape function
and the corresponding natural frequencies. For the uniform beam cases i.e.
free floating beam on free surface and wedge with flexible bottoms (which will
be shown in Chapter 6) the analytical solution could be solved based on the
Euler beam equation and its corresponding boundary conditions, as shown in
Eq. (3.20) and (3.16). The scaling factor Cd in these two equations is chosen
as Cd ≡ 1√

M f
(where M f is the mass of the beam) to be consistent with the

orthogonality condition in Eq. (3.49) and (3.50). For the non-uniform beam
case, i.e. the 46000tones oil ship in Section 6.3, the numerical approach called
Myklestad’s method is used instead. The details of the implementation of
Myklestad’s method is given in Appendix C and the result of the mode shape
functions is given in Section 6.3.

3.2.3 General governing equations

Based on the discussion in Sections 3.2.1 and 3.2.2, the motion of the structure
could be fully described by the generalised position variables D and the corre-
sponding generalised force variables Q as follows:

D = [XT
cR, θ, qT

A, qT
B, · · · ]T (3.53)

Q = [QT
XcR

, Qθ, QT
qA, QT

qB, · · · ]T (3.54)

As shown in Eq. (3.24), θR and θ f i are not independent to each other. Therefore
for simplicity, the angle variable θ in D is selected to be the rigid rotational angle
θR without affecting the structure of the formulations. Moreover, although the
time derivatives of θR and θ f i are the same (i.e., Eq. (3.25) and (3.26)), they are
still annotated differently in the following derivations in order to show clearly
the origin of each term. The variables qi are the generalised coordinates for
Beam A or Beam B, respectively, which are defined by Eq. (3.46).

The force variables QXcR ,Qθ and Qqi are non-conservative forces corresponding
to the rigid-body motion part (i.e. XcR and θ) and the elastic parts (i.e. qi),
respectively. The vector type forces are defined as:

QXcR = [QXcR , QYcR ]
T (3.55)
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Qqi = [Qqi1, Qqi2, · · · , QqiN]
T (3.56)

According to the extended Hamilton’s principle, the motion of the structure
could be described by the following Lagrange’s Equation:

QXcR =
d
dt
(

∂T
∂ẊcR

) +
∂V

∂XcR
− ∂T

∂XcR
(3.57)

Qθ =
d
dt
(

∂T
∂θ̇

) +
∂V
∂θ
− ∂T

∂θ
(3.58)

Qqi =
d
dt
(

∂T
∂q̇i

) +
∂V
∂qi
− ∂T

∂qi
(3.59)

where T and V are kinetic and potential energies of the whole structure,
respectively. The kinetic energies for the rigid body (TR), flexible (Tf i) beams
and the whole structure are given by:

Tf i =
1
2

∫
f i

ẊT
f iρlẊ f ids (3.60)

TR =
1
2

∫
R

ẊT
RρẊRdxdy (3.61)

T = TR + ∑
i

Tf i (3.62)

For the potential energies, they are given by:

VR = MRgYcR (3.63)

Vf i =
1
2

∫
f i

d2η f i

ds2 Ei Ji
d2η f i

ds2 ds + M f igYc f i

=
1
2

qT
i (
∫

f i
(

d2Φi

ds2 )Ei Ji(
d2Φi

ds2 )Tds)qi + M f igYc f i

=
1
2

qT
i Λiqi + M f ig(YcR + sin θRxo f i + cos θRyo f i)

(3.64)

V = VR + ∑
i

Vf i (3.65)

where VR and Vf i are the rigid body and flexible beams potential energies,
respectively, and MR and M f i are the masses for the corresponding parts.

The generalised forces corresponding to the rigid-body motion (i.e. XcR and
θ) and the elastic ones (i.e., qi) could be determined using the virtual work
principle. This is achieved by establishing an equation that the virtual work
done by the generalised forces should be equal to the one done by active external
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non-conservative forces through generalised virtual displacements. In this
work, we assume that the whole structure is subject to distributed pressure p
only (e.g. water pressure). As no concentrated force or moment is applied on it,
the following equations are obtained:

δXT
cRQXcR = δXT

cR

∮
all

(pn)dl (3.66)

δθQθ = δθ
∮

all
p(Xpny −Ypnx)dl (3.67)

δqT
i Qqi =

∮
f i
[(pn) · eiw]δη f idl = δqT

i

∮
f i
[(pn) · eiw]Φidl (3.68)

where n = [nx, ny]T is the unit normal vector of points on the perimeter of the
whole surface, which points towards the interior structural domain (i.e., outside
the fluid domain if fluid is in the vicinity). Xp = [Xp, Yp]T are the vectors
pointing from OR to the points on the perimeter of the whole structure, and
eiw = [eiw1, eiw2]

T is the unit vector of the wi direction. All these vectors are
represented in the global X − Y system. The integrations with subscripts all
or f i mean that the calculations are conducted on the perimeter of the whole
structure or just on the corresponding beams.

Thus, the generalised forces are:

QXcR =
∮

all
pndl (3.69)

Qθ =
∮

all
p(Xpny −Ypnx)dl (3.70)

Qqi =
∮

f i
[(pn) · eiw]Φidl (3.71)

Substituting T, V, QXcR , Qθ and Qqi into the Lagrange equation, the governing
equations for the coupled rigid-body and flexible beams system become (after
some tedious derivations using the chain rule):

∑
i

∫
f i
(ẌCR − RRθ̇2

Rxo f i + RRUθ̈Rxo f i − R f i θ̇
2
f iξi + R f iUθ̈ f iξi + 2R f iUθ̇ f iξ̇i + R f iξ̈i)ρlds

+
∫∫

R
(ẌcR − RRθ̇2

RxR + RRUθ̈RxR)ρdxdy + (MR + ∑
i

M f i)g

[
0
1

]
= QXcR

(3.72)
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∑
i

∫
f i
(ẌT

cR + θ̈RxT
o f iU

TRT
R − θ̇2

RxT
o f iR

T
R + θ̈ f iξ

T
i UTRT

f i + 2θ̇ f iξ̇
T
i UTRT

f i − θ̇2
f iξ

T
i RT

f i + ξ̈
T
i RT

f i)

(RRUxo f i + R f iUξi)ρlds +
∫∫

R
(ẌT

cR − θ̇2
RxT

RRT
R + θ̈RxT

RUTRT
R)(RRUxR)ρdxdy+

∑
i

M f i(cos θRxo f i − sin θRyo f i) = Qθ

(3.73)∫
f i
(ẌT

cR + θ̈RxT
o f iU

TRT
R − θ̇2

RxT
o f iR

T
R + θ̈ f iξ

T
i UTRT

f i + 2θ̇ f iξ
T
i UTRT

f i − θ̇2
f iξ

TRT
f i + ξ̈

T
i RT

f i)

(R f i

[
0
1

]
Φi)ρlds + Λiqi = Qqi

(3.74)
For the rigid body part, the following integrations hold:∫∫

R
ρdxdy = MR (3.75)

∫∫
R

ρRRxRdxdy = 0 (3.76)∫∫
R

xT
RxRρdxdy = IR (3.77)

which also means: ∫∫
R

ρRRUxRdxdy = 0 (3.78)

where IR is the rotational inertia of the rigid body. The integration for the rigid-
body part could be simplified as:∫∫

R
(ẌcR − RRθ̇2

RxR + RRUθ̈RxRρ)dxdy

= ẌcR

∫∫
R

ρdxdy− θ̇2
R

∫∫
R

ρRRxRdxdy + θ̈R

∫∫
R

ρRRUxRdxdy = MRẌcR

(3.79)

∫∫
R
(ẌT

cR − θ̇2
RxT

RRT
R + θ̈RxT

RUTRT
R)(RRUxR)ρdxdy = ẌT

cR

∫∫
R

ρRRUxRdxdy

+ θ̈R

∫∫
R

xT
RUTRT

RRRUxRρdxdy− θ̇2
R

∫∫
R

xT
RRT

RRRUxRρdxdy = IRθ̈R

(3.80)
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Finally, by substituting Eq. (3.79) and (3.80) into Eq. (3.72) to (3.74), the governing
equations for the whole structure become:

∑
i

∫
f i
(ẌCR − RRθ̇2

Rxo f i + RRUθ̈Rxo f i − R f i θ̇
2
f iξi + R f iUθ̈ f iξi + 2R f iUθ̇ f iξ̇i

+ R f iξ̈i)ρlds + MRẌcR + (MR + ∑
i

M f i)g

[
0
1

]
= QXcR

(3.81)

∑
i

∫
f i
(ẌT

cR + θ̈RxT
o f iU

TRT
R − θ̇2

RxT
o f iR

T
R + θ̈ f iξ

T
i UTRT

f i + 2θ̇ f iξ̇
T
i UTRT

f i − θ̇2
f iξ

T
i RT

f i

+ ξ̈T
i RT

f i)(RRUxo f iR f iUξi)ρlds + IRθ̈R + ∑
i

M f i(cos θRxo f i1 − sin θRxo f i2) = Qθ

(3.82)∫
f i
(ẌT

cR + θ̈RxT
o f iU

TRT
R − θ̇2

RxT
o f iR

T
R + θ̈ f iξ

T
i UTRT

f i + 2θ̇ f iξ
T
i UTRT

f i − θ̇2
f iξ

TRT
f i

+ ξ̈T
i RT

f i)(R f i

[
0
1

]
Φi)ρlds + Λiqi = Qqi

(3.83)

3.2.3.1 Rigid-body

If the object under consideration is just a rigid body, all the integrations cor-
responding to flexible beams in the above general governing equations would
vanish. This means the final equations would simply reduce to the following
form:

MRẌcR + MRg

[
0
1

]
= QXcR (3.84)

IRθ̈R = Qθ (3.85)

These equations are obviously identical to the classical rigid-body dynamics
results, as expected.

3.2.3.2 Floating flexible beam

The case of a floating flexible beam is studied in this section. The beam
assumption is a common practice in marine engineering when describing the
overall Hydroelasticity property of a ship structure. However, as mentioned



68 Chapter 3 Structure Dynamics and FSI coupling scheme

before, the traditional Hydroelasticity theory actually performs the calculation
in the way that rigid-body motion and flexible deformation are calculated
separatelywithout considering themutual interaction effect, i.e. first computing
the overall motion with rigid-body assumption and then calculating the flexible
deformation with modal superposition technique based on the fluid force from
rigid-body computation. The model proposed here provides the possibility to
compute the coupled effect of rigid-body and flexible motions. As shown in

w s

0

Y

X
O

θf(t) 

Xcf

Free surface 

η (s,t)

L

H

Figure 3.3: Sketch of the flexible floating beam system

Figure 3.3, there is only one flexible beam in this case. The subscript i(i =

A, B), which indicates different beams, could be omitted in the above equations.
Furthermore, since the purely rigid body part does not exist in this case, the
rigid-body system xR− yR and flexible beam system x f − y f coincide with each
other, which lead to the following relations:

xo f ≡ 0

θR ≡ θ f

RR ≡ R f

XcR ≡ Xc f

(3.86)
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Substituting the above relations into the general governing equations Eq. (3.81)
to (3.83), lead to the following simplified expression for this case:

∫
f
(Ẍc f − R f θ̇2

fξ+ R f Uθ̈ fξ+ 2R f Uθ̇ f ẋi+ R f ξ̈)ρlds + M f g

[
0
1

]
= QXc f

(3.87)∫
f
(ẌT

c f + θ̈ fξ
TUTRT

f + 2θ̇ f ξ̇ f ξ̇
TUTRT

f − θ̇2
fξ

TRT
f + ξ̈

TRT
f )(R f Uξ)ρlds = Qθ

(3.88)∫
f
(ẌT

c f + θ̈ fξ
TUTRT

f + 2θ̇ f ξ̇ f UTRT
f − θ̇2

fξ
TRT

f + ξ̈
TRT

f )(R f

[
0
1

]
Φ)ρlds

+ Λq = Qq

(3.89)

Considering that the local coordinate centre is also the mass centre and its
symmetry property about w and s axis, the following relationships hold:∫

ρlds = M f (3.90)

∫
sρlds = 0 (3.91)∫

s2ρlds = I f (3.92)∫
η2ρlds =

∫∫
(ΦTq)(ΦTq)ρlds = qT[

∫
ΦρlΦ

Tds]q = qTIq = qTq (3.93)∫
ηη̇ρlds =

∫
(ΦTq)(ΦTq̇)ρlds = qTq̇ (3.94)

where I f = M f (L2 + H2)/12 is the rotation inertia of the beam about mass
centre.

If the mode function is chosen up to third-order, and by substituting the above
relationships into Eq. (3.87) to (3.89), the governing equations finally become:

M f ẌcR + θ̇2
f sin θ f (ψ01q1 + ψ02q2 + ψ03q3)− 2θ̇ f cos θ f (ψ01q̇1 + ψ02q̇2ψ03q̇3)

− θ̈ f cos θ f (ψ01q1 + ψ02q2 + ψ03q3)− sin θ f (ψ01q̈1 + ψ02q̈2 + ψ03q̈3) = QXcR

(3.95)

M f ŸcR − θ̇2
f cos θ f (ψ01q1 + ψ02q2 + ψ03q3)− 2θ̇ f sin θ f (ψ01q̇1 + ψ02q̇2ψ03q̇3)

− θ̈ f sin θ f (ψ01q1 + ψ02q2 + ψ03q3) + cos θ f (ψ01q̈1 + ψ02q̈2 + ψ03q̈3) + M f g = QYcR

(3.96)
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− (ẌcR cos θ f + ŸcR sin θ f )(ψ01q1 + ψ02q2 + ψ03q3) + I f θ̈ f + θ̈ f (q2
1 + q2

2 + q2
3)

+ 2θ̇ f (q̇1q1 + q̇2q2 + q̇3q3) + (ψ11q̈1 + ψ12q̈2 + ψ13q̈3) = Qθ

(3.97)

[−ẌcR sin θ f + ŸcR cos θ f ]ψ01 + ψ11θ̈ f − θ̇2
f q1 + q̈1 + ω2

1q1 = Qq1 (3.98)

[−ẌcR sin θ f + ŸcR cos θ f ]ψ02 + ψ12θ̈ f − θ̇2
f q2 + q̈2 + ω2

2q2 = Qq2 (3.99)

[−ẌcR sin θ f + ŸcR cos θ f ]ψ03 + ψ13θ̈ f − θ̇2
f q3 + q̈3 + ω2

3q3 = Qq3 (3.100)

where Qq1 , Qq2and Qq3 are the three components in Eq. (3.71), corresponding
to the three modes. As can be seen, there are several non-linear terms in each
of these equations, which represent the interaction effect between rigid-body
motion and flexible deformation. This set of equations is then solved at each FSI
iterations using Newmark method [110] and Newton-Raphson methods. The
detailed procedure of the solution process is given in the Appendix A.

3.2.3.3 Symmetric flexible wedge

½L
θB =β 

yR

½L

X

Y

O

xR

OR

wA

sA sBwB

OB

OA

θA 

ηB ηA 

Figure 3.4: Sketch of the wedge with flexible bottom

In this part, the case of a 2D wedge with flexible bottom vertically and freely
dropping into water is investigated. The wedge model is shown in Figure 3.4.
Both of the bottoms are fixed at the junction point on the wedge top and free at
the other ends. The bottoms are flexible whereas the other parts are treated as
rigid body. Both of the two bottom beams have the same mass, which is defined
as M f , i.e.:

M f A = M f B = M f (3.101)
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The symmetric property will make the dropping motion only occurs in the
vertical direction and always perpendicular to the calm water surface, which
means there would be no rotational motion during the dropping. Therefore, all
the time derivatives of the angular variables are all zeros, i.e.:

θ̇R = θ̈R = θ̇ f A = θ̈ f A = θ̇ f B = θ̈ f B = 0 (3.102)

These angular conditions make all the angle-related terms in the general gov-
erning equations to be zeros. Moreover, the equation corresponding to angular
motion (Eq. (3.82)) is not included since the angular variables are constants. As
a result, the simplified governing equations for this case become:

∑
i

∫
f i
(ẌcR + R f iξ̈i)ρlds + MRẌcR + (MR + ∑

i
M f i)g

[
0
1

]
= QXcR (3.103)

∑
i

∫
f i
(ẌcR + ξ̈T

i RT
f i)(R f i

[
0
1

]
Φi)ρlds + Λiqi = Qqi (3.104)

To simplify further the forms of these equations, the following relations between
θ f A and θ f B, which are derived from the symmetric configuration of the wedge,
are used to expand the vectors and matrices in the above equations, i.e.

sin(θ f A) = sin(π − θ f B) = sin(θ f B) (3.105)

cos(θ f A) = cos(π − θ f B) = − cos(θ f B) (3.106)

Moreover, the vertical motion constraint also means the wedge should be mo-
tionless in the horizontal direction, i.e.:

XcR = ẊcR = ẌcR = 0 (3.107)

As the wedge is symmetric about the yR axis and the entry speed is perpendic-
ular to the free surface, the flexible deformation of the two bottom beams will
have the same absolute amount but opposite direction when measured in their
corresponding local x f i − y f i coordinate system. Therefore, if the mode func-
tions for the left beam ΦA are chosen to be the opposite ones of the right beam
ΦB, i.e.:

ΦB = −ΦA = Φ (3.108)
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where Φ is the is the vector of the mode function defined by Eq. (3.20), then the
generalised coordinates qi would be identical for both sides, that is,

qA = qB (3.109)

Substituting Eq. (3.108) and (3.109) into Eq. (3.71) (for the calculation of Qqi),
and considering the water pressure (−pn) pointing in the same and opposite
direction of wi for Beam A (eAw) and Beam B (eBw), respectively (i.e. (pn) · eAw

and (pn) · eBw would be of the opposite sign), then the value of the generalized
force Qqi for both of the two beams would be the same, i.e.:

QqA = QqB (3.110)

After substituting the above relations, the final governing equations for the
flexible wedge dropping problem are:

(2M f + MR)ŸcR + 2 cos θ(ψ01q̈1 + ψ02q̈2 + ψ03q̈3) + (2M f + MR)g = QYcR

(3.111)
ŸcR cos θψ01 + q̈1 + ω2

1q1 = Qq1 (3.112)

ŸcR cos θψ02 + q̈2 + ω2
2q2 = Qq2 (3.113)

ŸcR cos θψ03 + q̈3 + ω2
3q3 = Qq3 (3.114)

where the subscript i(i = A, B) (which is used for indicating different beams
in qi, ψi0, ψi1 and Qqi) is omitted based on the equivalent conditions aforemen-
tioned. What is worth mentioning is that the angle θ and mode function vector
Φ are chosen to be the value of beam B, although the structure of these equa-
tions would be the same if they are chosen from beam A. As before, this set of
equations is also solved by coupled Newmark and Newton-Raphson methods.
The detailed formulation is given in AppendixA.

3.3 FSI coupling scheme

The interaction between the structure and fluid is computed in an iterative way.
The Gauss-Seidel method with Aitken relaxation approach is adopted in this
study.
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More specifically, we suppose that all the fluid and structure variables are
known at t = t(k−1). Then, the detailed process of interaction for next time
step at t = tk is illustrated as follows:

1) Based on the assumption that the acceleration of the structuremotion at t = tk

is the same as in the previous time step, i.e. D̈k = D̈(k−1), the position Dk and
velocity Ḋk at t = tk can be calculated accordingly by the normal finite difference
approach.

Then by using Eq. (3.27), (3.28) and Eq. (3.40) to (3.43), the corresponding
position, velocity and acceleration values of each points on the fluid structure
interface, i.e. Γk

f si,0, Γ̇k
f si,0 and Γ̈k

f si,0 could be calculated from these newly
predicted kinetic values. The index number in the subscript represent the
sequence number of iteration.

2) Using the updated kinetic information of interface as a new boundary condi-
tion, calculate the fluid motion at t = tk, by the modified MPS method. Then,
obtain the new pressure pk

f si,i+1 applied on the interface for ith iteration at t = tk.

3) Use the new fluid pressure pk
f si,i+1 to update the structure position, velocity

and acceleration by the structural model for t = tk, i.e.,D̃k
i+1,

˙̃D
k
i+1 and ¨̃D

k
i+1.

Then, find the corresponding kinetic values Γ̃k
f si,i+1,

˙̃Γ
k
f si,i+1 and ¨̃Γ

k
f si,i+1 of the

points on the interface (by Eq. (3.27), (3.28) and (3.40) to (3.43) in Section 3.2.1).

4) Check the difference between Γ̃k
f si,i+1 and Γk

f si,i. If the convergence condition

|Γ̃k
f si,i+1 − Γk

f si,i| ≤ ε (3.115)

is satisfied, then go to step (1) to continue the computation for the next time step
(t = t(k+1)). Otherwise, correct the structure position Dk

i+1 for (i + 1)th iteration
using Eq. (3.116):

Dk
i+1 = χiD̃k

i+1 + (1− χi)Dk
i (3.116)

and update the velocity Ḋk
i+1 and acceleration D̈k

i+1 by Newmark method (see
Appendix A). The corresponding interface variables Γk

f si,i+1, Γ̇k
f si,i+1 and Γ̈k

f si,i+1

are then calculated according to Dk
i+1, Ḋk

i+1 and D̈k
i+1.

Using these corrected interface information, conduct (i + 1)th iteration by going
back to step (2). The total number of iteration is limited to 20 times in this study.

In Eq. (3.116), χi is the Aitken relaxation factor [76]. The central idea is to
improve the accuracy of predication by using two previous iterations. Its value
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is calculated by the following equation:

χi = −χi−1
(∆Γk

f si,i)
T(∆Γk

f si,i+1 − ∆Γk
f si,i)

(∆Γk
f si,i+1 − ∆Γk

f si,i)
T(∆Γk

f si,i+1 − ∆Γk
f si,i)

(3.117)

in which ∆Γk
f si,j = Γ̃k

f si,j− Γk
f si,j−1. The initial value for first iteration of each time

is chosen to be 0.2.

The whole procedure is illustrated in Figure 3.5.
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Chapter 4

Validation of modified MPS

In this Chapter, themodifications of theMPSmethod proposed in Chapter 2will
be validated using 2D Dam-break problem with various boundary conditions.
The aspects that will be checked include efficiency improvement of the new
neighbor particle searching strategy, pressure computation and the impact load
on the structures, and the mass conservation convergence properties. The
flow evaluation and pressure results will be validated against the experimental
results published in the literuture.

4.1 Efficiency test of the new neighbor particle
searching

The efficiency of the new proposed and traditional neighbour particle searching
strategies are tested and compared, using the 2D dam-break problem with
different particle numbers.

Basically, the neighbour search requires two times neighbour searching in each
time step for the particle method, as the particle distribution will change twice,
i.e. advancing particle positions to the intermediate stage (Eq. (2.3)) without
considering pressure, and then update the particle position using the corrected
pressure from solving Poisson equation (Eq. (2.4), (2.36) and (2.38)). The
following approaches are tested for this two times neighbour searching in each
single time step:

a) Pure traditional cell-linked

77
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This approach is about conducting the two times neighbour searching within
the area contained by the yellow and green line as shown in Figure 2.4

b) New strategy

As illustrated in Section 2.3.4, by using the new strategy, the two times neighbour
searching is only needed within the area covered by blue color in Figure 2.4

c) Verlet list combined with traditional cell-linked

This approach means we first generate a Verlet list using traditional cell-linked
approach, and then conduct the refined searching within the Verlet list twice.
As discussed in Section 2.3.4, the refined searching within the Verlet list with
6r0 radius will not be more efficient than directly searching within the nine
4r0 length cells in 2D (as shown in Figure 2.4). Moreover, if we add the time
consumed on establishing the Verlet list using the 6r0 length cells, the total time
would be absolutely larger than the traditional cell-linked approach with 4r0

length cell (this will require twice the time used in comparison to strategy a)).

If we repeat the above analysis for the case of 5r0 radius, the comparison of
overall time cost with a) is not so obvious. Hence, this situation will be tested
here.

d) Verlet list enhanced by new strategy

The radius is taken to be the same as c), i.e. 5r0. The difference of the approach
used in d) as compared to the one in c) is that the establishing of Verlet list is
accelerated by the new strategy; since as mentioned in Section 2.3.4, the new
strategy is applicable for the acceleration of cells with any length.

Figure 4.1 shows the comparison of the computational time used in a single
time step by these four neighbour searching strategies. Figure 4.2 shows the
proportion of the time cost used by each part of the four searching strategies. It
is worth mentioning here that the cell generation time is the same for different
size cells, as explained in Section 2.3.4. Moreover, as shown in Figure 4.2, the
time spent on cell generation is indeed almost negligible compared with other
parts (as mentioned in Section 2.3.4). All the simulations in this work were run
on computer with Intel(R) Core(TM) i5-2400 (duo 3.1GHz) CPU, RAM 4.0 GB.
The compiler used is Microsoft Visual Studio.

From Figure 4.1, it can be seen that by using the new searching strategy, the
computation time in one single time step has been reduced at least by half
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Figure 4.3: Sketch of the 2D Dam-break calculation model

comparedwith all the other three approaches. The new searching time (red line)
is only about one third of the traditional cell linked model (blue line), which is
consistent with the prediction in Section 2.3.4. The efficiency of the neighbour
particle searching has been improved remarkably.

The Verlet list combined with the traditional cell-linked (i.e. c)) is more time-
consuming than the pure traditional cell-linked approach (i.e. d)). From
Figure 4.2, it can be seen that the average time of the two parts in c) i.e. Verlet
generation (yellow bar) and refined searching (brown bar) with this list are
basically equal to that of traditional cell-linked model (blue bar). However,
strategy c) requires two times of refined searching within the Verlet list, which
makes it slower.

Moreover, in Figure 4.2, the comparison of time in traditional cell-linked (blue
and yellow bar) and that after being accelerated by the new strategy (light blue
and orange bar) proves that the new strategy will reduce the searching time to
about 2.5/9, as illustrated in Section 2.3.4.

4.2 Pressure computation performance

Table 4.1: The conditions of different test cases

Source term Boundary condition Particle shifting
Original MPS Density invariant type (DI) Traditional MPS type No

Model A Density invariant type (DI) New proposed type
(including all modifications in section 2.3.2) No

Model B Divergence free type (DF) New proposed type
(including all modifications in section 2.3.2) No

Model C Density error compensation
(Eq. (2.38))

New proposed type
(including all modifications in section 2.3.2) No

Modified MPS Density error compensation
(Eq. (2.38))

New proposed type
(including all modifications in section 2.3.2) Yes
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Figure 4.4: Free surface profile and pressure contour comparison be-
tween experiment [93], original MPS and improved MPS

In order to test the effect of the modifications, A 2D dam-break problem is
calculated with different combinations of the aforementioned modifications, as
shown in Table 4.1. The geometry set-up is shown in Figure 4.3. The initial
particle distance is 0.005m, which corresponds to 14400 fluid particles (16164
particles in total). For the time step, the CFL condition is applied with a
maximum value of 0.001s. Four points on the impacting wall are selected to
monitor the pressure time history, as shown in Figure 4.3.

Figure 4.4 shows the comparison of free surface profiles and pressure contours
from experiment results by Lobovsky et al. [93], the original MPS and the MPS
with all the proposed modifications. Although both the original MPS and the
Modified MPS can give consistent flow configuration at various typical time
instants comparedwith experiment results, the smoothness of the pressure field
produced by the modified MPS is much better than the one generated by the
original MPS.

The pressure time history results at P2 are depicted in Figure 4.5. The pressure
fluctuation of the original MPS is quite large and finally triggers the termination
of the simulation, as shown in Figure 4.5 (a). Figure 4.5 (b) shows the result
of Model A in Table 4.1 (which illustrates the effect of the new boundary
conditions). The use of Neumann type solid boundary condition and the
simplified version of the free surface recognition method adopted by [71] could
reduce the fluctuation after the initial impact period. But the pressure is still too
noisy because of the DI type source. Actually, comparison between Figure 4.5
(b) and Figure 4.5 (c) shows clearly that the DI type tend to generate larger
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Figure 4.5: Pressure history of different models monitored at P2 ((a)
Original MPS; (b) DI source term, no particle shifting, proposed bound-
ary condition; (c) DF source term, no particle shifting, proposed bound-
ary condition; (d) Density error compensation source term, no particle
shifting, proposed boundary condition; (e) MPS with all the proposed
modifications (f) Viscous and inviscid MPS with all the proposed mod-
ifications
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fluctuation compared with DF type, as discussed in Section 2.3.1. The density
error compensation scheme could further smooth out the high frequency part
in the pressure time history, as shown in Figure 4.5 (d). Finally, in Model
C, the use of particle position shifting successfully eliminates the singular
pressure impulse by improving the regularity of the particle distribution, as
shown in Figure 4.5(e). All themodifications proposed heremake the numerical
pressure history to be consistent with the experiment results in a very high level.
Finally, the viscous effect is tested by performing the simulation using Eq. (2.2).
The pressure time history of viscous and inviscous situations are compared
in Figure 4.5 (f), together with the experimental results. From this figure,
it is clearly that the viscosity does not make any difference that exceeds the
numerical noise. This result is consistent with expectation since the Reynolds
number for this problem is as high as the order of 106. This confirms that for the
low speed impact flow problems investigated in this study, the inertia force is
the dominant one compared with viscosity. Furthermore, for the case where
turbulence modeling is the major concern like flow around cylinder, special
turbulence models should be adopted to handle the viscous term instead of the
directly discretization of the velocity Laplacian operator in Eq. (2.2) as in this
case.
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Figure 4.6 shows the pressure time histories monitored at the other three points,
i.e. P1, P3 and P4 by modified MPS with and without viscosity. Again, the
difference between viscous and inviscid case is very small. All the numerical
curves at the four monitor points match well with the experimental data.

4.3 Mass conservation and convergence

In order to test the convergence property of the modified MPS method, three
different initial particle distances, which are 0.01m, 0.0075m and 0.005m, are
used to compute the same dam-break problem described in Figure 4.3.

The pressure time history at the P2 monitor point and the pressure contour of
the three cases are shown in Figures 4.7 and 4.9. The consistency of the pressure
time history for different particle distances is well maintained, and they all agree
well with the experiment results. The characteristic features of the free surface
profile and the pressure contour at the same instant (t = 1.25s) for the three
cases are also very consistent, as shown in Figure 4.9.

The mass conservation performance of the MPS with proposed modifications
is checked using the same dam-break problem with different initial particle
distances i.e. 0.01m and 0.0075m. The mass conservation is measured by the
total volume (area in 2D) of the fluid domain [121]. More specially, theDelaunay
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triangulation is first established for the particle configuration at each time step,
and then the area of the fluid domain is calculated by the summation of these
triangles. The mass loss percentage is shown in Figure 4.8. As is shown in this
figure, the mass loss is within 5% and the refinement of particle distribution
improves the mass conservation performance. The relatively large fluctuation
after t(g/h)0.5 = 1.5 is caused by the splashing and re-entering of the water
into the main body. The density error drops back after t(g/h)0.5 = 4.7 is
due to the fact that the splashed water, which will be ignored by the Delaunay
triangulation process, have re-entered the fluid domain.
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Chapter 5

Impact flow simulation results

One of the advantages of particlemethod is that it is capable to efficiently handle
the violent and rapid flow motion with complex free surface deformation. The
situations such as impact wave (generated by collapsing of dam) hitting the
structure, sloshing and slamming are very representative cases in the area
of marine engineering. In this Chapter, this kind of extreme scenarios are
simulated to show the capablity of the modified MPS for marine industry
applications.

5.1 Dam-break with various boundary conditions

5.1.1 2D cases

5.1.1.1 With obstacle in the middle

The model of breaking-dam impacting with a beam in the middle of tank is
simulated, as shown in Figure 5.1. The initial particle distance is also 0.005m.
The fluid particle number is 1682 (2440 particles in total). Figure 5.2 compares
the improved MPS results (third and last column from left) with experiment
(first and fourth column from left) by Koshizuka et al. [75] and Particle Finite
Element Method (middle column) by Larese et al. [79]. The results of the
improvedMPS are matching well with the experimental results and the Particle
Finite Element Method, except at the time instant around 0.5s. During about
0.4s 0.5s, the experiment results show the process of the air bubble (which is

87
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Figure 5.1: Sketch of the 2D Dam-break with obstacle model
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Figure 5.2: Dam break with obstacle: free surface profiles (comparison
between experiment [75],PFEM [79] and Improved MPS

trapped by the jet) breaking out from the water. In the experiment this causes
the water jet to be higher than that in both of the numerical results (PFEM
and Improved MPS). This disagreement is reasonable since the air phase is not
considered in both of the numerical computations. When the air is compressed
out from the water, e.g. in the time instant of 1.0s, the Improved MPS results
agree better with experiment than the PFEM results.



Chapter 5 Impact flow simulation results 89

5.1.1.2 With spring supported rigid wall

The computational model of the rigid wall with spring hinged joint at the
impacting side of the tank is illustrated in Figure 5.3. The initial particle distance
is chosen as 0.01m, i.e., 7200 fluid particles are involved (8652 particles in total).
The motion of the rotating beam is governed by the following equation:

Ibθ̈b −
1
2

MbLbg sin θb + Kbθb = Tb (5.1)

where θb is the rotation angle of the beam, Ib is the moment of inertia with
respect to rotating axis, and Tb is the torque generated by the fluid pressure. The
other related parameters are chosen as: mass of the beam Mb = 1kg , stiffness
coefficientKb = 1500N/m, and length of the beam Lb = 2m. In order to compare
the effect of rigid and this rotational beam, the two cases are both computed in
this study.

θb

3.22m

0.6m

1.2m

2m

Figure 5.3: Sketch of the 2D Dam-break with spring supported wall

Figure 5.4 shows the pressure contour at several typical time instants. From
Figure 5.4, it can be seen that the distribution of the pressure is quite smooth in
space domain. Twomajor impacts are found to occur in two durations, i.e. from
0.75 to 2s and from 5.1 to 5.9s. During these two periods, the large fluid pressure
which is generated from the falling of the water column pushes the beam to
relatively large angles. Figure 5.5(a) shows the time history of the rotational
angle of the beam. The two significant angle impulses are consistent with the
time of the two major impacts. Except from these violent interactions, the water
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Figure 5.4: Pressure contour and free surface profiles at several typical
instants

pressure applied on the beam is relatively much smaller. As a consequence,
the beam oscillates with a period (≈ 0.2s) which is very close to the natural
frequency w = 33.4312rad/s (T = 0.1879s), as expected. In order to investigate

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

time (s)

p
 (

P
a
)

pressure sensor at y=0.16m

 

 

Elastic beam

Rigid beam

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

time (s)

a
rc

 d
e
g
re

e

arc degree location of rotation_ K1500

(a)

(b)

Figure 5.5: Time history of rotation angle and the pressuremonitor point

the effect of the beam rotation to pressure field, the time history of the pressure
monitored at the point, which is 0.16m above the right corner of the beam, is
compared in Figure 5.5(b).

As can be seen in Figure 5.5(b), the time history during the first major impact of
rotational beam case is basically the same as the one in rigid supported beam
case. However, the peak pressure value during the secondmajor impact is larger
than the one in firstmajor impact for the rotational case. This is probably because
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that at the beginning of the second impact, the beam is bouncing back (which
can be seen in Figure 5.4 at about t = 5s) which means that the water front and
the beam are moving towards each other. And this consequently makes this
impact more violent than the first one. The second difference is that there is a
regular oscillation after t = 6s for the rotational case, this is the reflection of
the beam oscillation with its near-natural frequency. The pressure fluctuations
which occur at about t = 2.4s and t = 6s for both the rigid supported and
rotational cases are caused by the isolated water particles re-entering the main
fluid field near right corner, which shows that this is not due to the stability issue
of the MPS solver.

5.1.1.3 With fixed end elastic wall

Figure 5.6 shows the sketch of the elastic cantilever wall impacted by a breaking-
dam. The related parameters are chosen as: Young’s modulus E = 0.2GPa,
thickness δ = 0.006m, line density m = 47.16kg/m, and the moment of inertia
of the beam cross section I = 1.8× 10−8m3. The other geometric parameters are
shown on the sketch picture in Figure 5.6. The initial particle distance is 0.004m.
This corresponds to 1250 fluid particles used in the simulation (1736 particles in
total).

The beam is fixed on the bottom, and its motion is solved by the standard linear
Finite Element (FE) method, as in Ref [139]. Similar to the spring supported
beam case, both rigid and elastic beam cases are computed and then compared.

The pressure contours and the beam deformation at some typical time instants
are shown in Figure 5.7. Smooth pressure fields are successfully generated, as
seen in Figure 5.7.

The trajectory of the top end of the beam, which is represented by the global
X coordinate of this point, is shown in Figure 5.8 (a). The frequency of the
oscillation (which corresponds to roughly a period of 0.6s) is very close to its first
order natural frequency w = 10.5235 (T = 0.5971s). This is also consistent with
the fact that the first modal shape is the dominant one as is shown in Figure 5.7.
The pressure history monitored at Y = 0.02m at the right corner for both rigid
and elastic wall cases are shown in Figure 5.8 (b). For both cases, the fluctuation
of pressure at the time domain is very small. And the difference between them
is also negligible, which means the small elastic deformation will not greatly
change the fluid motion and consequently the pressure field.
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Figure 5.6: Sketch of the 2D Dam-break with elastic wall
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Figure 5.7: Pressure contour, free surface profiles and beam deforma-
tions at several typical instants

5.1.2 3D cases

The 3D Dam-break problem investigated in [69] is computed here to test the
3D extension of the proposed modifications to MPS method. The sketch of
the problem setup is shown in Figure 5.9. This problem can be regarded as a
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Figure 5.8: Trajectory at the beam top and pressure time history at the
impacting corner

simplification of the green water flow problem [69]. A box is placed in the tank
to represent a scale model of a container. The top and side views are shown in
Figure 5.9(a) and (b), and Figure 5.9(c) shows the layout of the pressure sensors
on the box. There are also four vertical height probes that have been used in the
tank to monitor the water height history.

The initial particle distance is chosen to be 0.015m, which results in 200244
fluid particles and 308460 particles in total. The time step is controlled by CFL
condition with 0.002s as initial value. The numerical results of the proposed
modified MPS method are compared to the experimental results and another
numerical scheme (ComFLOW) [69].

The free surface profiles comparison are shown in Figure 5.10. Two typical
time instants of the early flow stages, i.e. right before the impact to the box
t = 0.4s (upper row) and after the impact t = 0.56s (lower row), are shown in
this figure. The small pictures at the right-up corners of each figure are the flow
situations of the volume where the water column occupies originally, i.e. the
so-called reservoir as referred in [69]. The red color particles in the modified
MPS results represent the free surface particles, whereas the blue color particles
are the inner fluid particles. In order to highlight the free surface deformation,
only the position of the free surface particles (i.e. the red particles) are shown
in the two main figures of the modified MPS result. As shown in Figure 5.10,
there is a good agreement with the experiment. In comparison with the VOF
based approach in ComFLOW results, the splash of small water droplets after
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Figure 5.9: Sketch of 3D Dam-break problem

the impact is well captured by the modified MPS method due to the inherently
advantage of particle method. The fact that no red particles exist under the
free surface in the modified MPS result means the inner flow field is free of
misidentified free surface particle. This proves that the 3D free surface particle
identification scheme works well even for this kind of violent flow scenario.

The water height time history at the position of H2 and H4 are compared
with results from experiment and ComFLOW [69] in Figure 5.11 (a) and (b),
respectively. The position of H2 is close to the impact side of the box, whereas
H4 is located inside the reservoir, as shown in Figure 5.9.

The trend of modified MPS results matches well with both the experimental
and ComFLOW curves. The major events of the flow are well captured. More
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Figure 5.11: Water height comparison at H2 (a) and H4 (b) between
modified MPS, experiment [69] and another numerical method (Com-
FLOW) [69]

specially, for the position of H2, the first water height peak occurs when the
water that bounce back from the wall arrives (around t = 1.8s). The water then
flows back to the reservoir and turns again due to the reflection of the wall (at
about t = 4s). The returned second wave generates the second peak at about
t = 5s in the H2 curve. The same events are also presented in the curve of H4.
The water height stops decreasing and starts to climb when the first bouncing
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wave reaches the position of H4. The increasing rate gets larger again when the
fist bouncing wave hits the wall. Finally a local peak is formed when the second
time reflected wave arrives. There are inevitably some discrepancies between
numerical and experiment results. One of the notable differences is that, at
around t = 5s and t = 4s in Figure 5.11(a) and (b) respectively, there are slight
delays of the local peaks in themodifiedMPS results comparedwith experiment
results. On the other hand, for the amplitude of the local peaks, the modified
MPS results are closer to the corresponding experimental ones compared with
the ComFLOW results.
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Figure 5.12: Pressure time history comparison at p1, p3, p5 and p7
betweenmodifiedMPS, experiment [69] and another numerical method
(ComFLOW) [69]

The time history of the pressure on the impact side and top of the box are
presented in Figure 5.12. The four sub-figures i.e. Figure 5.12(a), (b), (c) and
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(d) correspond to the results from sensor p1, p3, p5 and p7, respectively. As
shown in Figure 5.9 p1 and p3 are on the impact side, whereas p5 and p7 are on
the top of the box.

For the results of impact side,at position of p1, the impact event is captured
better bymodifiedMPS than that of ComFLOW in terms of timing and pressure
values. However, both of the numerical methods underestimate the impact
pressure value at position of p3. The second local pressure peaks at both points
p1 and p3 (around t = 5s in Figure 5.12(a) and (b)) are slightly delayed by
modifiedMPS simulation compared to the experimental andComFLOWresults.
This is consistent with the corresponding analysis for the water height above.

From Figure 5.12 (c) and (d), the discrepancies of the pressure time history
monitored on the top side of the box by ComFLOW are not found to occur in
the modified MPS simulation. Also, the "wiggle" [69] in ComFLOW at about
t = 1.3 is not encountered in this study. The starting of the pressure increase
in Figure 5.12 (c) and (d), which corresponds to the impact, in the modified
MPS simulation is slower than experimental results at about t = 1.5s. This
difference might be due to the following reason: in the experiment, when the
splashed water starts to drop on the top of box at about t = 1.0s ∼ 1.5s, the
pressure sensor can detect the impact, which is reflected by the impulses of the
experiment curves at about t = 1.0s ∼ 1.5s. However, in the modified MPS,
these drops of particles are still too coarse to form a "patch" of fluid, so that
they will be recognised as separate free surface particles, and this free surface
particles only possess zero pressure due to the dynamic boundary condition, as
mentioned in Chapter 2. When the particles are accumulated to some level, the
pressure can then be calculated properly, i.e. the pressure starts to increase at
about t = 1.5s. Similar reasoning could also be applied to explain the frequent
zero pressures of the modifiedMPS results during the period of t = 4.8s ∼ 5.3s.
More specially, the second time reflected wave starts to pass the box, where the
fluid over the top is still quite thin. This will lead to the situation that sometimes
the fluid around the sensor is too coarse to form fluid "patch". And this means
the pressure will be zero.

It is worth to point out that the extreme spikes of pressure from ComFLOW are
not encoutered in the modified MPS simulation.
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5.2 Sloshing simulation

A 2D sloshing phenomenon in partially filled tank is simulated in this section.
The physical dimensions are shown in Figure 5.13. The initial particle distance
is 0.005m, which corresponds to 2880 particles used (3592 particles in total).

0.3m

0.6m

0.12m

Wall

0.1m

Pressure monitor

Figure 5.13: Sketch of the sloshing model
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Figure 5.14: Comparison of free surface profiles between experiment and
Improved MPS at t = 0.1T(top), 0.2T(middle) and 0.3T(bottom)

The tank moves sinusoidally in horizontal direction as: X = A sin(ωt), where
A is the amplitude of motion and ω is the circular frequency of the excitation.
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Figure 5.15: Comparison of pressurewith experiment of Kishev et al [68]
and original MPS from B. H. Lee et al [82]

In this simulation, the frequency ω is 4.8332rad/s (period T is 1.3s) and the am-
plitude A is 0.05m. In order to simplify the coding, the equivalent acceleration,
which is equal to the tank acceleration, is added into the right hand side of the
governing equation (Eq. (2.1)). And the benefit is that all the boundaries remain
stationary.

Figure 5.14 shows the free surface profiles of both the experiment results and
the ImprovedMPS at three representative time instants, i.e. 0.1T, 0.2T and 0.3T,
where T is the period of the sloshing (1.3s). Again, since no falsely recognized
free surface particles exist in the main fluid body, the pressure contour is very
smoothly distributed, as shown in Figure 5.14. The ImprovedMPS shows a good
agreement with experiment for the free surface profiles as well.

Figure 5.15 compares the pressure results of the original MPS, experiment and
the Improved MPS results. The original MPS results are scanned from Ref [82],
and the experiment data are extracted from the paper of Kishev et al. [68]. From
this Figure, it is obvious that the fluctuation of pressure in the original MPS
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method is too large to be used for FSI application. In contrast, the Improved
MPS could successfully capture the typical pressure characteristics. The period
of the results also match well, although a shifting manipulation (also found in
Ref [68, 82]) is made to align the first impulse. This may be due to the starting of
the measuring time in the experiment, is not exactly the same as the start of the
tank motion. The peak values of each impulse are not exactly the same as those
in experiment results, but the overall maximum value, which is about 7000Pa at
around 2s and 10s, is successfully captured.

5.3 Slamming simulation

5.3.1 V shape wedge dropping

The Wedge-dropping problem is frequently employed as a simplified model to
investigate slamming phenomenon in marine engineering. In this part, a 2D
wedge-droppingmodelwhich has been studied through experiment byAarsnes
[1] and numerical computation (Boundary Element Method) by Sun [143] is
investigated again by the improved MPS method.
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Figure 5.16: Sketch of the V shape section

The geometry information of the V-shape wedge is shown in Figure 5.16. The
deadrise angle and width of the wedge are 30 degrees and 0.3m, respectively. In
the experiment, two dummy sections with thickness of 0.45m were affiliated on
themeasuring sectionwhose thickness is 0.1m. Thismeans that the vertical force
shown below is only 10% of the total force experienced by the whole rig. The
reason for this is tominimize the 3D effect of the flow andmakes the comparison
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with 2D computation results more reasonable. The total weight of the falling rig
is 288kg.

Two scenarios are studied here. The dropping heights (defined from the apex
of the wedge to the calm water surface) are 0.195m and 0.5m respectively, which
means the entry speeds are 1.91m/s and 3.05m/s for these two situations.

The size of the calm water for the computation is 0.9m in width and 0.6m in
depth. As in the previous sections, the CFL condition is applied to determine
the time step. The initial distance between particles is 0.01m, which corresponds
to 5400 fluid particles involved in the simulation. At the beginning of the
simulation, the wedge is placed just above the water with a distance (from the
apex of the wedge to the calm water surface) of 0.01m and the initial velocity
as aforementioned . Because of the symmetrical shape of the wedge and for
programming convenience, the horizontal motion of the wedge is constrained.
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Figure 5.17: Vertical force and velocity comparison between experiment
[1], BEM [143] and modified MPS (entry speed v0 = 1.91m/s)

The vertical force and velocity are compared in Figure 5.17 (Scenario1: entry
speed 1.91m/s) and Figure 5.18 (Scenario2: entry speed 3.05m/s) for the mod-
ified MPS, BEM and experiments. Generally, the velocity results of Improved
MPS match better with the experiment than the BEM results. For the acceler-
ation results, both of the BEM and Improved MPS methods give overestimate.
This could be caused by the 3D effect when the water jet approaches the knuck-
les [143]. Actually, at about 0.03s for scenario 1 (Figure 5.17) and 0.017s for sce-
nario 2 (Figure 5.18), the water just approaches the edge of the wedge. And at
about the same time, the vertical force begins to deviate from the experiment
results. Another possible reason could be the neglecting of the frictional force
along the guide trail [143].
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Figure 5.18: Vertical force and velocity comparison between experiment
[1], BEM [143] and modified MPS (entry speed v0 = 3.05m/s)
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Figure 5.19: Free surface profile and velocity distribution at some typical
time instants

Figure 5.19 show the free surface profiles for two scenarios at typical time
instants. The middle of each figure shows the time when water just approaches
the edge of the wedge. The particle distribution is symmetrical and quite
uniform. The last image of each figure gives the shape of the water jet. The



Chapter 5 Impact flow simulation results 103

red point means detected free surface particles. There are no falsely recognized
free surface particles in the main fluid body.

5.3.2 Ship cross-section dropping

The ship bow section dropping has also been studied by Aarsnes [1] exper-
imentally and Sun [143] numerically. The computational model is shown in
Figure 5.20. Two scenarios are investigated here: the dropping heights of 0.02m
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Figure 5.20: Shape of the ship section

and 0.118m. The corresponding entry velocities are 0.61m/s and 1.48m/s, re-
spectively. Except from the shape of the section, other experimental set-up is
the same as the one described in wedge dropping case. The total weight of the
falling rig is 261kg.
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Figure 5.21: Vertical force and velocity comparison with experiment [1]
and BEM [143](entry speed =0.61m/s)
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and BEM [143] (entry speed =1.48m/s)

The simulation is conducted in a tank with the length of 2.4m and water depth
of 1m. As in the above sections, the CFL condition is applied to determine the
time step. The initial distance between particles is 0.005m, which corresponds
to 96000 fluid particles involved in the simulation. Here, the same set-up as in
the wedge dropping case is used. At the beginning of the simulation, the wedge
(ship section) is placed just above thewater with a distance (from the apex of the
wedge to the calm water surface) of the initial particle distance i.e. 0.005m with
the aforementioned initial velocity. Because of the symmetrical shape of the
wedge and for programming convenience, the horizontalmotion of thewedge is
constrained. The physical simulation time is 0.12s to 0.18s, which takes roughly
8 CPU hours. The velocity and vertical forces are compared in Figures 5.21
and 5.22. The results of the ImprovedMPS are generally in good agreementwith
experimental results [1]; and very close to the BEM results [143]. However, it
can be noticed that after about 0.13s in scenario 1 (entry speed 0.61m/s) or 0.085s
in scenario 2 (entry speed 1.48m/s), the Improved MPS and BEM results start
to deviate from the experimental one, this may also be explained by the same
reason as with the wedge dropping case.

In order to illustrate the space distribution of pressure and velocity, the pressure
and velocity contours of the fluid fields for scenario 1 (entry speed 0.61m/s) are
shown in Figure 5.23. The three time instants selected here are representative
ones when the water reaches the characteristic positions. The pressure and
velocity fields obtained are all quite smooth.



Chapter 5 Impact flow simulation results 105

0.6 0.8 1 1.2 1.4 1.6 1.8

0.7

0.8

0.9

1

1.1

x (m)

y
 (

m
)

101

 

 

0

0

1

1

2

2

0.6 0.8 1 1.2 1.4 1.6 1.8

0.7

0.8

0.9

1

1.1

x (m)

y
 (

m
)

155

 

 

0

1

2

3

4

5

0.6 0.8 1 1.2 1.4 1.6 1.8

0.7

0.8

0.9

1

1.1

x (m)

y
 (

m
)

226

 

 

0

1

2

3

4

5

0.6 0.8 1 1.2 1.4 1.6 1.8

0.7

0.8

0.9

1

1.1

x (m)

y
 (

m
)

101

 

 

-42

2019

4081

6142

8203

10264

0.6 0.8 1 1.2 1.4 1.6 1.8

0.7

0.8

0.9

1

1.1

x (m)

y
 (

m
)

226

 

 

-21

2341

4703

7066

9428

11790

0.6 0.8 1 1.2 1.4 1.6 1.8

0.7

0.8

0.9

1

1.1

x (m)

y
 (

m
)

155

 

 

-21

2274

4570

6865

9161

11457

Velocity contour Pressure contour
t=0.1s t=0.1s

t=0.13s t=0.13s

t=0.16s t=0.16s

Figure 5.23: Velocity and pressure contour of scenario 1(entry speed
0.61m/s)

5.4 Breaking wave impacting flexible wall by weak
coupling BEM and MPS

For many free surface flow problems in marine engineering, the violent flow
phenomena like wave breaking is only restricted within a small area which
is close to the ship or other marine structures. For this kind of cases, the
majority of the flow could be simply described by potential flow theory, which
is more efficient than the direct simulation using Navier-Stokes equations. In
this section, the 2D weak coupling between the potential flow based Boundary
Element Method (BEM) and the proposed modified MPS method as shown in
Figure 5.24 is investigated. A brief description of the BEMmethodology and the
process of the weak coupling strategy are given in Appendix B.

In order to test the weak coupling scheme, the process of a violent breaking
wave interactionwith vertical flexiblewall was simulated [67, 139]. The problem
setup, results and discussions are presented in this section.

As shown in Figure 5.25, a wave tank with piston-type wave-maker is used
to generate solitary wave, which then runs up on a gentle slop. A flexible
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Figure 5.24: Computational domain layout and coordinates system for
weak coupling between BEM and MPS
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Figure 5.25: Sketch of the solitary wave climbing small slope ramp by
coupling BEM and MPS.

vertical plate with length of 1m is mounted at the end of the tank and simply
supported at 0.88s from the plate bottom, with the top free of restriction. The
width of the plate is 0.65m. The density and Young’smodulus of the elastic plate
are 1190kg/m3 and 3250MPa. The geometric dimensions of the wave tank is
depicted in Figure 5.25. The method mentioned in [39] is used to generated the
solitary wave with amplitude of 0.08m. Both experimental [67] and numerical
[139] studies of this problem have been conducted. The comparison between
those and the current results will be presented later.

For the case reported below, the length of the MPS domain, including the
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overlapping area, is chosen to be 7.5m. The first four columns of particle will be
treated as interface particles whose pressure and velocity are determined by the
BEM solver. The initial particle distance is chosen to be 0.0075m, which leads
to a total of 33772 fluid particles. If the whole domain is discritized by MPS
method, the fluid particle used for this geometry would be more than double
of the current number. The time step is controlled by CFL condition with initial
value of 0.0015s.

Figure 5.26: Experimental results of the plate deformation and wave
profiles at some typical time instants

The flexible deformation of the plate is modeled as a beam and computed by
modal superposition approach. And the first 3 principle modes are used in
the simulation. The time history of the plate deformation at 0.3623m from
the plate bottom and the wave profiles of some typical time instants, from the
experiment [67] and the proposed BEM-MPS model are shown in Figure 5.26
and Figure 5.27, respectively. The major trend of these two deflection time
history curves match each other very well. The two peaks of the deformation
occur at about 0.12s and 0.43s in the experiment, whereas in the numerical result
the times for these two peaks are 0.10s and 0.414s. The wave profiles for the
corresponding time instants are very similar as well.
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Figure 5.27: Coupled BEM-MPS results of the plate deformation and
wave profiles at some typical time instants

The comparison of deflection time history at the same position between experi-
ment, other numerical approach (MLPG_R) [139] and the proposed BEM-MPS
coupling model is shown in Figure 5.28. As discussed in [139], the reason of the
negative deflection before the impact of the breaking wave in the experimental
result is unclear. This may due to the way of mounting the plate at the bottom.
Besides that, although the main trend of these three curves are quite similar,
there are inevitablly some discrepancies between them. The first peak value
of both numerical results are lower than the experimental one. For the second
peak, the value from proposed model is slightly lower than the experiment and
MLPG_R. Also, the second trough from proposed model is slightly earlier than
others. These differences between numerical and experimental results could be
due to various reasons such as the leakage of water from the wave-maker and
plate in the experiment [139].

In terms of efficiency, compared to another particle method, i.e. MLPG_R [139],
where the whole domain is discretised by a similar resolution with 86670 fluid
particles (compared with 33772 fluid particles in this simulation), this problem
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Figure 5.28: Comparison of the plate deflection at 0.3623m from the plate
bottom between experiment [67], MLPG_R [139] and proposed BEM-
MPS coupling

is solved more efficiently by the proposed BEM-MPS coupling approach with
similar accuracy achieved.

The BEM wave profiles and MPS pressure contours are shown in Figure 5.29.
The BEM simulation stops at t = 8.821s i.e. (c) or (d) in Figure 5.29 as explained
before, so the BEM wave profile remains the same from Figure 5.29 (d) to (g).
As is shown, the pressure distribution from the MPS simulation is smooth.
Figure 5.29 (d1) highlights the pressure distribution when the wave impacts the
plate. It is worth mentioning that a small "jet-like" flow has been developed as
highlighted by Figure 5.29 (g1). This physically unreasonable phenomena could
be due to the fact that MPS field gradually starts to flow backward while the
interface particles remain the status when BEM simulation stops (i.e. t = 8.821s
in (c) or (d) of Figure 5.29), so the fluid particles will be "squeezed out" a bit
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Figure 5.29: Wave profiles and the pressure contour of the BEMandMPS
simulation at various typical time instants

more near the interface area. However as shown in the above results, the main
flow characteristics near the plate and the flexible plate deformation have both
reached an acceptable accuracy compared to the corresponding experimental
or other numerical results, which is the major concern of this simulation. This
means if we consider the balance between the efficiency improvement and the
accuracy level it can get, this weak coupling between BEM and MPS is capable
to simulate this kind of locally violent flow problems. But obviously a strong
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coupling, i.e. the BEM solver only covers part of the computational domain and
depends on the information fromMPS solver at interface, would be an advanced
and better choice in the future.





Chapter 6

Hydroelasticity computation results

6.1 Symmetric flexible wedge dropping

The case of flexible wedge dropping are simulated and discussed in this section.
Figure 6.1 shows the initial configuration of the problem. The numerical results
are also compared with the experimental data provided in [118]. Considering
that during the period after releasing from height H∗ and before touching the
free surface, the flexible bottom will also develop a small amount of deforma-
tion. Therefore, in order to make the simulation more consistent with the real
experimental condition, the simulation is started from the releasing instant, as
shown in Figure 6.1.

In this study, three different cases are simulated. The related parameters of the
flexible wedge are listed in Table 6.1.

The first three modes are taken into account and the corresponding first three
circular frequencies are calculated by the beam Euler beam theory. (e.g. for
case 1 and 2 in Table 6.1, the first three circular frequencies are: ω1 = 96.2104,
ω2 = 602.9434 and ω3 = 1688.2579).

The fluid field is discretised by particles with the initial space of 0.005m, which
corresponds to 38400 fluid particles (40122 particles in total). The time interval
is determined by the CFL condition with a maximum limit of 0.0002s. With an
average iteration number of 6.5 times for each FSI coupling time step, about 22
CPUhours’ time are required for the simulation of 0.06s physical duration using
the same computer hardware, as described in Chapter 4 For the simulation, it
is worth mentioning that the majority of the computational time is used for the

113



114 Chapter 6 Hydroelasticity computation results

X

Y

0

0.6m

0.8m

1.6m

0.8m

Equivalent

 dropping height H*

Figure 6.1: Initial configuration of the wedge dropping problem

Table 6.1: The parameters used in the flexible wedge dropping simula-
tion

Case 1 Case 2 Case 3
Material E-Glass (woven)/epoxy Aluminium

Young’ modulus E (GPa) 30.3 68
Density ρ (kg/m3) 2015 2700

Mass of the rig (kg/m) 22
Length of each bottom L (m) 0.3

Thickness (mm) 2.2 2
Deadrise angle β (◦) 30
Entry speed(m/s) 4.29 5.57 4

Equivalent Height H∗(m) 0.938 1.5813 0.8155

fluid solver, i.e. MPS part. The time used for structure solver is neglectable
considering the scale of the linear system is only 4× 4, and that only one time
iteration is required for an order of 10−5 computational accuracy.

The accelerations of the flexible wedges that are calculated by the coupledMod-
ified MPS and CRMS model are compared with the results from experiment
[118], rigid-body simulation and Wagner’s theory in Figure 6.2, respectively.
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The rigid-body computation is conducted by the normal routine for 2D situa-
tion, as derived in Section 3.2.3.1. Since the motion in X direction is also con-
strained due to the symmetry property as in flexible cases, only the equation
corresponding to Y part in Eq. (3.84) is required to be solved.

As shown in Figure 6.2 (a) and (b), the numerical results agree well with the
experimental data in terms of both the main trend and the first impact pressure
peak time. In contrast to the rigid case in Figure 6.2 (c) and (d), there is a trough
in both the experimental and numerical results for flexible cases in Figure 6.2 (a)
and (b) (at about 0.025s). Another distinguished feature in flexible cases is that
after the trough of the curve, the acceleration tends to oscillate around a constant
value until the end of the simulation. The numerical model gives an overshot
for the second peak acceleration value. And the peak time is also earlier than the
experimental data. This is probably caused by the 2D limitation, since the water
cannot be pushed aside along the tip direction like in real 3D environment and
consequently the improper gathering water could generate a higher pressure.
The difference of the dynamic characteristics between 2D beam assumption and
the real 3D plate used in the experiment (e.g. different natural frequency) might
be another reason of the deviation shown in Figure 6.2 (a) and (b).

The pressure and velocity contours are shown in Figure 6.3 and Figure 6.4, re-
spectively. Due to the flexibility of the wedge bottom, the cavitation starts to
develop from roughly t = 0.02s and vanishes at about t = 0.04s. Because the
current model only involves the water phase, the dynamics which is caused by
the entrapped air between the wedge bottom and water could not be captured
correctly. This is probably the reason that the numerical accelerations in Fig-
ure 6.2 (a) and (b) show a larger fluctuation during the cavitation period.

Figure 6.5 shows the deformation of the flexible bottoms at some typical time
instants. During the initial stage of the impact, the bottoms are bended by
the coupling effect of the inertia and the concentrated impact force near the
wedge tip. After about t = 0.02s, the deformation of the beam starts to bounce
back towards the symmetry line of the wedge. This process is also reflected
in the time history of strain that is monitored at two different locations on
upper surface of each bottom, i.e. 30mm and 120mm away from the wedge tip
respectively, as is shown in Figure 6.6. The positive part of the strain in Figure 6.6
(b) (monitored at 120mm, which is about the middle of the bottom) represents
the initial bending stage, as is shown in Figure 6.5. After that, the strain remains
negative because of the pressure of the surrounding water. The modified MPS
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Figure 6.2: The acceleration of the flexible/rigid wedge: (a) comparison
for Case 1 betweenModifiedMPS+CRMS andExperiment [117];(b) com-
parison for Case 2 betweenModifiedMPS+CRMS and Experiment [117];
(c) comparison for rigid wedge between Modified MPS+Rigid-body
dynamics and Wagner’s theory with the same entry speed as in
Case 1 (4.29m/s); (d) comparison for rigid wedge between Modified
MPS+Rigid-body dynamics and Wagner’s theory with the same entry
speed as in Case 2 (5.57m/s)
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Figure 6.3: The pressure contour at different time instants for Case 2
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Figure 6.4: The velocity contour at different time instants for Case 2

resultsmatch reasonablywellwith experimental results that the SPHones [117].
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Figure 6.5: Deformation of the flexible bottom at different time instants
for Case 2
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6.2 Slamming of floating flexible beam

6.2.1 2D case

The case of a break-dam hitting floating flexible beam is calculated as shown in
Figure 6.7. The simulation starts from the equilibrium state in which the beam
gravity is balanced out by the water buoyancy.

For the beam structural property, two cases with different flexibility (i.e. bend-
ing stiffness) have been simulated by the proposed model. The conditions are
as follows:

Case 1 (High flexibility):

Bending stiffness EJ = 4.5N/m2; density ρ = 400kg/m3; and the first three
nature circular frequencies are: ω1 = 4.3325, ω2 = 11.9429 and ω3 = 23.4128

Case 2 (Low flexibility):

Bending stiffness EJ = 4.5 × 102N/m2; density ρ = 400kg/m3; and the first
three nature circular frequencies are: ω1 = 43.3249, ω2 = 119.4288 and ω3 =

234.1281

The fluid domain is discretized by particles with an initial distance of 0.02m.
The total fluid particles number is 2643. The time interval is determined by the
CFL condition with an upper limit of 0.001s.

The physical duration is 5 seconds (about 5000 time steps). Each of the two cases
requires approximately 2 CPU hours’ time using the same computer mentioned
before.
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The comparison of high and low flexibility cases are given in Figures 6.8 and 6.9.
For the rigid-body motion part, the effect of flexibility is accumulated to a
remarkable level during the simulation period, especially for the translational
variables (Figure 6.8 (a) and (b)). This shows that for violent water flexible
structure interaction problem, the coupling term should be taken into account
to get accurate overall trajectory.

For the elasticmotion part, as is shown in Figure 6.9, the values for lowflexibility
are much smaller than that of high flexibility, as expected. The oscillation
frequency at the far-end quarter is higher than the ones for middle or far-end
of the beam, which means the 2nd or 3rd modes contribute more at that position
compared with others. This is consistent with the mode shape distribution at
corresponding positions. More specifically, at the far-end quarter, the amplitude
of 1st order mode shape is very close to zero, whereas the amplitude of the
other two mode shapes roughly take their maximum value at this position. The
middle and far-end are the positions where the 1st order mode displacement is
the dominating part.

The beam response to the slamming impact can be recognized clearly from the
time period between roughly t = 0.3s and t = 1.2s, in both the high and low
flexibility cases. This shows the capability of this coupling CRF andMPSmodel
to conduct the sea-keeping simulation alongwith slamming/whipping event in
the process at the same time.

The pressure contour of the fluid field and the deformation of the beam for the
two cases are depicted in Figure 6.10. As is shown, for both cases there is no
singular point in the fluid field and the pressure field is quite smooth. The
interaction between beam and fluid motion is physically reasonable as well.

The structure solver turns out to be quite efficient. For most of the time,
only one time iteration is required for the Newton-Raphson method to reach
the convergence criteria of 10−5, and the computation time for structure is
negligible.

The average iteration times required for the FSI coupling is 2.8 for an accuracy
of 10−5m. The accuracy of 10−5m means the summation of the distance between
new and old iteration position for all the particles on the beam surface has to be
smaller than 10−5m to be regarded as converged.
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ming problem

6.2.2 3D case

In this section, the 3Dversion of aforementionedfloating flexible beam impacted
by breaking dam is simulated. Compared with the corresponding 2D case, this
is actually a more reasonable approximation of the slamming phenomena when
the ship encounters head sea incident wave, which is one of the most important
aspects to access the ship structural safety. Considering that the ship motion
only occurs in the plane which is vertical to free surface and perpendicular to
wave crest in this case, the 2D structure model proposed in Chapter 3 is capable
to handle the structure dynamics for this 3D case.

The initial configuration of the problem is shown in Figure 6.11. All the
dimensions in the vertical plane are the same as the 2D case. For the layout
in transverse dimension, the beamwith width of 0.3m is placed in the middle of
the 0.9m width tank. Since the width in 3D is not assumed to be 1m anymore as
in the 2D case, the nature frequencies of the beam change accordingly, and they
are ω1 = 7.9100, ω2 = 21.8046 and ω3 = 42.7457.

The initial particle distance is chosen to be 0.02m, which results in 126288 fluid
particles and 194360 particles in total. The time step (which is the same as in the
previous sections) is controlled by CFL condition. The initial value is set to be
0.002s.
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The beam condition corresponding to the High flexibility case in the 2D sim-
ulation is used here. For the structural model computation part, similar to the
2D case, only one time iteration is required to reach the convergence of 10−5 by
Newton-Raphson method. And the computational time is also negligible.

The convergence criteria for FSI iteration is chosen to be 10−4. This is chosen
to let the criteria in 3D case to be in a similar level to the value in 2D case.
More specifically, the number of points on 3D beam surface is roughly 10 times
of the number in 2D case, so the criteria should be multiplied with a factor of
10 accordingly. The average iteration time for FSI iteration is 3.2, which is also
similar to the 2D case.

The free surface profiles and the corresponding beam deformations are shown
in Figure 6.12. The "bold" blue lines represent the beam edges that are above the
free surface, whereas the "light" blue lines are the ones below the free surface.
And based on the same reason as in Section 5.1.2, i.e. to highlight the free surface
deformation, only the free surface particles are shown in red color.

As is shown in Figure 6.12, the free surface particles of the fluid domain are
correctly identified by the 3D scheme proposed in Section 2.3.2.4. For the
particles on the beam edge, most of the ones below the free surface are correctly
identified as non-free surface particles. For the faces close to splashing area
(such as the impacting side in (c) and the trailing side in (f)), the identification
indeed generates a stagger distribution of free surface and non-free surface
particles. However, this is consistent with the fact that the fluid distribution
around those splashing area is indeed in a mixture state of water and air (void
in this study since it is a single phase model).

The interaction process between the impacting wave (which is generated by the
collapsed dam) and the beam is also shown in Figure 6.12. The deformation
process of the beam is consistent with what would be expected in the real
physical circumstance.

6.3 Slamming of 3D flexible ship

In the final case, in order to test the performance of the proposed fluid and
structure models under practical complex geometry condition, the slamming
problem of a scaled oil ship is simulated. The body plan of the 1 : 100 model of
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Figure 6.12: Free surface profiles and beam deflection of 3D slamming
at some typical time instants: (a) t = 0.1s, (b) t = 0.2s, (c) t = 0.418s, (d)
t = 0.684s, (e) t = 0.864s and (f) t = 1.282s

Table 6.2: Main parameters of the ship model

Length LPP(m) 1.8
Width B(m) 0.322
Draught T(m) 0.12
Mass (kg) 54.99

46000 tones oil ship is shown in Figure 6.13. The main parameters of this model
ship is given in Table 6.2.

The original station interval in the above body plan is 0.087m. In order to make
the particle distribution on the ship surface to have roughly the same particle
interval as the fluid domain, the station distribution along the ship is first refined
with the same particle interval used for fluid discretization (i.e. 0.02m). Each of
the resultant station is then further refinedwith the same interval (i.e. 0.02m) by
spline interpolation. Finally, the ship surface is discretized with 4289 particles
as shown in Figure 6.14.

The mass distribution of the ship is set to be consistent with the buoyancy dis-
tribution, whichmeans the "lumped"mass for each refined station is considered
to be equal to the mass of the displaced water "strip" between adjacent stations.
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Figure 6.13: The body plan of the 46000t oil ship
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Figure 6.14: The final discretization of the ship surface

The resultant mass center is located at 0.0404m to midship towards bow direc-
tion.

The ship hull thickness is chosen to be 0.05m for the 2nd moment calculation of
each cross-section. Consequently, the lumped mass and 2nd moment of cross-
section distribution of the ship model are shown in Figures 6.15 and 6.16.

After applying the so-calledMyklestad’s method (see details of implementation
in Appendix C), the mode shape functions of the first 3 modes are shown in
Figure 6.17. The mode shapes are similar to the ones of uniform beams in
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Figure 6.17: The first 3 mode shapes of the ship model

general, but the distribution near both ends have clearly been modified due to
the non-uniform mass and inertia moment distribution.

The first three circular frequencies corresponding to E = 2× 104N/m2 are:

ω1 = 3.78574, ω2 = 9.7777 and ω3 = 18.2063.
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The parameters of the tank are almost the same as the ones shown in Figure 6.11,
the only difference is the length of 5.5m instead. The ship is placed in the same
position as well, i.e. the distance between bow and tank wall is 0.98m. The fluid
field and tank boundaries are evenly discretized with interval of 0.02m, which
result in 193284 fluid particles and 289417 particles in total.

Similar to the 3D beam case mentioned before, the computation time of the
structure model take on average one or twice iteration to reach 10−5 accuracy
by Newton-Raphson method with negligible computational time.

Considering that the length of the ship model is roughly twice of the 3D beam
in Section 6.2.2, the convergence criteria of the FSI iteration is chosen to be twice
of the beam case, i.e. 2× 10−4. The average iteration time for this ship case is
2.49.

The free surface profiles and ship vertical bending motion at some typical time
instants are shown in Figure 6.18. The surface marked by blue is the part above
the water on the ship, while the black color area represents the "wet" surface of
the ship. It is clear that the free surface identification scheme works well for the
complex ship surface as well as the rectangular beam one in last section.

For the fluid part, again only the free surface particles, which are marked by
red color, are shown to highlight its deformation. As shown in Figure 6.18, non
inner fluid particles are falsely identified as free surface, which proves that the
3D free surface particle identification scheme can provide accurate results for
the wave and complex geometry structure interaction.

From Figure 6.18, it can be seen that the amplitude of the flexible deformation
of the ship is larger than what normally could happen in the real world.
This specific choice of low stiffness of the ship hull structure is aiming to test
the capability of the model under extreme conditions. Figure 6.18 show the
full interaction process between the impact wave and ship. More specifically,
Figure 6.18 (a), (b) and (c) show the developing process of the impact wave
caused by the breaking dam at different times. The fact that the draught of the
ship remains the same proves that the buoyancy force calculated by the MPS is
accurate and stable to support the ship weight. The impact of the wave on the
bow of ship occurs at t = 0.418s in Figure 6.18 (c). Then the wave propagates
along the ship as depicted in Figure 6.18 (d), (e) and (f). The ship deforms
accordingly as the wave passing by. The crescent of the wave generate the
largest bending moment, and correspondingly causes the largest deformations.
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Figure 6.18: Free surface profiles and ship deflection of 3D slamming at
some typical time instants: (a) t = 0.1s, (b) t = 0.2s, (c) t = 0.418s, (d)
t = 0.684s, (e) t = 0.91s, (f) t = 1.05s

This qualitative analysis shows that the coupling between modified MPS and
the proposed structure model is capable of providing reasonable results for
the simulation of wave and structure interaction. However, more quantitative
analysis by comparing against published experimental or numerical results
would be required to further verify the reliability of this model in the future.



Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this work, a computational model that couples particle method and modal
superposition method is developed to compute the violent fluid structure inter-
action problems with free surface. Moreover, based on this model, a computer
code was developed using C.

For the fluid part, the two distinguished properties of the particle method,
which are mesh-less geometry discretization and Lagrangian type motion,
makes it very suitable for the fluid structure interaction problems with large
interface deformation such as wave-breaking and large amplitude structuremo-
tion. As a typical particle method, the MPS method has been successfully ap-
plied tomany free surface flowproblems. But because of the inherent shortcom-
ings of original MPS method such as noisy pressure distribution and instability
problem, various modifications have been proposed for different applications.
In this study, the following modifications are proposed:

(i). New source termof density error compensation in pressure Poisson equation

Due to the nature of Lagrangian algorithm, it is inevitable that the particles
will not necessarily display a perfectly uniform distribution across the whole
fluid domain. The clustering and void of particles will lead to the bad pressure
distribution and sometimes cause instability. To tackle this problem, a mixed
velocity divergence and particle density error term are proposed to be used in
the source term of pressure Poisson equation. This density error term could
counteract the effect of large uneven particle distribution and consequently
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improve the pressure calculation. This model is more robust than some similar
compensation terms [66, 72, 82] as the calculation of this term does not involve
any artificial coefficient which is often problem dependent.

(ii). New approach to handle the free surface and solid boundaries

The falsely identified free surface particle is one of the issues that contributes to
the noisy distribution of pressure field. In this study, different identification
schemes for 2D and 3D are proposed based on the previous work of other
researchers [71, 101, 150]. In 2D case, a circle is assigned to each particle
(with the particle as its center). If this circle is fully covered by the circles
of neighbour particles, it will be regarded as a inner particle (inner fluid or
solid particles under water), otherwise it will be regarded as a free surface
particle. This checking process is enabled by discretizing each cirlce with 360
evenly distributed points, i.e. if all the points are covered, this circle is regarded
as covered. The 3D case consists of two steps: a preliminary filtering by the
neighbour particle number is first applied to eliminate the majority of the inner
particles (again inner fluid or solid particles under the water); secondly as in
the 2D case, a similar geometric checking process is applied to further filter out
the inner particles from the result of first step. More specifically, a patch of the
sphere centered by particle is checked to see whether it is fully covered by the
same spheres of its neighbours. The non-fully covered case is regarded as free
surface. Similar to the 2D case, the patch is discretized by evenly distributed
points and if all the points are covered then the whole patch is regarded as
covered. The position of the patch on the sphere is determined by local particle
distribution and always pointing towards to the most sparse area.

For the solid boundary particles, the Neumann boundary condition is applied
instead of the pressure Poisson equation. This condition means the dummy
or ghost particles used in many MPS implementations is not required. For
the fluid particle near solid boundaries, the MPS Laplacian operator would
cover the area that goes beyond the solid boundary, where no particles are
presented to support the operator. A virtual particle approach is proposed to
compensate the particle distribution of this area based on the Neumann type
pressure boundary condition. These virtual particles only affect the Laplacian
operator of the corresponding fluid particles near solid boundary, but would
not be actually generated in the geometry configuration. The last part of the
solid boundary condition improvement is the intermediate velocity calculation
of solid boundary particles. This intermediate velocity will affect the velocity
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divergence computation of the source term in the pressure Poisson equation for
the fluid particles near solid boundary. The scheme that suggested in Ref [12] is
adopted in this study to calculate the intermediate velocity by considering the
pressure.

(iii). New approach for particle shifting and collision handling

In order to reduce the disorder of particle distribution, which is themain sources
of pressure fluctuation, a simple particle shifting approach is proposed. Only
the position of the fluid particles will be shifted slightly according to the lo-
cal particle distributions. No artificial coefficient will be required in the formu-
lation. Moreover, to prevent the extreme proximity between particles, which
could happen between the isolated free surface and neighbour fluid or solid
particles due to the lack of pressure gradient between them, a collision handling
scheme is proposed to control the relative velocity between the very close parti-
cles. The particle distribution is already quite regular due to the aforementioned
modifications for pressure Poisson equation and particle shifting, this collision
handling would only be applied to very few fluid particles which are isolated
from the main fluid body.

(iv). New neighbour particle searching strategy

The neighbour particle searching efficiency is improved by using following
two modifications to the "cell-link" approach: reducing the size of cell from
supporting radius (i.e. 4r0 or 5r0) to be initial particle distance (i.e. r0); using
non-repetitive searching strategy. These twomodifications reduce the searching
area to be roughly 2.5/9 of the one used in traditional "cell-link" method.
Because the particle distribution is roughly even over the whole domain, the
number of the neighbour particles for each concerned particle is proportional
to the searching area, which means the number of neighbour particles required
to be searched is roughly 2.5/9 of ones in traditional "cell-link" method. The
complexity of the resultant searching strategy is linear, i.e. O(N)

(v). To further improve the efficiency, theweak coupling between BEM andMPS
are implemented for the problems where the violent free surface deformation
only occurs in a constrained area. In the weak coupling scheme, the BEM covers
the whole computational domain and runs until the time when free surface is
about to break. The MPS solver, which also starts from the beginning but only
occupy the rapid fluid structure interaction area, will continue the simulation
for the post-breaking phase. The MPS solver are enabled by the information
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from BEM solver (i.e. velocity and pressure) and there is no feedback fromMPS
to BEM. The MPS will continue to use the BEM information of the time before
BEM solver stops, since the flow changing in the BEM-MPS interface area is
small enough.

For the structure part, an efficient computational model is developed to han-
dle the typical motion of a floating marine structure, which is large rigid-body
motion with relatively small flexible deformation. Compared with the general
FEM solution, this feature of the structure dynamics makes the modal superpo-
sition approach more efficient and hence very suitable for computing the flex-
ible deformation. However, in the traditional Hydroelasiticity model [155] of
marine engineering, the rigid-body and flexible modes are actually calculated
separately. The fluid field is calculated subjecting to the rigid-body geometry of
the structure and then the resultant fluid force is used to compute the flexible
deformation.

In this study, by assuming the flexible structure to behave like a beam and
then using the Lagrange equation of mechanics, a 2D computational model that
couples the rigid-body andflexiblemotionmodes (in a same set of formulations)
is developed for the simulation of the structure dynamics. Unlike the traditional
modal analysis, this model takes the mutual effect between rigid-body motion
and flexible deformation into account. The efficiency is higher than the FE
(Finite Element) method. For example, if only the first three flexible modes are
considered (which is adequate for many situations), the resultant formulation is
6× 6, regardless of the size of structure.

The iterative computation is conducted between the fluid and structure solvers
until a convergence criteria is satisfied. More specifically, this iteration is
realized by the Gauss-Seidel method with Aitken relaxation.

The aforementioned modifications to the original MPS method are first vali-
dated by a 2D Dam-break problem. More specifically, the efficiency improve-
ment of the proposed neighbour searching strategy is verified, then different
combination of the MPS algorithm modifications are tested to show the effec-
tiveness of the corresponding modifications by comparing the pressure results
with experimental/original ones. The convergence performance under various
resolution and the mass conservation property have also been checked.
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After the validation of the fluid solver, various typical violent impact problems
are then simulated to demonstrate the capability of the solver for marine engi-
neering applications. First, a series of 2D/3D Dam-break problems with dif-
ferent boundary conditions are simulated, including the cases of obstacle in the
middle of tank, spring supported rigid wall and flexible cantilever wall. Then,
the 2D liquid sloshing problem is computed and validated against experimental
result in the literature. In addition, the 2D slamming problems of wedge-shape
and ship-section-shape dropping are also simulated and compared with avail-
able experimental/numerical results from other researchers. Next, the weak
coupling scheme between BEM and modified MPS is validated by a solitary
wave breaking problem. And a flexible wall is also placed at the end of the
slope in the tank, where the BEM-MPS coupled fluid solver interacts with the
structural solver (based on the modal superposition model). The numerical re-
sult are then compared with experimental results published in the literature,
and good agreement was obtained.

The Hydroelasticity computation of some typical ship structures are conducted
as well. The accuracy of the proposed structural model is first tested on a 2D
symmetric flexible wedge dropping problem. The dynamics of the wedge mo-
tion and deformation are analyzed and validated against experimental results
from other researchers. Then the problem of 2D/3D floating flexible beam im-
pacted by breaking-dam is simulated to test the performance of slamming be-
tween slim ship-like structure and breaking waves. Finally, in order to test the
performance for complex geometry of the structure, a 3D typical oil tanker ge-
ometry is used to simulate the slamming problem with similar configuration as
the beam case.

Although the proposed models for both fluid and structural solvers have been
successfully applied to various problems as mentioned above, there are some
limitations as well. First, no turbulence models are adopted in the MPS solver,
because the problems investigated in this thesis are high Reynolds number and
short duration cases where the turbulent effect does not play an important role
in the flow dynamics. The computational cost is another shortcoming of particle
methods or even for CFD in general. Using the hybrid solver between BEM and
MPS, the strong coupling will surely be more accurate than the current weak
coupling approach, as the pressure results from MPS are still not smooth and
accurate enough to provide the feedback for BEM solver. For the structural
model, it can only consider the 2D deformation such as vertical bending as
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shown in Chapter 6 (though it is one of the most important features of ship hull
structure).

7.2 Recommendation for future work

For large scale industrial problems, the parallelization of the fluid solver would
become necessary. From perspective of high performance computing, the MPI
(Message Passing Interface) and OpenMP (Open Multi-Processing) techniques
[102] are both popular ones that have been successfully applied to variousmesh-
less or mesh-based solvers. The using of GPU (Graphics Processing Unit) [48]
on the other hand is an alternative hardware-based parallelization approach.

Themulti-resolution simulation is another way of improving the computational
efficiency by using more economically domain discretization. Generally there
are two types of implementation of multi-resolution computation. The first one
is using two different uniform resolutions to cover different parts of computa-
tional domain [5, 132]. Alternatively, the resolution could vary continuously
from the dense area (where flow dynamics is rapid) to the coarse area (where
the flow variables change very gently) [113]. A detailed investigation could
be conducted to evaluate which strategy is more suitable to the modified MPS
model.

For the structure part, the current 2D model could be extended to 3D situations.
The simple and straightforward way of model extension for beam-like structure
is to linearly superpose transverse bending and distortion motion into the 2D
model. However, it certainly cannot consider the nonlinear coupling effect
between bending and distortion motions, which in fact is quite important for
bulk cargo ship with large opening in deck. Therefore a fully 3D model which
employs the 3D mode shapes (rather than the linearly superposition of 2D mode
shapes) should be derived for arbitrary 3D geometry.



Appendix A

Formulation of CRF implementation

For a variable ζ (e.g. XcR, θ or qi in Eq. (3.95) to (3.100) and Eq. (3.111) to (3.114)),
its first and second order time derivatives ζ̇k+1, ζ̈k+1 at next time step t = tk+1,
can be expressed using Newmark method as:

ζ̈k+1 =
1

β∆t2 ζk+1 − [
ζk

β∆t2 +
ζ̇k

β∆t
+ (

1
2β
− 1)ζ̈k] (A.1)

ζ̇k+1 =
γ

β∆t
ζk+1 + (1− γ

β
)ζ̇k + ∆t[(1− γ)− γ(

1
2β
− 1)]ζ̈k −

γ

β∆t
ζk (A.2)

where γ = 1−2α
2 , β = (1−α)2

4 , and α is chosen to be α = −0.05 in this study. To
simplify the above equations, the following definitions are introduced:

C1 =
1

β∆t2 (A.3)

C3 =
γ

β∆t
(A.4)

C2ζ = −[ ζk
β∆t2 +

ζ̇k
β∆t

+ (
1

2β
− 1)ζ̈k], (A.5)

C4ζ = (1− γ

β
)ζ̇k + ∆t[(1− γ)− γ(

1
2β
− 1)]ζ̈k −

γ

β∆t
ζk (A.6)

in which C2ζ and C4ζ correspond to the particular variable ζ

Using Newmark method to replace the velocity and acceleration terms with
position values, the governing equations of floating beams (i.e. Eq. (3.95) to
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(3.100)) then become

f1 =M(C1XcR + C2XcR) + (C3θ + C4θ)
2 sin θ(ψ01q1 + ψ02q2 + ψ03q3)

− 2(C3θ + C4θ) cos θ[ψ01(C3q1 + C4q1) + ψ02(C3q2 + C4q2) + ψ03(C3q3 + C4q3)]

− (C1θ + C2θ) cos θ(ψ01q1 + ψ02q2 + ψ03q3)− sin θ[ψ01(C1q1 + C2q1)

+ ψ02(C1q2 + C2q2) + ψ03(C1q3 + C2q3)]−QXcR = 0,

(A.7)

f2 =M(C1YcR + C2YcR)− (C3θ + C4θ)
2 cos θ(ψ01q1 + ψ02q2 + ψ03q3)

− 2(C3θ + C4θ) sin θ[ψ01(C3q1 + C4q1) + ψ02(C3q2 + C4q2) + ψ03(C3q3 + C4q3)]

− (C1θ + C2θ) sin θ(ψ01q1 + ψ02q2 + ψ03q3) + cos θ[ψ01(C1q1 + C2q1)

+ ψ02(C1q2 + C2q2) + ψ03(C1q3 + C2q3)] + Mg−QYcR = 0,

(A.8)

f3 =− [(C1XcR + C2XcR) cos θ + (C1YcR + C2YcR) sin θ](ψ01q1 + ψ02q2 + ψ03q3)

+ (C1θ + C2θ)(I f + q2
1 + q2

2 + q2
3)

+ 2(C3θ + C4θ)[(C3q1 + C4q1)q1 + (C3q2 + C4q2)q2 + (C3q3 + C4q3)q3]

+ [ψ11(C1q1 + C2q1) + ψ12(C1q2 + C2q2) + ψ13(C1q3 + C2q3)]−Qθ = 0,

(A.9)

f4 =[−(C1XcR + C2XcR) sin θ + (C1YcR + C2YcR) cos θ]ψ01

+ (C1θ + C2θ)ψ11 − (C3θ + C4θ)
2q1 + C1q1 + C2q1 + ω2

1q1 −Qq1 = 0,

(A.10)

f5 =[−(C1XcR + C2XcR) sin θ + (C1YcR + C2YcR) cos θ]ψ02

+ (C1θ + C2θ)ψ12 − (C3θ + C4θ)
2q2 + C1q2 + C2q2 + ω2

2q2 −Qq2 = 0,

(A.11)

f6 =[−(C1XcR + C2XcR) sin θ + (C1YcR + C2YcR) cos θ]ψ03

+ (C1θ + C2θ)ψ13 − (C3θ + C4θ)
2q3 + C1q3 + C2q3 + ω2

3q3 −Qq3 = 0,

(A.12)

These set of equations are solved by Newton-Raphson method. The elements of
the Jacobi matrix are:

∂ f1)

∂XcR
= MC1, (A.13)

∂ f1

∂YcR
= 0, (A.14)
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∂ f1

∂θ
=(ψ01q1 + ψ02q2 + ψ03q3)[(C3θ + C4θ)

2 cos θ + 2C3(C3θ + C4θ) sin θ]

− 2[ψ01(C3q1 + C4q1) + ψ02(C3q2 + C4q2) + ψ03(C3q3 + C4q3)][C3 cos θ

− (C3θ + C4θ) sin θ]− (ψ01q1 + ψ02q2 + ψ03q3)[C1 cos θ − (C1θ + C2θ) sin θ]

− cos θ[ψ01(C1q1 + C2q1) + ψ02(C1q2 + C2q2) + ψ03(C1q3 + C2q3)],

(A.15)

∂ f1

∂q1
=ψ01(C3θ + C4θ)

2 sin θ − 2ψ01C3(C3θ + C4θ) cos θ

− ψ01(C1θ + C2θ) cos θ − C1ψ01 sin θ,
(A.16)

∂ f1

∂q2
=ψ02(C3θ + C4θ)

2 sin θ − 2ψ02C3(C3θ + C4θ) cos θ

− ψ02(C1θ + C2θ) cos θ − C1ψ02 sin θ,
(A.17)

∂ f1

∂q3
=ψ03(C3θ + C4θ)

2 sin θ − 2ψ03C3(C3θ + C4θ) cos θ

− ψ03(C1θ + C2θ) cos θ − C1ψ03 sin θ,
(A.18)

∂ f2

∂XcR
= 0, (A.19)

∂ f2

∂YcR
= MC1, (A.20)

∂ f2

∂θ
=(ψ01q1 + ψ02q2 + ψ03q3)[(C3θ + C4θ)

2 sin θ − 2C3(C3θ + C4θ) cos θ]

− 2[ψ01(C3q1 + C4q1) + ψ02(C3q2 + C4q2) + ψ03(C3q3 + C4q3)][C3 sin θ

+ (C3θ + C4θ) cos θ]− (ψ01q1 + ψ02q2 + ψ03q3)[C1 sin θ + (C1θ + C2θ) cos θ]

− sin θ[ψ01(C1q1 + C2q1) + ψ02(C1q2 + C2q2) + ψ03(C1q3 + C2q3)],

(A.21)

∂ f2

∂q1
=− ψ01(C3θ + C4θ)

2 cos θ − 2ψ01C3(C3θ + C4θ) sin θ

− ψ01(C1θ + C2θ) sin θ + C1ψ01 cos θ,
(A.22)

∂ f2

∂q2
=− ψ02(C3θ + C4θ)

2 cos θ − 2ψ02C3(C3θ + C4θ) sin θ

− ψ02(C1θ + C2θ) sin θ + C1ψ02 cos θ,
(A.23)

∂ f2

∂q3
=− ψ03(C3θ + C4θ)

2 cos θ − 2ψ03C3(C3θ + C4θ) sin θ

− ψ03(C1θ + C2θ) sin θ + C1ψ03 cos θ,
(A.24)

∂ f3

∂XcR
= −C1 cos θ(ψ01q1 + ψ02q2 + ψ03q3), (A.25)
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∂ f3

∂YcR
= −C1 sin θ(ψ01q1 + ψ02q2 + ψ03q3), (A.26)

∂ f3

∂θ
=− [−(C1XcR + C2XcR) sin θ + (C1YcR + C2YcR) cos θ](ψ01q1 + ψ02q2 + ψ03q3)

+ C1(I f + q2
1 + q2

2 + q2
3)

+ 2C3[(C3q1 + C4q1)q1 + (C3q2 + C4q2)q2 + (C3q3 + C4q3)q3],

(A.27)

∂ f3

∂q1
=− ψ01[(C1XcR + C2XcR) cos θ + (C1YcR + C2YcR) sin θ] + 2q1(C1θ + C2θ)

+ 2(C3θ + C4θ)(2C3q1 + C4q1) + ψ11C1,

(A.28)

∂ f3

∂q2
=− ψ02[(C1XcR + C2XcR) cos θ + (C1YcR + C2YcR) sin θ] + 2q2(C1θ + C2θ)

+ 2(C3θ + C4θ)(2C3q2 + C4q2) + ψ12C1,

(A.29)

∂ f3

∂q3
=− ψ03[(C1XcR + C2XcR) cos θ + (C1YcR + C2YcR) sin θ] + 2q3(C1θ + C2θ)

+ 2(C3θ + C4θ)(2C3q3 + C4q3) + ψ13C1,

(A.30)

∂ f4

∂XcR
= −C1ψ01 sin θ, (A.31)

∂ f4

∂YcR
= C1ψ01 cos θ, (A.32)

∂ f4

∂θ
= −[(C1XcR +C2XcR) cos θ +(C1YcR +C2YcR) sin θ]ψ01 +C1ψ11− 2C3q1(C3θ +C4θ)

(A.33)
∂ f4

∂q1
= C1 + ω2

1 − (C3θ + C4θ)
2, (A.34)

∂ f4

∂q2
=

∂ f4

∂q3
= 0, (A.35)

∂ f5

∂XcR
= −C1ψ02 sin θ, (A.36)

∂ f5

∂YcR
= C1ψ02 cos θ, (A.37)

∂ f5

∂θ
= −[(C1XcR +C2XcR) cos θ +(C1YcR +C2YcR) sin θ]ψ02 +C1ψ12− 2C3q2(C3θ +C4θ)

(A.38)
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∂ f5

∂q2
= C1 + ω2

2 − (C3θ + C4θ)
2, (A.39)

∂ f5

∂q1
= (∂ f5)/(∂q3) = 0, (A.40)

∂ f6

∂XcR
= −C1ψ03 sin θ, (A.41)

∂ f6

∂YcR
= C1ψ03 cos θ, (A.42)

∂ f6

∂θ
= −[(C1XcR +C2XcR) cos θ +(C1YcR +C2YcR) sin θ]ψ03 +C1ψ13− 2C3q3(C3θ +C4θ)

(A.43)
∂ f6

∂q3
= C1 + ω2

3 − (C3θ + C4θ)
2, (A.44)

∂ f6

∂q1
=

∂ f6

∂q2
= 0 (A.45)

Similarly, the governing equations for the wedge with flexible bottom
(Eq. (3.111) to (3.114)) and its Jacobi matrix are:

f1 =(2M f + MR)(C1YcR + C2YcR)

+ 2 cos θ(ψ01(C1q1 + C2q1) + ψ02(C1q2 + C2q2) + ψ03(C1q3 + C2q3))

+ (2M f + MR)g−QYcR = 0

(A.46)

f2 = 2(C1YcR + C2YcR) cos θψ01 + 2(C1q1 + C2q1) + 2ω2
1q1 −Qq1 = 0 (A.47)

f3 = 2(C1YcR + C2YcR) cos θψ02 + 2(C1q2 + C2q2) + 2ω2
2q2 −Qq2 = 0 (A.48)

f4 = 2(C1YcR + C2YcR) cos θψ03 + 2(C1q3 + C2q3) + 2ω2
3q3 −Qq3 = 0 (A.49)

∂ f1

∂YcR
= (2M f + MR)C1, (A.50)

∂ f1

∂q1
= 2C1ψ01 cos θ, (A.51)

∂ f1

∂q2
= 2C1ψ02 cos θ, (A.52)

∂ f1

∂q3
= 2C1ψ03 cos θ, (A.53)

∂ f2

∂YcR
= 2C1ψ01 cos θ, (A.54)



142 Appendix A Formulation of CRF implementation

∂ f2

∂q1
= 2C1 + 2ω2

1, (A.55)

∂ f2

∂q2
=

∂ f2

∂q3
= 0, (A.56)

∂ f3

∂YcR
= 2C1ψ02 cos θ, (A.57)

∂ f3

∂q2
= 2C1 + 2ω2

2, (A.58)

∂ f3

∂q1
=

∂ f3

∂q3
= 0, (A.59)

∂ f4

∂YcR
= 2C1ψ03 cos θ, (A.60)

∂ f4

∂q3
= 2C1 + 2ω2

3, (A.61)

∂ f4

∂q1
=

∂ f4

∂q2
= 0, (A.62)



Appendix B

Implementation of weak couplging
between BEM and MPS

B.1 Boundary Element Method (BEM)

B.1.1 Governing equations and boundary conditions

As a well established method, there are several ways of implementing BEM. In
this study, the approach described in [39, 147] are adopted.

Under the inviscid and irrotational assumption, the fluid velocity u could be
expressed by the gradient of a so-called potential function ϕ(r, t) as u = ∇ϕ. As
a consequence, the continuity equation becomes a Laplace equation of velocity
potential ϕ, which is also the governing equation for the potential flow as the
form of Eq. (B.1):

∆ϕ = 0 (B.1)

Eq. (B.1) could be transformed into the following boundary integral equation by
Green’s third identity:

αu(rcol, t)ϕ(rcol, t) =
∮
[
∂ ln(|rint − rcol|)

∂n
ϕ(rint, t)− ∂ϕ(rint, t)

∂n
ln(|rint− rcol|)]dl,

(B.2)
where rint and rcol are the position vectors of integration and collocation points
on the boundary, respectively. And the value of αu(rcol, t) depends on the posi-
tion of collocation point. If it is inside the computational domain, αu(rcol, t) =

2π; if it is on the boundary, the value is the opening angle (subtending towards
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the fluid domain) of the boundary at rcol. For continuous boundary such as at
least 1st smooth curve or straight-line, this angle is αu(rcol, t) = π. The direction
of the normal vector n is pointing towards outside of fluid domain as shown in
Figure 5.24

This boundary integral equation will be discritized and solved numerically
on the whole boundary of the computational domain at each time step. The
integration will be singular when the integration point passing the collocation
point on the boundary. This is handled in the Cauchy Principal Value (CPV)
sense.

The boundary conditions that this equation is subject to are given as follows.
First, on the moveable solid boundaries such as wave-maker or other fixed wall
boundaries, the following impenetrable condition is applied:

∂ϕ

∂n
=

V(r, t) · n = Vn, on Γwm

0, on Γ f w

(B.3)

where V(r, t) is the velocity of the point at r on the boundary. By rearranging
the Bernoulli equation, the dynamic condition for potential ϕ on the free surface
takes the following form:

Dϕ

Dt
=

1
2
|∇ϕ|2 − gy, (B.4)

where D
Dt is the material derivative, defined as: D

Dt = ∂
∂t + (∇ϕ · ∇). And

the dynamic condition of zero pressure on the free surface is applied in the
derivation of Eq. (B.4). The kinetic condition on the free surface is given by:

Dr
Dt

= ∇ϕ (B.5)

The time stepping scheme and other numerical implementation details are given
below.

B.1.2 The time integration for free surface

The position and velocity potential ϕ have to be advanced to next time step
to initialize the solving of the boundary integral equation. Instead of the
traditional Runge-Kutta or Adams-Bashforth-Moulton methods, a truncated
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Taylor expansion formulation [39, 147] is employed in this study:

r(t + ∆t) = r(t) +
m

∑
k=1

∆tk

k!
Dkr(t)

Dtk + O[(∆t)m+1] (B.6)

ϕ(r(t + ∆t), t + ∆t) = ϕ(r(t), t) +
m

∑
k=1

∆tk

k!
Dk ϕ(r(t), t)

Dtk + O[(∆t)m+1] (B.7)

The first and second order material derivatives in Eq. (B.6) and (B.7) are ex-
pressed in the local coordinate system n − τ as shown in Figure 5.24. After
some mathematical operations, the forms of these derivatives can be expressed
as:

Dr
Dt

= [
∂ϕ

∂τ

dx
dτ
− ∂ϕ

∂n
dy
dτ

,
∂ϕ

∂n
dx
dτ

+
∂ϕ

∂τ

dy
dτ

] (B.8)

D2r
Dt2 =[(

∂2ϕ

∂t∂τ
+

∂ϕ

∂τ

∂2ϕ

∂s2 +
∂ϕ

∂n
∂2ϕ

∂n∂τ
)

dx
dτ

+ (
∂ϕ

∂n
∂2ϕ

∂τ2 −
∂ϕ

∂τ

∂2ϕ

∂τ2 −
∂2ϕ

∂t∂n
− (

∂2y
∂τ2

∂x
∂τ
− ∂2x

∂τ2
∂y
∂τ

)|∇ϕ|2)dy
dτ

, (
∂2ϕ

∂t∂τ
+

∂ϕ

∂τ

∂2ϕ

∂τ2 +
∂ϕ

∂n
∂2ϕ

∂n∂τ
)

dy
dτ

+ (
∂2ϕ

∂t∂n
− ∂ϕ

∂n
∂2ϕ

∂τ2 +
∂ϕ

∂τ

∂2ϕ

∂n∂τ
+ (

∂2y
∂τ2

∂x
∂τ
− ∂2x

∂τ2
∂y
∂τ

)|∇ϕ|2)dx
dτ

]

(B.9)

D2ϕ

Dt2 =
∂ϕ

∂τ

∂2ϕ

∂t∂τ
+

∂ϕ

∂n
∂2ϕ

∂t∂n
+

∂ϕ

∂τ
(

∂ϕ

∂τ

∂2ϕ

∂τ2 +
∂ϕ

∂n
∂2ϕ

∂n∂τ
)− ∂ϕ

∂n
(

∂ϕ

∂n
∂2ϕ

∂τ2 −
∂ϕ

∂τ

∂2ϕ

∂n∂τ
)

+
∂ϕ

∂n
|∇ϕ|2(d2y

dτ2
dx
dτ
− d2x

dτ2
dy
dτ

)− g(
∂ϕ

∂n
dx
dτ

+
∂ϕ

∂τ

dy
dτ

)

(B.10)

In Eq. (B.8) to (B.10), the tangent spatial derivatives of ϕ and ∂ϕ
∂n , such as ∂ϕ

∂τ

and ∂2 ϕ
∂nτ , can be calculated directly from the ϕ and ∂ϕ

∂n distributions provided by
boundary condition Eq. (B.3) to (B.5). Whilst the time derivatives such as ∂ϕ

∂t and
∂2 ϕ
∂n∂t are calculated in the following manner:

After taking the time derivatives on both sides of Eq. (B.2), A new boundary
integral equation about ∂ϕ

∂t and ∂ϕ
∂n∂t can be obtained and then be solved in the

sameway for Eq. (B.2). The boundary conditions for this new boundary integral
equation are as follows:
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For the free surface, the value of ∂ϕ
∂t could be obtained by Bernoulli equation.

∂ϕ

∂t
= −1

2
|∇ϕ|2 − gy (B.11)

On the wave-maker or other fixed wall boundaries, the time derivative of
Eq. (B.3) is applied:

∂2ϕ

∂n∂t
=


∂(V(r,t)·n)

∂t , on Γwm

0, on Γ f w

(B.12)

For a piston type wave-maker, which will be used later in the simulation, it can
be expressed as:

∂2ϕ

∂n∂t
= −V̇p −Vp

∂2ϕ

∂τ2 (B.13)

B.1.3 Numerical implementation

At each time step, Eq. (B.2) is solved by Boundary ElementMethod (BEM) on the
whole boundary of the computational domain. The boundary is first discretized
by a set of discrete nodes and then the integration is conducted on the elements
between nodes as follows:

αu(rcol, t)ϕ(rcol, t) =
M

∑
k=1

(
∫

Γk

[
∂ ln(|rint − rcol|)

∂n
ϕ(rint, t)− ∂ϕ(rint, t)

∂n
ln(|rint − rcol|)]dl)

=
M

∑
k=1

(Ik
d − Ik

s )

(B.14)

where Γk denotes the geometry element between node k and k + 1, Ik
d and Ik

s

represent the integration of dipole (i.e. ∂ ln(|rint−rcol |)
∂n ) and source (i.e. ln(|rint −

rcol|)) distribution on that element, respectively. For the singular part of them,
they are calculated in the CPV sense as mentioned above.

The discretization of the geometry and field functions (e.g. ϕ, ∂ϕ
∂n ), and then

the calculation of the integration on these discrete elements are discussed in the
following sections.
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B.1.3.1 Discretization of field functions

The field functions (e.g. ϕ, ∂ϕ
∂n ) on an element Γk are represented by the 3rd

order polynomial among the 4 adjacent nodes as shown by the curved line in
Figure B.1

node k

node k+1 node k node k+1

-1 1-1/3 1/3Γk

Γk

Figure B.1: Intrinsic coordinate for the integration on each element

In order to simplify the form of interpolation, the geometry is mapped into an
intrinsic coordinates ξ, which varies from −1 to 1 as shown in Figure B.1. If f is
used to represent the field function value (e.g. ϕ, ∂ϕ

∂n ) at an arbitrary position on
an element Γk(which means ξ varies from −1/3 to 1/3 as shown in Figure B.1),
it can be interpolated as follows:

f (ξ) =
4

∑
j=1

Nj(ξ) f k
j , (B.15)

where f k
j is the value on jth node of the adjacent 4 nodes, which corresponds

to ξ = −1,−1/3, 1/3, 1 in Figure B.1, respectively. The shape function Nj(ξ) is
given by:

N1 =
1

16
(1− ξ)(9ξ2 − 1)N3 =

9
16

(1− ξ2)(1 + 3ξ)

N2 =
9

16
(1− ξ2)(1− 3ξ)N4 =

1
16

(1 + ξ)(9ξ2 − 1)
(B.16)

B.1.3.2 Discretization of geometry

The geometry discretization of the whole computational domain could be cat-
egorized into two types, i.e. the ever-changing curved free surface and the
straight-line solid boundaries (which include wave-maker , bottom and side
walls). Those straight-lines are simply discretized by beeline segments. While
the curved free surface is described by the so-called "Quasi-Spline" model
[40, 147]. More specifically, both the x and y coordinates are interpolated against
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the node index numbers. Taking x for example (the same formulation for y), af-
ter obtaining the first order derivative of x against node indexing number dx

dζ by
performing the normal spline interpolation procedure, the coordinates of points
on the element between node k and k + 1 (i.e. Γk) are approximated by the fol-
lowing interpolation:

x(ζ) =α1(ζ)x(k) + β1(ζ)
dx
dζ
|ζ=k + α2(ζ)x(k) + β2(ζ)

dx
dζ
|ζ=k+1 (B.17)

where ζ varies continuously from k to k + 1, indicating the position between
node k and k + 1. The shape function α1,α2,β1 and β2 are defined as:

α1(ζ) = (ζ − k− 1)2[1 + 2(ζ − k)]β1(ζ) = (ζ − k− 1)2(ζ − k)

α2(ζ) = (ζ − k)2[1 + 2(k + 1− ζ)]β2(ζ) = (ζ − k)2(ζ − k− 1)
(B.18)

The relation between the arc length of the curved line s and ζ has to be
established for conducting the integration (which will be explained in Section
B.1.3.3) The Jacobian between s and the intrinsic coordinate ζ mentioned in
Section B.1.3.1 are given by:

ds
dξ

=
3
2
[(

dα1(ζ)

dζ
x(k) +

dβ1(ζ)

dζ

dx
dζ
|ζ=k +

dα2(ζ)

dζ
x(k + 1) +

dβ1(ζ)

dζ

dx
dζ
|ζ=k+1)

2+

(
dα1(ζ)

dζ
y(k) +

dβ1(ζ)

dζ

dy
dζ
|ζ=k +

dα2(ζ)

dζ
y(k + 1) +

dβ2(ζ)

dζ

dy
dζ
|ζ=k+1)

2]
1
2

(B.19)

d2s
dξ2 =

9
4
[
dx
ds

(
d2α1(ζ)

dζ2 x(k) +
d2β1(ζ)

dζ2
dx
dζ
|ζ=k +

d2α2(ζ)

dζ2 x(k + 1) +
d2β2(ζ)

dζ2
dx
dζ
|ζ=k+1)+

dy
ds

(
d2α1(ζ)

dζ2 y(k) +
d2β1(ζ)

dζ2
dy
dζ
|ζ=k +

d2α2(ζ)

dζ2 y(k + 1) +
d2β2(ζ)

dζ2
dy
dζ
|ζ=k+1)]/

ds
dζ

(B.20)

where dx
ds and dy

ds are calculated by

dx
ds

=
3
2

dx
dζ

/
ds
dξ

(B.21)

dy
ds

=
3
2

dy
dζ

/
ds
dξ

(B.22)
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In the process of deriving Eq. (B.21) and (B.22), the following relation between
intrinsic coordinate ξ and the continuous index ζ are used:

ζ =
3
2

ξ − 3
2

ξ1 + k (B.23)

where ξ1 indicates the intrinsic coordinate corresponding to node k. More
specifically, as shown in Figure B.1, when node k is the first or last node of a
particular segment of the boundary, ξ1 = −1 or ξ1 = 1/3 since the integration
element is between the first or last two nodes among the adjacent four nodes,
whilst when node k is somewhere in the middle of a segment, ξ1 = −1/3.

B.1.3.3 Integration on the elements

Based on the aforementioned preparation of the geometry and field function
discretizations, the integration on each element could now be conducted.

For the straight-line boundary such as the wave-maker and other fixed walls,
the polynomial field function integration could be calculated analytically as
illustrated in Ref [44], which will not be repeated here.

For the integration on the curved-line free surface, the case for distributed dipole
Ik
d and source Ik

s on element Γk are discussed separately.

a) Calculation of Ik
d on "Quasi-spline" element

A transformation of the integrand, which is similar to the one used in Ref [94],
is used here to avoid the singularity issue when integration point passing the
collocation point. The angle θd, which is the angle of the vector rint− rcol rotating
from node k + 1 to an arbitrary point on the element Γk as shown inFigure B.2,
is introduced. It is defined to be positive when the vector turn anti-clockwise.

As a consequence, the following transformation can be derived:

Ik
d =

∫
Γk

ϕ(r, t)
∂ ln(|rint − rcol|)

∂n
dl

=
4

∑
j=1

ϕ|kj
∫ ξ1+2/3

ξ1

Nj(ξ)
∂ ln(|rint(ξ)− rcol(ξ)|)

∂n
ds
dξ

dξ

= −
4

∑
j=1

ϕ|kj
∫ ξ1+2/3

ξ1

Nj(ξ)
∂θ(ξ)

∂ξ
dξ = −

4

∑
j=1

ϕ|kj Ik
dj

(B.24)
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rint-rcol

node k+1

node k
Γ k

θd

Figure B.2: Definition the transformation used in the integration of
distributed dipole

where the parameter ξ1 is the same as defined in Section B.1.3.2, ϕ|kj means the
value on jth node among the four adjacent nodes. For the situation that when
collocation point lies on node k or k + 1, the angle for node k or k + 1 itself is
defined to be the tangent angle at that point.

The integration Ik
dj is defined as:

Ik
dj =

∫ ξ+2/3

ξ
Nj(ξ)

∂θ(ξ)

∂ξ
dξ = Nj(ξ)θ(ξ)|ξ+2/3

ξ −
∫ ξ+2/3

ξ

dNj(ξ)

dξ
θ(ξ)dξ (B.25)

This integration is calculated by the Gauss-Legendre quadrature.

b) Calculation of Ik
s on "Quasi-spline" element

For the case of distributed source, similar to the case of Ik
d , the geometry and

field function discretization are first substituted into Ik
s as:

Ik
s =

∫
Γk

(r, t)
∂ϕ(r, t)

∂n
ln(|rint − rcol|)dl

=
4

∑
j=1

∂ϕ

∂n
|kj
∫ ξ1+2/3

ξ1

Nj(ξ) ln(|rint(ξ)− rcol(ξ)|)
ds
dξ

dξ

=
4

∑
j=1

∂ϕ

∂n
|kj Ik

sj

(B.26)

where Ik
sj is the integration corresponding to each node of the adjacent four. For

the non-singular case, it will be calculated by the Gauss-Legendre quadrature,
whilst for the singular one (i.e. the collocation point is either node k or k+ 1), it is
calculated by a quadrature that is able to handle the logarithmic singularity [22].
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B.2 Weak coupling process

Themain feature of weak coupling strategy, compared with the strong coupling
case, is that the information will only be feed from one solver to another, there is
no mutual exchange. In this particular case, this means the BEM solver, which
covers the whole computational domain as shown in Figure 5.24, will provide
all the necessary boundary information (e.g. velocity, pressure) to the MPS
area. And the MPS solver do not provide feedback to BEM solver. This way
of coupling is easier to implement than the strong coupling case, and it will also
avoid the stability issue that is introduced by the exchanging of information in
strong coupling. Apparently, it will not be as capable as the strong coupling for
the situation where significant interaction of flow occurs between potential flow
and Navier-Stokes domains. However, as mentioned in the beginning of this
chapter, for many cases where the violent free surface deformation only occurs
in a restricted area, this simple way of coupling is a more efficient choice. The
details of the coupling is described as follows:

As shown in Figure 5.24, the area covered by shadow is modeled by MPS
method. The whole computational domain is discretised by BEM nodes. The
weak coupling procedure is adopted here. More specifically, as aforementioned,
the whole domain will be initially modeled by BEM method up to the time
when the wave is about to break (but not breaking yet). The MPS area will also
be running from the beginning by taking the pressure and velocity results of
BEM as boundary condition at the interface area (i.e. overlapping area shown
in Figure 5.24). When the wave modeled by BEM is about to break, the BEM
simulation will stop and all the boundary values remain the same. The MPS
simulation will continue for the wave structure impact calculation. Considering
that the interface area is chosen to be far away from the impacting area, the
pressure andvelocity of this areawill not vary a lot for thewhole "post-breaking"
duration and close to the state of the calm water. As a result, using the "pre-
breaking" BEM value to impose the MPS boundary condition on interface area
for post-breaking duration will not affect the results significantly.

At the interface between MPS and BEM domain, the pressure and velocity for
MPS particles are calculated based on the BEM solution. These interface parti-
cles also move based on the calculated velocity from BEM. The particle arrange-
ment at the interface area is shown in Figure B.3. The first four columns of MPS
particles are treated as the interface particles. Their velocity are calculated based
on the values of ϕ and ∂ϕ

∂n on the BEM boundaries. More specifically, the velocity
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MPS solid boundary 

particles 

MPS inner fluid 

particles

MPS

BEM

BEM free surface

MPS interface 

particles

BEM bottom bounary

Figure B.3: Sketch of the BEM-MPS interface

is calculated by taking gradient operation on both side of Eq. (B.2) as follows:

αu(rcol, t)∇col ϕ(rcol, t) =
∮
[∇col(

∂ ln(|rint − rcol|)
∂n

)ϕ(rint, t)

− ∂ϕ(rint, t)
∂n

∇col(ln(|rint − rcol|))]dl,
(B.27)

where ∇col indicates that the gradient operation is with respect to the coordi-
nates of the collocation point rcol. On the straight-line boundaries such as wave-
maker or fixed solid walls, the integration on the right hand side could be cal-
culated analytically by the formulation provided in Ref [44]. For the curved
free surface, the "Quasi-spline" element (between two adjacent nodes) is further
divided into several "sub-elements", which are simply represented by straight-
lines. And then the integrations are calculated on these "sub-elements" by the
same analytical approach used for straight-line boundaries.

The pressure of the interface MPS particles are calculated based on Bernoulli
equation as:

p = −(∂ϕ

∂t
+

1
2
|∇ϕ|2 + gy)ρ (B.28)

The value of ∂ϕ
∂t is calculated directly from the solution of the additional integral

equation for ∂ϕ
∂t and ∂ϕ2

∂n∂t as mentioned in Appendix B.1.2.



Appendix C

Calculation of mode shape and
natural frequency of ship hull
structure

The structure model proposed in Section 3 requires the mode shape and natural
frequency information of a structure. It is easy to obtain them for regular shape
structures (such as beam), since the analytical solution is available. For an
arbitrary structure like the ship model, it has to be calculated numerically. As
a general approach, the FEM method is of course capable to the job, however
in the field of ship hydroelasticity, the so-called Myklestad’s method [26, 107]
is more commonly used. The detailed procedure of this method used for the
calculation of Section 6.3 are presented in this section.

The core idea of Myklestad’s method is to discretize the non-uniform beam,
which is considered as a representation of ship hull , into a set of lumped
mass connected with massless flexible beams. This method could be used to
calculate the mode shape and natural frequency of a non-uniform beam with
any boundary condition. In this study, corresponding to the case of floating
ship, the free-free case is used and shown in Figure C.1. The force and moment
applied on nth element is shown in Figure C.2. y, θ, S, m and M represent
deflection, slope, shear force, mass of lumped element and bending moment
respectively. It has to be mentioned that the shear force is taken from the cross-
section right after the lumpedmass (asmarked by the bold line at corresponding
positions in Figure C.2). The beam is assumed to be undergoing an harmonic
vibration, therefore the acceleration of the lumped mass should be pointing to
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l1

Station 1

Station n

ln

Station n+1

Element n

y

x

Figure C.1: Sketch of lumped-mass free free beam model
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Figure C.2: Force and moment on nth element

the opposite direction of beam deflection y (which is the reason ÿ is pointing
downward since the positive direction of y is set to be up). The relation between
them is given by Eq. (C.1):

y = −ω2ÿ (C.1)

where ω is the circular frequency of the vibration. Finally, the dynamic equilib-
rium of this element could be derived as follows:

yn+1 = yn + lnθn + Sn
l3
n

3(EI)n
+ Mn

l2
n

2(EI)n

θn+1 = θn + Sn
l2
n

2(EI)n
+ Mn

ln
(EI)n

Sn+1 = Sn + ω2mn+1yn+1

Mn+1 = Snln + Mn

(C.2)
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As shown in Figure C.1, the last station is slightly different from others, there is
no lumped mass attached to it (the last lumped mass is attached to the element
before last). The dynamic equilibrium is slightly modified accordingly, which
means the term "ω2, mn+1 and yn+1" vanishes in the shear force equation in
Eq. (C.2) for the last element.

Consequently, if a set of boundary value, which is compatible with the required
boundary condition, is imposed on station 1 and an initial guess is given to
ω, Eq. (C.2) could determine the boundary values at the terminal station. If
ω is one of the natural frequencies, the boundary values will then satisfy the
corresponding boundary conditions at the end station.

In order to locate the right value of ω that satisfies the boundary condition,
the following procedure is employed. Generally speaking, for any boundary
condition, there will be only two of the four values (i.e. y, θ, S and M) are
known as initial boundary values such as M1 = 0 and S1 = 0 for free-free case,
therefore the values at end station can not be fully determined since y1 and θ1 are
unknown. However, considering the system defined by Eq. (C.2) is linear, the
general solution could be obtained by the linear combination of independent
element solutions. Each of the two element solutions of the free-free case are
calculated in the way that only deflection y or slope θ is given with unit initial
value at first station and all other boundary values are set to be zero. Therefore,
the general solution could be written as:

yn

θn

Mn

Sn

 = a1


yn,y

θn,y

Mn,y

Sn,y

+ a2


yn,θ

θn,θ

Mn,θ

Sn,θ

 (C.3)

where the subscript of {n, y} and {n, θ}mean the element solution at nth station
corresponding to unit y and θ input. a1 and a2 are arbitrary coefficients.

For free-free beam, the boundary condition for end terminal is Mend = 0 and
Send = 0 at natural frequency. As a consequence, the non-trivial solution of
coefficients a1 and a2 requires the following condition to be satisfied:

∆(ω) =

∣∣∣∣∣Mend,y Mend,θ

Send,y Send,θ

∣∣∣∣∣ = 0 (C.4)
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The value of ∆ changes accordingly to different value of frequency ω. Therefore,
different root finding approaches could be used to find the natural frequency
based on this relation between ∆ and ω. Although the Newton-Raphson [26]
method is popular one for rooting finding, the convergence rate is found to be
very slow for the case investigated in this study, hence the bisection method is
used instead with the initial guess from a similar size uniform beam.

After finding the natural frequency ω, the coefficient a1, a2 could be obtained
by substituting M (or S) value at the end station back into Eq. (C.3). Then the
mode shape i.e. the deflection y at each station could be obtained by Eq. (C.2)
and (C.3).
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