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Dedication

In memory of Robert W. Farquhar who passed away in October 2015. Farquhar gave

a great contribution to spacecraft trajectory design in particular in the field of the re-

stricted three-body problem. He is also credited with being the first to develop the use

of halo orbits with NASA’s ISEE-3 mission. The term “halo” was proposed by him in his

Ph.D. thesis in 1968. It was simply by chance that, in October 2014, I met Farquhar and

his wife, Irina Vostokova, at the 65th International Astronautical Congress in Toronto.

Farquhar was very inspiring to me. He was curious about my thesis, and he encouraged

me to further my research in the restricted three-body problem. I was also honoured

and delighted when I received a copy of his memoirs after we met at the conference.

Robert W. Farquhar (left) and Stefania Soldini (right) at the gala dinner of the
65th International Astronautical Congress, Toronto, Canada, October 2014.





UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aeronautics, Astronautics and Computational Engineering and Design

Doctor of Philosophy

DESIGN AND CONTROL OF SOLAR RADIATION PRESSURE ASSISTED

MISSIONS IN THE SUN-EARTH RESTRICTED THREE-BODY PROBLEM

by Stefania Soldini

The scientific interest in space exploration is driven by the desire to answer fundamental

questions relating to the formation of our solar system and life on Earth. Space agencies

are currently pushing the boundaries of space mission design to meet scientific goals.

Thus, space missions require novel trajectories to further human space exploration. A

modern approach that has arisen in space mission design is to use dynamical system

tools that exploit the natural dynamics of the solar system. A spacecraft’s natural

dynamics are affected by environmental perturbations such as Solar Radiation Pres-

sure (SRP). Traditionally, the design of space missions requires any perturbations to

be counteracted through corrective manoeuvres. However, these corrective manoeuvres

require propellant and therefore the pre-storing of fuel. This thesis investigates fuel-free

propulsion for harnessing SRP in the design of space missions of the Sun-Earth re-

stricted three-body problem. SRP propulsion is applied to the spacecraft’s orbit control

and furthermore to create the propulsion required for the design of transfers between

quasi-periodic orbits and end-of-life disposal trajectories. The advantage of SRP ma-

noeuvres is that the spacecraft can have access to an unlimited source of propellant (the

Sun’s radiation) consequently extending its life and reducing the overall mission costs;

where the advancement in space technology makes harnessing SRP devices possible for

future missions design. SRP manoeuvres are triggered by light and extended reflective

deployable structures (i.e., mirror-like surfaces). The magnitude of the SRP acceleration

is a function of the spacecraft’s area-to-mass ratio, its reflectivity properties, mass and

orientation of the reflective surface to the Sun-line direction. This thesis demonstrates

that SRP manoeuvres are an effective and an efficient approach to stabilise the natural

dynamics of the spacecraft in the Sun-Earth system. The size of the required reflec-

tive deployable area and spacecraft pointing accuracy are the ultimate outcomes of this

research. Along with the design of the reflective area, the definition of a new control

law, a method to perform transfers between quasi-periodic orbits and a strategy for the

end-of-life disposal are the major important research findings.

mailto:s.soldini@soton.ac.uk
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Chapter 1

Introduction

In space mission design, the spacecraft motion is driven by the gravitational influence

of the celestial bodies of the solar system (i.e., n-body problem). An approximate

approach is to divide the solar system into various parts through the assumption that

each celestial body has its gravitational sphere of influence. Thus, the spacecraft motion

is affected by the effect of the proximal celestial body. This assumption reduces the

n-body problem to one or multiple solutions to the two-body problem. The two-body

problem describes the mutual gravitational interaction of two bodies. When the effect of

perturbations is neglected, a particular solution of the two-body problem is the Kepler’s

problem. In most space applications, the Kepler’s problem assumes that there is a large

centre body (i.e. planet), where a Keplerian orbit describes the motion of the orbiting

body (i.e. spacecraft) (i.e. ellipse, parabola or hyperbola shape orbit), also known as

conic. Examples of the use of Kepler’s problem are, in celestial mechanics, where the

motion of the planets around the Sun can be approximated by Keplerian orbits; while,

in space mission design, Kepler’s problem is used to describe the motion of a spacecraft

around a planet or the Sun. For example, the Apollo lunar mission used combined

Keplerian orbits known as patched conics in its approach to the Moon; while numerical

optimisation techniques (Patapoff, 1967) then refined the final approximated solution.

Space missions that require particular orbits to meet their goals cannot be achieved

by the patched conic approximation alone. Indeed, the patched conic approach is a

good approximation in the design of interplanetary transfer trajectories that make use

of high-energy manoeuvres (i.e., gravity-assist1 or swing-by manoeuvres). However, in

some other applications, a more accurate model that exploits the solar system’s natural

dynamics for the design of low-energy trajectories is needed. Thus, a modern approach

that has arisen in space mission design is to use Space Manifold Dynamics (SMDs) that

1A gravity assist around a planet changes the spacecraft’s velocity by entering and leaving the grav-
itational field of the planet. The spacecraft’s speed increases as it approaches the planet and decreases
while escaping its gravitational pull.

1
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exploits the natural dynamics of the solar system. SMD merges the knowledge of dynam-

ical systems, celestial mechanics and astrodynamics, see e.g. the work of Celletti and

Lhotka (2011); Perozzi and Ferraz-Mello (2010). SMD provides the dynamical system

tools that can be applied to:

1) orbit control and maintenance (i.e., low-consumption station-keeping),

2) the design of interplanetary transfers (i.e., low-energy transit orbits), and

3) mission operations (i.e., eclipse avoidance),

fitting the required mission constraints (Gómez and Barrabés, 2011). SMD was proposed

for the design of the SOHO mission (Gómez et al., 2001). SOHO was the European

Space Agency (ESA)’s successor to the National Aeronautics and Space Administration

(NASA)’s ISEE-3 mission (Dunhan and Farquhar, 2003).

The simplest dynamical model used for the SMD approach is the Restricted Three-

Body Problem (R3BP). In the R3BP, the motion of the spacecraft is under the mutual

gravitational influence of two main celestial bodies. In this work, the focus is in the

design of space missions in the Sun-Earth system. Thus, the spacecraft motion is only

influenced by the gravitational effect of the Sun and of the Earth+Moon barycentre2.

Unlike the patched conic approximation, in the R3BP model, there exist five equilibrium

points. These equilibrium points, known as libration points, are defined in a coordinate

system rotating with the Sun-(Earth+Moon) (Szebehely, 1967; Gordon, 1993). Figure

1.1 shows the position of the libration points for the Sun-Earth system in a rotating

reference frame. Currently, the libration points selected for space applications are the

collinear points that are aligned with the Sun-(Earth+Moon) line. In particular, L1,

located between the line joining the Sun and the Earth+Moon barycentre and L2, located

in the anti-sunward direction along the Sun and the Earth+Moon barycentre line. A

spacecraft placed in those points will keep a constant distance from the Sun and the

Earth+Moon barycentre opening new opportunities in space mission design.

Spacecraft are usually placed in Libration Point Orbits (LPOs) that are in the vicinity

of the equilibrium points L1,2 rather than at the equilibrium points. Indeed, stopping a

spacecraft at L1,2 requires a high propellant consumption, increasing the overall mission

costs. Moreover, the Earth-spacecraft communication link is complicated by the Sun-

Earth and L1,2 alignment (Canalias et al., 2003). Libration point orbits are periodic or

quasi-periodic orbits that are relatively inexpensive to be reached via a direct launch

from Earth. Orbits around L1 are usually useful platforms when studying the Sun; while

orbits near L2 are selected for deep space observations (Perozzi and Ferraz-Mello, 2010).

2The barycentre point is the point in a system of bodies or an extended body at which the mass of
the system may be considered to be concentrated and at which external forces may be deemed to be
applied. It is also known as the centre of mass.



Chapter 1 Introduction 3

Figure 1.1: Position of the five Lagrangian points of the Sun-(Earth+Moon)
system with respect to the synodic reference frame (not to scale).

In 1968, Farquhar (1991) was the first to propose a space mission to LPOs around the

Lagrangian points of the Earth-Moon system as a communication relay for the far side of

the Moon. The growing interest of the space agencies in LPOs started after the success

of the ISEE-3 mission in 1978. Current examples of LPO missions include SOHO that

studies the Sun’s outer corona (Olive et al., 2013) and the Gaia space telescope to chart

a three-dimensional map of our Galaxy (Hechler and Cobos, 2002). ESA and NASA

have recently succeeded in launching LISA Pathfinder that will test key technologies for

gravitational wave observations (ESA-website, 2015b). The NASA/ESA/CSA’s James

Webb Space Telescope will provide astronomical measurements to understand the for-

mation of our Universe (NASA-website, 2016) and ESA’s Euclid will map the geometry

of the dark Universe (ESA-website, 2015a).

Due to the unstable nature of L1 and L2, a spacecraft placed around the equilibrium

points will naturally diverge from them. Thus, trajectories designed in the R3BP require

the spacecraft to be manoeuvred to maintain its nominal trajectory by counteracting the

unwelcome environmental instabilities (Wertz, 1999). Among the environmental effects,

the stronger perturbations are the motion of the Moon around the Earth, the eccentricity

of the Earth+Moon barycentre’s orbit around the Sun, the gravitational effect of passing

planets and the Solar Radiation Pressure (SRP). After the gravitational effects, SRP is

a significant factor in the Sun-(Earth+Moon) system, particularly when the spacecraft

has extended high reflective areas, e.g. James Webb Space Telescope (Evans, 2003).

The aim of this research is to exploit SRP to perform the required correcting manoeuvres

to keep the spacecraft on the nominal trajectory. The advantage of using SRP as the

source of propulsion is in the design of innovative propellant-free devices that reduce

the pre-stored fuel onboard the spacecraft (McInnes, 1999). Therefore, SRP is a natural
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and unlimited source of “propellant”. Due to this unlimited “propellant”, space missions

that use SRP could have longer mission lifetimes, potentially decreasing the number of

spacecraft launched to LPO’s. Reducing the number of launches will reduce the Space

Agencies overall cost budget allocated for LPOs missions. Moreover, a reduced number

of spacecraft at LPOs will also make the space market more sustainable by limiting the

potential space debris in the vicinity of the libration points. Furthermore, the single

space mission cost budget is highly related to the mass of the spacecraft, where the pre-

storage of onboard propellant has a significant impact on the overall single mission costs.

Thus, an SRP harnessing device mainly has the significant advantage of reducing the

costs relating to the propulsion system. The first application of SRP stabilisation was

proposed for attitude control in 1959 (Sohon, 1995), and it is successfully implemented

for geosynchronous satellites such as OTS, TELECOM 1 and INMARSAT 2.

In this research, SRP enhancing devices are applied to future LPO missions designed in

the Sun-Earth system; the idea is to exploit the effect of SRP from the beginning to the

end of the mission. In the field of the R3BP, SRP stabilisation is applied to the:

1) development of orbital control methods for LPOs,

2) transfer trajectories within the Sun-Earth system, and

3) the end-of-life disposal.

As this research focuses on the design of future innovative missions through an SMD

approach, concern is given to dispose safely of the spacecraft when it reaches the end

of its operational life. The end-of-life disposal is a recent topic in the context of the

R3BP as, currently, the space community has recognised the need for mitigation of LEO

and GEO spacecraft. However, less concern is given for LPOs, as no guidelines for

the mitigation of LPO satellites have been formulated by the Space Agencies (Colombo

et al., 2014b, 2015a; ESA-website, 2013).

SRP trajectory stabilisation requires devices on board the spacecraft that can react

to SRP acceleration (McInnes, 1999). The SRP stabilisation has been demonstrated

by JAXA’s Ikaros mission that utilises a 20-m span square solar power sail (Tsuda

et al., 2013). The SRP acceleration forces are enhanced by the spacecraft’s reflective

area, its reflectivity properties, the reflective area orientation (to the Sun), and the

reduction of the spacecraft’s mass. Thus, SRP devices require a light and extended

highly reflective area (i.e. reflective deployable structures such as solar sails, solar flaps,

sunshields and space mirrors). The acceleration needed to manoeuvre the spacecraft

is controlled by mechanical variations in the former parameters, e.g. controlling the

surface reflectivity (Lücking et al., 2012b) or by changing the area through deployable

mechanisms (McInnes, 1999).
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1.1 Research questions

The present research aims to develop methodologies for the design and control of space-

craft trajectories enhanced by Solar Radiation Pressure (SRP) acceleration. This work

expands the effort made by previous authors in the context of solar sail missions in the

Sun-Earth system where the ultimate research questions of this thesis are:

Q.1 - Can pre-existing spacecraft’s reflective deployable structures enhance the design

and control of solar radiation pressure assisted missions in the restricted three-

body problem?

Q.2 - Which structural requirements are needed for the design of solar radiation pressure

missions from the beginning to the end of the spacecraft’s lifetime?

To answer those final questions, we have to formulate and answer former research ques-

tions such as:

Q.3 - What type of control law can be used for stabilising spacecraft at libration point

orbits that make use of solar radiation pressure propulsion?

Q.4 - Which methodology can be used to perform transfers between quasi-periodic orbits

enhanced by solar radiation pressure manoeuvres?

Q.5 - How can we design an end-of-life disposal strategy that makes use of solar radi-

ation pressure enhancing devices to dispose of a spacecraft safely in a graveyard

trajectory?

The approach used to answer those questions focuses on the design of spacecraft trajec-

tories through SRP manoeuvres that make use of the invariant manifold theory. The

dynamical model used is the restricted three-body problem with solar radiation pres-

sure. The natural dynamics of the Sun-Earth system are thereby investigated on SRP

propulsion for different mission phases such as the control of periodic orbits around the

libration points, the design of transfer trajectories within the Sun-Earth system and

the design of spacecraft end-of-life disposal paths. The reflective area required for the

trajectory design and the spacecraft pointing requirements are the final outcomes of this

research. These requirements are highly dependent on the selected mission phases. Thus,

differently designed trajectories require different deployable area configurations. Along

with the design of the reflective area, the definition of a new control law, a method to

perform transfers between quasi-periodic orbits and a strategy for the end-of-life disposal

are the major outstanding research contributions to this research.
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1.2 Research contribution

The major contributions of these research are presented in Chapter 5, Chapter 6 and

Chapter 7. Chapter 5 focuses on the design of a Hamiltonian structure preserving

control law extended to high amplitudes libration point orbits. Chapter 6 investigates a

methodology to perform transfer trajectories between Lissajous orbit; while, Chapter 7

presents a strategy of spacecraft end-of-life disposal. The final outcome of this research is

to identify the structural drivers and the spacecraft pointing-accuracy to perform control,

transfer and end-of-life manoeuvres enhanced by solar radiation pressure. Each of these

chapters corresponds to a journal publication either already published or submitted.

Chapter 3 and Chapter 4 present the theoretical model used to describe the motion of

the spacecraft in the restricted three-body problem. Chapter 3 presents the circular

restricted three-body problem that it is already available in the literature. A minor

contribution to the state-of-art of the circular restricted three-body problem was given

by the author in Section 3.5.2; where, the computation of libration points was per-

formed through numerical continuation techniques. Conversely, Chapter 4 summarises

the theory of the elliptic restricted three-body problem. Note that, the dynamics of the

spacecraft in the elliptic problem are less known than the ones in the circular model

and the references available in the literature are limited and often not clear. Thus, a

significant effort was made in Chapter 4 to merge what is well known in the literature

and the author understanding of the spacecraft behaviour in the elliptic model. Part of

the finding in Chapter 4 are presented in an under review publication.

In this thesis, the dynamical system tools to compute objects (such as equations of

motion, equilibrium points, numerical computation of libration point orbits, the compu-

tation of invariant manifolds, and the calculation of the regions of feasible motions) was

entirely developed as no pre-existing tools were available to the author. Thus, a dynam-

ical system algorithm named by the author as Controlled Routes by Using Innovative

Solar-radiation Equipment (CRUISE) was developed as a final result of this research.

CRUISE merges well known methods for the computation of objects in the restricted

three-body problem as well as the newly developed methodologies for the design and

control of LPOs missions assisted by SRP manoeuvres. The CRUISE code architecture

is described in Appendix A
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for Lagrange-Points Orbit and High Elliptical Orbit Missions. This strategy was

applied to Herschel, SOHO and Gaia spacecraft. As part of the team at the Uni-

versity of Southampton, I was in charge the analysis of the disposal strategy for
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1.3 Organisation of the thesis

The thesis is organised as follows: after the literature review presented in Chapter 2,

Chapter 3 shows the restricted three-body problem model with solar radiation pressure

with a particular focus on the equations of motion and the tools developed for the

design of the target orbit. The effect of the Earth’s orbit eccentricity is then introduced

in Chapter 4 with the elliptic restricted three-body problem. Chapter 5 focuses on the

orbital control strategies for LPO missions. In particular the focus of Chapter 5 is on

the SRP Hamiltonian structure-preserving feedback control and its comparison with

the Floquét mode technique; while Chapter 6 investigates a semi-analytical approach

for harnessing SRP in the design of transfer trajectories within quasi-periodic orbits of

the Sun-Earth system. Chapter 7 describes the proposed end-of-life disposal strategy

enhanced by SRP manoeuvres. Finally, the conclusions and future work are presented

in Chapter 8 focusing on the main research findings, research impacts and limitations.



Chapter 2

Literature Review

2.1 Restricted three-body problem

Space mission design requires the knowledge of the space environment to predict the mo-

tion of a spacecraft. The motion of a spacecraft is influenced by the gravitational effect

of the celestial bodies of the solar system (i.e. Sun, planets, moons and asteroids) and

other environmental perturbations (i.e., planets’ environment, solar wind and galactic

cosmic rays (Evans, 2003)). Thus, dynamical models that approximate the motion of

the celestial bodies are useful tools in spacecraft trajectory design. A first approach is

to divide our solar system into different parts. Thus, the motion of a spacecraft is under

the gravitational sphere of influence of one celestial body at a time. The general n-body

problem is then simplified by composing multiple Two-Body Problem (2BP) solutions.

The 2BP describes the mutual gravitational interaction between a central body (i.e. the

Sun or planets) and the spacecraft. When the effect of environmental perturbations is

neglected, a special solution of the 2BP is the Kepler’s problem. In the Kepler’s problem,

the central body has a spherically symmetrically distributed mass and the well-known

equations of motion are:

r̈ = − µ
r3
r, (2.1)

where, r is the position vector of the spacecraft and µ is the constant of gravitation

of the central body. The solutions of Eq. (2.1) are Keplerian orbits which are conic

sections. In the Kepler problem, the motion of the spacecraft can be determined by its

coordinates, r, and its velocity components, ṙ, which identify a unique set of six orbital

elements, called Keplerian elements (see Appendix B.1). In celestial mechanics, the

Kepler’s problem is used to approximate the motion of the planets of the solar system

around the Sun or the motion of Moons around their planets; while, in space mission

design, it is used to approximate the motion of a spacecraft around a planet.

In real space applications, small deviations from the two-body dynamics exist. The

spacecraft motion is non-Keplerian when considering these perturbing forces. The Eq.

11
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(2.1) turns then into Eq. (2.2) where ap is the acceleration of perturbing effects:

r̈ = − µ
r3
r + ap. (2.2)

Examples of perturbations for Earth orbiting spacecraft are: Earth’s gravity harmonics

(deviation from a perfect sphere), luni-solar gravitational attractions, atmospheric drag,

Earth tides, solar radiation pressure and other additional planetary gravitational effects.

For example, the Apollo mission used combined two-body problem solutions known

as the patched-conics approach to perform the transfer from the Earth to the Moon

(Patapoff, 1967).

Space missions require specific design concept to meet their goals that cannot be achieved

by a patched-conic approximation. In the case of interplanetary transfers, the patched

conic approximation is a good solution when high-energy manoeuvres are involved (i.e.,

gravity-assist) and it requires a manual trial and error search trajectory design followed

by an optimisation procedure (Canalias et al., 2004). However, for the development of

low-energy trajectories, a more accurate model is needed. A modern approach is to

use Space Manifold Dynamics (SMD). SMD uses dynamical system theory that exploits

natural dynamics for the design of interplanetary transfers (i.e., low-energy transit orbits

discovered by Conley, 1968), for orbit control and maintenance (i.e., station-keeping ),

and for mission operations (i.e., eclipse avoidance). The application of dynamics system

theory to space mission design was used, for example, in the design of the SOHO mission

by ESA and the Genesis mission by NASA. The benefit in using dynamical system tools

has been proven for example by the Genesis mission, where a ∆v 1 of 100 m/s was saved

for stabilising the spacecraft; therefore, this approach directly reduced the overall fuel

cost. Moreover, dynamical system tools have been demonstrated to be an efficient way

to perform a trajectory design. This was proven when the nominal trajectory of Genesis

had to be redesigned due to a delayed launch (Canalias et al., 2004).

The Three-Body Problem (3BP) is the simplest model of an SMD approach and it was

formulated and studied by Newton in 1687. The 3BP models the gravitational inter-

action of three celestial bodies by predicting their motions. Examples of 3BPs are the

Sun-planet-planet, the Sun-planet-Moon or the Sun-planet-asteroid gravitational mu-

tual interaction. When the mass of one body is infinitesimal compared to the other two,

the 3BP can be further simplified. This can be the case of a Sun-planet-asteroid system

or when the third body is a spacecraft (i.e. Sun-planet-spacecraft). The main assump-

tion is that the gravitational effect of an infinitesimal mass onto two massive bodies is

negligible. Thus, the 3BP is restricted to study the motion of an infinitesimal body

under the gravitational influence of two massive ones. This approximation is known as

the Restricted Three-Body Problem (R3BP) that is a subset of the 3BP. In the R3BP,

1The ∆v is the variation in the spacecraft’s velocity when an impulsive manoeuvre is given to keep
the spacecraft on its design trajectory. The ∆v is associated with the propellant consumption through
the Tsiolkovsky’s rocket equation. The ∆v budget is an important figure in space mission design to
estimate the mass of propellant needed for the entire mission.
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the motion of the barycentre of the two largest celestial bodies is approximated with

Kepler’s problem that is the solution of Eq. (2.1). The R3BP changes depending on

the assumption made for the celestial bodies motion. If the celestial bodies barycentre’s

orbit is approximated as a circular or elliptic orbit, the R3BP turns into the Circular

Restricted Three-Body Problem (CR3BP) or the Elliptic Restricted Three-Body Prob-

lem (ER3BP) respectively. The CR3BP was formulated in a rotating (synodic) reference

frame by Euler in 1767. Euler considered the two celestial bodies (i.e. the Sun and the

Earth+Moon) along a straight line that rotates with their barycentre. The formulation

of the CR3BP in a synodic reference frame was a significant development in the study

of the 3BP (Szebehely, 1967; Musielak and Quarles, 2015).

Unlike the patch-conic approximation, in the R3BP five equilibrium solutions exist at

which the gravitational forces of the celestial bodies balance out. Lagrange proved

the existence of the equilibrium points of the CR3BP in 1772 known as Lagrangian or

libration points. In 1906, the existence of the equilibrium points was observed in the

Sun-Jupiter system where the Trojan asteroids are located close to two of the Lagrangian

points. For the Sun-Earth system, the equilibrium points have the advantage of having

a fixed distance from the Sun and the Earth+Moon barycentre (Canalias et al., 2004;

Bernelli-Zazzera et al., 2004). The Lagrangian points open up the possibility of designing

new missions where a spacecraft in the vicinity of the Lagrangian points will maintain

a fixed configuration with the Sun and the Earth+Moon barycentre. Figure 1.1 shows

the position of the equilibrium points in the synodic reference frame for the Sun-Earth

system. Three of the five equilibrium points lie on the line that joins the Sun and the

Earth+Moon barycentre, named as L1, L2 and L3 respectively. L1 is located between

the Sun and the Earth; while, L2 is located beyond the Earth as viewed from the Sun.

L3 is beyond the Sun on the opposite side to the Earth. Objects in L3 cannot be seen

from Earth. The last two equilibrium points, L4 and L5 are instead located in the plane

of motion of the Sun-(Earth+Moon) forming an equilateral triangle with them.

While the 3BP has the advantage of having equilibrium solutions, in the transition from

the 2BP to the 3BP some knowledge of the spacecraft motion is lost. Indeed, the concept

of orbital elements and integral of motion for Kepler orbits no longer exist in the 3BP

(Bernelli-Zazzera et al., 2004). However, Jacobi in 1836 used the formulation of the

CR3BP in the synodic frame, introduced by Euler, to prove the existence of a constant

of motion, the well-known Jacobi integral. The Jacobi integral was used by Hill in 1877

to study the motion of an asteroid in the 3BP and he introduced the concept of Zero

Velocity Curves (ZVCs). The ZVCs establish regions in space where a small body is

capable of moving. As a closed-form solution of motion is not possible in the 3BP, the

ZVCs have the advantage of giving a qualitative picture of the region of motion of a

small body (i.e. asteroids or spacecraft) under the influence of two celestial bodies. Hill

also considered a special case of the CR3BP when two bodies have masses much smaller

that the first one, known as the Hill’s problem. In the late 1800s, Poincaré concluded



14 Chapter 2 Literature Review

that the R3BP is non-integrable (Musielak and Quarles, 2015). An important reference

book in the R3BP was published in 1967 by Szebehely (1967): Theory of Orbits.

A natural extension of the CR3BP is the ER3BP, where the effect of the two celestial

bodies barycentre’s orbit eccentricity is taken into account. In the ER3BP, the definition

and the existence of the five Lagrangian points still holds. However, due to the effect

of orbit eccentricity, the synodic frame is now rotating with a non-uniform angular

velocity and the system shows a non-autonomous nature. Thus, the definition of the

Jacobi integral no longer exists for the ER3BP (Szebehely, 1967). Figure 2.1 shows a

qualitative representation of the 2BP and the 3BP. Figure 2.1(a) shows two examples

of Kepler’s problems the Earth-Moon and the Earth-spacecraft system. If the effect of

a third body like the Sun or other perturbations is added to Eq. (2.1) as an external

acceleration, ap, as shown in Eq. (2.2), the Kepler’s problem turns into the 2BP. Figure

2.1(b) shows two examples of the R3BP as the Earth-Moon-spacecraft and the Sun-

Earth-spacecraft systems. In this case, the mass of the spacecraft is much smaller

compared to the other two celestial bodies masses. An example of 3BP is the mutual

gravitational interaction of the Sun, the Earth and the Moon as shown in Figure 2.1.

(a) Two-Body Problem (2BP) and Kepler’s problem. (b) Three-Body Problem (3BP) and Restricted Three-
Body Problem (R3BP).

Figure 2.1: Qualitative representation of: the Two-Body Problem (2BP), the
Kepler’s problem, the Three-Body Problem (3BP) and the Restricted Three-
Body Problem (R3BP).

In this thesis, the CR3BP and the ER3BP are the dynamical models used for spacecraft

trajectory design in the Sun-Earth system. Thus, the satellite motion is influenced by

the Sun and the Earth+Moon barycentre. In 1903, Poynting observed that the motion

of particles, such as small meteors or cosmic dust are affected by gravitation and light

radiation effects as they approach luminous celestial bodies (McInnes, 1999). Thus, stars

(including the Sun) exert not only gravity but also radiation pressure on bodies moving

nearby. When the effect of the Solar Radiation Pressure (SRP) is taken into account,
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the R3BP becomes the photo gravitational R3BP (R3BP-SRP); where it can be either

circular (CR3BP-SRP) or elliptic (ER3BP-SRP).

The scientific advantages of locating a spacecraft at the libration points explain the

interest in the R3BP for space mission design. In particular, a spacecraft at the collinear

points L1 and L2 has the advantage of being in a stable thermal environment, its field

of vision is never obstructed by the Earth and Sun and the spacecraft-Earth distance is

fixed which is beneficial for the communications subsystem design (Perozzi and Ferraz-

Mello, 2010; Canalias et al., 2004).

Spacecraft are usually placed in Libration Point Orbits (LPOs) that are in the vicinity of

the equilibrium points L1,2 rather than at the equilibrium points. Stopping a spacecraft

at L1,2 requires a high propellant consumption, increasing the overall mission costs.

Moreover, for a spacecraft placed at L1,2, the Earth-spacecraft communication link is

complicated by the Sun-Earth and L1,2 alignment where a displacement from the L1,2

points is required to enhance communications. Figure 3.10 gives a schematic picture

of the position of the Sun, Earth, Moon, libration points and libration point orbits for

the CR3BP in the synodic reference frame. The Sun-Earth distance is approximately

of 1.5 · 108 km and the Moon orbit has a radius of circa 3.28·105 km. L1 is located at

1.5 million km from Earth in the direction toward the Sun, Figure 3.10(a); while, L2 is

located approximately 1.5 million km in the anti-sunward direction along the line joining

the Sun and the Earth+Moon barycentre, Figure 3.10(b). A physical explanation of L1

and L2 can be found in Appendix B.2.

(a) Position of L1 with respect to the Earth.

(b) Position of L2 with respect to the Earth.

Figure 2.2: Schematic representation of: the position of the Sun with respect to
the Earth, the position of the Libration points, L1,2 with respect to the Earth,
the libration point orbit and the Moon orbit.
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2.1.1 Space missions at the collinear libration points, L1,2

Orbits in the vicinity of L1 and L2 open up new possibilities for future space missions

and planetary science. Libration points orbits are periodic or quasi-periodic orbits that

are relatively inexpensive to be reached via a direct launch from Earth. Orbits around

L1 are usually good platforms when studying the Sun; while orbits near L2 are selected

for deep space observations, for example, see Perozzi and Ferraz-Mello (2010). The

communication between a spacecraft in LPO and the Earth is relatively simple (and

therefore has a low cost overhead) as L1 and L2 maintain a fixed distance of circa 1.5

million km from the Earth. In particular, LPOs around L2 are good candidates for those

missions that have heat sensitive instruments as a spacecraft in L2 is never in shadow

and is therefore not subjected to big temperature changes. Thus, L2 has a favourable

environment for non-cryogenic missions, suitable for space telescopes (Canalias et al.,

2004). Recently, a formation of spacecraft in an LPO around L2 was suggested to provide

high-resolution observations (Hamilton et al., 2014).

LPOs in the Earth-Moon system can be used to establish a communication relay between

the Earth and the far side of the Moon as suggested by A. C. Clark and proposed for the

Apollo mission by Farquhar (1991). LPOs can also provide planetary ballistic captures

as for the Hiten mission. The use of LPOs for transfer and Earth return trajectories was

previously proven for example by the Genesis and Wind missions. They are considered

gateway orbits as LPOs enhance low energy transfers which can be exploited to visit

several moons in the Jovian-Saturn system (Koon et al., 2002; Gómez et al., 2004).

The interest of the space agencies in LPOs started after the success of the ISEE-3

mission. Current examples of LPO missions include SOHO that studies the Sun’s outer

corona (Olive et al., 2013), and the Gaia space telescope designed to chart a three-

dimensional map of our Galaxy (Hechler and Cobos, 2002). ESA and NASA have also

recently succeeded in launching LISA Pathfinder (ESA-website, 2015b) that will test

key technologies for gravitational wave observations. The NASA/ESA/CSA’s James

Webb Space Telescope (JWST) will provide astronomical measurements to understand

the formation of our Universe (NASA-website, 2016); while, ESA’s Euclid will map the

geometry of the dark Universe (ESA-website, 2015a). Table 2.1 shows the past, the

current and the future space missions at the libration points. As one can see, most of

the mission are designed for the Sun-Earth system with a growing scientific interest in

missions at L2 for space telescope applications.

The ESA Herschel, Soho and Gaia spacecraft are used in this thesis as case study

mission scenarios. The Appendix B.3 shows the overall mission objectives and spacecraft

characteristics.
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2.2 Invariant manifold theory

Space manifold dynamics associated with the collinear equilibrium points of the re-

stricted three-body problem provide a geometric understanding of the natural dynamics

of the solar system. Dynamical system theory was founded by Poincaré at the end of

the 1800s when he developed qualitative methods (dynamical system tools) to solve

differential equations. Thus, he also described new phenomena, known as “chaos”.

The study of the linear dynamics around the equilibrium (fixed) points provides a first

step in understanding the non-linear behaviour of dynamical systems. Spacecraft tra-

jectory design requires the knowledge of the spacecraft’s behaviour around the collinear

points L1 and L2. Thus, there is a need to study the stability of a body around L1

and L2, that are solutions of the linearised R3BP dynamics. The linear behaviour of

L1 and L2 is of the type centre×centre×hyperbolic as shown in Figure 2.3. Essentially,

the dynamics around L1,2 is similar of the one of two oscillators combined with some

hyperbolic behaviour. The study of linear stability around the equilibrium points prove

the existence of at least one stable and one unstable eigenvalue with corresponding sta-

ble and unstable eigenvectors. Thus, if a spacecraft around L1,2 is given a perturbation

in the unstable direction, it will exponentially fall off from the nominal orbit. Con-

versely, if the spacecraft has the right initial condition, it will follow a trajectory that

will exponentially approach the nominal orbit from the stable direction. The full set of

Name Space Agencies Status Launch System L-points

ISEE-3 NASA PAST 1978 Sun-Earth L1

Genesis NASA PAST 2001 Sun-Earth L1,2

ARTEMIS NASA PAST 2010 Earth-Moon L1

Chang’e 2 CNSA PAST 2011 Sun-Earth L2

Herschel ESA PAST 2009 Sun-Earth L2

Planck ESA PAST 2009 Sun-Earth L2

Chang’e 5-T1 CNSA PAST 2014 Earth-Moon L2

Wind NASA CURRENT 1994 Sun-Earth L1,2

SOHO ESA, NASA CURRENT 1995 Sun-Earth L1

ACE NASA CURRENT 1997 Sun-Earth L1

WMAP NASA CURRENT 2001 Sun-Earth L2

GRAIL NASA CURRENT 2011 Earth-Moon L2

Gaia ESA CURRENT 2013 Sun-Earth L2

DSCOVR NASA CURRENT 2015 Sun-Earth L1

LISA P. ESA, NASA CURRENT 2015 Sun-Earth L2

JWST ESA, NASA, CSA FUTURE 2018 Sun-Earth L2

Euclid ESA FUTURE 2020 Sun-Earth L2

DESTINY JAXA FUTURE 2020 Sun-Earth L2

ATHENA ESA FUTURE 2028 Sun-Earth L2

Table 2.1: Past, current and future space missions at the collinear libration
points L1 and L2.
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exponentially diverging and converging trajectories are the unstable and stable invariant

manifolds. The term invariant means that through the propagation in time a spacecraft

on the manifold will stay on the manifold (Davis et al., 2010).

Figure 2.3: Centre×Centre×Hyperbolic equilibrium.

The invariant manifolds associated to L1,2 give a geometrical structure of the natural

spacecraft dynamics driven by the gravitational influence of the solar system’s celestial

bodies. The invariant manifolds can be seen as highways to travel within our solar

system and they form a tube-like structure for periodic orbits. A spacecraft or a particle

inside these tubes is carried by a current of the solar system’s natural dynamics.

In particular, each orbit has two one-dimensional invariant manifolds associated to the

hyperbolic solution: the stable, W s, and the unstable, W u, manifolds. Each manifold has

two branches one corresponding to negative perturbation (W s
−, green, and W u

−, red, in

Figure 2.3) and one corresponding to a positive perturbation (W s
+, green, andW u

+, red, in

Figure 2.3). In the Sun-Earth system, the stable and unstable manifolds associated to L1

and L2 are the phase space structures that allow the transfer of a spacecraft to and from

the Earth. Conversely, the centre×centre solutions of the collinear equilibrium points

are linked to the centre manifold. The centre manifold is associated to the existence of

families of periodic orbits (LPOs) as proved by the Lyapunov’s Centre Theorem.

The stable and unstable manifold structures enhance transfer trajectories from Earth

for ballistic capture to the Moon or to visit multiple Moons of the Jovian-Saturn system

when combining multiple solutions of the R3BP (Koon et al., 2002; Gómez et al., 2004).

For a space mission at LPOs, trajectories of the stable manifold are good candidates

for transfer (Gómez et al., 1993). Gómez et al. (1993) proposed to take the approxi-

mation of the stable manifold of the nominal LPO; then propagate backwards in time

to estimate the spacecraft velocity necessary to be inserted into the stable manifold of

the selected LPO from a parking orbit around the Earth. Thus, one initial impulsive

manoeuvre (∆v) to leave the parking orbit is needed to reach the LPO. In the Earth-

Moon system, this dynamical system approach allows the design of ballistic capture to

the Moon (Alessi et al., 2010). Note that a trajectory of this type uses less fuel than the

standard Hohmann transfer 2. Intersections between manifolds are called homoclinic

and heteroclinic connections that allow transfer trajectories between LPOs around L1

2In celestial mechanics, the optimum transfer within two coplanar Keplerian orbits around the same
celestial body is called Hohmann transfer. The Hohmann transfer is considered an optimum transfer
within the 2BP when no constraints on time are included as it requires the minimum ∆v consumption
associate to transfer manoeuvres.
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and L2 as for the Artemis and Wind missions, Table 2.1. Figure 2.4 shows a qualitative

representation of the Artemis’ transfer trajectory from L1 to L2. Dynamical system

tools were also used to explain the origin of rings and spiral arms in barred galaxies.

The rings and spirals are formed by chaotic orbits driven by the invariant manifolds

associated to unstable orbits of the galaxy’s equilibrium point (Romero-Gómez, 2006).

Figure 2.4: Qualitative representation of the Artemis’ trajectory.

The centre manifold structure gives rise of two one-parameter families of periodic orbits

known as planar and vertical Lyapunov. Together with periodic solutions, there exist

quasi-periodic orbits (2D invariant tori). However, the hyperbolic components make

orbits around L1 and L2 very unstable. Thus, station keeping to maintain the spacecraft

on the LPOs is required. Simó et al. (1987) proposed to compensate the unstable

manifold through impulsive (∆v) manoeuvres to insert the spacecraft onto the stable

manifold of the nominal LPO. The SOHO mission uses this technique. The overall ∆v

required for SOHO’s station-keeping was around 50 cm/s per year which is four times

less than that of the ISEE-3 mission. This highlights once again the importance of

dynamic system tools for spacecraft trajectory design.

The computation of periodic orbits around the collinear points is not an easy task due

to the existence of the hyperbolic parts that make them highly unstable. Thus, the

computation of LPOs requires the elimination of the instabilities. The computation of

the central manifold can be done in three ways through the reduction of the central

manifold, a semi-analytical approach (Linsted-Poincaré method) or numerical methods

for an explicit computation of the orbits of the central manifold. The reduction of the

central manifold was initially proposed by Deprit (1969) and then explored by Jorba and

Masdemont (1999). The Lindsted-Poincaré method provides an explicit computation of

the central orbits as a function of their amplitudes and phases (Richardson, 1980).

This is a semi-analytical approach where the central orbits are solutions of the linear

CR3BP equations around the equilibrium points. The numerical computation for the
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determination of periodic and quasi-periodic orbits make use of the Newton’s method.

Multiple shooting methods (i.e. predictor-corrector algorithm) are used to overcome the

effect of instability.

The computation of objects as fixed points, invariant manifolds and libration point orbits

requires the use of dynamical system tools for the spacecraft trajectories design. The

work of Poincaré led to a systematic search of periodic orbits. His idea was to study

the full set of orbits rather than individual ones. Thus, the dynamical system approach

looks at methods of solving the equations of motion from a global point of view by

providing a qualitative and quantitative picture of the motion (Poincaré Map).

In this thesis, the dynamical system algorithms to compute objects was entire developed3

as no pre-existing tools were available to the author. A few examples are: the computa-

tion of fixed points, the numerical computation of periodic orbits (required in Chapter

5 for the design of target orbits), the Lindsted-Poincaré method (required in Chapter 6

for the transfer trajectory design) and the computation of the invariant manifolds and

the zero velocity curves (required in Chapter 7 for the end-of-life disposal).

2.2.1 Classification of orbits around the L1,2 equilibrium points

As previously mentioned, the centre×centre part gives rise to two one-parameter families

of periodic orbits known as Planar (P-) and Vertical (V-) Lyapunov orbits, shown in

Figure 2.5. Moreover, there also exist a two-parameter family of 2D Tori, known as

Lissajous orbits that connect the two Lyapunov families. A Lissajous orbit is a quasi-

periodic orbital trajectory that winds around a torus but never closes in on itself.

Figure 2.5: Families of Planar (P-) and Vertical (V-) Lyapunov orbits. Image
credit Yárnoz et al. (2013).

A special solution of Lissajous orbits is halo orbits (Farquhar, 1968); where the in-

plane and out-of-plane frequencies are equal. They are periodic three-dimensional orbits

3In CRUISE toolbox.
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symmetric with the y = 0 plane of the synodic reference frame. The following paragraphs

present a review of families of periodic orbits computed by several authors.

An accurate classification of families of periodic orbits in the Hill’s problem and the

R3BP was carried out by Hénon (1965a,b, 1966a,b, 1968). Hénon performed numerical

studies on families of periodic orbits and compared his results with the hand-computed

orbits by Kelvin (1892), Jackson (1913), Hill (1886) and Matukuma (1930, 1932, 1933).

At the same time, a general study of CR3BP periodic orbits was developed by Strömgren

(1922)’s group at Copenhagen and among others we should cite the work by Darwin

(1911) and Moulton (1920). Deprit and Henrard (1967) developed a numerical con-

tinuation method for generating those families. A systematic numerical investigation

into families of periodic orbits was performed by Broucke (1968) in which the work by

Hénon’s was extended to the CR3BP in Earth-Moon case. Schuerman (1980) was the

first to add the effect of SRP to the CR3BP. Then, Elipe (1992) formulated the CR3BP

with generalised forces, and found the periodic orbit solution in the R3BP-SRP (i.e., a

binary star system which involves SRP). Finally, mission applications in the restricted

three-body problem with SRP (CR3BP-SRP) were proposed by McInnes (1999).

There are many research studies currently being performed in the field of CR3BP-

SRP dynamics that include: Barcelona’s group (Farrés and Jorba, 2010; Villac et al.,

2012; Farrés et al., 2013), Villac et al from University of California (Villac et al., 2012;

Katherine and Villac, 2010), Howell (2001) from Purdue University, McInnes et al. from

University of Glasgow and Verrier and Waters from University of Portsmouth, which are

using a numerical continuation package (AUTO) to investigate the families of periodic

orbits in CR3BP-SRP (Verrier and Waters, 2013). Recently, Yárnoz et al. (2014) studied

the evolution of a- and g-families due to the effect of SRP in the Hill’s problem of the

Sun-Asteroid system, where, close to the asteroid, the SRP is around the same order of

magnitude as the asteroid’s gravitational effect.

Unfortunately, there is no unique classification of periodic families and some of them do

not always exist in all planetary systems (changes in the mass parameter, µ). Therefore,

it is useful to list them as in Tables 2.2-2.4. Table 2.2 lists the natural Periodic Orbit

(PO) families in the Hill’s problem, where the mass parameter, µ, of the system tends

to zero, (i.e., Sun-Earth system). However, when extended to the PO solution for a

general µ, as for the CR3BP, some of the families cease to exist as shown in Table 2.3

for the Earth-Moon system. Finally, Table 2.4 reports only a few examples of new PO

families in the CR3BP-SRP, but a wider study on the families of POs was carried out

by Verrier and Waters (2013) and Yárnoz et al. (2014).

Through this thesis, halo, Lissajous and planar g-family type orbits were selected for

the design of SRP assisted missions in the Sun-Earth system.

Halo orbits are periodic three-dimensional orbits. These orbits are usually selected large

enough so that the spacecraft is continuously in view of the Sun and the Earth. This,
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therefore, aids the design of the communication link. However, the main disadvantages

are with respect to the spacecraft’s pointing requirements as those orbits are elongated

with a big excursion in the ecliptic plane and a small excursion of the out-of-plane

component. This fact affects the spacecraft communication link in a negative way as the

spacecraft will need to be continuously controlled to maintain Earth pointing antennas.

Herschel (Appendix B.3.1) and SOHO (Appendix B.3.2) are examples of spacecraft

placed at halo orbits around L2 and L1 respectively. Alternatively, a spacecraft can be

placed in a quasi-periodic orbit around the collinear libration points (Gordon, 1993).

Lissajous orbits are quasi-periodic orbits that allow mission flexibility as they can vary

their size and shape. However, their main disadvantage is that the spacecraft field of

vision can be obstructed by the Earth. This requires extra manoeuvres to avoid that

the spacecraft enters in Earth’s eclipse as for the case of Gaia spacecraft (Canalias et al.,

2003). The Lissajous orbit of Gaia spacecraft is shown in Appendix B.3.3.

Future space missions could also take advantage of families of periodic orbits around

the smaller celestial body (i.e. Earth of the Sun-Earth system and asteroid of the

Sun-asteroid system) for planetary science or observations. These families are known

as g-family or Distant Prograde Orbit (DPO). The DPO was chosen after an accurate

classification and ranking of the most famous families existing in the CR3BP for new

scientific mission applications. They are planar high amplitude stable or unstable orbits

around the smaller celestial body. They seem to be advantageous for planetary science

and mission observations. For example, icy planetary satellites like Europa suggested

the use of a DPO to study the second primary in the CR3BP system (Lara and Russell,

2006). DPOs around an asteroid may be used for asteroids observation in the Sun-

asteroid system. Moreover, DPOs can provide a good field of vision to detect Near

Earth Objects in the Sun-Earth system as suggested by Stramacchia et al. (2016) for

the stable orbits of the DPO type. High amplitude orbits are currently of interest to the

Space Agencies for future LPOs and DPOs space missions since a lower insertion ∆v is

required to reach high amplitude orbits compared to low amplitude orbits, for example,

the NASA’s Wind mission performed multiple loops of DPO type as shown in Figure

2.6.
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Figure 2.6: Wind spacecraft’s DPO. Image credit NASA-website (2003).
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Strömgren’s Matukuma’s Characteristic
Class Class

a F Retrograde unstable simple PO around L2.

b - Retrograde PO around L3.

c F Retrograde unstable simple PO around L1.

d - PO around L4 (non-existing for µ = 0.5).

e - PO around L5 (non-existing for µ = 0.5).

f a Retrograde stable PO around m2.

g A, B Direct PO around m2 (stable or unstable).

g’ H, E, I2, G Direct of second body, m2 (stable or unstable).a

h - Retrograde circular PO of infinitesimal small
radius about M1 i.e. Sun. Small changes in
the family structure happen when µ increases.

i - Direct PO of infinitesimal small radius about
M1: as µ increases, there are infinitely self-
bifurcations. Then, subfamilies branches from it,
and each of these exist only for certain µ.

k - PO around M1 and m2: direct motion in
the rotating system.

l - PO around M1 and m2: retrograde motion in
the rotating system and direct in the fixed one.

m - PO around M1 and m2: retrograde motion in
the rotating system as well as in the fixed one.

n - Retrograde PO, asymmetric to y-axis.
They are related to Class c, but are not generated
from infinitesimal orbit around L1.

o - Retrograde PO: asymmetric respect to y-axis.

r - Retrograde PO: asymmetric respect to y-axis.

Table 2.2: Families of planar Periodic Orbit (PO) in Hill’s case. Comparison
of Strömgren (1922)’s and Matukuma (1930, 1932, 1933)’s periodic orbits cat-
alogue initiated by Hénon (1968), and updated in this table with the work of
Bruno and Varin (2007). M1 and m2 stay for the first (i.e. Sun or Earth) and
second (i.e. Earth or Moon) celestial body respectively. µ is the mass parameter
of the two selected celestial bodies.

afamily g’ branches off family g at the critical orbit.
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Broucke’s Strömgren’s Characteristic
Class Class

G c Retrograde unstable elliptic PO around L1 for
µ of the Earth-Moon system.

J1 a a Stable and unstable PO around L3.
They are similar with G class around L1, where
class J1 ends with a branching of family A1.
This family exist for µ = 0 an has an evolution
similar to the case µ 6= 0. Probably this family
exist for every µ.

A1 f Retrograde infinitesimal PO around M1.
The end of the family have not yet determined.
Larger orbits close to m2 with periodic
collision orbits. Class A1 contains 3 orbits that
belong to three other families: G, J1

and BD (3 branch points).

BD g Direct circular PO around M1.
This class contains 3 periodic collision orbit.
Strömgren supposed that the end of class g
was due to L4 and L5, where Bartlett stated
to be correct. The initial orbits are stable; then,
they became all unstable.

E1 l Direct PO around M1 and m2.
A loop appears at one side of the orbits
and later it evolves to a collision with M1.
Class l ends with two of the double asymptotic
orbits at L4 and L5. This is not true for
class E1 in the Earth-Moon system.

F l Retrograde PO around M1 and m2.
Correspond to family E1.
All the PO have positive energy.
All the inside PO are unstable.

C f Retrograde PO around M1.
The beginning of the family is close to
Keplerian circular orbit.
Two periodic collisions.
Not yet determined the natural end.
All first circular orbits are stable; then,
the last orbits are all unstable.
Since they seem identical to class f,
this would indicate that similar PO exist
for every µ.

aWhen M1 = m2, L1 and L3 have similar properties.
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H1 and H2 g Direct PO around m2.
For H1 is known the beginning of
the family, but not the end.
For H2 is not known neither the
beginning of the family, nor the end.
Both families belong to the same class.
Family H2 contains some orbits that
are circa symmetric image of certain orbits of H1.
H1 and H2 are close to Class g, but their
evolution seem to be different.

I - Evolution of PO and quasi-PO around L2.
Initially, elliptical and gradually egg-shaped
elongated toward M1.

II - Evolution of PO and quasi-PO around L2.
Initially, egg-shaped elongated toward M1,
and gradually becomes elliptical.

Table 2.3: Families of planar Periodic Orbit (PO) in the R3BP: Broucke (1968)
and Dutt and Sharma (2011). M1 and m2 stay for the first (i.e. Sun or Earth)
and second (i.e. Earth or Moon) celestial body respectively. µ is the mass
parameter of the two selected celestial bodies.

Farrés and Jorba’s Sail’s angles: Characteristic
Class α and δ [◦]

Halo 1 α = 0 Generating from the P-Lyapunov:
δ = 0 3D PO

Halo 2 α = 0 Generating from the P-Lyapunov:
δ = 0 3D PO.

Planar α = 0 Generating from the P-Lyapunov:
δ = 0 2D PO.

A α = 0 Generating from the P-Lyapunov:
δ 6= 0 3D PO.

B α = 0 Generating from the P-Lyapunov:
δ 6= 0 3D PO.

Bow-tie shape α = 0 Generating from the V-Lyapunov.
δ = 0 The bow-tie shape is symmetric

with the z = 0 plane.

Circular shape/ α = 0 Generating from the V-Lyapunov.
Bow-tie shape δ 6= 0 The PO close to the equilibrium

are almost circular.
Then, along the family the shape
change in bow-tie without any
symmetry of the two loops.

Table 2.4: Families of planar and out-of-plane Periodic Orbit (PO) in the R3BP-
SRP: Farrés and Jorba (2010). P and V denote Planar and Vertical respectively.
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2.3 Solar radiation pressure

Solar radiation pressure is the pressure acting on any surface exposed to electro-magnetic

radiation. The electromagnetic radiation upon contact with a body can either be ab-

sorbed, transmitted or reflected. The force generated by radiation pressure onto objects

is very small. Thus, makes it difficult to detect this effect on Earth. However, SRP

becomes an important figure in space mission design where luminous bodies such as

stars exert radiation pressure onto particles moving nearby (Poynting, 1904).

Table 2.5 lists a historical timeline associated with SRP discoveries (McInnes, 1999).

The effect of SRP was firstly studied on tiny meteorites fragments or dust particles.

The influence of the impinging photon radiation pressure on a space vehicle is called the

solar radiation force. The solar radiation pressure is 9.12 ·10−6 N/m2 at 1 Astronomical

Unit4 (AU) (McInnes, 1999). As a result of solar activity, this value may fluctuate

slightly (< 1%). The first examples of SRP effects observed in space for geocentric

orbits are associated with the Echo balloon (Shapiro and Harrison, 1960) and Vanguard

I (Musen, 1960) satellites. The most common SRP effect on satellites in Keplerian orbits

around the Earth is in the long-term oscillation in eccentricity and inclination 5, where

the period depends on the area-to-mass of the satellite (Lücking et al., 2012b). SRP

induces periodic variations in all orbital elements, and above altitudes of 800 km, it

exceeds the effects of the atmospheric drag (Chobotov, 2002; Colombo and McInnes,

2011). The induced changes in perigee height can have significant consequences for

the satellite’s lifetime, suggesting a possible end-of-life strategy that uses SRP (Lücking

et al., 2012a, 2013a).

Different SRP models were proposed for a variety of mission applications, but the sim-

plest, therefore, the most popular, SRP model is known as the cannonball model. This

model describes how SRP would affect a cannonball like spherical object which has

equally distributed optical properties. Therefore, the spacecraft is modelled as a sphere,

with the advantage that solar radiation pressure is expressed as a potential disturbance

function. This model was first proposed for the LAGEOS mission (NASA-website, 1976)

whose spacecraft looks like a cannonball, so this is the origin of its name. Alternatively,

McMahon (2011) proposed to express the SRP force as a Fourier series, where the Fourier

coefficients are functions of the body shape, its reflectivity properties and the Sun po-

sition. In spacecraft trajectory design, the classical approach is to use the cannonball

model for preliminary studies. Thus, in this thesis, the cannonball model is used. Future

works should consider using a more precise SRP model.

4The Astronomical Unit is a fundamental unit that corresponds to the Sun-Earth mean distance and
it is equivalent to 1.496 ·108 km.

5For the definition of eccentricity and inclination refer to Appendix B.1.
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In the cannonball model, the magnitude of the SRP accelerations depend on the size of

the spacecraft’s reflective area, the spacecraft’s reflectivity properties and mass and the

orientation of the spacecraft with respect to the Sun-line direction.

In libration point orbits of the Sun-Earth system, SRP is an important figure when the

spacecraft has highly reflective and extended surfaces, such as for Herschel telescope’s

sunshield. Therefore, the radiation pressure acceleration will have a substantial effect

in the case of the JWST (in Table 2.1) due to its large sunshield. This suggests that

the spacecraft’s control system should be designed to make use of these perturbing ac-

celerations in performing the correction manoeuvres needed to keep the spacecraft on

the target trajectory (Noam et al., 1998; Evans, 2003). SRP has the advantage of being

an unlimited source of propellant as the propulsion system requires just a reflective area

to enhance the radiation of the Sun. JAXA proved the effect of SRP with the Ikaros

mission. The Ikaros spacecraft has a 20 m span squared solar sail and is propelled solely

by SRP (Tsuda et al., 2013). In this thesis, the design of an SRP assisted mission in

the Sun-Earth system is investigated for spacecraft control from the beginning of the

mission (orbit control and transfer trajectories) until the end of its lifetime (i.e., for

end-of-life disposal).

Year Study on SRP (Author)

1600 Corpuscular theory of light
1619 Comet tails study (J. Kepler)
1744 Wave theory of light (Euler)
1754 Measurement of SRP (de Marian and du Fay)
1785 Electrostatics experiments (Coulomb)
1812 Demonstration that the Sun has an electrical charge (Olbers)
1873 Theory of electromagnetism radiation (Maxwell)
1876 Existence of SRP: second law of thermodynamics (Baroli)
1900 Experimentally demonstration of Maxwell’s theory (P. Lebedew)

Table 2.5: SRP Historical Background (McInnes, 1999).
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2.4 Mission applications

Using SRP as a source of propulsion results in the design of innovative devices to control

the spacecraft that require a limited fuel stored on-board with respect to a conventional

propulsion system. Therefore, SRP is a natural and unlimited source of propellant.

The design of SRP assisted missions in the Sun-Earth system is investigated here for

spacecraft’s orbit control and maintenance at LPOs, for enhancing transfer within the

Sun-Earth system and for the design of graveyard trajectories when the mission reaches

its end. For this reason the following sections will present past work in the subjects of:

1) orbit control and maintenance,

2) design of transfer trajectories, and

3) end-of-life disposal.

2.4.1 Orbit control and maintenance

A spacecraft placed around the equilibrium points will naturally diverge from them as

they show an unstable nature (Section 2.2). Thus, trajectories designed in the R3BP

require the spacecraft to perform manoeuvres to maintain its nominal trajectory by

counteracting the unwanted environmental instabilities (Koon et al., 2008; Perozzi and

Ferraz-Mello, 2010).

Previous applications of SRP control were aimed at controlling the attitude of the space-

craft. These applications were the first to demonstrate that the effect of SRP can be

exploited to stabilise the spacecraft. Thus, even if this research does not include the

attitude dynamics of the spacecraft, the experience of using SRP for attitude control is

an important background step for this work.

Solar radiation pressure was successfully used for attitude stabilisation through cone

shape (sail) reflective structures and solar array. The cone sail can passively control the

spacecraft’s angular momentum by changing its orientation with respect to the Sun-line

to reach a stabilising condition. For example, Sohon (1995) proposed the attitude stabil-

isation of a spacecraft by using SRP. SRP attitude concepts are often used for geostation-

ary satellites or some interplanetary spacecraft. INSAT6 (Sathyanarayan et al., 1994)

and GOES I-M (Hawkins, 1996) satellites have a conical-shaped solar-sail, mounted on

a long boom, which is used to counteract the solar radiation disturbance torque caused

by an asymmetrical solar-array configuration (Figure 2.7). SRP is also utilised for the

attitude control of spacecraft placed in geosynchronous orbits such as OTS-2 (Renner,

6INSAT’s cone sail has an high of 4.4 m and the radius of the base is 0.79 m; where, the cone sail is
mounted on a 15 m boom.
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1979), TELECOM 1 (Figure 2.8), and INMARSAT 2 (Wie, 2004). The SRP stabilisa-

tion can be achieved through an asymmetrical offsetting of the solar-array wings from

the theoretical Sun-pointing orientation (by generating the “windmill” torque). Ad-

ditional solar flaps mounted on the solar array can increase this torque control effect.

Other attitude control methods for a Sun-pointing satellite, which exploits SRP are vane

type tail surfaces, reflector-collector systems, corner mirror arrays, solar paddles, grated

solar sails and mirror-like surfaces (Kumar and Behdinan, 2008). In the case of Mariner

10, asymmetrical twisting the solar panels was successfully applied during its flight to

Mercury. Mariner 10 used solar panels and antennas for active solar pressure control

(McInnes, 1999). This opens up the design of SRP manoeuvre enhanced by reflective

deployable structures. Even though the beneficial effect of SRP in attitude control has

been proven in space, the SRP is often considered to be an external disturbance for most

satellites (Wie, 2004).

(a) INSAT-2 (b) GOES I-M

Figure 2.7: INSAT (image credit: ISRO) and GOES I-M (image credit: NASA).

In the framework of orbit feedback control, this literature review is focused on control

strategies proposed for LPOs around L1 or L2 in the restricted three-body problem with

SRP (RTBP-SRP). The magnitude of the SRP acceleration is controlled by the size of

the spacecraft’s reflective area, the spacecraft’s reflectivity and mass and the spacecraft

orientation with the Sun-line direction. Thus, in the design of a control law enhanced

by SRP, these parameters are the required control variables.

The existing control strategies in LPOs are distinguished between linear and non-linear

controllers, some of them also extended to SRP applications. Among the non-linear
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Figure 2.8: Telecom 1 spacecraft (image credit: CNES)

controls, Xin and Pernicka (2008) developed a suboptimal control known as the θ-D

technique, which established the control stability by using Lyapunov theory. Shahid

and Kumar (2010) proposed a sliding-mode control for formation flight, enhanced by

SRP; where, both the orientation angle and the area are control parameters. In the field

of linear control, Simó et al. (1987) and Gómez et al. (2001) used the variational theory

approach by exploiting the Floquét Modes (FM) to design the control law. Howell and

Pernicka (1993) developed the target point technique, where, as for the FM approach,

impulsive manoeuvres (∆v) are computed to keep the spacecraft near the nominal tra-

jectory. Both the techniques were compared by Keeter (1994) and then extended to SRP

applications by A. McInnes (McInnes, 2000) for the target point method and by Farrés

and Jorba (2008, 2010, 2014) for the Floquét mode approach. In both cases, the only

control parameter was the sail orientation angle, while the area was kept fixed. Scheeres

et al. (2003a) proposed a Hamiltonian-Structure Preserving (HSP) control that stabilises

the system in the sense of Lyapunov and it was intended for low thrust propulsion in

formation flight applications. The HSP control law was then extended by Xu and Xu

(2009) for SRP applications where both the area and the orientation angle were included

as control parameters. Finally, the Linear Quadratic Regulator (LQR) technique in solar

sail applications was first applied to LPO control with SRP by Bookless and McInnes

(2008) and then used by Farrés and Ceriotti (2012); in both cases, the sail area and

orientation angles were the control parameters.

In the design of trajectories, dynamical system tools that exploits the invariant manifold

theory is of interest for this work. As discussed previously in Section 2.2, studying

the linear behaviour of the spacecraft around the equilibrium points is important in
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understanding the non-linear dynamics. Thus, a linear control that makes use of the

invariant manifold theory was selected in this work for orbit maintenance. Among

the linear controllers, LQR is the most popular. However, the FM and HSP have the

advantage of exploiting the natural dynamics of the spacecraft. Thus, FM and HSP are

also investigated as they both utilise the invariant manifolds.

The LQR is an optimal control where the control law is proportional to the state error.

The objective of the control is to find the differential component of the control to be

added to its target components. Then, the linear time-invariant approximation of the

dynamical system is used to compute the differential control part. As an optimal control,

it minimises the state error and the feedback control history. Since the control law is

proportional to the state error, minimising the cost function leads to the need to solve the

algebraic Riccati equation which gives the optimal gain values (Friedland, 2005). This

control was proposed for solar sail station keeping of high-amplitude vertical Lyapunov

orbits where the control vector is a function of the sail orientation and its area-to-mass

ratio (Ceriotti and Farrés, 2012).

The FM verifies when the trajectory is moving onto the unstable manifold and to then

determine a new sail orientation to return the trajectory back onto the target orbit.

The principle of this control method is to let the solar sail follow its natural dynamics;

which initially allows it to follow its unstable manifold. Then, the solar sail orientation

is changed to bring the trajectory back to the stable manifold of the LPO target orbit.

It is important to underline that this strategy uses information from the linear dynamics

of the system to decide when the sail orientation has to be changed. However, the FM

has the advantage to be able to control the system by using only the sail orientation as

a control parameter (Farrés and Jorba, 2008, 2010, 2014).

The HSP feedback control aims to stabilise a periodic orbit in the sense of Lyapunov.

This control is attractive since the fuel expenditure is small; resulting in it being proposed

for low thrust application (Scheeres et al., 2003b). Scheeres et al. (2003b) control law

was applied to LPO around the collinear equilibrium points L1 and L2. This control

law preserves the Hamiltonian structure of the R3BP by projecting the relative position

between the actual and target trajectories along both the stable and unstable manifolds.

In that way, this control law simply creates an additional centre manifold which cancels

out the hyperbolic equilibrium. As for the LQR and FM, the structure-preserving control

uses the linearised dynamics for the design of the control law; moreover, since it uses

the relative positions, it can be applied to spacecraft formation flight. The effectiveness

of this control method was proven for the stabilisation of hyperbolic equilibria. As

an example, Colombo et al. (2012) applied Hamiltonian structure-preserving control to

Earth applications. When adding the Earth’s oblateness (J2) and SRP disturbances

to the two-body dynamical system (Lücking et al., 2012b), the hyperbolic equilibrium
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of the system corresponds to an anti-heliotropic7 orbit that was proposed for studying

the Earth’s magnetotail. Finally, Xu and Xu (2009) proposed a modified structure-

preserving control law for solar sail applications. The aim of this modified HSP control

is still to remove the hyperbolic equilibrium, but in this case, the differential position

is also projected along the centre manifold. As results, this control aims to modify the

Coriolis accelerations. This control was tested on a solar sail stable Lissajous orbit,

where the controller was generated by orienting the sail and by changing the lightness

parameter.

As mentioned in Section 2.2.1, Space Agencies have a growing interest in future LPOs

and DPOs space missions, in particular, in high amplitude orbits. In the case of high am-

plitude LPOs and DPOs, the HSP control laws proposed by Scheeres et al. (2003b) and

Xu and Xu (2009) fail in keeping the spacecraft onto the nominal high amplitude orbit.

Indeed, Scheeres et al. (2003b)’s and Xu and Xu (2009)’ control laws are designed for a

centre×hyperbolic equilibrium. However, high amplitude planar LPOs and DPOs show

the appearance of a focus equilibrium along the orbit in replacement of the hyperbolic

one. Thus, a new HSP control law is required to control spacecraft in high amplitude

orbits (Chapter 5). Moreover, the HSP and the FM controllers share similarities as they

both make use of the invariant manifold theory. Therefore, it would be interesting to

compare both approaches to identify the pro and cons of both controllers (as shown in

Chapter 5).

2.4.2 Design of transfer trajectories

Spacecraft in LPOs lie in a highly perturbed environment due to the hyperbolic nature

of the collinear equilibrium points (Section 2.2). Thus, the stable and the unstable

invariant manifolds associated to LPOs enhance transfer trajectories within the solar

system.

The unstable manifold includes all the set of possible trajectories that a spacecraft could

take to leave a nominal orbit (Wu). Conversely, the stable manifold involves the set of

all possible trajectories that a spacecraft could take to reach a nominal orbit (Ws). The

existence of low energy transfer orbits was proven by Conley (1968). The use of invariant

manifolds for low energy transfer within the solar system was proposed for example for

the Jupiter-Jovian Moon system (Anderson and Lo, 2004; Lo et al., 2006) and then for

multiple visits of the moons of the Jovian-Saturn system (Koon et al., 2002; Gómez

et al., 2004).

Transfers between unstable orbits of the solar system are possible due to the intersec-

tion of the invariant manifolds. These interactions are called homoclinic and heteroclinic

7The anti-heliotropic orbit is an orbit with the apses line in the direction of the Sun-Earth line and
the apogee in the anti-Sun direction.
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connections and are shown in Figure 2.9. The homoclinic point or orbits are the result of

the interaction of the stable and unstable manifolds of the same fixed point or periodic

orbit (Conley, 1968). Thus, a spacecraft can follow an homoclinic orbit departing from

the unstable manifold and arrive at the same LPO through its stable manifold. The

heteroclinic tangency instead involves the intersection of the stable and unstable man-

ifold belonging to two distinct fixed points or LPOs. For example, a spacecraft leaving

an LPO around L1 from its unstable manifold can reach an LPO around L2 through

the stable manifold of L2 (i.e., Artemis and Wind missions in Table 2.1). Heteroclinic

connections were numerical proven by Koon et al. (2000) and Gómez et al. (2004).

The homoclinic orbits and heteroclinic connections allow transfers between unstable

orbits in the CR3BP. These natural transfer trajectories exist within orbits with the

same energy or Jacobi integral. If the transfer is required between orbits with different

energies; then a manoeuvre to enhance the transfer is necessary (Davis et al., 2010).

Figure 2.9: Schematic example of the homoclinic point and heteroclinic tan-
gency.

Gómez et al. (1998) proposed transfers between a family of halo orbits around the same

equilibrium point. These orbits have different energies; thus, one manoeuvre is required

to inject the spacecraft onto the stable manifold of the desired halo. This transfer

technique makes use of the Floquét theory for the design of the manoeuvre. The main

idea is to exploit the invariant manifold through an impulsive manoeuvre. The impulsive

manoeuvre aims to cancel out the tangential eigenvector of the Floquét modes (Tangent

to the Family Manoeuvre, TFM). The TFM is then given to leave the initial halo orbit;
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while, a second manoeuvre is required to insert the spacecraft into the target halo.

Figure 2.10 shows a qualitative picture of the TFM. The transfer within the halo orbits

that belongs to the same “cone” is performed by giving a manoeuvre tangential to the

family direction.

Figure 2.10: Qualitative representation of the tangent to the family manoeuvre.

While Gómez et al. (1998) proposed transfers within orbits around the same equilibrium

point, Davis et al. (2010) proposed a method of using invariant manifolds to perform

transfers between orbits around two distinct equilibrium points that have different en-

ergies. In this case, two deterministic manoeuvres are used to connect the unstable

manifold of the departing orbit with the stable manifold of the target orbit. A genetic

algorithm is used to vary the parameters that define the transfer.

Invariant manifolds were also proposed for the design of ballistic trajectories at the Moon.

However, in the Earth-Moon system the stable and unstable manifolds associated to L1

and L2 pass quite far from the Earth. Alessi et al. (2010) proposed a two manoeuvre

transfer to overcome this problem. A spacecraft is initially placed in a LEO orbit around

the Earth. Two manoeuvres are required to perform the transfer to the Moon: the first

manoeuvre is necessary to leave the LEO and the second to place the spacecraft directly

into a Lissajous orbit or into its stable correspondent manifold as shown qualitatively

in Figure 2.11.

Figure 2.11: Moon ballistic capture.
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Canalias et al. (2003) designed transfer trajectories between Lissajous orbits to perform

eclipse avoidance manoeuvres for spacecraft around L2. A semi-analytical approach was

used to design impulsive manoeuvres that allow a change in phase or amplitudes of a

Lissajous orbit. This transfer strategy is developed by looking at the semi-analytical

solution of the linearised equations around L2. The designed impulsive manoeuvre aims

to cancel out the unstable manifold of the target orbit by using a phase space approach.

A similar phase space approach was used for applications around the Earth when SRP

and J2 are considered by Lucking et al. and Colombo et al. The manoeuvre in the

phase space is achieved by changing the reflectivity coefficient of the spacecraft through

electro-chromic coating (Lücking et al., 2012c, 2013b).

In the field of transfer enhanced by SRP, Farrés and Jorba (2015) proposed to exploit

the invariant manifold to transfer from L1,2 to L4,5. In this case, the effect of SRP is

observed in moving the equilibrium points. Thus, a spacecraft injected into the unstable

manifold of L1 reaches the stable manifold of L4 when an SRP manoeuvre is performed.

Limited work was carried out in harnessing SRP to enhance transfer trajectories within

the Sun-Earth system. In particular, transfer trajectories between Lissajous orbits are

solely proposed for the traditional impulsive propulsion. The effect of SRP can open

up new design methodologies to perform transfer within Lissajous orbits. It would also

be interesting to investigate if the spacecraft’s sunshield or solar panels can be used to

carry out the required SRP transfer manoeuvre (as shown in Chapter 6).

2.4.3 End-of-life disposal

Nowadays, spacecraft are a fundamental asset to the world’s infrastructure, playing

a significant role in telecoms, Earth observation and space explorations. The steady

increase in the use of space in modern society and the lack of an international agreement

to preserve the space environment have resulted in an ever rising number of debris

objects. Satellites that have reached their end-of-life subsequently become categorised

as debris objects and further add to the collision hazards for future space missions
8. Currently, both ESA and NASA are working on setting guidelines and assessment

procedures to limit the risk posed by orbital debris. For example, before the introduction

of NASA Safety Standard 1740.14 NASA-website (1995), satellite end-of-life and disposal

options were not considered during the design and operational phases of most satellites.

This was due to the following extra design costs and the adverse effect on the available

∆v budget. However, due to the increasing risk posed by orbital debris, especially

in critical Earth orbital regions, satellite disposal has become increasingly important

(Colombo et al., 2015a).

8Note that space debris can be categorised as natural debris and man-made objects at their end-of-life.
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In 2008, ESA defined a set of requirements for tackling the threat posed by space debris

and they are currently applicable to all future space systems such as launchers, satellites

and inoperative objects (ESA, 2015). The international debris mitigation standards were

also defined by the International Organisation for Standardization (ISO), such as the

ISO-24113. Currently, the space community has recognised the need for mitigation of

LEO and GEO. However, less concern is given for libration point orbits and no guidelines

for the reduction of LPO satellites have been yet formulated (Colombo et al., 2014b).

Some research has been done for Earth applications through the exploitation of environ-

mental perturbations such as drag force for low altitude orbits followed by a controlled

re-entry (Alessi et al., 2014) and SRP for high amplitude orbits (Lücking et al., 2013a)

or luni-solar for high elliptical orbits (Colombo et al., 2014a) and medium Earth orbits.

However, limited work was done for LPO applications.

Van der Weg and Vasile (2014) suggest an end-of-life disposal for LPO spacecraft that

is initially disposed of onto the unstable manifold and is then targeted such that the

spacecraft impacts or are weakly captured by, the Moon. Colombo et al. (2015b) as-

sessed the benefit of disposing of LPO spacecraft in heliocentric graveyard orbits, while

Olikara et al. (2015) first proposed a disposal option, which injects the spacecraft to-

wards the inner or the outer solar system and closes the zero velocity curves though a

∆v manoeuvre.

Currently, the design of disposal options for LPO missions has been investigated for

traditional propulsion. However, present research lacks investigation into the use of

SRP as a propulsion source for the design of disposal manoeuvres. Thus, more research

must be done in the field of end-of-life disposal trajectories design enhanced by SRP

(see Chapter 7).

2.5 Solar radiation pressure enhancing devices

In the framework of reflective deployable structures as the main propulsion source, it is

possible to distinguish them in two categories: solar sail technology and all the other

reflective deployable structures. This is done as solar sails are designed to enhance SRP

while the other reflective deployable structures (i.e. mirrors, antennas, solar panels and

sunshield) are not intended to exploit SRP. In this Section, the discussion is focused on

reflective structures and in reflective control devices that aim to modify the reflectivity

property of the deployed area (i.e. solar sail or deployable structures). The advantage

of adding flaps to enhance the effect of SRP was already introduced in Section 2.4.1.
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2.5.1 Solar sail technology

Tsiolkovsky and Tsander first proposed solar sailing as a form of propulsion in the 1920s.

The first vision of solar sailing was suggested by C. Wiley (1951) in his science fiction

article. In 1958, R. Garwin (1958) published the first journal on solar sailing. The term

“solar sailing” was coined by him in his journal publication. The first intuition of the

use of solar sailing propulsion for future utilisation was given by A. C. Clark (1972).

He published a story of a manned solar sail race in an Earth orbit. In 1977, the Jet

Propulsion Laboratory (JPL) proposed a rendezvous mission to Halley’s comet which

employed a large solar sail (Friedman et al., 1978). The project was dropped at that

time due to the high risk associated with the deployment. However, this was the first

technical study into the use of a solar sail (McInnes, 1999). An important reference book

in solar sailing was published by McInnes (1999): Solar Sailing: Technology; Dynamics

and Mission Applications.

There exist different variations in the design of solar sailing devices. Among them, there

are solar sails (McInnes, 1999; Wie and Roithmayer, 2001), Electric sails (E-sails9), also

known as heliogyro (Janhunen, 2013; Quarta and Janhunen, 2008). The E-sail is a

different variants of the solar sail principle; therefore, in this section, the discussion is

limited to solar sails only like JAXA Ikaros mission(Tsuda et al., 2013), Figure 2.12.

Solar sails are large and light deployable reflectors that are propelled by the sunlight.

Solar sails must be extremely light with a large area to generate a high acceleration

from the momentum transported by photons. Thus, a key factor of this technology is

the high value of the area-to-mass ratio; which, is related to the area exposed to the

Sun and its reflectivity coefficient. An ideal solar sail must be near perfect reflector

(i.e. mirrors-like surface) and must have a little loading which makes this technology

challenging and difficult to develop (McInnes, 2003).

However, solar sail technology has ongoing relevance due to the recent advancement in

payload miniaturisation which has led to lighter systems, and the interest in more novel

mission applications. Examples of missions applications are (Howell, 2009):

1) exploration of the inner solar system,

2) maintenance of special artificial orbits (i.e. to overcome the problem of over-

crowded GEO orbits or to achieve a large orbit inclination change),

3) solar power collectors,

4) delivery of large cargo, and

9Electrical sails are innovative propulsion concepts. The Satellite is spun around its symmetry axis
and the rotational motion is used to deploy the tethers. The electric field generates by tethered shields
the spacecraft from the solar wind ions. This generated a thrust that decays such as (1/r)(7/6), where,
r is the Sun-sailcraft distance.
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5) planetary protection.

Solar sail deployments have already been proven through ground test demonstrations

such as NASA’s and ATK Space System’s successful deployment of a 20 m span sail in

a 30 m vacuum chamber (April 2005). L’Garde also successfully deployed a 20 m span

sail in July 2005. Moreover, space flight experiments have also been attempted such as

the Cosmo 1 mission in June 2005, which was a 30 m span solar sail. However, due to a

boost rocket failure, the mission did not achieve its goal. After the Cosmo 1 mission, the

Nanosail-D spacecraft was launched in 2008 as a feasibility demonstration of deploying

sails in orbit using a 3 m span sail. Unfortunately, due to a launch vehicle malfunction

during stage separation, the Nanosail-D mission ended two minutes after launch (Wie,

2004). After these two unsuccessful in space sail demonstrations and thanks to recent

advances in solar sail technology, JAXA is, with the success of Ikaros mission, the only

agency that successfully tested a solar sail in space (Tsuda et al., 2013). This satellite

has a 20 m span solar power sail that provides the propulsion and the on-board power

requirements.

Solar sail technology still presents some engineering challenges in manufacturing a thin

reflector film with a miniaturised bus, in realising and testing the deployable mechanisms

and in the great mission costs. SRP, as a propellant-free form of propulsion, requires a

high area-to-mass ratio which means having an extended area of minimum mass. These

technological requirements make solar sails difficult to be developed and, as a result, it

is a significant challenge to generate a commercial revenue from the use of these devices.

For example, Sunjammer mission was a NASA’s solar sail demonstrator constructed by

L’Garde intended to demonstrate solar sail technology but was cancelled before launch.

Indeed, NASA claims that a commercial revenue of this technology should be found to

invest in the future of this technology10. Many projects are currently supported also in

Europe by ESA/DLR based around the solar sail and inflatable boom technologies11.

In the design and control of trajectories that makes use of SRP propulsion (Section 2.4),

the order of magnitude of the required SRP manoeuvre is a function of the spacecraft’s

reflective area and its orientation with the Sun-line direction. Solar sails require a fixed

large deployed area that constrained the magnitude in the SRP acceleration. They

also have a very large moment of inertia that adds further mission constraints when re-

orienting the spacecraft. Due to the need of variable geometry reflective areas for some

mission applications and the high costs associated with solar sail technology, further

technological solutions should be investigated for spacecraft trajectory design. Currently,

no future missions are proposing to use an SRP enhancing device for the development

and control of spacecraft in LPOs. This has created a void where reflective deployable

structures can potentially pave the way for new mission design concepts and applications.

103rd International symposium on solar sailing (ISSS, 2013).
11Inflatable booms are used as structural sail support and deployment method.
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2.5.2 Reflective deployable structures and reflectivity control devices

As said, in the design of spacecraft trajectories enhanced by SRP, the area-to-mass ratio

and the reflectivity coefficient are the key control parameters for stabilising the space-

craft. The area-to-mass ratio can be changed by reducing the spacecraft mass, which is

a function of the fuel consumption or by changing its area exposed to the Sun. Nonethe-

less, the mass cannot be feasibly decreased; as a result, it is not a fully controllable

parameter for orbit control applications. Thus, SRP assisted missions require an active

control device that allows the projected area to be changed. The structural design is

driven by the requirement in the size of the reflective area. The change in the reflective

area’s shape can be achieved through mechanisms or changes in its reflectivity proper-

ties (e.g., with electro-chromic materials). Besides the structural design, SRP enhancing

devices are effective if the spacecraft is pointing in a favourable direction with the Sun.

Thus, when designing missions that use SRP for propulsion and control, the required

size of reflective deployable structures and the spacecraft pointing requirements need to

be defined.

Large inflatable structures are surfaces that can be stowed and then deployed as lightweight

extended area; these have a significant impact on a satellite’s overall area-to-mass ratio

(Cook, 2012). Applications of inflatable systems are:

1) solar power satellites,

2) membrane mirrors/reflectors,

3) sunshields,

4) solar arrays, and

5) communications antennae.

These deployable reflective structures are investigated here as possible candidates for

harnessing SRP. Table 2.6 shows the area-to-mass ratio of past and current ESA missions

to LPOs. The reflective area considered computing the area-to-mass ratio is mainly

given by the contribution of the sunshield and solar array. Spacecraft with high area-to-

mass ratios are sensitive to SRP perturbations requiring extra manoeuvres to keep the

spacecraft onto the nominal LPO.

The first example of the major inflatable structures is solar power collectors. A Space

Solar Power Satellite (SSPS) is a concept that has emerged over several decades; solar

power is collected in space and used for terrestrial applications. Current advanced

concepts considered by NASA are the symmetrically integrated concentrator and the

Abacus/Reflector concept. In the case of a SSPS such as Abacus, the area-to-mass

ratio is around 0.4 m2/kg, which is large when compared to 0.02 m2/kg for a typical
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geosynchronous communication satellite. This requires considerable control torques12

to counteract various environmental disturbances, i.e. SRP. Abacus requires 85, 000 kg

of propellant per year for station-keeping, and attitude control achieved using 500 1 N

electric propulsion thrusters with a specific impulse of 5, 000 s (Wie and Roithmayer,

2001). As a result, this leads to a heavy and consequently expensive system. This

confirms that an alternative cheaper solution should be studied and an SRP assisted

mission is strongly justified in SSPS applications.

Another application of the major inflatable structures is for space reflectors (membrane

mirrors) which were proposed as an anti-global warming measure for climate change mit-

igation by deflecting the sunlight (Bewick et al., 2012). Deployable membrane structure

technologies are rapidly advancing, making lightweight reflectors a potentially feasible

technology. This technology requires a well-defined surface accuracy and consequently a

precise surface control method (Hill et al., 2010). Hill et al. (2010) studied the profile of

a reflector to determine the optimal grouping of actuators that assure a precise surface

control.

A sunshield is another example of a large reflective deployable structure and is one

of the core components for space telescopes to protect the optics from the Sun. The

main perturbation at the Sun-Earth Lagrange points L1 and L2 comes from SRP, the

Moon and the planets. The approach used so far is to correct this perturbation that

affects the trajectory design at LPOs, for example for halo orbits this corresponds to

correcting manoeuvres of 30-100 m/s per year. The gravitational effects of the other

bodies are small and periodic, but they can not be neglected because perturbations in

the direction of the unstable manifolds are enough to cause exponential growth of the

trajectory within a few months. The main effect of the constant SRP is to shift the centre

of the orbit by a small distance, but for spacecraft with large sunshields such JWST

spacecraft, the SRP effect is greater than the other perturbations and depends mostly

on the spacecraft attitude. Limited variations in the spacecraft attitude are enough

to avoid the exponential growth of the trajectory at L2, by using a closed-loop linear

controller based on variations in SRP (Tene et al., 1998). In the case of the Wilkinson

Microwave Anisotropy Probe (WMAP13), the tolerance allowed by the sunshade pointing

requirement (0.2◦) can be used to produce variations in the SRP. In that way, the

resulting control force is of the same order of magnitude as the perturbations. Thus,

this pointing requirement should be potentially be used for station-keeping without

requiring any additional propulsion manoeuvres (Tene et al., 1998).

Solar arrays and large antennas could also potentially be used for the spacecraft trajec-

tory stabilisation. In the case of orbit control, a modified design of the solar array and

large deployable antennas should be investigated to equip them with a control device,

12An active three-axis attitude control is needed to maintain Sun pointing.
13 WMAP mission was proposed to NASA in 1995, and launched in 2001. The scientific mission ended

in August 2010. http://map.gsfc.nasa.gov/mission/

http://map.gsfc.nasa.gov/mission/
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i.e., flaps (shown in Figure 2.8), that allows changes in their overall reflective areas.

Conversely, they can be used for attitude control by changing their surface orientation

towards the Sun-line direction. This technique of using the surface orientation of solar

arrays for attitude control is already in use (Wie, 2004), but it could potentially be used

for large antennas in specific mission operational modes i.e. cruise mode.

Another method of controlling the spacecraft’s trajectory could be by changing its sur-

face reflectivity properties through the so-called Reflective Control Device (RCD) or

electro-chromic coating. The RCD are currently used by Ikaros for attitude control.

Ikaros’ orientation is controlled by using both diffusion and specular reflections, (see

Figure 2.12). In the Ikaros configuration, these devices were placed at the sail corners to

generate solar pressure torques. The force due to specular reflection (power off) is less of

magnitude compared to the diffusion reflection (power on), so thanks to the alternative

RCD power on/off strategy it is possible to generate the torques needed (Tsuda et al.,

2013), (see Figure 2.12). Alternatively, the effective area can be reduced by temporary

making some portions of the sail non-reflective, using electro-chromic materials with a

reduction in the SRP thrust force for trajectory stabilisation (Ceriotti and Farrés, 2012).

(a) Ikaros s/c (b) RCD

Figure 2.12: Ikaros and reflective control device, image credit: JAXA.

Electro-Chromic Devices (ECD) work in the infrared region of the electromagnetic spec-

trum (with mid to long wavelengths), where their emissivity is actively controllable.

This technology was originally designed for spacecraft thermal control, but ECD variable

emissivity from the long-wave infrared part of the spectrum and a passive cold mirror for

solar rejection make them applicable also for trajectory control (Demiryont and Moore-

head, 2009). For future microsatellites (i.e., SpaceChips swarm applications), ECD
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coatings have also been demonstrated for future microsatellite applications (Lücking

et al., 2012c, 2013b) as a feasible technology for orbit control since SpaceChips have a

high area-to-mass ratio that makes them sensitive to SRP. ECD was also proposed for

variable-shape multi-purpose platform sail applications; where distributed masses with

variable reflectivity allow a change of the sail shape from a flat configuration, i.e. active

trajectory control, and a parabolic shape for use a remote sensing device or commu-

nication antenna (Borggräfe et al., 2013). Recently, Ceriotti et al. (2013) proposed a

variable geometry cone sail.

Name Mass (@ Launch) [kg] Area [m2] A/m (@ Launch) [m2/kg]

Herschel 3400 16 0.004705882
Planck 1900 13.85 0.007291802
SOHO 1853 33.51 0.018084188
Gaia 2029 81.71 0.040272462

LISA P. 1900 2.8 0.001473684
JWST 6500 264 0.040615385
Euclid 2100 13.95 0.006642857

Table 2.6: Area-to-mass ratio of the ESA’s missions at LPOs.
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2.6 Summary

This section has presented the current state of the art of trajectory design and control

for solar radiation pressure assisted missions. This began with the introduction of the

restricted three-body problem along with the invariant manifold theory and the solar

radiation pressure model. A background in the mission applications was carried out for:

1) the orbit control and maintenance,

2) the design of transfer trajectories, and

3) the end-of-life disposal.

The modern approaches used for the design of missions in the restricted three-body

problem was investigated. Thus, it was possible to highlight the void in the literature

between spacecraft’s trajectories design and harnessing SRP for manoeuvres design.

Analysis onto the solar radiation pressure enhancing devices available in literature was

performed to address the research questions stated in Section 1.1. This literature review

shows a gap in the research where on-board deployable structures are currently not

designed to control the spacecraft’s trajectory. Consequently, finding a viable solution to

harnessing SRP still presents a technological challenge. This demonstrates the difficulties

in the broad spreading of SRP propulsion for the design and control of trajectories in

the restricted three-body problem. To address the gap in the literature in the field of

assisted missions through SRP, the circular restricted three-body problem needs to be

initially presented in more details.



Chapter 3

Circular Restricted Three-Body

Problem

As introduced in Chapter 2, the circular restricted three-body problem is a dynamical

model that approximates the motion of the spacecraft under the gravitational influence

of a primary body (e.g. the Sun) and a secondary body (e.g. the Earth) and describes

the gravitational interaction of three masses (i.e., three-body) in which the third mass

is smaller or infinitesimal (i.e., restricted) compared with the other two. The primary

masses are called first and second primaries, and they are considered spherically sym-

metric so that they can be modelled as point masses. In this study, the primaries are the

Sun and the Earth+Moon barycentre. The gravitational effect of the Moon is thus taken

into account by adding the Moon’s mass to the one of the Earth and considering that the

Earth+Moon barycentre moves on a circular orbit around the system barycentre. Thus,

in this model, the effect of the Moon contributes solely to the Earth’s mass. The pri-

maries’ motion is assumed to be on the ecliptic plane, and their motion is approximated

to be around their centre of mass (i.e. centre of mass of the Sun-(Earth+Moon)) with

a circular orbit (i.e., circular). Since the third mass does not influence the primaries

motion, the CR3BP describes the motion of this third mass, i.e. spacecraft’s motion.

When the solar radiation pressure is taken into account, this additional repulsive ac-

celeration is added to the classical CR3BP equation and it turns into the CR3BP with

SRP, (Szebehely, 1967; Koon et al., 2008; McInnes, 1999).

45
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3.1 Sidereal and synodic reference frames

The definition of at least two fundamental reference frames is necessary when describing

the motion of the spacecraft under the mutual gravitational effect of the Sun and the

Earth+Moon barycentre. In this thesis, the motion of the spacecraft is outlined in the

reference frame centred on the Sun and the Earth+Moon’s centre of mass. The sidereal

frame describes the motion of the spacecraft from the viewpoint of an inertial observer;

where the axis of the reference system is fixed. We refer to the sidereal system with the

symbol Fi and its correspondent inertial coordinates are {xi, yi, zi} as shown in Figure

3.1(a).

The importance of describing the motion of the spacecraft from the viewpoint of rotating

coordinates was instead shown by Euler in 1767 (see Chapter 2). Thus, a synodic or ro-

tating frame needs to be introduced, Fr, where the correspondent rotating coordinates

are {x, y, z} as shown in Figure 3.1(a). As already mentioned, the main CR3BP assump-

tion is that the two primaries’ motion is assumed to be on the ecliptic plane, {xi,yi},
and the two masses lie on the x-axis of Fr frame. The position of the primaries is fixed

in the synodic frame. The x-axis convention adopted here is such that the x-axis is

pointing in the Sun-to-(Earth+Moon) direction as in Figure 3.1(a). Thus, the position

of the Sun is always in the negative x-axis coordinates; while, the Earth+Moon position

is always in the positive x-axis coordinate of the synodic system as shown in Figure

3.1(b). Note that, the out-of-plane directions of both frames are coincident (z = zi).

Thus, z is the axis of rotation: the {x,y} frame rotates with respect to the {xi,yi}
frame with an angular velocity equal to the primaries mean motions, n 1. The two

frames are coincident when t = 0.

(a) Sidereal and synodic reference frames. (b) Synodic reference frame.

Figure 3.1: Sidereal (inertial, Fi) and synodic (rotating, Fr) reference frames
with origin in the Sun+(Earth+Moon)’s Centre of Mass (CM).

1The mean motion is the angular speed for a body to complete one orbit, assuming a constant speed
on an equivalent circular orbit.
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3.1.1 Conversion of the dimensionless coordinates from a synodic to a

sidereal reference system

Under the hypothesis that the Earth+Moon barycentre describes a mean motion (circu-

lar orbit) around the Sun, it is possible to normalise the dimensional coordinates through

the following parameters: l, τ and v. l is the distance of the Earth+Moon barycentre

from the Sun. This distance corresponds to 1 Astronomical Unit (AU). τ is defined

as T/2π, where T is the orbital period2, and v is the Earth+Moon barycentre’s mean

velocity of a circular orbit around the Sun. Since l, τ and v are constants, it is possible

to normalise the dimensional coordinates (rd [km] and ṙd [km s−1]) and write them as

dimensionless coordinates (r [ ] and ṙ [ ]). The normalisation parameters are reported

in Table 3.1.

l [km] τ [s] v [km s−]

1 AU
√

l3

(µSun+µEarth)
l
τ =

√
(µSun+µEarth)

l

Table 3.1: Normalisation parameters. Note that µEarth includes the mass of the
Moon.

The normalised coordinates are written as follow:{
r = rd/l

ṙ = ṙd/v
. (3.1)

The transformation of the state vector from the synodic system in dimensionless coordi-

nates (x = {r, ṙ}T ) to the sidereal system in dimensionless coordinate (xi = {ri, ṙi}T )

requires the definition of the direction cosine matrix between the two systems. Cri(t) is

the direction cosine matrix between the rotating frame, Fr, and the inertial frame, Fi,

which are related as:

Fr = Cri(t)Fi. (3.2)

In Eq. (3.2), the direction cosine matrix is defined as follow:

Cri(t) =

 cosωt sinωt 0

− sinωt cosωt 0

0 0 1

 , (3.3)

where, ω is the angular velocity of the rotating system. Therefore, the transformation

of position components between the Fr and the Fi is:

ri = CT
rir; (3.4)

2The orbital period T is defined as 2π ·
√

l3

(µSun+µEarth)
.



48 Chapter 3 Circular Restricted Three-Body Problem

while, the transformation of velocity components between the Fr and the Fi is given

by deriving Eq. (3.4) as follow:

ṙi = ĊT
rir + CT

riṙ. (3.5)

In Eq. (3.5), ĊT
ri(t) is given by:

ĊT
ri = −CT

ri[ωri]
T
×, (3.6)

and, ĊT
ri(t) is function of the matrix [ωri]×. Considering the definition of the angular

velocity vector, ωri:

ωri =


0

0

ωz

 =


0

0

n

 , (3.7)

the matrix associated to the ωri cross product operator, [ωri]×, is derived such as:

[ωri]× =

 0 −ω 0

ω 0 0

0 0 0

 , (3.8)

where, n is the mean motion angular velocity of the Sun and Earth+Moon around their

barycenter3. The velocity transformation from the synodic to the sidereal reference

frames assumes the form of:

ṙi = −

 cosnt − sinnt 0

sinnt cosnt 0

0 0 1


 0 n 0

−n 0 0

0 0 0

 r +

 cosnt − sinnt 0

sinnt cosnt 0

0 0 1

 ṙ. (3.9)

The derivation of Eq. (3.9) can be found in Appendix C.1, (Peter, 2004). In case of

dimensionless coordinates, the equations above still hold by simply imposing that the

mean motion n is equal to 1.

3.1.2 Conversion of dimensionless coordinates from a sidereal to a syn-

odic reference system

In this section, the inverse conversion is shown in both spacecraft’s position

r = Criri, (3.10)

and velocity

ṙ = Ċriri + Criṙi. (3.11)

3The mean motion n is defined as 2π
T

.
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The derivative of the direction cosine matrix (Ċri) is written as:

Ċri = −[ωri]×Cri; (3.12)

thus, the spacecraft’s velocity full expression turns into:

ṙ = −

 0 −n 0

n 0 0

0 0 0


 cosnt sinnt 0

− sinnt cosnt 0

0 0 1

 ri +

 cosnt sinnt 0

− sinnt cosnt 0

0 0 1

 ṙi. (3.13)

3.2 Definition of the normal vector, N̂

The normal vector, N̂ , to the reflective surface is a function of the spacecraft’s orien-

tation with the Sun-line direction. In the literature, two choices of the angles exist and

they are both used in this thesis as they have advantages depending on the application.

3.2.1 In-plane and out-of-plane angles

In Figure 3.2, the in-plane and out-of-plane angles of the normal vector, N̂ , are shown

and N̂ is defined as:

N̂ =


cos(Φ+ α) · cos(Ψ + δ)

sin(Φ+ α) · cos(Ψ + δ)

sin(Ψ + δ)

 , (3.14)

where, the angles Φ in Figure 3.2(a) and Ψ in Figure 3.2(b) describe the spacecraft-Sun

vector with respect to the rotating system {x, y, z}. Figure 3.2 shows a 3D view of the

reference frame where α (in-plane angle in Figure 3.2(a)) and δ (out-of-plane angle in

Figure 3.2(b)) are the angles between the spacecraft-Sun vector and N̂ projections to

the x-y plane and y-z plane, respectively. They can assume values between −π/2 and

π/2 (Farrés and Jorba, 2008; Biggs et al., 2008). This formulation has the advantage of

being relatively simple to understand from a geometrical point of view. However, the

scalar product between the spacecraft-Sun vector, r̂, and the normal vector, N̂ , to the

reflective surface has a complicated expression which is:

〈
N̂ · r̂

〉
=

(z2 + (y2 + (x+ µ)2) cos(α)) cos(δ)− z · rxy,Sun−p(cos(α)− 1) sin(α)

(x+ µ)2 + y2 + z2
.

(3.15)

The condition of Sun-pointing is reached when the scalar product in Eq. (3.15) is equal

to zero. For a spacecraft motion constrained in the x-y plane (when Ψ and δ are zero),

the Sun-pointing condition is reached for α equal to zero, as in this particular case, α is

the angle between the Sun-line direction and the normal vector.



50 Chapter 3 Circular Restricted Three-Body Problem

(a) In-plane angle, α. (b) Out-of-plane, δ.

(c) 3D view of the in-plane angle, α and the out-of-plane an-
gle, δ.

Figure 3.2: Definition of α, Ψ , δ and Φ angles.

Figure 3.3: Definition of the cone angle, α, and the clock angle, δ.
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3.2.2 Cone and clock angles

In Figure 3.3, the reference frame selected for the definition of the cone and the clock

angles is defined as follow:

1) The third axis corresponds to the unitary vector of the spacecraft-Sun line,
rSun−p
|rSun−p| ,

2) The second axis is chosen perpendicular to the plane defined by the unitary vector

of the spacecraft-Sun line,
rSun−p
|rSun−p| , and the unitary vector of the synodic reference

frame’s z-axis, ẑ. Thus, the second axis is given by
rSun−p×ẑ
|rSun−p×ẑ| , and

3) The first axis is derived from the former axes flowing a right-handed coordinate

system definition such as
(rSun−p×ẑ)×rSun−p
|(rSun−p×ẑ)×rSun−p| .

The cone and clock angles are defined with respect to the Sun-line direction, so they

have an advantage when describing the attitude of the sail with respect to the Sun. The

cone angle, α, is the angle between the Sun-line direction, r̂, and the normal vector to

the reflective surface, N̂ , Figure 3.3. The clock angle, δ, is defined as in Figure 3.3

(McInnes, 1999, 2000). The SRP acceleration in the synodic system is given by Eq.

(3.25).

In case of the cone and the clock angles,
〈
r̂ · N̂

〉
is equal to cosα, where r̂ is defined

as:

r̂ =
rSun−p
|rSun−p|

. (3.16)

Thus, the full expression of N̂ is:

N̂ = cosα
rSun−p
|rSun−p|

+ sinα cos δ
(rSun−p × ẑ)× rSun−p
|(rSun−p × ẑ)× rSun−p|

+ sinα sin δ
rSun−p × ẑ
|rSun−p × ẑ|

.

(3.17)

Further details of Eq. (3.17) are given in Appendix C.4. The definition of the normal

vector as in Eq. (3.17) is more complicated than the one shown in Eq. (3.14). However,

this formulation has a simpler definition of the scalar product
〈
r̂ · N̂

〉
. Thus, the Sun-

pointing condition is achieved when α = 0◦.

3.3 Modelling the solar radiation effect

In libration point orbit applications, solar radiation pressure is an important figure and

it is one of the largest non-gravitational environmental perturbation that affects the

orbital dynamics of LPO’s satellite as for space telescopes like Herschel. When those
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telescopes are close to their end-of-life, a precise SRP model is needed for predicting

their uncontrolled attitude and orbit evolution. In this thesis, as the SRP is enhanced

to achieve low energy manoeuvres, the effect of the SRP on the spacecraft motion needs

to be defined. The cannonball model is adopted as mentioned in Section 2.3.

In the general case, the SRP is a non-conservative perturbation. The most difficult

aspect when modelling SRP is in the prediction of the solar cycles. The solar pressure

at 1 AU, Psrp−1AU , is derived from the Einstein’s law that relates energy with mass, and

it is measured at Earth’s distance from the Sun (1 AU) as:

Psrp−1AU =
SF

c
=

1367 W/m2

3 · 108 m/s
= 4.57 · 10−6 N

m2
. (3.18)

In Eq. (3.18), SF is the solar flux and c is the speed of light. Note that a more

precise model on the SF (Wertz, 1999) exists, where instead of a constant value, the

SF is modelled as a function of the time and it takes into account of yearly variations

(Vallado, 2004). To determine the solar radiation pressure at any distance, the solar

radiation pressure at 1 AU, Psrp−1AU , can be rescaled to the inverse square of the

spacecraft-Sun distance, rSun−p, as:

Psrp = Psrp−1AU

(
rEarth−Sun
rSun−p

)2

. (3.19)

Clearly, the magnitude of SRP drastically decreases for space missions to the outer

planets, which limits the use of SRP for those applications. The SRP acceleration, as,

is a function of the reflectivity coefficient, cR, the radiation pressure, Psrp, the projected

area exposed to the Sun, ASun and the spacecraft’s mass, m:

as = Psrp
ASun
m

cR. (3.20)

In Eq. (3.20), the reflectivity coefficient, cR, can vary between 0 and 2, and indicates

how the satellite reflects the Sun’s radiation. A value of 0 indicates that the surface is

translucent, hence there is no SRP force produced, but maybe some refraction. A value

of 1 means that the radiation is completely absorbed (i.e., a black body). A cR equal to

2 means that the spacecraft surface is reflective (i.e., a flat mirror perpendicular to the

Sun-line direction) (McInnes, 1999). cR is a function of the reflective surface orientation,

and for the cannonball model is:

cR =

{(
2ρs

〈
N̂ · ŝ

〉
+

2

3
ρd

)
N̂ + (ρa + ρd) ŝ

}
. (3.21)

In Eq. (3.21), ρs is the specular reflection, ρa is the absorbed reflection, ρd is the diffusive

reflection, ŝ is the Sun-line direction, where ρs+ρa+ρd = 1 and N̂ is the normal to the

reflective surface. The relationship between N̂ and the spacecraft’s orientation angles

was shown in Section 3.2.
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In Figure 3.4, the value of the reflectivity coefficient is shown for a reflectance, abortion

and diffusion surfaces as a function of the orientation angle; below 40◦, a reflective surface

provides higher SRP acceleration than a near perfect diffusion surface. Conversely, if

the orientation angle is above 40◦, a diffusive surface is desirable rather than a near

perfect reflective surface. This might suggest the exploitation of different reflective

properties when designing a re-orientable deployable reflective device for enhancing the

effects of SRP. Moreover, the projected area, ASun, illuminated by the Sun is a function

of the actual area, and the surface orientation so that ASun = A
〈
N̂ · ŝ

〉
. However, for

applications at LPOs, the Sun-line corresponds to the spacecraft-Sun distance, ŝ = r̂,

therefore, Eq. (3.20) turns into:

as = Psrp
A

m

〈
N̂ · r̂

〉{(
2ρs

〈
N̂ · r̂

〉
+

2

3
ρd

)
N̂ + (ρa + ρd) r̂

}
. (3.22)

When using SRP for spacecraft trajectory design, it is convenient to introduce a struc-

tural parameter that is function of the area-to-mass ratio (A/m in Eq. (3.22)) and the

Sun’s luminosity, σ∗ = LSun
2πcµSun

. This parameter is known as the lightness parameter, β,

and is defined as:

β =
σ∗

σ
, (3.23)

where, σ is the sail load i.e. the mass-to-area ratio (m/A). The lightness number is

the ratio between the solar radiation pressure acceleration and the solar gravitational

acceleration. It describes the performance of reflective deployable structures. β can vary

between 0 and 1. When β increases, the SRP counteracts the gravitational force of the

Sun, so the dynamical system resemble an equivalent R3BP with a smaller attractor

(i.e. a “lighter” Sun). For β = 0, the CR3BP-SRP turns into the case without the

effect of SRP (CR3BP). The case of β = 1 is an ideal case when the acceleration of

SRP compensates the Sun’s gravity acceleration. Thus, the CR3BP-SRP turns into the

case of the Kepler problem, where only the gravitation of the Earth+Moon barycentre

is taken into account.

It is convenient to express Eq. (3.22) as a function of β. Thus, the first step is to write

Psrp as a function of the SF by substituting Eq. (3.18) into Eq. (3.19) such as:

Psrp =
SF

c

(
rEarth−Sun
rSun−p

)2

. (3.24)

By expressing, SF as function of the Sun luminosity, LSun, Eq. (3.22) turns into:

as = β
µSun
r2
Sun−p

〈
N̂ · r̂

〉2
N̂ . (3.25)

For further details in the derivations see Appendix C.3.
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For a Sun-pointing reflective surface (when r̂ = N̂), the acceleration of SRP can be

expressed as the potential energy of the SRP forces as:

U s = β
µSun
rSun−p

. (3.26)

From Eq. (3.26) the acceleration due to SRP can be derived as:

as = ∇U sr̂ = β
µSun
r2
Sun−p

r̂. (3.27)

This is a special case where the system is conservative since the SRP acceleration acts

as a radial force (even if it is a non-gravitational force); therefore, it can be included in

the potential expression of the generalised system of forces. When r̂ 6= N̂ , instead the

SRP cannot be written as a potential.
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Figure 3.4: Surface reflectance ρr, absorption ρa and diffusion ρd as a function
of the orientation angle (McInnes, 1999).

For a non near-perfect reflective structure, it is convenient to write β as a function of cR.

In this case, the acceleration of solar radiation pressure is Eq. (3.22) and it is simplified

into:

as = Psrp
A

m

〈
N̂ · r̂

〉
cRN̂ , (3.28)

where for the Sun-pointing case r̂ = N̂ . Eq. (3.28) turns into:

as = Psrp−1AU

(
rEarth−Sun
rSun−p

)2 A

m
cRr̂. (3.29)

Eq. (3.25) represents the SRP acceleration to be included in the equations of motion

of Eq. (3.39). To express β as a function of cR, Eq. (3.29) is derived similarly to Eq.

(3.27), and the lightness parameter is then defined such as:

β = Psrp−1AU

r2
Earth−Sun
µSun

A

m
cR. (3.30)
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3.4 Equations of motion of the circular restricted three-

body problem with solar radiation pressure

In the CR3BP the non-linear equations of motion are derived in the inertial (sidereal) and

rotating (synodic) frames; then, a change of coordinate is performed from dimensional

to dimensionless variables through the transformation presented in Section 3.1.1 in Eq.

(3.1) (Szebehely, 1967; Koon et al., 2008). The equations of motion in the synodic

reference frame are derived through the Lagrangian and the Hamiltonian approach that

is dealt with in Section 3.4.2 and Section 3.4.3 respectively (Koon et al., 2008).

3.4.1 Equations of motion in the sidereal system

The equations of motion of the CR3BP in the sidereal frame, Fi, are given by the

Newton’s Law of Gravity as: 
mẍi = Vxi
mÿi = Vyi
mz̈i = Vzi

, (3.31)

where Vxi , Vyi and Vzi are the partial derivatives in the x, y and z of the gravity potential,

V , in the inertial frame and m is the spacecraft’s mass. In Eq. (3.31), V is the mutual

gravitational potential function and it is defined as:

V =
µSun
RSun−p

m+
µEarth
REarth−p

m, (3.32)

where, µSun and µEarth are the Sun and the Earth+Moon barycentre gravitational

parameters4. RSun−p and REarth−p are the distances of the Sun and the Earth from the

spacecraft in the Fi frame and are given by:

RSun−p =
√

(xi − xiSun)2 + (yi − yiSun)2 + (zi − ziSun)2 (3.33)

and

REarth−p =
√

(xi − xiEarth)2 + (yi − yiEarth)2 + (zi − ziEarth)2. (3.34)

Since the position of the Sun and the Earth are well known in the rotating frame as

rSun = {−dSun, 0, 0} and rEarth= {dEarth, 0, 0}, it is possible to find their expression by

using the rotational direction cosine matrix Cir(t) as shown in Section 3.1.1. The Sun’s

4µSun = G·mSun and µEarth = G·(mEarth+mMoon), where G is the universal gravitational constant
and mSun and mEarth are the masses of the Sun and the Earth+Moon barycentre, respectively.



56 Chapter 3 Circular Restricted Three-Body Problem

and the Earth+Moon barycentre’s positions are then:

RSun =


−dSun cos (nt)

−dSun sin (nt)

0

 ; REarth =


dEarth cos (nt)

dEarth sin (nt)

0

 . (3.35)

The equations of motion in the sidereal frame for the dimensional coordinates are then:
ẍi = −µSun(xi−xiSun )

R3
Sun−p

− µEarth(xi−xiEarth )

R3
Earth−p

ÿi = −µSun(yi−yiSun )

R3
Sun−p

− µEarth(yi−yiEarth )

R3
Earth−p

z̈i = −µSun(z−i−ziSun )

R3
Sun−p

− µEarth(zi−ziEarth )

R3
Earth−p

. (3.36)

Substituting Eq. (3.35) into Eq. (3.36), becomes:
ẍi = −µSun(xi+dSun cos (nt))

R3
Sun−p

− µEarth(xi−dEarth cos (nt))
R3
Earth−p

ÿi = −µSun(yi+dSun sin (nt))
R3
Sun−p

− µEarth(yi−dEarth sin (nt))
R3
Earth−p

z̈i = − µSunzi
R3
Sun−p

− µEarthzi
R3
Earth−p

. (3.37)

Finally, l = dSun + dEarth is the Sun-Earth distance which corresponds to 1 AU for

the Sun-(Earth+Moon) system. M = mSun + mEarth is the total mass of the Sun

and the Earth+Moon barycentre and t∗ = nt is the dimensionless time. Note that

the mean motion n is defined as 2π/T which correspond to τ−1 and t∗ = τ−1t. The

author will hereafter refer to dimensionless time as t instead of t∗ to have a simpler

notation. µSun = mSun/M = dEarth/l and µEarth = mEarth/M = dSun/l are the only

remaining constants of the system. Moreover, the relation between µSun and µEarth is

µSun + µEarth = 1, if dimensionless coordinates are used. This means that it is possible

to define µSun = 1 − µEarth; indeed, the system is a function of one constant only.

By defining, µEarth = µ and µSun = 1 − µ it is possible to determine one mass as a

function of the other. Finally, the dimensionless distances of the spacecraft, m, from

the Sun and the Earth are defined as rSun−p = RSun−p/l and rEarth−p = REarth−p/l

respectively. The dimensional rectangular coordinates in an inertial frame are, instead,

defined as x = xi/l, y = yi/l and z = zi/l. The equations of motion in the dimensionless

coordinates are then:
ẍ = −µSun(x+µSun cos t)

r3Sun−p
− µEarth(x−µEarth cos t)

r3Earth−p

ÿ = −µSun(y+µSun sin t)
r3Sun−p

− µEarth(y−µEarth sin t)
r3Earth−p

z̈ = − µSunz
r3Sun−p

− µEarthz
r3Earth−p

. (3.38)
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System Reference µ e

Earth+Moon Campagnola et al. (2008) 0.0123 0.054
Double Stars Luk’yanov (2005) 0.3 0.2− 0.9
Sun-(Earth+Moon) Stramacchia et al. (2016) 3.04042 · 10−6 0.01674
Sun-Jupiter Stramacchia et al. (2016) 9.53 · 10−4 0.0489
Sun-Mars Stramacchia et al. (2016) 3.2268 · 10−7 0.0935
Jupiter-Io Stramacchia et al. (2016) 4.704 · 10−5 0.0041

Table 3.2: Mass parameter, µ, and eccentricity, e, for different systems.

3.4.2 Synodic equations of motion: Lagrangian approach

In this section, the equations of motion are written with respect to a synodic (rotating)

reference frame in dimensionless coordinates as presented in Eq. (3.1). The advantage

of having a rotating system is to loose the dependence on time, t, in the equations of

motion. Having considered the dimensionless coordinates, the equations of motion are

now depending only on one parameter: the mass parameter, µ. The selected applications

refer to the Sun-(Earth+Moon) system, where the primaries distance, l, is 1.496 ·108 km

(1 AU), their velocity, v, corresponds to 29.784 km/s, and the orbital period, T, is 3.147

·107 s. The mass parameter, µ, is 3.04042 ·10−6 in dimensionless units. The phase space

of the system is highly dependent on µ, which can vary between 0 and 0.5, depending

on the selected celestial bodies (Koon et al., 2008). Table 3.2 shows different examples

of mass parameters, µ, and orbit eccentricity 5, e, for different systems.

The equations of motion of the CR3BP-SRP in Lagrangian dimensionless coordinates

are shown in Eq. (3.39), and derived in Appendix C.2 (Koon et al., 2008):
ẍ− 2ωẏ = Vx + asx

ÿ + 2ωẋ = Vy + asy

z̈ = Vz + asz

(3.39)

where, x, y, z and ẋ, ẏ, ż are the spacecraft positions and velocities in the synodic

(rotating) frame and, asx, asy and asz are the components along x-, y- and z-axis of the

solar radiation pressure acceleration, as. V is the total potential,

V = Vr + Vg, (3.40)

which includes the contribution of the rotating system potential, Vr, and the gravita-

tional potential, Vg. The rotating potential is:

Vr =
1

2
(x2 + y2) (3.41)

5For the CR3BP, the approximation made is that the two primaries are in a circular orbit thus with
eccentricity equal to zero. However, Table 3.2 shows the real values in eccentricity for different systems.
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and the gravitational potential is:

Vg =
µSun
rSun−p

+
µEarth
rEarth−p

. (3.42)

In Eq. (3.42), rSun−p and rEarth−p are the spacecraft’s distance from the Sun and the

Earth respectively as shown in Figure 3.1(b) and defined as:

rSun−p =
√

(x− xSun)2 + y2 + z2 (3.43)

and

rEarth−p =
√

(x− xEarth)2 + y2 + z2. (3.44)

In non-dimensional coordinates, xSun = −µ is the position of the Sun and xEarth = 1−µ
is the position of the Earth. Thus, Eq. (3.39) turns into:


ẍ = 2ẏ + x− (1−µ)(x−xSun)

r3Sun−p
− µ(x−xearth)

r3Earth−p
+ asx

ÿ = −2ẋ+ y − (1−µ)
r3Sun−p

y − µ
r3Earth−p

y + asy

z̈ = z − (1−µ)
r3Sun−p

z − µ
r3Earth−p

z + asz

. (3.45)

In the synodic frame the Lagrangian, L , is given by the relative kinetic energy minus

the potential energy as:

L =
1

2

(
(ẋ− y)2 + (ẏ + x)2 + ż2

)
− U, (3.46)

where, in the Lagrangian, L , U is the potential energy of the conservative forces (i.e.,

solar radiation pressure)6 and it can be derived from the potential function V through

a change of its sign such that U = −V . The potential energy, V , is defined as in Eq.

(3.42). Eq. (3.39), can be alternatively derived by using the Lagrangian approach as

follow (Biscari et al., 2005):
d

dt

∂L

∂q̇k
− ∂L

∂qk
= Qn.ck . (3.47)

In Eq. (3.47), Qn.ck indicates the Lagrangian components of the non conservative force.

Qn.ck is zero for asx = asy = asz = 0 or when SRP acts as a conservative force and is

included in the Lagrangian, L (i.e., spacecraft’s Sun-pointing). Note that the same

nomenclatures in the spacecraft’s state vector for both the dimensionless coordinates

in the inertial system, Eq. (3.38), and rotating system, Eq. (3.39), is used to avoid a

complex definition of the variables.

6The forces are conservative when the SRP acceleration is zero or for a deployable reflective structure
is at 90◦ with respect to the Sun, i.e. SRP potential depends only on the position not on the velocity.
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3.4.3 Synodic equations of motion: Hamiltonian approach

For asx = asy = asz = 0, the Hamiltonian form of the equations of motion can be derived

from the Lagrangian, L , through the Legendre transformation (Koon et al., 2008). In

the Lagrangian approach the state vector is {x, y, z, ẋ, ẏ, ż}; where as in the Hamiltonian

approach the state vector is {x, y, z, px, py, pz}. px, py and pz are the momenta conjugate

to x, y and z, defined as:

px = ∂L
∂ẋ = ẋ− y

py = ∂L
∂ẏ = ẏ + x

pz = ∂L
∂ż = ż

. (3.48)

In the rotating frame, the Hamiltonian, H , can be expressed as:

H = pxẋ+ pyẏ + pz ż −L . (3.49)

From Eq. (3.49), the Hamiltonian equations can be derived as:

ẋ = ∂H
∂px

= px + y

ẏ = ∂H
∂py

= py − x
ż = ∂H

∂pz
= pz

ṗx = −∂H
∂x = py − x+ Vx

ṗy = −∂H
∂y = −px − y + Vy

ṗz = −∂H
∂z = Vz

. (3.50)

By substituting the Lagrangian, L , in Eq. (3.46) to the Hamiltonian, H , in Eq. (3.49),

the Hamiltonian turns into:

H = pxẋ+ pyẏ + pz ż −
1

2
((ẋ− y)2 + (ẏ + x)2 + ż2)− Vg. (3.51)

From the first three equations in Eq. (3.50), ẋ− y = px, ẏ + x = py and ż = pz can be

substituted in the Hamiltonian in Eq. (3.51) to be rewritten as:

H = px(px + y) + py(py − x) + p2
z −

1

2
(p2
x + p2

y + p2
z)− Vg. (3.52)

By collecting the conjugate momenta, Eq. (3.52) turns into:

H =
1

2
((px + y)2 + (py − x)2 + p2

z)−
1

2
(x2 + y2)− Vg, (3.53)

where the conservative forces are collected in the total potential, V , as in Eq. (3.40):

H =
1

2
((px + y)2 + (py − x)2 + p2

z)− V. (3.54)
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By using the matrix notation, Eq. (3.50) becomes:

ẋ

ẏ

ż

ṗx

ṗy

ṗz


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0


·



∂H
∂x
∂H
∂y
∂H
∂z
∂H
∂px
∂H
∂py
∂H
∂pz


, (3.55)

that can be written in a compact way as:

Ẋ = Z∇H , (3.56)

where, Z is the matrix of Eq. (3.55) and ∇H is the gradient of the Hamiltonian, H .

3.5 Libration points

In the CR3BP five equilibrium points exist as shown for the Sun-Earth system in Figure

1.1 of Chapter 2. The existence of the equilibrium points was proved by Lagrange in

1772 where the first evidence of their existence was observed in 1906 for the Trojan

asteroids in the Sun-Jupiter system (Chapter 2). The equilibrium points are the zero

velocity points in the rotating frame which correspond to stationary solutions on the

equipotential surface. These points correspond to the positions in the rotating frame in

which the gravitational forces and the centrifugal forces are all cancelled out.

When the effect of SRP is taken into account, the equilibrium points are shifted from

their original position in the CR3BP. The equilibrium points now correspond to the

position in the rotating system where the gravitational, the centrifugal and SRP forces

are balanced. In this case, the libration points are called “artificial” or “pseudo” libration

points (SLi). The work in this thesis is focused on the design of space missions around

the SL/L1 and SL/L2 collinear points. The points are located close to the Earth and are

placed along the Sun-Earth line. L1 is located between the Sun and the Earth; while,

L2 is beyond the Earth and cannot be seen from the Sun (as shown in Figure 3.5).
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Figure 3.5: Position of the pseudo libration points, SLi, for a Sun-pointing
surface and position of the libration point, Li, without the effect of SRP.

3.5.1 Collinear Lagrangian points for a Sun-pointing reflective struc-

ture

In the case of a Sun-pointing reflective deployable structure (r̂ = N̂), the collinear

librations points, L1,2,3, are shifted along the x−axis of the rotating system as shown in

Figure 3.5. Under this assumption, the SRP acceleration behaves as a potential force, Eq.

(3.26); thus, it counteracts the effect of the Sun’s gravitation. The larger the magnitude

of the SRP acceleration, the closer the pseudo libration points get to the Sun. Given the

equations of motion in Eq. (3.39), the equilibrium points for a Sun-pointing reflective

structure are found by setting the velocities and the accelerations of Eq. (3.39) to zero.

Moreover, by using Eq. (3.25) for the SRP acceleration, the equations of equilibrium

are: 
Vx + U sx = x− (1−β)(1−µ)(x−x1)

r3Sun−p
− µ(x−x2)

r3Earth−p
= 0

Vy + U sy = y − (1−β)(1−µ)
r3Sun−p

y − µ
r3Earth−p

y = 0

Vz + U sz = − (1−β)(1−µ)
r3Sun−p

z − µ
r3Earth−p

z = 0

. (3.57)

The position along the x-axis can be computed by solving:

xSLi −
(1− β)(1− µ)(xSLi − xSun)

r3
Sun−p

− µ(xSLi − xEarth)

r3
Earth−p

= 0. (3.58)

The fifth-order polynomial coefficients depend on the space region in which the equi-

librium points coordinate, xSLi , is defined. The range of validity for the collinear La-

grangian points is: 
−µ ≤ xSL1 ≤ 1− µ
−µ ≤ 1− µ ≤ xSL2

xSL3 ≤ −µ ≤ 1− µ
. (3.59)
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In Eq. (3.59), −µ is the position of the first celestial body (i.e. Sun) and 1 − µ is the

position of the second celestial body (i.e. Earth). The fifth-order polynomials in Table

3.3 have five roots in which one is real and the other four are complex. The positions of

the collinear points on the x-axis correspond to the real root. Even if the computation of

the collinear Lagrangian points is not new (McInnes et al., 1994; McInnes, 1999; Elipe,

1992; McInnes, 2000). More details on the derivation of the fifth-order polynomial

derivation are reported in the Appendix C.5.

SLi x x x x x Const

SL1 1 −(3− µ) (3− 2µ) −(µ+ βµSun) 2µ −µ
SL2 1 (3− µ) (3− 2µ) −(µ− βµSun) −2µ −µ
SL3 1 (2 + µ) (1 + 2µ) −(1− β)µSun −2(1− β)µSun −(1− β)µSun

Table 3.3: Fifth-order polynomials coefficients.

In the CR3BP, the phase space of the system is highly dependent on the mass parameter,

µ, which can vary from 0 to 0.5. When the effect of SRP is taken into account for a

Sun-pointing area, the phase space of the CR3BP-SRP depends on µ and the lightness

number, β. Figure 3.6 shows the coordinate, xSLi , of the collinear libration points as a

function of µ and β.

The trend of L1, L2 and L3 as a function of µ are shown in Figure 3.6(a), where L1 is

located between the two celestial bodies (xBody−1 < xL1 < xBody−2), L2 is behind the

second primary (xL2 > xBody−2) and L3 is behind the first primary (xL3 < xBody−1).

When µ tends to zero, the CR3BP can be approximated to the Hill’s problem (as stated

in Section 2.1). This is the case for the Sun-Earth system, where, µ is close to zero.

However, when µ tends to 0.5, the two celestial bodies have the same masses, and L1

collapses into Centre of Mass (CM) of the system. Meanwhile, L2 and L3 move to an

equivalent distance from their closer primary respectively.

Figure 3.6(b) shows the position of the collinear points as a function of β for a Sun-

pointing surface, r̂ = N̂ , where µ is set for the Sun-(Earth+Moon) system. In this case,

the lightness parameter, β, was changed within its range of validity between 0 and 1.

When β = 0 in Figure 3.6(b), the points represents the libration points solutions for

the CR3BP without solar radiation pressure. The CR3BP condition for the Sun-Earth

system shown in Figure 3.6(b) for β = 0 also corresponds to the solution shown in

Figure 3.6(a) for µ = 3.036 · 10−6. Conversely, when β tends to 1, the CR3BP dynamics

degenerates into the two body problem dynamics in a rotating frame. Thus, the SRP

force counteracts completely the Sun’s gravity force and SL1 and SL3 converge to the

origin of the system. This means that by increasing β, the positions of SL1 and SL3

move closer to the Sun, and the position of SL2 gets closer to the Earth. This is due

to the balancing of the gravitational, the Coriolis, and the SRP acceleration. Although

this graph is generated with a value of µ based on the Sun-Earth system, the result is,

in general, sensitive to the value of µ (McInnes, 1999, 2000).
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(a) Collinear Lagrangian points: µ 6= 0 and β = 0.
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(b) Collinear Lagrangian points: β 6= 0 and µ = 3.036·
10−6.

Figure 3.6: Collinear libration points with a function of β and µ (McInnes, 1999,
2000).

3.5.2 Equilibrium points with the effect of solar radiation pressure

For a general orientation of the reflective structure, the collinear equilibrium points of

the CR3BP-SRP results in surfaces of “artificial” libration points (SLi) as a function

of the sail orientation angles. Thus, the system now has two-dimensional families of

equilibrium points (McInnes et al., 1994; McInnes, 1999, 2000; Farrés and Jorba, 2010).

The equations of equilibrium are given by Eq. (3.39) when the accelerations (ẍ, ÿ and

z̈) and velocities (ẋ, ẏ and ż) of the spacecraft are equal to zero. In Eq. (3.39), the

SRP acceleration is modelled using the definition of the normal vector, N̂ , defined by

the cone and the clock angles as shown in Eq. (3.17). The system of equations to solve

for a general orientation of a reflective deployable structure is:
Vx + asx = 0

Vy + asy = 0

Vz + asz = 0

. (3.60)

Eq. (3.60) together with Eq. (3.25) can be written in a compact way as (McInnes,

2000):

−∇V = β
µSun
r2
Sun−p

cos2 αN̂ . (3.61)

The existence of the artificial equilibrium points is limited by the reflective structure

orientation; where, the normal vector, N̂ , must be parallel to ∇V ; thus, −∇V × N̂ = 0

(McInnes, 2000) which implies:

N̂ =
−∇V
| − ∇V |

. (3.62)
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By considering the cone and clock angles definition of N̂ , the scalar product between

the Sun-line direction and the normal vector is cosα such that:

cosα =
〈
r̂ · N̂

〉
=

〈
r̂ · −∇V
| − ∇V |

〉
. (3.63)

By substituting Eq. (3.63) into Eq. (3.61), the artificial libration points satisfy the

flowing equation (McInnes et al., 1994; McInnes, 1999, 2000):

β =
r2
Sun−p
µSun

| − ∇V |3

〈r̂Sun−p · −∇V 〉2
. (3.64)

Note that not all the solutions of Eq. (3.64) are feasible due to the constraint in the

direction of the SRP acceleration; indeed, it is not physically possible to produce ac-

celeration in the direction toward the Sun (McInnes, 1999, 2000). Thus, a constraint

inequality equation is here introduced:

〈r̂ · (−∇V )〉 ≥ 0. (3.65)

Note that the limit condition for the existence of motion under the effect of SRP is

when 〈r̂ · (−∇V )〉 = 0. Figures 3.7, 3.8 and 3.9 show the position of the libration points

for the planar case for the x-y and x-z planes. The solutions shown in these figures

are well-know in the literature (McInnes et al., 1994; McInnes, 2000; Farrés and Jorba,

2010); however, they were reconstructed in this work as they are a useful tool in the

design of transfer trajectories (Chapter 6). In Figures 3.7, 3.8 and 3.9, each point along

the coloured curves corresponds to an equilibrium point for a fixed area orientation and

β. The curves are obtained by fixing the value of β and by letting values in x, y and z in

Eq. (3.64) to vary from 0.985 to 1.01 in x and between ± 0.015 in y and z. The position

of the libration point is a function of α for a fixed value of δ. Thus, δ fixes the plane of

motion of the spacecraft. The x-y plane is given by fixing δ = 90◦; while, the x-z plane

is given for a value of δ equal to 0◦. Each coloured scale line represents the positions of

the libration point for values of α between −90◦ and 90◦ with a fixed β. The shaded

area represents solutions that are not feasible due to the constraint in Eq. (3.65).

Figure 3.7 shows the position of the libration points in the vicinity of the Earth for four

different ranges of β, when the motion is restricted to the x-y plane. The value of β

is normally within a range of 0 (No SRP effect) and 1 (two body problem). However,

higher values of β are shown here since it is possible to find graphically the boundary

of the shaded area for an infinitely growing value of β, as shown in Eq. (3.65) when the

inequality is equal to zero.

Figure 3.8 and Figure 3.9 show the positions of the equilibrium points when the motion

is restricted to the x-z plane. Note that Figure 3.8 shows solutions close to the Earth,

while Figure 3.9 shows the same solutions for a wider region that includes the Sun and

Earth+Moon system.
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Figure 3.7: Position of the artificial libration points as a function of β, x-y plane
in the vicinity of the Earth (McInnes et al., 1994; McInnes, 2000; Farrés and
Jorba, 2010).
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(c) x − z plane with β = 0, 0.3, 0.5, 0.7, 0.9, 0.99, 1,
1.1, 1.5.

0.985 0.99 0.995 1 1.005 1.01
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

x

z

 

 

β
0.5 1 1.5 2 2.5 3

(d) β = 0.02, 0.04, 0.06, 0.1, 0.2, 0.4, 1, 3.

Figure 3.8: Position of the artificial libration points as a function of β, x-z plane
in the vicinity of the Earth (McInnes et al., 1994; McInnes, 2000; Farrés and
Jorba, 2010).
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Figure 3.9: Position of the artificial libration points as a function of β, x-z plane
in the Sun-(Earth+Moon) system (McInnes et al., 1994; McInnes, 2000; Farrés
and Jorba, 2010).

Although Eq. (3.64) gives a quick tool to represent the positions of the libration points,

a database of the equilibrium points’ positions as a function of the orientation angles is

needed for the study in Chapter 6. For this reason, a numerical continuation method was

developed to obtain the coordinates of the libration point in the x-y plane for fixed values

of β and variable α was developed. Details of the numerical continuation algorithm used

are shown in next Section.

0.9875 0.988 0.9885 0.989 0.9895 0.99

−4

−2

0

2

4

x 10
−3

x

y

 

 

β

0 0.005 0.01 0.015 0.02

(a) L1.

1.0085 1.009 1.0095 1.01
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

x

y

 

 

β

0 0.005 0.01 0.015 0.02

(b) L2.

Figure 3.10: Position of the artificial libration points for β = 0 up to 0.02.

3.5.3 Numerical continuation for the computation of equilibrium points

In this section, the coordinates of the libration points as a function of the spacecraft-

pointing accuracy are obtained through numerical continuation techniques. The algo-

rithm presented here is limited to the planar case where the position of the equilibrium

points is constrained in the x-y plane and it is function of the in-plane angle, α. For the
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planar dynamics, z = 0, Eq. (3.39) turns into:{
ẍ− 2ẏ = −Vx + asx

ÿ + 2ẋ = −Vy + asy
, (3.66)

where the SRP acceleration is:

as = β
µSun
r2
Sun−p

cos2 αN̂ , (3.67)

and, the normal vector is given by:

N̂ =
cosα

rSun−p

{
x− x1

y

}
+

sinα

rSun−p

{
y

−(x− xSun)

}
. (3.68)

Thus, the SRP acceleration for the x-y plane motion are: asx = β µSun
r3Sun−p

[
cos3 α(x− xSun) + cos2 α sinαy

]
asy = β µSun

r3Sun−p

[
− cos2 α sinα(x− x1) + cos3 αy

] (3.69)

Finally, the equations of motion for the equilibrium points (ẍ = ÿ = ẋ = ẏ = 0) become: x+ µSun
r3Sun−p

(1− β cos3 α)(x− xSun)− β µSun
r3Sun−p

cos2 α sinαy + µEarth
r3Earth−p

(x− xEarth) = 0

y + µSun
r3Sun−p

(1− β cos3 α)y + β µSun
r3Sun−p

cos2 α sinα(x− xSun) + µEarth
r3Earth−p

y = 0

(3.70)

By having fixed β, the angle α was added as an additional variable to the system and

varied between 0 and π/2. Thus, it is possible to write:

 F1 = x+ µSun
r3Sun−p

(1− β cos3 α)(x− xSun)− β µSun
r3Sun−p

cos2 α sinαy + µEarth
r3Earth−p

(x− xEarth)

F2 = y + µSun
r3Sun−p

(1− β cos3 α)y + β µSun
r3Sun−p

cos2 α sinα(x− xSun) + µEarth
r3Earth−p

y
;

(3.71)

where, DF is given by:

DF =

[
F1x F1y F1α

F2x F2y F2α

]
. (3.72)

The prediction of the solution requires:

Z̄ = Z0 − dsH; (3.73)
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where, Z is given by {x, y, α}. H is the kernel of the map DF (Z̄) and ds is the tolerance

and it is set to be 10−4 in this case. If we now impose Hα = 1, it is possible to write:

Hx,y = −

[
F1x F1y

F2x F2y

]−1{
F1α

F2α

}
(3.74)

The correction of the solution requires that:

F (Zk+1) = F (Zk) +DF (Zk)∆Z +O(2) ' 0, (3.75)

and now ∆Z is:

∆Z = Zk+1 − Zk =


∆x

∆y

∆α

 . (3.76)

The aim of the predictor-correction algorithm is to have ∆α = 0 thus ∆Zα = 0 such as:

∆Zx,y = −

[
F̄1x F̄1y

F̄2x F̄2y

]−1{
F̄1

F̄2

}
; (3.77)

where, finally the corrected state is:

Zk+1 = Zk +∆Z. (3.78)

Eq. (3.78) is used to numerically compute the curves shown in Figure 3.7(a) and com-

pared with the one obtained from Eq. (3.64). Figure 3.10 shows the comparison for

β varying from 0 up to 0.02 for L1, in Figure 3.10(a), and L2, in Figure 3.10(b). The

advantage of using a numerical continuation method is in the precision of determining

the contour curves. An equilibrium points database is required as a quintic polyno-

mial equation does not exist for a general reflective surface’s orientation. Note that,

the position of the collinear points are simply displaced in the x-axis when the normal

to the reflective surface and the Sun-line direction are aligned as shown in Figure 3.5

(Sun-pointing case).
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3.6 Energy, zero-velocity curves and forbidden regions for

a Sun-pointing reflective surface

The equations of motion of the CR3BP (Eq. (3.39) when the SRP acceleration is zero)

are Hamiltonian and independent of time; thus, they have an energy integral of motion.

When the effect of SRP is taken into account, Eq. (3.39), the equations of motion of

the CR3BP-SRP are Hamiltonian under the hypothesis of a Sun-pointing deployable

reflective structure (N̂ = r̂). Thus, an energy integral of motion also exists for a Sun-

pointing reflective structure. The energy integral for a Sun-pointing reflective structure

is derived by multiplying the equations of motion in Eq. (3.39) by ẋ (first equation), by

ẏ (second equation) and by ż (third equation). Finally, by summing the three equations,

the energy derivative is:

Ė = ẍẋ+ 2ẏẋ− Vxẋ+ asxẋ+ ÿẏ − 2ẋẏ − Vyẏ + asyẏ + z̈ż − Vz ż + asz ż. (3.79)

For a non-conservative system (general orientation of the reflective structure), the energy

is defined as:

E =
1

2
(ẋ2 + ẏ2 + ż2)− V +

∫
t

as · v dτ. (3.80)

In Eq. (3.80), the integral term is the work of the non-conservative SRP acceleration,

where v is the satellite velocity along its orbit. When, the reflective structure is Sun-

pointing, N̂ = r̂, its possible to write the potential of the SRP force as in Eq. (3.26).

Thus, the energy in Eq. (3.80) assumes its simplified form as:

E =
1

2
(ẋ2 + ẏ2 + ż2)− V + U s. (3.81)

The full expression of the energy integral for a Sun-pointing near perfect reflective struc-

ture is:

E =
1

2
(ẋ2 + ẏ2 + ż2)− 1

2
(x2 + y2)− (1− β)

µSun
rSun−p

− µEarth
rEarth−p

. (3.82)

The energy integral of the CR3BP can be found from Eq. (7.3) for β equal to zero. In

celestial mechanics “−2E” is often used, which is called the Jacobi integral7, C, given

by:

C = −(ẋ2 + ẏ2 + ż2) + 2V − 2U s, (3.83)

for a Sun-pointing reflective deployable structure.

As mentioned in Chapter 2, the Jacobi integral was used by Hill to study the motion of

asteroids in the 3BP and he also introduced the concept of Zero Velocity Curves (ZVCs).

The ZVCs define regions in space where the spacecraft is allowed to move. They have

the advantage of giving a qualitative picture of the motion of the spacecraft under

the influence of the Sun’s and the Earth+Moon barycentre’s gravitational effects. The

7Note that the Jacobi constant is referred in the literature using either the symbol C or J .
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ZVCs for a Sun-pointing deployable reflective structure are given by the intersection of

the energy of the spacecraft with the total potential in Eq. (3.40) plus the contribution

of SRP given by Eq. (3.26). Figure 3.11 shows the potential energy (in pink) as a

function of the x and y coordinates. The Sun and the Earth represent the singularities

in the potential energy; while, the libration points, L1,2,3,4,5, are the stationary points

of the potential energy.

Figure 3.11: Rotating and gravitational potential in the CR3BP-SRP for a
Sun-pointing reflective area.

Figure 3.12 gives qualitative information about the spacecraft motion. Indeed, by fixing

the initial state of the spacecraft, the energy of the spacecraft remain constant as there

are no dissipative effects in the CR3BP-SRP dynamical model for the Sun-pointing case.

The ZVC (dashed black line in the Figure 3.12) is obtained from the intersection of the

energy of the spacecraft with the potential function in Figure 3.11. The grey regions

in Figure 3.12 represents the forbidden area where the motion of the spacecraft is not

physically possible; while, the white area represents regions of possible motion. Figure

3.12 shows the LPO (black line) where the spacecraft is placed. The regions close to

SL1,2 are called “bottle neck” regions.

Figure 3.13 shows a particular case of the ZVCs when the spacecraft has the same energy

as L1 and L2. In the case of L1, the spacecraft can be trapped inside the L1-L2 region

as the bottle neck regions are closed at both L1 and L2. When the bottle neck is closed

at L2, a spacecraft placed in an orbit around the Sun with a Sun-spacecraft distance

bigger than the Sun-L2 distance will never return to the Earth.
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Figure 3.12: Zero velocity curves for a spacecraft in LPO.

The boundaries of the forbidden regions are shown by the black dashed line in Figure

3.12-3.13 and they correspond to a condition where the velocity of the spacecraft is zero.

The condition of forbidden region is defined to be:

C < C∗ (3.84)

where, C and C∗ are, respectively, the Jacobi and the critical Jacobi integrals. In

particular, C∗ is given when the velocity of the spacecraft is set to zero as:

C∗ = 2V − 2U s. (3.85)

Figure 3.14 shows the potential energy for a Sun-pointing reflective area for different

values in the lightness parameter, β. In this figure, it is possible to detect the same

behaviour of Figure 3.6(b) where for β = 0 the CR3BP-SRP becomes the CR3BP with

no SRP effect; while β = 1 is the case of the Kepler problem in a rotating frame. For

β = 1, the SL1 and SL3 points collapse into the centre of mass of the Sun-Earth system.

By observing Figure 3.14, the effect of β changes the shape of the ZVCs for a fixed value

of the energy (−V + U s in the figure). This intuition is the starting point of the design

of the end-of-life disposal in Chapter 7.
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Figure 3.13: Potential energy and zero velocity curves for L1 and L2.

Figure 3.14: Potential energy as a function of the lightness parameter, β, for a
Sun-pointing reflective area.
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3.7 Linearised equations of motion around the libration

points

The scientific advantages of locating a spacecraft in the vicinity of the libration points

were already pointed out in Section 2.1. To investigate the motion of the spacecraft

around the libration points, it is important to study the stability of the equilibrium

points of the non-linear system. The information about the non-linear stability of the

equilibrium points for the non-linear system can be obtained by linearising the equations

of motion, in Eq. (3.39), around the equilibrium points. In this way, it is possible to

provide the variational equations about the equilibrium solutions. These linear varia-

tional equations associated to the libration, Li, or pseudo libration, SLi, points describe

to the position of the libration point about the barycentre. This linear equation can be

determined through a Taylor expansion around Li or SLi.

In order to study the stability of the equilibrium points, Eq. (3.39) is linearised around

the equilibrium points. First, a change of coordinates is made to centre the system in

the equilibrium point, SLi, as follows:

ξ = x− xSLi
η = y − ySLi
ζ = z − zSLi
ξ̇ = ẋ

η̇ = ẏ

ζ̇ = ż

(3.86)

In Eq. (3.86), ξ, η and ζ are the coordinates of the spacecraft in the synodic reference

system with dimensionless coordinates; where, the origin of the system is centred at the

equilibrium point, SLi. Figure 3.15 shows the position of the pseudo libration points

under the influence of SRP acceleration in the synodic reference frame. The Sun-SL3

distance is indicated with γ3; while, the Earth-SL1,2 distances are γ1,2. Moreover, the

system {ξ, η, ζ} centred at the libration points is shown in Figure 3.15 .

By expanding V and as around SLi and adding the change of coordinates of Eq. (3.86)

to Eq. (3.39), the linearised equations become:
ξ̈ − 2η̇ = (V ∗xx + as∗xx)ξ + (V ∗xy + as∗xy)η + (V ∗xz + as∗xz)ζ

η̈ + 2ξ̇ = (V ∗yx + as∗yx)ξ + (V ∗yy + as∗yy)η + (V ∗yz + as∗yz)ζ

ζ̈ = (V ∗zx + as∗zx)ξ + (V ∗zy + as∗zy)η + (V ∗zz + as∗zz)ζ

, (3.87)
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Figure 3.15: Position of the equilibrium points in the rotating system. Definition
of a reference system centred at the libration points; where, γ1, γ2 and γ3 are
the relative distances between the libration points and the closest primary.

where, the symbol ∗ means that the variables are evaluated at the equilibrium point SLi.

Eq. (3.87) can be rewritten in a vectorial way as:

d

dt



ξ

η

ζ

ξ̇

η̇

ζ̇


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

V̄ ∗xx V̄ ∗xy V̄ ∗xz 0 2 0

V̄ ∗yx V̄ ∗yy V̄ ∗yz −2 0 0

V̄ ∗zx V̄ ∗zy V̄ ∗zz 0 0 0





ξ

η

ζ

ξ̇

η̇

ζ̇


. (3.88)

In Eq. (3.88), V̄ ∗rr includes the effect of the total potential, V ∗rr, and of the SRP accel-

eration, a∗rr, evaluated at the equilibrium point. When the effect of SRP corresponds

to a Sun-pointing reflective area, the collinear equilibrium points are aligned along the

x-axis; thus, ySLi = zSLi = 0 as shown in Figure 3.5. In some cases, the effect of SRP

affects the stability of the collinear equilibrium points as a consequence of the effect of

the orientation angles.

In Eq. (3.88), the double derivatives of the total potential, V , and the SRP acceleration,

as, are shown in Appendix C.6 and Appendix C.7 respectively. Eq. (3.88) can be written

in a more compact way as:

Ẋ = A∗ ·X, (3.89)

where, the matrix A∗ is written as:

A∗ =

[
0 I

V̄ ∗rr 2J

]
J =

 0 1 0

−1 0 0

0 0 0

 V̄ ∗rr = V ∗rr + a∗rr. (3.90)

The stability of the equilibrium points can then be studied by solving the eigenvalues

problem of matrix A∗.
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3.7.1 Stability of the equilibrium points

In Section 2.2, it was mentioned that the collinear equilibrium points of the CR3BP are

unstable. This can be easily verified by setting the SRP acceleration to zero in Eq. (3.88)

moreover, by computing the eigenvalues of the matrix A∗. In this case, six eigenvalues

exist two real and opposite sign roots that correspond to the hyperbolic equilibrium

and two couples of imaginary roots with opposite signs that identify the in-plane and

the out-of-plane centre respectively. When the effect of SRP is taken into account, it is

important to verify how the stability of the equilibrium points changes. It was verified

that the solutions of the pseudo collinear points are still of the saddle×centre×centre

type for a Sun-pointing sail as the effect of β does not affect the stability of a Sun-

pointing reflective structure.

For a Sun-pointing structure, the eigenvalues of the matrix A∗ can be found through its

characteristic polynomial. As the in-plane and the out-of-plane dynamics of the CR3BP-

SRP are decoupled, it is possible to study the eigenvalues for the planar equations

of motion in x and y and then extend the study to the third dimension. Thus, the

characteristic equation of matrix A∗ for the x-y plane is given by:

Λ2 + (4− V̄ ∗xx − V̄ ∗yy)Λ+ V̄ ∗xxV̄
∗
yy − V̄ ∗

2

xy = 0, (3.91)

where Λ = λ2. Through the definition of:

β1 = 4− V̄ ∗xx − V̄ ∗yy β2 = V̄ ∗xxV̄
∗
yy − V̄ ∗

2

xy , (3.92)

the solutions are:

Λ1 =
−β1 +

√
β2

1 − 4β2

2
> 0, (3.93)

and

Λ2 =
−β1 −

√
β2

1 − 4β2

2
< 0. (3.94)

Finally, the four eigenvalues are of the type:

λ1 = ±
√
Λ1 = ±λ λ2 = ±

√
Λ2 = ±ω · i, (3.95)

where, i is the complex unit and λ and ω are:

λ =

√
−β1 +

√
β2

1 − 4β2

2
ω =

√
β1 +

√
β2

1 − 4β2

2
. (3.96)

This means that λ1 and λ2 are real and λ3 and λ4 are imaginary. Finally, the equation

along the third dimension ζ is:

ζ̈ − V̄ ∗zzζ = 0, (3.97)



Chapter 3 Circular Restricted Three-Body Problem 77

and the characteristic equation is:

ζ2 − V̄ ∗zz = 0 ζ = ±
√
|V̄ ∗zz|i ν =

√
|V̄ ∗zz|, (3.98)

thus, λ5 and λ6 are imaginary roots.

When β is fixed (δ = 0◦ and α = ±90◦) and the equilibrium points belong to the x-

z plane (as shown in Figure 3.8), they are all saddle×centre×centre equilibrium. The

equilibrium points that lie in the x-y plane are obtained if we hold on δ equal to 90◦ allow

α to vary between ±90◦ (as shown in Figure 3.10). In this case, the equilibrium points

show variations in the stability, Figure 3.16-3.17; where, the in-plane centre equilibrium

degenerates in a stable or unstable focus at a specific value of α.

Figure 3.16 and Figure 3.17 show the eigenvalues of the matrix A∗ for the pseudo

equilibrium points close to L1, in Figure 3.10(a), and L2, in Figure 3.10(b), respectively.

The equilibrium solutions correspond to the hyperbolic×focus×centre equilibrium due

to displacements of the equilibrium points along the y-axis (Figure 3.10) (Farrés, 2009).
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Figure 3.16: Eigenvalues of SL1.
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Figure 3.17: Eigenvalues of SL2.
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Figure 3.18 shows a schematic representation of the eigenvalues of the matrix A∗ un-

der different SRP conditions. In the case of the CR3BP and the CR3BP-SRP for a

Sun-pointing or for equilibrium points in the x-z plane, the equilibrium points are all

hyperbolic×centre×centre equilibrium. In the case of the CR3BP-SRP for equilibrium

points that belong to the x-y plane, the equilibrium points are hyperbolic×stable or

unstable focus×centre. The stable focus corresponds to equilibrium points with α > 0◦;

while, the unstable focus corresponds to equilibrium points with α < 0◦.

Figure 3.18: Eigenvalues of matrix A∗ for the CR3BP and the CR3BP-SRP. In
the case of the CR3BP-SRP, the stability is studied for a Sun-pointing surface,
for equilibrium points in the x-z plane and for equilibrium points in the x-y
plane.

3.8 Design of periodic orbits around the libration points

As mentioned in Chapter 2, the design of periodic orbits around the collinear points is not

an easy task due to the existence of the hyperbolic equilibrium that makes them highly

unstable. The computation of LPOs requires to the instabilities (hyperbolic manifold)

to be removed. In this thesis, the computation of the central manifold, introduced in

Section 2.2, was done in two ways: through a semi-analytical approach and numerical

methods.
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3.8.1 Semi-analytical approach

The computation of LPOs can be done through a semi-analytical approach (Richard-

son, 1980; Canalias et al., 2003). With respect to Richardson (1980); Canalias et al.

(2003), the effect of SRP is added. For a Sun-pointing reflective structure, the linearised

equations of motion are:

d

dt



ξ

η

ζ

ξ̇

η̇

ζ̇


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 + 2c2,β 0 0 0 2 0

0 1− c2,β 0 −2 0 0

0 0 −c2,β 0 0 0





ξ

η

ζ

ξ̇

η̇

ζ̇


, (3.99)

where, c2,β is a constant that depends on the position of the pseudo libration points

SL1,2,3 and on the lightness parameter, β. The full derivation of Eq. (3.99) is given in

Appendix C.8. Thus, the analytical solution of Eq. (3.99) for a saddle×centre×centre

equilibrium is:



ξ = A1e
λt +A2e

−λt +A3 cos(ωt) +A4 sin(ωt)

η = c ·A1e
λt − c ·A2e

−λt + k ·A3 cos(ωt)− k ·A4 sin(ωt)

ζ = A5 cos(νt) +A6 sin(νt)

ξ̇ = λ ·A1e
λt − λ ·A2e

−λt − ωA3 sinωt+ ωA4 cosωt

η̇ = λc ·A1e
λt + λc ·A2e

−λt + ωk ·A3 cosωt+ ωk ·A4 sinωt

ζ̇ = −ν ·A5 sin νt+ ν ·A6 cos νt.

(3.100)

By using the definition of V̄ ∗xx, V̄ ∗yy and V̄ ∗xy as shown in Appendix C.8, β1 and β2 in Eq.

(3.92) can be rearranged as β1 = 2− c2,β and β2 = 1 + c2,β − 2c2
2,β respectively, λ, ω and

ν are expressed as:

λ =

√√√√c2,β − 2 +
√

9c2
2,β − 8c2,β

2
, ω =

√√√√2− c2,β +
√

9c2
2,β − 8c2,β

2
, ν =

√
c2,β;

(3.101)

while, the constants k and c are defined as:

c =
λ2 − 1− 2c2,β

2λ
k =
−ω2 − 1− 2c2,β

2ω
. (3.102)

In Eq. (3.100), the A1 and A2 amplitudes are associated to the unstable and stable

invariant manifolds respectively; while, A3,4 are the amplitudes associated to the in-

plane centre and A5,6 are associated to the out-of-plane centre. The centre solution can

be thus found analytically by imposing A1 = A2 = 0. Moreover, it is convenient to

define the remaining amplitudes as: A3 = Ax cosΦ, A4 = −Ax sinΦ, A5 = Az cosΨ and
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A6 = −Az sinΨ such that Eq. (3.100) turns into:

ξ = Ax cos(ωt+ Φ)

η = kAx sin(ωt+ Φ)

ζ = Az cos(νt+ Ψ)

ξ̇ = −ωAx sin(ωt+ Φ)

η̇ = kωAx cos(ωt+ Φ)

ζ̇ = −νAz sin(νt+ Ψ).

(3.103)

In Eq. (3.103), the LPOs are expressed by the amplitudes along the x-, y- and z-axis,

their frequencies, ω and ν, and phases, Φ and Ψ . When ω 6= ν, the LPO is a Lissajous

type orbit; while, when ω = ν, the LPO is a halo orbit. This analytical formulation has

the advantage of computing the state of the spacecraft in the libration point reference

frame from the amplitudes and vice versa through the following transformations:
ξ

η

ξ̇

η̇

 =


eλt e−λt cosωt sinωt

ceλt −ce−λt k sinωt −k cosωt

λeλt −λe−λt −ω sinωt ω cosωt

cλeλt cλe−λt kω cosωt kω sinωt

 ·


A1

A2

A3

A4

 (3.104)

{
ζ

ζ̇

}
=

[
cos νt sin νt

−ν sin νt ν cos νt

]
·

{
A5

A6

}
, (3.105)

where, the inverse transformations are:
A1

A2

A3

A4

 =


− kω

2d1
e−λt ω

2d2
e−λt k

2d2
e−λt 1

2d1
e−λt

− kω
2d1
eλt − ω

2d2
eλt − k

2d2
eλt 1

2d1
eλt

cλ
d1

cosωt λ
d2

sinωt − c
d2

sinωt − 1
d1

cosωt
cλ
d1

sinωt − λ
d2

cosωt c
d2

cosωt − 1
d1

sinωt

 ·


ξ

η

ξ̇

η̇

 (3.106)

and {
A5

A6

}
=

[
cos νt − 1

ν sin νt

sin νt 1
ν cos νt

]
·

{
ζ

ζ̇

}
, (3.107)

where, d1 = cλ− kω and d2 = cω + kλ. This analytical formulation has the advantage

of studying the motion of the spacecraft in the phase space.

3.8.2 Differential correction

Besides the semi-analytical methods, the computation of periodic or quasi-periodic or-

bits can be achieved using a numerical method. This numerical method is known as

Differential Correction. This method uses an analytical approximation as a first guess

and it produces the initial conditions that belongs to the LPOs through an iterative

numerical computation. The differential correction, also known as shooting method,



82 Chapter 3 Circular Restricted Three-Body Problem

uses a process of targeting to find the LPO. The LPO trajectory is indicated as X̄(t),

which is the reference trajectory. Thus, starting from an initial state X̄(t0) the aim is

to reach the final state X̄(t1) under the effect of the natural dynamics in Eq. (3.39).

This can be done by adjusting the initial state, X̄(t0), through small variations, δX̄(t0),

such that the corrected trajectory will reach the desired state, X̄(td), close to X̄(t1).

The differential correction is essentially a modified version of the Newton method, that

aims to find the zero of a function by changing the initial conditions (Koon et al., 2008).

The Eq. (3.39) can be written in a compact way such as:

Ẋ = f(X). (3.108)

In Eq. (3.108), the trajectories with X(t0) = X0 can be indicated as Φ(t, t0); where,

Φ(t, t0) : X0 −→ X(t1) is the flow map of the dynamical system in Eq. (3.108) and

is indicated as Φ(t;X0). The flow map tracks the evolution of a small set of initial

conditions at time, t0, to their location at time, t and it satisfies the equations of motion

such as:

Φ̇(t;X0) = f(Φ(t;X0)) with Φ(t0;X0) = X0. (3.109)

A trajectory X̄(t) that starts from a perturbed initial condition such as X̄0 + δX̄0 at

time t0 will evolve as:

δX̄(t) = Φ(t; X̄0 + δX̄0)− Φ(t; X̄0). (3.110)

By measuring Eq. (3.110) at time t1 and by expanding the right hand side in a Taylor

series, we have:

δX̄(t1) =
∂Φ(t1, X̄0)

∂X0
δX̄0 +O(2). (3.111)

In Eq. (3.111) the matrix ∂Φ(t1,X̄0)
∂X0

= Φ(X0, t1) is named the State Transition Matrix

(STM) and it is indicated with the symbol Φ(X0, t1). This matrix plays an important

role in the differential correction and it gives the linear relationship between initial and

final variations. The STM computation is shown in Appendix C.9.

The computation of PO through a differential correction method is presented here. PO

in the x-y plane shows a symmetry along the x-axis. Having a symmetry along the

x-axis for a PO, means that the spacecraft crosses the x-axis twice with its velocity

being parallel to the y-axis (or perpendicular to the x-axis). It is possible to solve

half of the problem of generating the entire orbit, by adjusting the initial condition

(X0) for reaching the final condition (X1) state after half a period, t1 = T/2. The

state vector for a planar orbit is defined such that X(t) = {x(t), y(t), ẋ(t), ẏ(t)}. For

the condition of a planar periodic x-axis symmetric solution, the position in y and the

velocity in x should be zero at t0 = 0. Then, the state vectors are respectively defined
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as X(t0) = {x(t0), 0, 0, ẏ(t0)} and X(t1) = {x(t1), 0, 0, ẏ(t1)}. The system of Eq. (3.39)

turn into: {
ẍ− 2ω̄ẏ = Vx + asx

ÿ + 2ω̄ẋ = Vy + asy
. (3.112)

For numerical reasons, the system needs to be written as four first-order equations

by redefining the state vector as X = {x1, x2, x3, x4} = {x, y, ẋ, ẏ} or more simply

X = {x1, x2, x3, x4} = {x, y, vx, vy}; thus, Eq. (3.112) turns into:
ẋ1 = x3

ẋ2 = x4

ẋ3 = 2x4 + ∂V
∂x1

+ ∂as

∂x1

ẋ4 = −2x3 + ∂V
∂x2

+ ∂as

∂x2

. (3.113)

The system in Eq. (3.113) can be represented in the compact form as in Eq. (3.112).

The STM is the solution of the differential equation as shown in Appendix C.9. For a

planar, symmetric and periodic orbit, the initial value of X is set to {x, 0, 0, vy}. After

half a period, Φ(X, T1/2) = {x̃, 0, ṽx, ṽy}; the correction procedure should ensure that

ṽx = 0. The differential correction changes the initial value of X in terms of velocity

vy0 , with fixed initial position x0, until the algorithm converges to a final null velocity

(vx1 = 0) at T/2. This is done through:

Φ(X+∆X, T1/2 +∆T ) = Φ(X, T1/2) +

[
∂Φ(X, T1/2)

∂X

]
∆X+

∂Φ(X, T1/2)

∂t
∆t. (3.114)

Since the choice is restricted to the initial condition, where ∆X = {∆x, 0, 0, ∆vy}, and,

having fixed the initial condition in x, ∆x = 0 was imposed. Then, this provides the

velocity along y-axis,

∆vy = −(φ34 −
f3φ24

f2
)−1ṽx, (3.115)

and the T/2 value. Finally, the initial value of X is modified as follow at every new

iteration:

Xi+1 = Xi +∆X =


xi

0

0

viy

+


0

0

0

∆vy

 . (3.116)

A complete derivation of this algorithm is reported in the Appendix C.10, and can be

found in: Koon et al. (2008); Stramacchia et al. (2016); Thurman and Worfolk (1996).

This algorithm is useful when generating POs within the same family; however, when

studying the interaction within different families, it seems more convenient to write

a differential correction algorithm by fixing the energy (E0) instead of the position

(x0). The derivation of this modified differential correction algorithm can be found in

Appendix C.11; only the final results are shown here. In this new differential correction

algorithm, the derivative of the energy formulation, Eq. (3.79) is added to Eq. (3.113).
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As before, the choice of the initial condition is restricted to ∆X = {∆x, 0, 0, ∆vy} by

fixing the initial energy E (∆E = 0), so, at the end, this will provide the initial position

∆x and velocity ∆vy. Then, at every new iteration the initial guess is modified as follow:

Xi+1 = Xi +∆X =



xi

0

0

viy

Ei


+



0

0

0

∆vy

∆E


. (3.117)

3.9 Numerical continuation

The numerical continuation is needed when generating families of periodic orbits. Usu-

ally, the families of periodic orbits are designed by progressively increasing their ampli-

tude, by perturbing the previous PO initial conditions (Koon et al., 2008). Therefore,

a small variation in the initial conditions are allowed since not any set of initial solu-

tions converge when corrected with the differential correction method. However, the

main subject of this work is not to generate families of POs, but to design and control

unstable trajectories among and from them.

For the design of POs such as family-g and -a (introduced in Section 2.2.1), the initial

guess solution of one PO of family-g given by Hénon (1968) was used. Then it was

adjusted with the differential correction by imposing β = 0 and the in-plane angle equal

to 0◦. At this point, β was increased, keeping the spacecraft Sun-pointing and the previ-

ously corrected solution was used to generate the new orbit. This numerical continuation

is based on slightly increasing β and using the previous PO’s corrected solution as the

initial guess. In this way, it was possible to compute the PO by introducing the SRP

acceleration. The same principle was used for halo orbits under the effect of SRP.

3.10 Orbit stability

In this section, the stability of POs was analysed. Therefore, a stability criteria should

be defined. The two tools commonly used for testing the stability of LPOs are the

stability index, k, which is an analytical approach (Broucke, 1968), and the Poincaré

section which is a numerical method (Koon et al., 2008).

The stability index is defined from the eigenvalues of the Monodromy Matrix, M , that

is the STM evaluated after one orbital period, T , as shown in Appendix C.9. The

study of the stability of the eigenvalues of M gives information about the overall orbit’s

stability. For a planar PO, four eigenvalues of M exists; while, for halo obits there are

six eigenvalues. The stability index is only an approximation of the stability condition,
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which is less accurate when the eigenvalues of the monodromy matrix are large. The

state transitional matrix, Φ(X0, t), for a PO can be computed numerically by integrating

the linearised equations (Appendix C.9) along one orbital period, T . The monodromy

matrix of an autonomous Hamiltonian system has the characteristic of being symplectic;

therefore, if λ and λ̄ are eigenvalues of M , also their inverse λ−1 and λ̄−1 are eigenvalues

of M . Moreover, for a planar orbit in the CR3BP-SRP, one pair of eigenvalues are

equal to unity (λ1 = λ2 = λ̄ = 1), and the other pair are real (λ3 = λ > 1 and

λ4 = 1/λ3 = 1/λ). The stability index, k, can now be computed numerically as (Broucke,

1968):

k = tr(M)− 2 ' λ+
1

λ
.8 (3.118)

The PO is stable if k is within the range of ±2. When studying the eigenvalues and

eigenvectors of the monodromy matrix, we are looking at the stability of an orbit per-

turbed in its initial conditions (Deprit and Henrard, 1967). This is the reason why the

stability index is only an approximation of the stability for large eigenvalues.

A numerical method to study the PO stability is through the Poincaré section. The

equations of motion are numerically integrated for several orbital periods (from t0 = 0

to t1 = q · T , with q real). Then, the intersection of the trajectory with the y = 0 plane

is recorded at the chosen, Poincaré section as shown in Figure 3.19. For every orbital

period, if the spacecraft passes through the neighbourhood of the initial condition, then

the orbit remains stable. If instead the solution diverges from the original condition the

PO is unstable. In this thesis, both the stability index and the numerical method have

been used when verifying the PO stability.

Figure 3.19: Qualitative picture of the Poincaré section. X0, XT and X2T

are the intersections of the trajectory with the Poincaré section at the initial
condition, after one period, T , and after two periods, 2T .

8tr(M) is the trace of the monodromy matrix, and it is defined as: tr(M) = λ1 + λ2 + λ3 + λ4 =
1 + 1 + λ+ 1

λ
, where λ > 1



86 Chapter 3 Circular Restricted Three-Body Problem

3.11 Computation of the invariant manifolds associated to

periodic orbits

The direction of the stable and unstable manifolds are given by the eigenvalues and the

eigenvectors of the monodromy matrix (Koon et al., 2008). Having previously discussed

the structure of the eigenvalues in Section 3.10, now the focus is on the computation

of the eigenvectors of the stable, Y s(λ4) and unstable, Y u(λ3) directions. Thus, it is

possible to compute the stable, Eq. (3.119), and unstable, Eq. (3.120), manifolds as

follow:

Xs(X0) = X0 + εY s(X0) (3.119)

and,

Xu(X0) = X0 + εY u(X0), (3.120)

where, X0 is the initial condition of the integration, i.e., the state vector along the PO.

Then, the state vectors Xs and Xu are used as the initial condition for the integration

of the non-linear dynamics which gives the manifold trajectories. Moreover, ε is a small

perturbation from X0. Gómez et al. (2001) suggests a value of ε around 10−6, which

corresponds to a displacement error in the spacecraft’s position of 200 km. For a generic

starting point along the orbit, the stable and unstable manifolds can be computed as:

Xs(Xorbit(t)) = Xorbit(t)± ε
Y s(X(t))

||Y s(X(t))||
(3.121)

and,

Xu(Xorbit(t)) = Xorbit(t)± ε
Y u(X(t))

||Y s(X(t))||
. (3.122)

In Eq. (3.121) and Eq. (3.122), Y s(X(t)) and Y u(X(t)) should be normalised since the

state transition matrix does not preserve the norm. In this case, Y s(X0) and Y u(X0)

are the stable and unstable eigenvectors of the monodromy matrix at t0 + T , thus:

Xs(X(t)) = Xorbit(t)± ε
Φ(X0, t)Y

s(X0)

||Φ(X0, t)Y s(X0)||
(3.123)

and,

Xu(X(t)) = Xorbit(t)± ε
Φ(X0, t)Y

u(X0)

||Φ(X0, t)Y u(X0)||
. (3.124)

For the numerical computation of the unstable vector in Eq. (3.124), a forward integra-

tion in time for both +ε and −ε is required. Whereas, in the case of the stable vector

in Eq. (3.123), a backwards integration in time for both ±ε is needed. Therefore, the

manifolds are found by integrating forward and backward Xu(X(ti)) and Xs(X(ti));

where X(ti) is the state vector along the periodic orbit.
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The manifolds are an essential tool for the feedback Hamiltonian structure preserving

control (see Chapter 5), the design of transfers (see Chapter 6) and for the end-of-

life disposal (see Chapter 7). These techniques are enhanced by SRP acceleration and

exploit the natural dynamics of the libration points.
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3.12 Summary

This chapter has been devoted to presenting the dynamical model in the circular re-

stricted three-body problem, with particular attention to the solar radiation pressure

modelling and the conversions adopted. This chapter has also presented numerical dy-

namical system tools that are used throughout the thesis:

• Two methods to design the spacecraft’s target orbit were presented: a semi-

analytical approach and a numerical method. The semi-analytical approach is

adopted to design transfer trajectories within the Sun-Earth system (Chapter 6);

while a numerical method is chosen to design the target LPO for orbit control

(Chapter 5), and for the end-of-life disposal (Chapter 7);

• The semi-analytical approach for the design of quasi-periodic orbits was presented

here for a special case where the spacecraft is Sun-pointing. A good understand-

ing of the Sun-pointing solution is necessary to comprehend the derivation of a

spacecraft with a general orientation. The general solution for complex roots

that corresponds to equilibrium points displaced in the y-axis will be presented in

Chapter 6;

• The computation of the invariant manifolds associated to the periodic orbit is a

fundamental tool for the design of low-energy manoeuvres (Chapter 5-7);

• The study of the stability of libration points under the influence of solar radiation

pressure affects the motion of the spacecraft and it is exploited for the space-

craft’s trajectories control and design. For example, Chapter 5 makes use of the

monodromy matrix and its stability properties for the design of the Hamiltonian-

structure preserving control;

• The stability of periodic orbit is widely used as an indicator of the control law

performance, Chapter 5;

• The zero-velocity curves are a useful dynamical system tool that is used in this

thesis for the design of the spacecraft’s end-of-life disposal, 7.

An understanding of these tools is, therefore, an essential foundation for detailed work

presented in the following chapters.

A natural extension of the CR3BP is the elliptic restricted three-body problem. The

ER3BP includes the effect of the Earth’s orbit eccentricity onto the spacecraft’s dynam-

ics. This represents a further more accurate model compared with the CR3BP. The

ER3BP shares the same principles of the CR3BP where the major differences between

the two approximations need to be further explored in next chapter.



Chapter 4

Elliptic Restricted Three-Body

Problem

The elliptic restricted three-body problem is a natural extension of the circular restricted

three-body problem, where the effect of the Earth’s orbit eccentricity is taken into ac-

count. In this model, the motion of the Sun and Earth+Moon has an elliptic orbit in the

two-body problem; thus, the angular velocity is no longer a constant (Szebehely, 1967).

When the effect of solar radiation pressure is taken into account, the ER3BP becomes

the ER3BP-SRP.

In this chapter, particular attention is given to the definition of the reference frames, the

conversion from dimensional inertial coordinates (sidereal reference frame) to rotating

dimensionless coordinates (synodic reference frame) and in the approximation of the

zero velocity curves.

The major research contributions of this chapter are section listed:

• Section 4.3.1 shows the analytical expression of the energy associated to the libra-

tion points for a Sun-pointing spacecraft,

• Section 4.4.2 presents the definition of surface of minimum energy extended for a

Sun-pointing spacecraft,

• Section 4.4.3 demonstrates that the approximation made with the surface of min-

imum energy is different from minimising the integral of the extra energy effect

associated to the Earth orbit eccentricity, and

• Section 4.4.4 compares different approximations of the zero-velocities curves for the

elliptic dynamics available in literature by giving and insight of the zero velocity

curves behaviour with the spacecraft’s dynamics.

89
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Section 4.3.1, Section 4.4.2, Section 4.4.3 and Section 4.4.4 are part of an under review

publication (Soldini et al., 2015b).

4.1 Reference frames

In the case of the elliptic problem, it is necessary to define three reference frames to

describe the motion of the spacecraft: the sidereal (inertial) frame, the synodic (rotating)

frame, where now the angular velocity is not uniform, and a perifocal (orbit) reference

frame. Both the sidereal and the synodic reference frames were already introduced in

Figure 3.1 in Section 3.1; while, the perifocal reference frame was presented in Chapter

2 and in Appendix B.1.

4.1.1 Conversion from the dimensional sidereal to the dimensionless

synodic coordinates

The rotation matrix between the sidereal and perifocal reference frames is necessary

when starting from a set of initial conditions expressed in the sidereal reference frame

(i.e. spacecraft’s ephemeris). Starting from the spacecraft’s ephemeris available from

Horizon (the NASA on-line spacecraft trajectory catalogue) expressed in the sidereal

reference frame, a conversion is needed to describe the spacecraft’s position and velocity

in the synodic reference frame. A rotation is first required to change the coordinates

from the sidereal to the perifocal reference frame as shown in Figure B.1 of Appendix

B.1. The second rotation is then needed to move from the perifocal to the synodic

reference frame, where the synodic reference frame rotates around the h-axis with a

rotation angle equal to the true anomaly angle, f (defined in Appendix B.1).

The two rotations involved are derived here, where the rotation matrix from a perifocal

reference frame to a rotating reference frame is:

C2 =

 cos(f) sin(f) 0

− sin(f) cos(f) 0

0 0 1

 , (4.1)

and the rotation matrix from an inertial reference frame to a perifocal reference frame

is:

C1 =

 c(Ω)c(ω)− s(Ω)s(ω)c(i) s(Ω)c(ω) + c(Ω)s(ω)c(i) s(ω)s(i)

−c(Ω)s(ω)− s(Ω)c(ω)c(i) −s(Ω)s(ω) + c(Ω)c(ω)c(i) c(ω)s(i)

s(Ω)s(i) −c(Ω)s(i) c(i)

 ; 1 (4.2)

1s(�) and c(�) denotes sin(�) and cos(�), respectively.
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thus, the overall rotation from inertial to rotating reference frame is:

Cri = C2C1, (4.3)

which is function of the true anomaly angle, f , of the Earth+Moon barycentre around

the Sun, the longitude of the ascending node, Ω, and the argument of pericenter ω. These

parameters are introduced in Appendix B.1. The derivative of the rotation matrix is

then constructed as:

Ċri = Ċ2C1 +C2Ċ1, (4.4)

where Ċ2 is defined to be:

Ċ2 =

 − sin(f) cos(f) 0

− cos(f) − sin(f) 0

0 0 1

 · ḟ , (4.5)

and Ċ1 is defined as:

Ċ1 =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (4.6)

The components of Eq. (4.6) are specified as follows:

c11 = −s(Ω)c(ω)Ω̇ − c(Ω)s(ω)ω̇ − c(Ω)s(ω)c(i)Ω̇ − s(Ω)c(ω)c(i)ω̇ + s(Ω)s(ω)s(i)i̇,

c12 = c(Ω)c(ω)Ω̇ − s(Ω)s(ω)ω̇ − s(Ω)s(ω)c(i)Ω̇ + c(Ω)c(ω)c(i)ω̇ − c(Ω)s(ω)s(i)i̇,

c13 = c(ω)s(i)ω̇ + s(ω)c(i)i̇,

c21 = s(Ω)s(ω)Ω̇ − c(Ω)c(ω)ω̇ − c(Ω)c(ω)c(i)Ω̇ + s(Ω)s(ω)c(i)ω̇ + s(Ω)c(ω)s(i)i̇,

c22 = −c(Ω)s(ω)Ω̇ − s(Ω)c(ω)ω̇ − s(Ω)c(ω)c(i)Ω̇ − c(Ω)s(ω)c(i)ω̇ − c(Ω)c(ω)s(i)i̇,

c23 = −s(ω)s(i)ω̇ + c(ω)c(i)i̇,

c31 = c(Ω)s(i)Ω̇ + s(Ω)c(i)i̇,

c32 = s(Ω)s(i)Ω̇ − c(Ω)c(i)i̇,

c33 = −s(i)i̇,
(4.7)

where, ω̇, i̇ and Ω̇ are the angular velocities of the argument of pericenter, ω, the

inclination, i, and the ascending node, Ω, respectively. ω, i and Ω are angles measured

in radians and are defined in Appendix B.1.
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Starting from an orbit described in the sidereal reference frame in dimensional coordi-

nates (ri) it is possible to find the correspondent non-dimensional coordinates in the

ER3BP-SRP synodic reference frame (r) as follows. The pulsating and dimensionless

positions in the rotating reference frame are:

r = Cri
ri
r
, (4.8)

where, ri are the dimensional sidereal coordinates and r is defined in Eq. (B.1) of

Appendix B.1. For small inclinations of the ecliptic on the order of 10−6 radians, the

rotational matrix is defined as:

Cri =

 cos(f +Ω + ω) sin(f +Ω + ω) 0

− sin(f +Ω + ω) cos(f +Ω + ω) 0

0 0 1

 . (4.9)

The velocity expressed in the synodic reference frame is given by deriving Eq. (4.8) as

(Goméz et al., 1991):

ṙ = Cri
ṙi
r

+ Ċri
ri
r

+ Criri
d

dt

1

r
, (4.10)

where, the derivative of the rotating matrix, Ċri, is:

Ċri(t) =

 − sin(f +Ω + ω) cos(f +Ω + ω) 0

− cos(f +Ω + ω) − sin(f +Ω + ω) 0

0 0 0

 · (ḟ + Ω̇ + ω̇
)
. (4.11)

In the case analysed, the variation of Ω and ω due to perturbations are very small so

their derivatives can be ignored. The derivative in f must be considered and ḟ can be

defined starting from the actual angular velocity of the Sun-(Earth+Moon) system and

is described in the ephemeris model as:

ω =
rEM−Sun × vEM−Sun
‖ rEM−Sun ‖2

(4.12)

where, rEM−Sun and vEM−Sun are the Earth+Moon’s distance and velocity with respect

to the Sun viewed from an inertial reference frame.

ḟ is approximated with the third component of ω in Eq. (4.12) as:

ḟ = ωz. (4.13)

In the ER3BP approximation, the Sun and the Earth+Moon belongs to the xi-yi sidereal

and x-y synodic reference planes where the zi-axis is parallel to the z-axis. Thus, the

two frames rotates with angular velocity, ω =
{

0, 0, ḟ
}

, along the zi-axis, defined as in
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Eq. (4.13). In general, the Sun and the Earth+Moon orbit plane shows an inclination,

i, with respect to the inertial reference plane (Appendix B.1) where Eq. (4.12) gives the

angular velocity as viewed from the inertial frame of the NASA’s ephemeris model. The

ER3BP approximation uses Eq. (4.13) to propagate the spacecraft’s dynamics where ωz

is computed from the third component of Eq. (4.12).

Given the initial conditions in the pulsating coordinates, the dynamics are then propa-

gated using the angular velocity given by Kepler’s third law which is (Battin, 1978):

ḟ =
h

r2
=
µ

1
2 (1 + e cos f)

1
2

a
3
2 (1− e2)

3
2

, (4.14)

where, h is the angular momentum, µ is G ·(MSun+mEarth+Moon) and G is the constant

of gravitation. In Eq. (4.14), a is the semi-major axis and e is the orbit eccentricity (see

Appendix B.1). The derivative of the dimensionless coordinate in Eq. (4.10) is:

d

dt

1

r
= −a(1− e2)e sin fḟ

(1 + e cos f)2r2
. (4.15)

Thus, the velocity transformation in Eq. (4.10) can be written as:

ṙ = Cri
ṙi
r

+ Ċri
ri
r
−Criri

a(1− e2)e sin fḟ

(1 + e cos f)2r2
. (4.16)

The equations of motion in the ER3BP are written in a non-dimensional, non-uniformly

rotating (synodic reference frame) and pulsating frame in which the equations of motion

have the simplest form. The pulsating coordinates have the advantage of keeping fixed

the positions of the Sun and the Earth+Moon as viewed from a synodic reference frame.

Thus, the spacecraft’s position and velocity are now functions of f . When using a

pulsating reference frame, the derivative of the position with respect to f is required.

In order to have derivatives with respect to f , it is necessary to define ḟ as shown in

Eq. (4.14) and derive them through the inverse function rule. By using the Leibniz’s

notation, the derivatives are:

dr

df
= r′ =

dr

dt

1

df/dt
. (4.17)

The symbol �′ denotes the derivation with respect to the true anomaly while �̇ denotes

the derivation with respect to the time. The velocity in pulsating coordinates is then:

r′ = Cri
ṙi

rḟ
+ Ċri

ri

rḟ
−Criri

a(1− e2)e sin f

(1 + e cos f)2r2
. (4.18)

As a test case, the ephemeris of the Gaia spacecraft in a sidereal reference frame in

dimensional coordinates (Alessi et al., 2014) was transformed to synodic non-dimensional
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coordinates in the osculating R3BP (Goméz et al., 1991; Colombo et al., 2014c). This

full body transformation is compared to the one in the ER3BP explained above in Figure

4.1. The two solutions were compared when the spacecraft performs one year of its orbit

from 1/4/2019 to 1/4/2020. It is important to note that the ER3BP-SRP is a good

approximation of the high fidelity model as shown for Gaia’s positions and velocities,

displayed in Figures 4.2(a) and 4.2(b) respectively.
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Figure 4.1: Gaia orbit in a synodic reference frame from 1/4/2019 to 1/4/2020:
Sun-(Earth+Moon) barycentre. The black continuous line is the trajectory after
the transformation to the ER3BP, while the dashed gray line is the one in the
osculating CR3BP.
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(a) Gaia’s positions along the nominal LPO.
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(b) Gaia’s velocities along the nominal LPO.

Figure 4.2: Comparison of the ephemeris and ER3BP models of Gaia’s
state vectors in a synodic reference frame from 1/4/2019 to 1/4/2020: Sun-
(Earth+Moon) barycentre.

4.2 Equations of motion for a Sun-pointing reflective struc-

ture

The dynamics of the ER3BP, with the effect of solar radiation pressure for a Sun-pointing

reflective surface are written in a non-dimensional, non-uniformly rotating and pulsating

reference frame (Szebehely and Giacaglia, 1964; Baoyin and McInnes, 2006), where as

said the motion of the Earth+Moon around the Sun is described by an ellipse under the

two-body problem approximation in Eq. (B.1).

The equations of motion for the non-dimensional synodic frame are (Luk’yanov, 2005):
x′′ − 2y′ = Ωx

y′′ + 2x′ = Ωy

z′′ = Ωz

(4.19)

where, x, y and z are the spacecraft’s coordinates (non-dimensional) in the synodic

frame centred at the Sun-(Earth+Moon) barycentre. Ω is the total potential function

of the reference frame defined as:

Ω =
1

(1 + e cos f)

[
1

2
(x2 + y2 − ez2 cos f) + V

]
, (4.20)

where, V is the potential of the gravitational effect and of SRP and it is defined as in Eq.

(3.40). As shown in Eq. (3.40), for a Sun-pointing deployable structure, V is defined as:

V = (1− β)
µSun
rSun−p

+
µEarth
rEarth−p

. (4.21)
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In Eq. (4.21), rSun−p and rEarth−p are defined in Eq. (3.43) and Eq. (3.44), respectively.

µSun, µEarth and β were previously defined for the CR3BP in Section 3.4.2. The full

derivation of the equations of motion in Eq. (4.19) is given in Appendix D.

Moreover, the transformation that converts dimensional coordinates (rd [km] and ṙd

[km s−1]) in the synodic frame from the non-dimensional pulsating coordinates (r [ ]

and r′ [ ]) in the synodic frame is given by

{
rd = r · r
ṙd = r′ · rḟ + r · ṙ

. (4.22)

In Eq. (4.22) the dot represents the derivative with respect to time.

The position of the pseudo libration points for a Sun-pointing reflective area in the

ER3BP-SRP is given from Eq. (4.19) by setting the velocities and accelerations equal to

zero. The five equilibrium points in the ER3BP-SRP expressed in pulsating coordinates

have the same coordinates of the one in the CR3BP-SRP (Szebehely and Giacaglia,

1964); thus, the equations found in the CR3BP-SRP still holds for the ER3BP-SRP.

The reason for the invariance of the position of the libration points in the synodic

reference frame is that in Eq. (4.19), when the velocities and accelerations are zero, it

is possible to separate the variables as a function of the true anomaly from the other

variables (Szebehely and Giacaglia, 1964).

Figure 4.3 shows a trajectory for the Gaia spacecraft associated to the unstable invariant

manifold that leaves the operational LPO when the Earth+Moon is at the pericenter

with the Sun and integrating Eq. (4.19) for 15.7 years. From this figure, it can be

seen that there is a periodicity in the trajectory as the spacecraft returns close to the

Earth every 15.7 years (for this particular trajectory leg). The spacecraft’s position in

correspondence of when the Earth+Moon barycentre is at their pericenter (circle) or

apocenter (star) is also shown along the trajectory.

4.3 Orbital energy with the effect of the Earth’s orbit ec-

centricity

In Chapter 2, it was mentioned that the dynamics of the ER3BP-SRP does not allow

the use of the Jacobi integral due to the non-autonomous nature of the equations of

motion (Szenkovits et al., 2004; Luk’yanov, 2005; Campagnola et al., 2008). Thus, the

total energy, E, in the ER3BP-SRP is a function of the initial true anomaly angle of the

Earth+Moon around the Sun, f0:
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Figure 4.3: Gaia’s trajectory evolution when leaving the orbit in correspon-
dence of when the Earth+Moon are at their pericenter around the Sun and
propagating for 15.7 years.

E(f0,x(f0), f, β0) =
1

2
v2 −Ω + I (4.23)

where, v2 = x′2 + y′2 + z′2 and W is:

W = (x2 + y2 + z2)/2 + V. (4.24)

The total energy is function of the integral, I:

I =

∫ f

f0

e sin f

(1 + e cos f)2
Wdf, (4.25)

and of the relative energy Er = 1
2v

2 −Ω. Thus, the total energy can be rewritten as:

E(f0,x(f0), f, β0) = Er + I. (4.26)

As demonstrated by Luk’yanov (2005), the total energy is conserved along a selected

trajectory. Indeed, having fixed f0 that is the true anomaly of Earth+Moon around the

Sun where the spacecraft is injected into an unstable leaving trajectory associated to

the LPO, the energy stays constant along the trajectory since the state vector of the

spacecraft in Eq. (4.23) is a function of the true anomaly and it is the solution of Eq.

(4.19). Both the relative mechanical energy, Er, and the integral, I, oscillate along the

trajectory as shown in Figure 4.4(a) and Figure 4.4(b), respectively. However, the total

relative energy, E, in Eq. (4.26) remains constant.

As for the CR3BP-SRP, the zero-velocity curves for a Sun-pointing spacecraft are given

by the intersection of the energy of the spacecraft with the total potential −Ω + I,

when in Eq. (4.23) the spacecraft’s velocity, v, is set to zero. However, a unique
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Figure 4.4: Variation of the relative energy and the integral along a selected
trajectory.

representation of the zero-velocity curves does not exist for the ER3BP-SRP since the

integral, I, cannot be solved. Instead, different approximations of I are available; which,

unfortunately, do not respect the ER3BP-SRP dynamics as they show an oscillating

behaviour that depends on the approximation used. This phenomenon was already

pointed out by Campagnola et al. (2008); thus, it seems troubling to use approximated

zero-velocity curves for the ER3BP-SRP. However, even if the zero-velocity curves cannot

be represented, the energy of the spacecraft and the pseudo libration points stay constant

for a fixed f0 and it can be numerically computed. For the case of the pseudo collinear

libration points, i.e. SL2, an analytical expression of the energy at SLi is derived in this

chapter.

Figure 4.5 shows the energy of the spacecraft when injected to a leaving trajectory

from the LPO (after an impulsive manoeuvre was given) as a function of the initial

true anomaly of the Earth+Moon barycentre, f0 that are the initial conditions given to

generate the unstable manifold associated to the LPO. To aid the visualisation of Figure

4.5, the delta energy between the energy of L2 and the spacecraft is shown in Figure 4.6.

Note that, in Figure 4.5, the interest is in the sign of the delta energy. A negative value

in the delta energy indicates that the energy of the spacecraft is greater than the energy

in L2; thus, the spacecraft is free to cross the Earth-L2 region. The reason why the delta

energy is not constant is justified as the trajectory of Gaia spacecraft was given in the

ephemeris model after a ∆v manoeuvre was computed to inject the spacecraft in the

unstable manifold (Colombo et al., 2015b); while, the energy of L2 is found analytically.

Thus, the variation in the delta energy is due to numerical errors. However, this small

error does not affect the results of this study in Chapter 7 since the spacecraft positions

and velocities along the trajectory are used as initial conditions to place the spacecraft

in the unstable invariant manifold.
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Figure 4.5: Energy of the spacecraft and of L2 when leaving the LPO as a func-
tion of the initial true anomaly, f0 (Earth+Moon barycentre position around
the Sun).
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Figure 4.6: ∆ energy between L2 and the spacecraft when leaving the LPO as
a function of the initial true anomaly, f0 (Earth+Moon barycentre position).
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4.3.1 Analytical expression of the collinear libration points’ energy

The analytical formulation of the libration points’ energy is derived in this section. The

energy equation in the ER3BP-SRP for the libration points comes from Eq. (4.23) in

correspondence of x = xSLi :

ESLi(f0,xLi(f0), f, β0) = −Ω(xSLi) +

∫ f

f0

e sin f

(1 + e cos f)2
W (xSLi)df ; (4.27)

where,

W (xSLi) =
1

2
x2
SLi + V (xSLi) and V (xSLi) = (1− β)

µSun
rSun−SLi

+
µEarth

rEarth−SLi
(4.28)

are constants. Thus, Eq. (4.27) turns into:

ESLi(f0,xSLi(f0), f, β0) = −Ω(xSLi) +W (xSLi)

[
1

(1 + e cos f)
− 1

(1 + e cos f0)

]
;

(4.29)

where,

Ω(xSLi) =
1

1 + ecosf

[
1

2
x2
SLi + V (xSLi)

]
. (4.30)

Thus, finally, the analytical expression of the energy of the pseudo collinear libration

points is:

ESLi(f0,xSLi(f0), f, β0) = − W (xSLi)

1 + e cos f0
; (4.31)

which, is a function of f0 and constant during the integration time.

4.4 Representation of the zero-velocity curves in the ellip-

tic restricted three-body problem with the solar radi-

ation pressure effect

As mentioned in Chapters 2 and 3, a closed form solution for either the circular or the

elliptic restricted three-body problem dynamics does not exist, so the zero velocity curves

have the remarkable advantage of giving a qualitative picture of where the spacecraft’s

motion can evolve. For the CR3BP, the energy is an integral of motion, known as

the Jacobi constant. Therefore, the ZVCs can be easily computed as in Eq. (3.83).

However, the computation of the ZVCs in the ER3BP is not straightforward due to the

non-autonomous nature of the dynamics and the non-existence of an integral of motion.

Szebehely (1967) showed that the difficulties of finding the ZVCs in the ER3BP are

related to the integral, I, in Eq. (4.25). As can be seen from the equations of motion,

Eq. (4.19), the state vector of the spacecraft is a function of the true anomaly angle.

However, an explicit expression of the state vector as a function of the true anomaly
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ZVCs Szebehely (1967) Campagnola et al. (2008) Luk’yanov (2005)

PZVC 2ΩS = C(1 + e cos f) NA NA
FS NA {2ΩC −A− Cp < 0} NA
SM NA {2ΩC −A− Ca > 0} NA
LVS NA { 2ΩC −A− Cp > 0 and NA

2ΩC −A− Ca < 0} NA
SME NA NA C ′p(1 + e cos f) =

2Ω(1 + e cos f)− 2Wmin

Table 4.1: ZVCs approximation, where Ω = ΩC −A/2 = ΩS/(1 + e cos f).

cannot be found. Thus, the integral, I, cannot be analytically solved but it requires an

approximate solution.

In general, the definition of the ZVCs in the ER3BP is given by setting v = 0 in Eq.

(4.23):

E0 = −Ω(β0) + I(β0), (4.32)

where, E0 = E(f0,x(f0)) is a constant for a selected trajectory computed as a solution

of the equations of motion, Eq. (4.19), for a fixed value of the initial true anomaly, f0.

4.4.1 Approximation of the zero-velocity curves

A review was carried out to evaluate which approximation of the ZVC is the best option

for studying the end-of-life of satellite in the ER3BP, Chapter 7. In the literature,

important contributions were given by Szebehely (1967), Campagnola et al. (2008) and

Luk’yanov (2005). These authors used different notations; thus, a comparison among

different definitions is made summarised in Table 4.1. In order to make this study

comparable to previous authors’ work, it is important to slightly modify the definition

in Eq. (4.23) by setting E = −C/2. The constant C recalls the Jacobi integral for the

CR3BP. In this case, the effect of SRP is neglected; thus, β0 = 0 and the ZVCs are

defined as:

C = 2Ω − 2I. (4.33)

For a planar motion (z = 0), Szebehely (1967) proposed an approximation of the ZVCs

in the ER3BP by discarding the integral, i.e., I = 0 in Eq. (4.33). Note that Szebehely

(1967) defined a potential energy ΩS equal to Ω(z = 0) · (1 + e cos f). Where, Ω is

defined here as in Eq. (4.20) moreover, to be compared with the definition of Szebehely

(1967), ΩS , the component z in Eq. (4.20) was set to zero. Thus, the author expressed

the ZVCs such as:

(1 + e cos f) · C = 2ΩS . (4.34)
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In this way, Szebehely (1967) separates the dependence of the true anomaly angle on the

left hand-side of Eq. (4.34) moreover, the dependence of just the position components of

the state vector at the right hand-side of Eq. (4.34). Campagnola et al. (2008) showed

that the definition of the ZVCs of Szebehely (1967) can be extended for out-of-plane

solutions and that, by neglecting the integral I, the ZVCs defined by Szebehely (1967)

do not correctly bound the dynamics due to their high pulsating oscillatory behaviour

because of the spacecraft’s crossing the forbidden regions. The ZVCs of Szebehely (1967)

are also known as Pulsating Zero-Velocity Surfaces (PZVC) due to their highly pulsating

behaviour.
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Figure 4.7: Definition of the Forbidden Subregions (FS), black area, the Low-
Velocity Subregions (LVS), gray area, and the Subregions of Motion (SM), white
area, for f = 30◦. (Campagnola et al., 2008).

Campagnola et al. (2008) defined instead the Forbidden Subregions (FS), the Subregions

of Motion (SM) and the Low-Velocity Subregions (LVS). In Figure 4.7, the FS, the

SM and the LVS are given for f = 30◦ and correspond to the black, the white and

the gray area respectively. The boundaries of the ZVCs are approximated for initial

conditions of the spacecraft when the Earth+Moon is at the pericenter and apocenter

in correspondence of when the integral, I, is minimum and maximum respectively, as

shown in Figure 4.4(b). Thus, two energy levels are set when the spacecraft has an initial

condition at the Earth+Moon pericenter, f0 = 0 with constant of Jacobi Cp and at the

apocenter, f0 = π with constant Ca. The boundaries in the ZVCs are obtained from

Eq. (4.33), by knowing that the integral, I, is equal to zero in correspondence of the

initial condition. In this case, Campagnola et al. (2008) used a different definition of the

potential energy such that Ω defined in Eq. (4.20) corresponds to this thesis author’s
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Definition Approximation

FS {2ΩC −ΩA − Cp < 0}
SM {2ΩC −ΩA − Ca > 0}
LVS {2ΩC −ΩA − Cp > 0 and 2ΩC −ΩA − Ca < 0}

Table 4.2: Subregions of motions by Campagnola et al. (2008).

definition of ΩC − ΩA/2. ΩC has the same definition as the one of the CR3BP in Eq.

(3.83) of Chapter 3, thus, ΩC is equal to Ω(e = 0) in Eq. (4.20). ΩC corresponds also

to ΩS for z = 0. While, ΩA is defined as:

ΩA = 2
e cos f

1 + e cos f
·
[
ΩC +

z2

2

]
. (4.35)

Using the definition by Campagnola et al. (2008), the ZVCs at the pericenter and apoc-

enter are respectively:

Cp = 2ΩC −ΩA Ca = 2ΩC −ΩA. (4.36)

The definition of FS, SM and LVS are listed in Table 4.2; where the FS represent

the curve associtaed to the energy of the spaceraft when the Earth+Moon are at the

pericenter while SM is the curve associated to the energy of the spacecraft when the

Earth+Moon are at the apocenter. Finilly, the LVS represents the intersections of the

previous two reagions. Also, the LVS curves are oscillating (as a function of the true

anomaly the spacecraft covers) but less compared to the PZVC. Note that the LVS are

defined similarly to the PZVC by imposing I = 0 in Eq. (4.33). The main difference is

that the constant C of the LVS is not multiplied by the pulsating term (1 + e cos f) as

for the PZVC. Multiplying the Jacobi constant by the pulsating term is incorrect due

to the conservation of the spacecraft’s energy along a selected trajectory (for a chosen

f0). Thus, the pulsating term has to be included in the potential energy to represent

the bounding motion of the spacecraft correctly. A more precise approximation of the

integral, I, was proposed by Luk’yanov (2005) in the so called Surface of Minimum

Energy (SME).

4.4.2 Surface of minimum energy

The surface of minimum energy purpose is to approximate the integral, I, by noticing

that the minimum of its integrand function, W , can be found analytically. Thus, the

integrand function, W , can be seen as the sum of the minimum of W , Wmin, and of an

unknown function W̃ = W −Wmin that does not posses an analytical expression.

In this thesis, the same notation as Luk’yanov (2005) is used for the energy definition

in Eq. (4.23). We start from the idea that the integral, I, reaches its maximum and
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minimum at the apocenter and pericenter of the Earth+Moon orbit respectively. The

amplitude of I is a small quantity if the eccentricity is small and it is equal to zero for e =

0. Thus, the integral, I, can be considered as an additional energy or a perturbed energy

to the one of the CR3BP. Luk’yanov (2005) noticed that a certain part of this additional

energy, I, in Eq. (4.25) is known and can be analytically integrated in correspondence

to the minimum assumed by the function W in Eq. (4.24). This can be done since W is

continuous and bounded from below (W > 0). The minimum of W can be determined

by solving the following system:



∂W
∂x = x− (1− β) 1−µ

r3Sun−p
(x+ µ)− µ

r3Earth−p
(x+ µ− 1) = 0

∂W
∂y = y

(
1− (1− β) 1−µ

r3Sun−p
− µ

r3Earth−p

)
= 0

∂W
∂z = z

(
1− (1− β) 1−µ

r3Sun−p
− µ

r3Earth−p

)
= 0

. (4.37)

Eq. (4.37) is similar to the equations for the computation of the libration points in Eq.

(3.57). As one can see, the computation of the co-linear libration points (L1,2,3) requires

to set y = z = 0 and thus both Eq. (4.37) and Eq. (3.57) share the same five-order

polynomial in x. Moreover, the two equilateral solution L4,5 hold also for Eq. (4.37)

when z = 0. Luk’yanov (2005) already showed that W has five equilibrium solutions,

and he also demonstrated the existence of the libration ring for W . The libration ring

exists for W due to the term z2 in Eq. (4.24). This is evident by looking at the function

W as function of the y and the z coordinates for x = 0 in Figure 4.8 with the symbol Wyz

where a minimum ring solution exists (red circle). The L4,5 equilateral points belong

to the libration ring for z = 0. This means that for z 6= 0, the Sun and the Earth’s

gravitational potential cancel out in correspondence of the third vertex of any out-of-

plane equilateral triangles that has other two vertexes the Sun and the Earth+Moon.

All these equilateral vertexes have the analytical expression of a circle as shown in Figure

4.9.

The minimum of W occurs at the libration ring as shown in Figure 4.8, while the collinear

points are saddle solutions of W . In this work, the solution of Luk’yanov (2005) was

extended for the case of a Sun-pointing deployable structure; in this case the coordinates

of the libration ring are:

x =
(1− β)

2
3

2
− µ y2 + z2 = (1− β)

2
3

[
1− (1− β)

2
3

4

]
. (4.38)

The minimum of W in correspondence of the libration ring for a Sun-pointing deployable

structure 2 is:

Wmin =
1

2

[
3(1− β)

2
3 + µ

(
2− 3(1− β)

2
3 + µ

)]
. (4.39)

2Note that for β = 0, Wmin = 1
2

[3 − µ(1 − µ)], which is the case studied by Luk’yanov (2005).
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Figure 4.8: −W : the five libration points and the libration ring in different
views.

As previously said, the function W can be now split into two parts as W = W̃ +Wmin

where Wmin collects the integrable part of the integral, I. Thus, the integral, I, turns

into (Luk’yanov, 2005):

I =

∫ f

f0

e sin f

(1 + e cos f)2
W̃df+

Wmin

1 + e cos f
− Wmin

1 + e cos f0
= ũ(f)+

Wmin

1 + e cos f
− Wmin

1 + e cos f0
.

(4.40)

In Eq. (4.40), ũ(f) is an unknown function of f . According to the approach of Luk’yanov

(2005) the integral, I, can be approximated with its minima:

I = Wmin

[
1

1 + e cos f
− 1

1 + e cos f0

]
. (4.41)

By using the approximation proposed by Luk’yanov (2005), the energy in Eq. (4.23)

and the ZVC in Eq. (4.33) turns into:

Etr(f0,x(f0), f) =
1

2
V 2 −Ω +

Wmin

1 + e cos f
− Wmin

1 + e cos f0
(4.42)
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Figure 4.9: The libration ring is the minimum of W .

and,

C = 2Ω − 2

[
Wmin

1 + e cos f
− Wmin

1 + e cos f0

]
(4.43)

respectively. In Eq. (4.43), the ZVCs are defined by setting the constant of Jacobi, C, to

a constant value. Luk’yanov (2005) considered a condition starting from the pericenter,

f0 = 0, since I is minimum at the pericenter and thus he set the constant C in Eq. (4.43)

at the pericenter as Cp = −V 2
p + 2Ωp where the subscript “p” indicated the condition at

the pericenter. Luk’yanov (2005) also further simplified Eq. (4.43) by introducing the

constant C ′p defined as:

C ′p = Cp − 2
Wmin

1 + e cos f0
, (4.44)

and by giving the definition of surface of minimum energy as follows:

C ′p · (1 + e cos f) = 2Ω(1 + e cos f)− 2Wmin. (4.45)

In Eq. (4.45), the left-hand side is not a constant as for the case of Szebehely.

Furthermore, the SME defined in Eq. (4.45) shows that the true anomaly (left-hand side

of Eq. (4.45)) is separated from the variables that depend on the state position vector

(right-hand side of Eq. (4.45)). However, as said before, it is inconsistent to have a

pulsating Jacobi constant as the energy of the spacecraft is conserved along its trajectory.

In the CR3BP, the ZVCs are used as a tool to have a qualitative representation of the

bounded motion of the spacecraft. This definition holds in the ER3BP if the Jacobi

constant corresponds to the spacecraft’s energy. Thus, the Jacobi constant can not be

pulsating. In this thesis, the Jacobi constant, C, is equal to the energy of the spacecraft

along its trajectory as presented in Eq. (4.43). Eq. (4.43), together with the additional

contribution of the SRP effect, represents the main differences of this study compared

to the one by Luk’yanov (2005).
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4.4.3 Why Wmin does not correspond to Imin

The aim of this section is to demonstrate that the stationary points of the integral are

not coincident with the one of the function W . This means that the integral of the

function containing Wmin does not correspond to Imin. As already shown, W has a

minimum in correspondence of the libration ring, while the integral has a minimum and

a maximum in correspondence of the pericenter and apocenter conditions. Starting from

the definition of the integral, I, as in Eq. (4.25), the stationary point can be found by

setting the derivative of the integral to zero:

dI

df
=

d

df

[∫ f

f0

W (f̃) · g(f̃)df̃

]
= W (f) · g(f), (4.46)

where, g(f̃) is:

g(f̃) =
e sin f̃

1 + e cos f̃
. (4.47)

For the fundamental theorem of the integral calculus, the derivative of the integral is

defined as: ∫ f

f0

[
d(W (f̃) · g(f̃))

df̃

]
df̃ = W (f) · g(f)−W (f0) · g(f0), (4.48)

then, the derivative of the integral in Eq. (4.46) can be also written as:

dI

df
=

∫ f

f0

dW (f̃)

df̃
· g(f̃)df̃ +

∫ f

f0

W (f̃) · dg(f̃)

df̃
df̃ +W (f0) · g(f0). (4.49)

In the case of the minimum of W , the gradient of W is zero thus Wx = Wy = Wz = 0,

which implies that:

dW (f̃)

df̃
=
∂W

∂x

dx

df̃
+
∂W

∂y

dy

df̃
+
∂W

∂z

dz

df̃
= Wxx

′ +Wyy
′ +Wzz

′ = 0. (4.50)

This evidence shows that the condition of minimum W does not correspond to the

condition of the minimum of I, indeed the derivative of I does not depend solely on

the derivative of W . Thus, the condition of dW/df̃ = 0 is not sufficient for having

dI/df = 0 and the approximation of Luk’yanov (2005) can be either conservative or an

underestimation of I depending on the sign of “sin f̃” in Eq. (4.25) since W > 0 and

W = W̃ +Wmin as shown in Eq. (4.40).
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4.4.4 Comparison and interpretation of the zero velocity curves ap-

proximations

In the previous section the approximations of the ZVCs introduced by Szebehely (1967),

Campagnola et al. (2008) and Luk’yanov (2005) were described. Table 4.1 summarises

the definition of the ZVCs for these authors. The definitions given in Table 4.1 shows

that both Szebehely (1967) and Luk’yanov (2005) include the effect of the true anomaly

in the constant, C, thus, in these two cases, the oscillating effect of the ZVCs is given

by a different point of intersection of the selected energy constant with the fixed part

of the potential. Having a Jacobi constant value that fluctuates with the true anomaly

makes hard to interpret the oscillation of the ZVCs with respect to the energy of the

spacecraft that instead is kept constant along a selected trajectory.

Figure 4.10 compares the trend in the Jacobi constant defined by Luk’yanov (2005)

(surface of minimum energy) and by Campagnola et al. (2008) (low-velocity subregions),

as listed in Table 4.1, with respect to the Jacobi constant of the spacecraft leaving the

LPO when the Earth+Moon is at the pericenter. The spacecraft has a constant energy

(dashed gray line, in Figure 4.10(a)), while the approximated ZVCs of Luk’yanov (2005)

(SME) are obtained with different energy levels (oscillating dashed black curve, in Figure

4.10(a)). Conversely, in Campagnola et al. (2008) the LVS are achieved by maintaining

the ZVCs constant, C, fixed with the true anomaly as shown in Figure 4.10(b) for

the apocenter (gray line) and pericenter (black line). The pericenter constant, Cp,

corresponds to the energy of the spacecraft when leaving the LPO (dashed gray line).

Figure 4.11 shows the comparison of the approximated ZVCs of Szebehely (1967) (PZVC),

Campagnola et al. (2008) (LVS) and Luk’yanov (2005) (SME) with respect to the motion

of the spacecraft (black circle). From Figure 4.11(b) to Figure 4.11(f), the position of the

spacecraft (black circle) is shown at specific epoch f with respect to the approximated

velocity curves. As a general rule, a good approximation of the ZVCs have to minimise

the effect of the oscillations of the ZVCs in time f associated to the error introduced

during the approximation. The revised definition of the ZVCs is used for the case of

the PZVC and the SME in order to have a consistent ZVCs approximation with respect

to the energy of the spacecraft. The pulsating term was thus included in the potential

energy rather than in the Jacobi constant. The problem of having a pulsating Jacobi

constant can be solved by using the definition of the PZVC and the SME as presented in

Eq. (4.33) for I equal to zero and in Eq. (4.43) respectively, rather than using the final

expression summarised in Table 4.1. In this way, it is possible to compare the PZVC

and the SME approximations of the ZVCs with respect to the spacecraft dynamics by

conserving the energy of the spacecraft. In the case of Campagnola et al. (2008), the

equations of the LVS in Table 4.1 still hold.

In Figure 4.11, the low-velocity subregions (black and gray lines) are compared with

the surface of minimum energy (red line). The same case treated by Campagnola et al.
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(2008), where µ and e are for the Earth+Moon system as shown in Table 3.2 is analysed.

In this case, a trajectory leaving an LPO in correspondence of L1 is selected. As an

initial condition we select x0 = 1.3 · 108 km, y0 = z0 = 0 km and the modulus of the

velocity V0 = 1.8 km/s. The velocity direction is set with an azimuth of α = −110◦

and an elevation of δ = 0◦. The orientation angles are expressed with respect to the

synodic reference frame where α is the azimuth defined within - π/2 and π/2 and δ is

the elevation defined within −π and π as shown in Figure 4.12.

The forbidden subregions and the surface of minimum energy in black and red respec-

tively are obtained starting from a pericenter condition; however, the gray line is repre-

sentative of a condition starting from the apocenter; thus, the LVS is the region within

the black and the gray lines. From Figure 4.10(b), it is clear that the condition starting

at the apocenter (gray line) is not representative of the energy of the spacecraft making

it difficult to link the spacecraft dynamics with the boundaries of the LVS. Note that;

the FS are defined as the PZVC except the fact that the pulsating term (1 + e cos f)

does not multiply the energy constant C; thus, they are not represented here.

From Figure 4.11, it is possible to note that by neglecting the integral, I in Eq. (4.33),

the oscillations in the ZVCs are wider (black line) than in the case when at least a part

of the integral is approximated as for the SME in Eq. (4.43), (red line). For this reason,

the approximation selected is the one proposed by Luk’yanov (2005), the SME, but in

our proposed version shown in Eq. (4.43) where the Jacobi constant is kept constant

with the spacecraft’s energy.
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(a) Leaving the LPO at the pericenter, f0 = 0◦.
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Figure 4.11: Comparison of the Forbidden subregions (FS) in black, Low-
Velocity region (gray and black) and the Surface of Minimum Energy (red) with
the dynamics of the spacecraft (circle) in the Earth+Moon ER3BP dynamics,
Table 3.2. The initial condition is set at the pericenter, f0 = 0.
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Figure 4.12: ∆v orientation angles: azimuth, α, and elevation, δ, with respect
to the synodic reference frame, {x, y, z}.
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4.5 Summary

This chapter has attempted to provide some insight into the elliptic restricted-three

body problem. The ER3BP is an even more accurate dynamical model with respect to

the circular restricted-three body problem presented in Chapter 3. The ER3BP takes

into account the effect of the Earth’s orbit eccentricity that is an important figure for the

design of the spacecraft’s end-of-life disposal (Chapter 7). The important achievements

of this chapter are:

• The transformation from the sidereal dimensional coordinates to the synodic di-

mensionless coordinates is necessary when the real spacecraft’s dynamics are ap-

proximated in the ER3BP dynamics. For example, in Chapter 7, the robustness

of the proposed end-of-life strategy will investigated for Gaia mission where the

dynamics are provided by the NASA’s spacecraft ephemeris;

• By defining the transformation from the sidereal to the synodic coordinates, the

ER3BP shows to be a good approximation of the full-body dynamics when other

perturbations are taken into account;

• The most serious attempt of this chapter is to provide a comprehensive under-

standing of the approximated zero-velocity curves in the ER3BP. The surface of

minimum energy has been demonstrated to be the most precise approximation of

the ZVCs;

• A modified version of the SME was extended here for a Sun-pointing spacecraft.

This modified SME for a Sun-pointing spacecraft is a fundamental element for a

good understanding of the effect of the Earth’s orbit eccentricity onto the end-of-

life disposal option (Chapter 7).

The key topics presented in this section are a fundamental theory for the end-of-life

disposal and it is one of the major research areas of this thesis.

As the ultimate focus of this work is to harness solar radiation pressure for trajectories

control and design from the beginning to the end of the space mission, the mission phases

under this research interest are:

1) the nominal mission phase (i.e. orbit control and maintenance),

2) the operational or extended mission phase (i.e. to transfer from the nominal orbit

to a new one), and

3) the end-of-life mission phase (i.e. for the spacecraft’s disposal).

A definition of a new control law is first investigated in next chapter for harnessing solar

radiation pressure during the spacecraft’s nominal mission phase.



Chapter 5

Hamiltonian Structure-Preserving

Control

A spacecraft placed in libration point orbits about L1 and L2 will naturally diverge

from them due to the hyperbolic nature of the libration points (Section 2.2). Thus,

trajectories designed in the R3BP require the spacecraft to perform control manoeuvres

to maintain its nominal orbit by counteracting the unwanted environmental instabilities

(Koon et al., 2008; Perozzi and Ferraz-Mello, 2010).

The aim of this chapter is to investigate the design of a control law that stabilises the

spacecraft’s dynamics through solar radiation pressure manoeuvres and to answer one

of the research questions:

Q.3 - What type of control law can be used for stabilising spacecraft at libration point

orbits that make use of solar radiation pressure propulsion?

In Section 2.2, a review of different periodic orbits was performed. Based on the scientific

interest in using those orbits, two kinds of target orbits were selected, namely libration

point orbits around either L1 or L2 (i.e. Halo type and family-a), and distant prograde

orbits around the Earth (i.e. family-g).

As mentioned in Section 2.2.1, the scientific advantage of placing a spacecraft in LPOs

and DPOs is justified for the Sun or deep space observations and for studying the

composition of the smaller celestial body. No restriction was given on the size of the

selected unstable periodic orbits; thus, the control law should work for either low or high

amplitude orbits. This was done to have a generalised control law that adds mission

design flexibility.

As mentioned in Chapter 2, preference is given to control laws that make use of the

invariant manifold theory for achieving the stability of the spacecraft. In Section 2.4.1,

113
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linear control laws were investigated as the linear behaviour of the spacecraft around the

equilibrium points is important to understand the non-linear dynamics. Two control laws

that make use of the invariant manifold theory were selected to be further investigated

in this chapter: the Hamiltonian Structure Preserving (HSP) control (Scheeres et al.,

2003b) and the Floquét Mode (FM) control (Gómez and Barrabés, 2011).

The HSP control law is preferred on the FM method as it stabilises periodic orbits in the

sense of Lyapunov. This control is attractive since the fuel expenditure is small; resulting

in being proposed for low thrust applications (Scheeres et al., 2003b). The HSP control

is applied here considering the effect of solar radiation pressure. The HSP controller is

designed in the circular restricted three-body problem with the effect of SRP. It aims

to replace the libration points’ hyperbolic equilibrium with an artificial centre manifold

by preserving the Hamiltonian nature of the equations of motion. Thus, the equilibrium

will change from saddle×centre×centre to an artificial centre×centre×centre equilibrium

due to the effect of the control law. As previously mentioned, the HSP control proposed

by Scheeres et al. (2003b) and the FM controller share similarities; thus, a sensitivity

analysis is carried out to investigate the features of both controllers and their robustness.

Once the HSP control performances are compared with the FM, the required accelera-

tion magnitudes can then be compared to investigate whether this can be provided by

actuators onboard the spacecraft that controls the effect of SRP. Such actuators could

control the reflectivity of the spacecraft, the reflective area illuminated by the Sun or

the spacecraft’s orientation with respect to the Sun.

The major research contributions of this chapter are section listed:

• Section 5.1.3 presents the Hamiltonian-structure preserving control extended to

high amplitude orbits where complex eigenvalues appear,

• Section 5.2 shows how to select the gain to guarantee the stability for the extended

control law presented in Section 5.1.3,

• Section 5.4 compares the well known Floquét mode technique with the Hamiltonian-

structure preserving control,

• Section 5.5 studies the robustness of the Floquét mode and Hamiltonian-structure

preserving control laws under contingencies analysis,

• Section 5.7 demonstrates that the Target point technique extended to solar radi-

ation pressure applications cannot ensure the simple Lyapunov stability,

• Section 5.8 presents the control requirements in term of variable reflective actuators

and pointing accuracy of the spacecraft for solar radiation pressure orbit control

of Halo and high amplitude orbits, and
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• Section 5.9 investigates the possible structural design for an actuator system that

enhance solar radiation pressure.

The results of this chapter were presented in Soldini et al. (2016b) and are under review.

5.1 Design of the control law that preserves the Hamilto-

nian structure of the system

The Hamiltonian structure-preserving control uses the eigenstructure of the linearised

equations of motion to create a control law that ensures Lyapunov stability (Khalil,

2002). As shown by Scheeres et al. (2003a), this controller aims to remove both the

stable and unstable manifolds (red and green arrows in Figure 5.1) by projecting the state

position error (between the current and the target orbit) along the manifold direction.

This creates an artificial centre manifold, as shown in Figure 5.1 that keeps the trajectory

close to the target orbit, as the eigenvalues of the linearised dynamics, are placed along

the imaginary axis. In this chapter, the target orbit is numerically computed as shown

in Section 3.8.2.

Figure 5.1: The effect of the Hamiltonian structure preserving control law is to
replace the hyperbolic equilibrium with an artificial centre manifold.

The local stability impacts onto the periodic orbit stability (introduced in Section 3.10)

by affecting the eigenvalues of the monodromy matrix, M . The monodromy matrix is

the state transitional matrix, Φ(t0 + T, t0), of the system evaluated after one orbital

period, T , where t0 is the initial time (see Appendix C.9). For Lyapunov stability, the

controller should place the eigenvalues of the matrix M on the unitary circle of the

complex plane (Ginoux, 2009), see Figure 5.2.
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Figure 5.2: Eigenvalues of the monodromy matrix with (red crosses) and without
(white crosses) the effect of the HSP controller.

Remark 5.1. An important remark is that the positioning of eigenvalues relative to the

unitary circle in Figure 5.2, is compared to the positioning of eigenvalues on the right/left

side of the complex plane as those plotted in the figures in Section 3.7.1, as well as in

Figure 5.4. This eigenvalues plot in Figure 5.2 is on a z-plane, which is used in discrete-

time framework, whereas the plot in Section 3.7.1 and in Figure 5.4, are on a s-plane,

which is used in continuous-time framework. More discussion on this is presented in

Section 5.1.1, and more information can be found in Astrom and Wittenmark (1996).

Thanks to the effect of the control, the matrix M is still sympletic, since the two

pairs of eigenvectors are one the inverse of each other, but the existence of a Jacobi

integral is no longer guaranteed since the central two real solutions equal to one are

removed. Moreover, the fact that the monodromy matrix is symplectic ensures also

that the system is still autonomous and Hamiltonian (Scheeres et al., 2003a). Scheeres

et al. (2003a) demonstrated that the study of local stability is connected to the periodic

orbit stability. This will be summarised in the following as it is useful to introduce the

extension of the controller proposed in this work. As seen in Section 3.4.2, the natural

dynamics in Eq. (3.39) can be written in a compact form as:

Ẋ = f(X). (5.1)

In Eq. (5.1), f is the flow field and, X = {x, y, z, ẋ, ẏ, ż} is the state vector. The

variational equations are:

δ ˙̄X(t) = A(X̄(t))δX̄(t) (5.2)

which are the linearised equations for the evaluation of the variations δX̄(t). In Eq.

(5.2), A(X̄(t)) is the Jacobian matrix of the flow field, f , evaluated along the reference

trajectory.

For the linearised equations, solving the eigenvalues of the variational equations matrix,

A(X̄(t)), is an approximation of solving the eigenvalue problem of the STM, Φ(t, t0).
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The variational equations of Eq. (5.2) are (Koon et al., 2008):

d

dt

[
δr

δṙ

]
=

[
0 I

Vrr 2ω0J

][
δr

δṙ

]
, where, J =

[
0 1

−1 0

]
, (5.3)

Vrr is the Jacobian matrix of the potential acceleration in Eq. (3.40) and 2ω0J is the

term associated to the Coriolis acceleration. In Eq. (5.3), δr and δṙ are the state

position and velocity errors, respectively. The eigenvalues of the linearised dynamics are

the solutions of the characteristic equation D(λ) = |A−λI| = 0, where the characteristic

polynomial is:

Λ2 + bΛ+ c = 0 where,


b = 4ω2

0 − Vxx − Vyy
c = VxxVyy − V 2

xy

∆ = b2 − 4c

. (5.4)

As exploited by Scheeres et al. (2003a), the solutions of Eq. (5.4) are affected by the

sign of ∆. When, ∆ > 0 the system produces two real and unequal roots; while, when

∆ < 0 there are two complex and conjugate solutions. The change in the stability of

the eigenvalues is evident for high amplitude orbits where it is possible to identify two

cases along the trajectory where the eigenvalues are couples of real and pure imaginary

numbers (saddle×centre equilibrium, i.e., the black line in Figures 5.3(a)-5.3(b), when

b < 0, ∆ > 0 and c < 0), or where the eigenvalues are couples of complex numbers and

conjugate pairs (stable×unstable foci, i.e., the red line in Figures 5.3(a)-5.3(b), when

b < 0, ∆ < 0 and c < 0).

(a) Distant Prograde Orbit (DPO). (b) Planar-Lyapunov.

Figure 5.3: Eigenvalues along the LPO. The black arc denotes the
hyperbolic×centre solutions and the red arc represents couples of complex and
conjugate solutions (Note the Earth is not to scale).
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The general solution of Eq. (5.4) is given by:

Λ1 = λ2
1,2 =

−b+
√
∆

2
Λ2 = λ2

3,4 =
−b−

√
∆

2
x̂k =


1

uk

λk

λk · uk

 ; (5.5)

where, λk are the eigenvalues and x̂k their corresponding eigenvectors for k varying

from 1 to 4. The HSP control proposed by Scheeres et al. (2003a) aims to project the

state position error along the eigenvectors direction. From a vectorial point of view, it

is like defining a projection tensor given by uku
T
k (Scheeres et al., 2003a). The first

two normalised components of x̂k in Eq. (5.5) represent the unitary vector uk, and the

expression of uk is:

uk =
1√

1 + ukūk

[
1

uk

]
uk =

λ2
k − Vxx

Vxy + 2ω0λk
(5.6)

where, ukūk is the product of uk and its conjugate. Since the HSP control aims to

stabilise the system in the sense of Lyapunov, the control law is designed such as to

affect the sign of b, c and ∆ of Eq. (5.4). Indeed, the simple Lyapunov stability can be

achieved by placing the eigenvalues of the linearised dynamics on the imaginary axis,

as shown in Figure 5.4, by adding to the matrix Vrr an artificial potential, the centre

manifold (matrix T ).

Figure 5.4: Eigenvalues of the linearised dynamics with (green crosses) and
without (white crosses) the effect of the HSP controller.

The artificial centre manifold, the matrix T , is constructed from the linear combination

of the projection tensors uku
T
k and the gains. This linear combination is selected such as

bc, cc and ∆c, which are the indexes of stability affected by the control law, are all greater

than zero (Scheeres et al., 2003a). {bc > 0 & cc > 0 & ∆c > 0} is the condition of simple

Lyapunov stability; where, the HSP control is added to the dynamics in Eq. (3.39) as

an additional control acceleration, ac, that will be modelled as SRP acceleration. Thus,

ac is given by the actuators model, as. ac is obtained by multiplying the matrix T by
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the state position error between the target orbit and the actual spacecraft trajectory δr,

ac = T δr. (5.7)

The acceleration, ac, affects the linearised dynamics and the matrix A(X̄(t)), in Eq.

(5.3) which turns into the matrix Ac(X̄(t)):

Ac(X̄(t)) =

[
0 I

V c
rr 2ω0J

]
. (5.8)

The effect of the controller modifies Vrr into V c
rr such as:

V c
rr = Vrr + T . (5.9)

In this work, the full formulation of the proposed extended HSP controller is derived for

high amplitude orbits. The control law designed by Scheeres et al. (2003a) is used when

there is a hyperbolic×centre equilibrium (∆ > 0); Scheeres et al. (2003a) control law is

summarised in Section 5.1.2. However, in the case of couples of complex and conjugate

solutions (∆ < 0), the dynamics requires a modified control law proposed by the author

in Section 5.1.3.

5.1.1 Short-term and long-term stability

Scheeres et al. (2003a) demonstrate that the short-term stability is an approximation of

the long-term stability for a periodic linearised dynamical system:

ẋ = A(t)x A(t+ T ) = A(t), T > 0. (5.10)

In this section, details are given to show the relationship between the short-term stability

(shown in Figure 5.4) and the long-term stability (shown in Figure 5.2) (Scheeres et al.,

2003a). The stability of periodic orbit solutions (long-term stability shown in Figure

5.2) can be studied in term of the Floquét multipliers and can be linked to the Poincaré

map method presented in Section 3.7.1. For linear periodic system, the Floquét theorem

states the follow:

Theorem 5.2 (Floquét theorem (Kuchment, 1993)). If Φ(t) is a fundamental matrix

solution of the periodic system in Eq.(5.10), thus so is Φ(t+T). Moreover, there exists

an invertible periodic matrix P (t) with T-period such that:

Φ(t) = P (t)eBt, (5.11)

and B is a constant matrix.



120 Chapter 5 Hamiltonian Structure-Preserving Control

Remark 5.3. Since Φ(t + T ) = Φ(t)C with detC 6= 0, eB = C, the eigenvalues ρ of C

are called the characteristic multipliers of the periodic linear system. The eigenvalues λ

of B are called the characteristic exponents of the periodic linear system where ρ = eλT .

In the R3BP, halo orbit has one pair of hyperbolic characteristic exponents and two cir-

culation frequencies, one equal to the orbital period, T , and one slightly longer. Because

of the presence of the unstable manifold, uncontrolled relative motion to the target orbit

will diverge in few orbital periods.

To maintain long-term trajectory close to the target orbit, the spacecraft must be placed

in the center manifold of the periodic orbit. However, the use of natural center manifolds

is restrictive due to the unstable nature of the periodic orbit. Thus, the effect of the HSP

control given along the trajectory aims to remove the instability by adding an artificial

center manifold.

If we now focus on the short-term motion over a time much lower than the orbital period,

although the description of the relative motion in Eq. (5.11) holds true, it does not give

a direct indication of the relative motion over short time period. The state transition

matrix, Φ, can be represented over one period as the product of mappings over much

shorter time as (Scheeres et al., 2003a):

Φ(t0 + T, t0) =

N∏
i=1

Φ

[
t0 +

T

N
i, t0 +

T

N
(i− 1)

]
, (5.12)

where the mapping over a time interval ∆t = T/N is represented as Φ(ti + ∆t, ti) and

satisfies the equation:

Φ̇(ti + δt, ti) = A(ti + δt)Φ(ti + δt, ti) 0 ≤ δt ≤ ∆t << T. (5.13)

For small ∆t, the matrix A(t) can be expanded in a Taylor series:

A(ti + δt) = A(ti) + Ȧ(ti)δt+ . . . (5.14)

Scheeres et al. (2003a) found that for periodic orbits around the libration point Ȧ(ti)

does not vary strongly over the time. This means that ∆t can be chosen small enough

to ensure that ||A(ti)|| >> ||Ȧ(ti)∆t||. Under this restriction, Scheeres et al. (2003a)

found that the state transition matrix differential equation can be approximated over

short-time intervals as:

Φ(ti + δt, ti) ∼ eA(ti)δt + . . . (5.15)

or

Φ(ti + δt, ti) ∼ I +A(ti)δt+ . . . (5.16)
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Note that series expansion of the higher order terms were neglected because the time

interval is chosen to be sufficiently small. Eq. (5.16) is commonly used in discrete-

time model, the Euler model, which is a first order numerical approximation of the

continuous-time dynamics. The relative motion can be finally characterised over a short

period of time by the eigenvalues and eigenvectors of the exponential map defined from

equation:

(λI −Φ)u = 0, (5.17)

where λ is the eigenvalue and u is the eigenvector. By substituting Eq. (5.16) to Eq.

(5.17) this can be written as: (
(λ− 1)

δt
I −A(ti)

)
u = 0. (5.18)

For a time-invariant system, the eigenvalue of the state transition matrix λ in Eq. (5.17)

is equal to eγ·δt, where γ is the characteristic exponent of the system. The eigenvalues

of Eq. (5.18) can be approximated as:

γ ∼ lim
δt→0

λ− 1

δt
. (5.19)

Under these approximations, the relative motion over a short-time can be understood by

analysing the eigenstructure of the matrix A(ti). The error induced by this approxima-

tion was investigated by Scheeres et al. (2003a) and is shown to be reasonable. Scheeres

et al. (2003a) derive the HSP control law by using the short-term dynamics to guide the

understanding of the stability. The relative motion along the instantaneous unstable

manifold is seen as a precursor to the motion along the unstable manifold of the full

orbit, as defined by Floquét Theory. Note that the full orbit may still be unstable even

if the instantaneous map is stable at each time step.

Eq. (5.7) generalises the relative motion along the longer time span as well because the

eigenstructure of the dynamical system are well defined as a function of time and the local

eigenstructure does not change in the region around the halo orbit as demonstrated by

Scheeres et al. (2003a). In this sense, the stability of the controlled orbit can be analysed

using classical techniques developed for periodic orbits as presented in Section 3.7.1. As

previously said, the stabilisation of the relative motion over short-time is a necessary

but not sufficient condition to ensure that the motion of the spacecraft will be stable

over long-time span. The condition to reach the stability are presented in Scheeres et al.

(2003a). The stability of the system can however be evaluated by application of Floquét

Theory and numerical integration.

The stability is evaluated as follows. The periodic orbit and its associated state transition

matrix modified by adding the effect of the control is numerically integrated over one

period of motion. At each time step, the spectrum of the open-loop system (specified
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by the linear equations) is computed and added in:

δ ˙̄X(t) = Ac(X̄(t))δX̄(t), (5.20)

where Ac(X̄(t)) is defined as in Eq. (5.8) and is the time-varying matrix used in the

state transition matrix computation. The resulting state transition matrix, computed

using Eq. (3.109), is denoted as Φc(t0 + t, t0), and the monodromy matrix evaluated

over one period of motion is Φc(t0 + T, t0). The stability of the closed-loop system can

be evaluated by computing the eigenvalues µ of this map (the monodromy matrix):

|µI −Φc(t0 + T, t0)| = 0. (5.21)

As it is well know, these eigenvalues must occur in complex and conjugate pairs and in

inverse pairs. Stability of this system occurs when all eigenvalues have unit magnitude

that corresponds to the unit circle in the complex plane and have the form µ = e±iθ as

shown in Figure 5.2.

An important remark is that the HSP control is a linear control for periodic dynamical

system and is designed in the time domain where the link between short-term stability

(along the trajectory) and long-term stability (at every one orbital period T ) is guar-

anteed by the Floquét theory and the Lyapunov transformation. This is related to the

discrete-time systems theory, where the continuous-time dynamics either in time (t) or

frequency/Laplace (s) domains are transformed into their discrete-time equivalence in

time (k) or frequency (z) domains, where z = esT with T being the sampling time (z-

plane). Based on this, Figure 5.2 is the plot of discrete-time eigenvalues in z-plane, while

Figure 5.4 is the plot of continuous-time eigenvalues in s-plane (see also Remark 5.1 in

Section 5.1).

5.1.2 Control law for local hyperbolic×centre equilibrium

In this section the control law proposed by Scheeres et al. (2003a) is summarised since

this control law is used in the case of local hyperbolic×centre equilibrium (i.e., low

amplitude orbits), see Figure 5.5.

The hyperbolic characteristic exponents for the stable (λ1) and unstable (λ2) directions

are the solutions of the linearised dynamics in Eq. (5.5); where, now the real roots λ1,2

are denoted as ±σ. The corresponding eigenvector for σ is:

u1 =
1√

1 + u2
1

[
1

u1

]
u1 =

σ2 − Vxx
Vxy + 2ω0σ

u1u
T
1 =

1

1 + u2
1

[
1 u1

u1 u2
1

]
; (5.22)
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Figure 5.5: Couples of real and pure imaginary eigenvalues of the linearised
equations: λ1 (magenta cross), λ2 (orange cross), λ3 (blue cross) and λ4 (green
cross).

where u1 is real and the projection tensor u1u
T
1 is real. The corresponding eigenvector

for −σ is, instead:

u2 =
1√

1 + u2
2

[
1

u2

]
u2 =

σ2 − Vxx
Vxy − 2ω0σ

u2u
T
2 =

1

1 + u2
2

[
1 u2

u2 u2
2

]
; (5.23)

where u2 is real and the projection tensor u2u
T
2 is real. The control law proposed by

Scheeres et al. (2003a) is then:

ac = −σ2G1

[
u1u

T
1 + u2u

T
2

]
δr. (5.24)

As said, the validity of the control law in Eq. (5.24) is for solutions where the instanta-

neous stability map has two couples of real and pure imaginary eigenvalues. This is the

case for low amplitude LPOs.

5.1.3 Control law for complex and conjugate pairs

When couples of complex and conjugate numbers occur, as in the case of high amplitude

orbits, the eigenvalues are the solution of the linear system in Eq. (5.5), where λ1,2,3,4

are complex and conjugate pairs; thus now λ1,2 and λ3,4 are ±(σ + γi) and ±(σ − γi)
respectively, as shown in Figure 5.6. The idea proposed here for the design of the

extended control law is to get rid of the imaginary components in order to have a real

control acceleration where the control law proposed in Eq. (5.24) fails to stabilise high

amplitude orbits. Thus, the eigenvector components are separately analysed, in this

thesis, in order to highlight possible conjugate terms for the design of the eigenvectors

normalisation and the control acceleration. Starting from λ1 = σ+γi, its correspondent

eigenvector component u1 is:

u1 =
σ2 − Vxx − γ2 + 2σγi

Vxy + 2ω0σ + 2ω0γi
=
A1 +B1i

C1 +D1i
, (5.25)
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Figure 5.6: Couples of complex an conjugate eigenvalues of the linearised equa-
tions: λ1 (magenta cross), λ2 (orange cross), λ3 (green cross) and λ4 (blue
cross).

that, after mathematical manipulation, it can be written as:

u1 =
(A1C1 +B1D1)− (A1D1 −B1C1)i

C2
1 +D2

1


A1 = σ2 − Vxx − γ2

B1 = 2σγ

C1 = Vxy + 2ω0σ

D1 = 2ω0γ

. (5.26)

The same approach can be used for λ2 = −σ− γi; where, the correspondent eigenvector

component is defined as

u2 =
σ2 − Vxx − γ2 + 2σγi

Vxy − 2ω0σ − 2ω0γi
=
A2 +B2i

C2 −D2i
. (5.27)

Thus, it is possible to highlight the real and imaginary part of u2 as

u2 =
(A2C2 −B2D2) + (A2D2 +B2C2)i

C2
2 +D2

2


A2 = σ2 − Vxx − γ2

B2 = 2σγ

C2 = Vxy − 2ω0σ

D2 = 2ω0γ

. (5.28)

As before, the correspondent eigenvector component u3 to λ3 = σ − γi is:

u3 =
σ2 − Vxx − γ2 − 2σγi

Vxy + 2ω0σ − 2ω0γi
=
A3 −B3i

C3 −D3i
(5.29)

and, by manipulating the previous expression, it is possible to write:

u3 =
(A3C3 +B3D3) + (A3D3 −B3C3)i

C2
2 +D2

2


A3 = σ2 − Vxx − γ2

B3 = 2σγ

C3 = Vxy + 2ω0σ

D3 = 2ω0γ

. (5.30)
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Finally, in the case of λ4 = −σ + γi, the correspondent eigenvector component is u4,

u4 =
σ2 − Vxx − γ2 − 2σγi

Vxy − 2ω0σ + 2ω0γi
=
A4 −B4i

C4 +D4i
(5.31)

and it can be defined also as:

u4 =
(A4C4 −B4D4)− (A4D4 +B4C4)i

C2
4 +D2

4


A4 = σ2 − Vxx − γ2

B4 = 2σγ

C4 = Vxy − 2ω0σ

D4 = 2ω0γ

. (5.32)

By noticing that 

A1 = A2 = A3 = A4 = A = σ2 − Vxx − γ2

B1 = B2 = B3 = B4 = B = 2σγ

C1 = C3 = C = Vxy + 2ω0σ

C2 = C4 = C̄ = Vxy − 2ω0σ

D1 = D2 = D3 = D4 = D = 2ω0γ

, (5.33)

it is possible to rewrite the expression of uk, with k defined from 1 to 4, as:

u1 =
(AC +BD)− (AD −BC)i

C2 +D2
u2 =

(AC̄ −BD) + (AD +BC̄)i

C̄2 +D2
(5.34)

u3 =
(AC +BD) + (AD −BC)i

C2 +D2
u4 =

(AC̄ −BD)− (AD +BC̄)i

C̄2 +D2
. (5.35)

So u1 and u3 are complex and conjugate and u2 and u4 are complex and conjugate too.

Moreover, if a change of variables is applied,

a∗ = AC +BD

b∗ = AD −BC
c∗ = C2 +D2

d∗ = AC̄ −BD
e∗ = AD +BC̄

f∗ = C̄2 +D2

, (5.36)

it is possible to define the eigenvectors and their normalisations by knowing that u3 is

the conjugate of u1 and u4 is the conjugate of u2:

u1 =
1√

1 + u1u3

[
1

u1

]
u1 =

a∗ − b∗i
c∗

(5.37)
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u3 =
1√

1 + u1u3

[
1

u3

]
u3 =

a∗ + b∗i

c∗
(5.38)

u2 =
1√

1 + u2u4

[
1

u2

]
u2 =

d∗ + e∗i

f∗
(5.39)

u4 =
1√

1 + u2u4

[
1

u4

]
u4 =

d∗ − e∗i
f∗

(5.40)

where, a∗, b∗, c∗, d∗, e∗ and f∗ are functions of the eigenvalues and Vrr:

a∗ = (σ2 − Vxx − γ2)(Vxy + 2ω0σ) + (2σγ)(2ω0γ)

b∗ = (σ2 − Vxx − γ2)(2ω0γ)− (2σγ)(Vxy + 2ω0σ)

c∗ = (Vxy + 2ω0σ)2 + (2ω0γ)2

d∗ = (σ2 − Vxx − γ2)(Vxy − 2ω0σ)− (2σγ)(2ω0γ)

e∗ = (σ2 − Vxx − γ2)(2ω0γ) + (2σγ)(Vxy − 2ω0σ)

f∗ = (Vxy − 2ω0σ)2 + (2ω0γ)2

. (5.41)

Since u1 and u3 are complex and conjugate and u2 and u4 are complex and conjugate,

it is possible to write a new control law for high amplitude orbits as follows. From the

normalisation, it is know that:

u1u3 = (a∗ − b∗i) · (a∗ + b∗i) = a2
∗ + b2∗, (5.42)

and

u2u4 = (d∗ + e∗i) · (d∗ − e∗i) = d2
∗ + e2

∗. (5.43)

The four projection tensors are now defined as:

u1u1
T =

1

1 + u1u3

[
1 u1

u1 u2
1

]
, u3u3

T =
1

1 + u1u3

[
1 u3

u3 u2
3

]
, (5.44)

u2u2
T =

1

1 + u2u4

[
1 u2

u2 u2
2

]
, and u4u4

T =
1

1 + u2u4

[
1 u4

u4 u2
4

]
. (5.45)

It is interesting to note that the only linear combination among the projection ten-

sors, that guarantees a real control law, requires the couples of projection tensors to be

weighted with the same gain. This can be demonstrated by looking at uk and uk in

Eq. (5.37)-(5.40). For removing the imaginary numbers, the only solution is to keep

the tensors associated to u1 and its conjugate u3 in proportion with the same gain



Chapter 5 Hamiltonian Structure-Preserving Control 127

magnitude so that:

u1u1
T + u3u3

T =
1

1 + u1u3

[
1 u1 + u3

u1 + u3 u2
1 + u2

3

]
, (5.46)

u1 + u3 = a∗ − b∗i+ a∗ + b∗i = 2a∗ (5.47)

and

u2
1 + u2

3 = (a∗ − b∗i)2 + (a∗ + b∗i)
2 = 2(a2

∗ − b2∗) (5.48)

are all real. For the same reason, the tensors associated to u2 and u4 should be weighted

with the same gain to achieve a real control acceleration. So,

u2u2
T + u4u4

T =
1

1 + u2u4

[
1 u2 + u4

u2 + u4 u2
2 + u2

4

]
, (5.49)

u2 + u4 = d∗ + e∗i+ d∗ − e∗i = 2d∗ (5.50)

and

u2
2 + u2

4 = (d∗ + e∗i)
2 + (d∗ − e∗i)2 = 2(d2

∗ − e2
∗) (5.51)

are real terms too. The proposed control law for high amplitude orbits needs to be

weighted with the same gain couples of complex and conjugate eigenvectors, in order to

have a real control acceleration and to cancel the imaginary parts out. So:

ac =
{
−λ1λ3G1

[
u1u1

T + u3u3
T
]
− λ2λ4G2

[
u2u2

T + u4u4
T
]}
δr (5.52)

where,

λ1λ3 = (σ + γi)(σ − γi) = σ2 + γ2 λ2λ4 = (−σ − γi)(−σ + γi) = σ2 + γ2 (5.53)

are all real and positive numbers. Thus, ac can be further simplified to:

ac = −
(
σ2 + γ2

) {
G2

[
u1u1

T + u3u3
T
]

+G3

[
u2u2

T + u4u4
T
]}
δr. (5.54)

In conclusion, the HSP control algorithm is designed such that:

ac =

{
Equation [5.24] if ∆ > 0 Scheers et al. (2003a)

Equation [5.54] if ∆ < 0 Soldini et al. (2016b).
(5.55)

The proposed control in Eq. (5.55) was implemented in the CRUISE (Controlled Routes

by Using Innovative Solar-radiation Equipment) algorithm in Matlab. A description of

CRUISE architecture is shown in Appendix A. An important remark is that not all

the gain sets (G1, G2 and G3) can stabilise the orbit, since the local stability is not

a necessary condition of the periodic orbit stability due to resonance effects (Scheeres

et al., 2003a). It is useful to compare this formulation with the proposed control law
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for complex and conjugate roots (in Section 5.1.3) in order to understand the main

differences.

5.2 Gain definition to achieve simple Lyapunov stability

The simple stability is guaranteed for:
bc = 4ω2 − V c

xx − V c
yy > 0

cc = V c
xxV

c
yy − (V c

xy)
2 > 0

∆c = (bc)2 − 4cc > 0

. (5.56)

The linear stability was already proven by Scheeres et al. (2003a) for the hyperbolic×centre

equilibrium; in this case, G1 in Eq. (5.24) should be selected to be large enough to guar-

antee linear stability. In this section, a similar approach is used to study the stability

as a function of G2 and G3 associated to the extended control in Eq. (5.54); where,

complex and conjugate eigenvalues occur. For the definition of the control law in Eq.

(5.54), V c
xx, V c

yy and V c
xy are defined as:

V c
xx = Vxx −G2

(σ2 + γ2)

1 + u1u3
−G3

(σ2 + γ2)

1 + u2u4
(5.57)

V c
yy = Vyy −G2

(σ2 + γ2)(u2
1 + u2

3)

1 + u1u3
−G3

(σ2 + γ2)(u2
2 + u2

4)

1 + u2u4
(5.58)

V c
xy = Vxy −G2

(σ2 + γ2)(u1 + u3)

1 + u1u3
−G3

(σ2 + γ2)(u2 + u4)

1 + u2u4
. (5.59)

The definition of bc is:

bc = b+ (σ2 + γ2)

[
G2

1 + u2
1 + u2

3

1 + u1u3
+G3

1 + u2
2 + u2

4

1 + u4u4

]
. (5.60)

Since b < 0 and bc must be greater than zero, it is important to study the sign of the

terms associated to the controller. In Eq. (5.60), u1u3 = a2
∗+ b2∗ and u2u4 = d2

∗+ e2
∗ are

positive terms, thus all the fractions are positive (> 0). This means that, for the first

condition in Eq. (5.56), G2 and G3 should be positive and big enough to keep bc > 0.

As a consequence of Eq. (5.56), (bc)2 must be greater than 4cc such as ∆c > 0. The

definition of ∆c is

∆c = (4ω2 − V c
xx − V c

yy)
2 − 4(V c

xxV
c
yy − (V c

xy)
2) (5.61)

where, Eq. (5.61) can be rewritten as:

∆c = 8ω2bc + (V c
xx − V c

yy)
2 + 4(V c

xy)
2. (5.62)
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Since (V c
xx − V c

yy)
2 and (V c

xy)
2 are positive terms, the condition ∆c > 0 is satisfied by

bc > 0. The definition of cc is:

cc = c+(σ2 +γ2)2

[
G2

2

u2
1 + u2

3

(1 + u1u3)2
+G2

3

u2
2 + u2

4

(1 + u2u4)2
+
G2G3(u2

2 + u2
4 + u2

1 + u2
3)

(1 + u2u4)(1 + u1u3)

]
+Kn;

(5.63)

where, Kn collects all the negative terms:

Kn = −(σ2 + γ2)
{
G2

[
Vxx(u21+u23)+Vyy

1+u1u3
− 2Vxy(u1+u3)

1+u1u3
+G2(σ2 + γ2) (u1+u3)2

(1+u1u3)2

]
+G3

[
Vxx(u22+u24)+Vyy

1+u2u4
− 2Vxy(u2+u4)

1+u2u4
+G3(σ2 + γ2) (u2+u4)2

(1+u2u4)2

]
+2G2G3(σ2 + γ2) (u1+u3)(u2+u4)

(1+u2u4)(1+u1u3)

}
.

(5.64)

Since c < 0, Kn collects all the negative terms and cc must be > 0, G2 and G3 must be

positive and big enough to guarantee the stability. Note that, as a result of both the

conditions bc > 0 and cc > 0, either G2 or G3 must be non zero.

5.3 Floquét modes control

In this section, the Floquét Mode (FM) control is shortly presented since it will be com-

pared with the HSP control. The Floquét mode based control approach was originally

developed by Simó et al. (1987) and Gómez et al. (2001). The principle of this con-

trol method was presented in Section 2.4.1. When extended to SRP missions, the FM

method let the solar sail follow its natural dynamics; which initially allows it to follow

its unstable manifold. Then, the solar sail orientation is changed to bring the trajectory

back to the stable manifold of the LPO target orbit.

The FM approach exploits the invariant manifold theory and the Floquét modes to com-

pute the required ∆v manoeuvres. The Floquét modes are used to compute the unstable

components of the error state vector, by exploiting the eigenstructure of the monodromy

matrix, M . Then, the manoeuvre is computed to compensate for the instability (i.e.,

unstable manifold). In this investigation, the FM algorithm used is the one formu-

lated by Keeter (1994). In Keeter’s (1994) work, the FM was compared to the target

points station-keeping approach (Howell and Pernicka, 1993). For periodic orbits, the

monodromy matrix is symplectic and its eigenvalues have the following characteristics:

• two real eigenvalues m1 and m2 = 1
m1

that identify the stable and unstable mani-

folds of the hyperbolic equilibrium;

• two real eigenvalues equal to one m3 = m4 = 1 for the in-plane centre manifold;

• two complex eigenvalues m5 and m6 for the out-of-plane centre manifold.
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Since the eigenvalues of the STM are not periodic functions of time, the elements of

the STM change as the time increases and the dominant eigenvalues (unstable direc-

tion) show an exponential growth. Therefore, it becomes challenging and inaccurate

to obtain the eigenvectors from the STM as the time increases (Gómez et al., 2001;

Keeter, 1994). It is convenient to express the eigenstructure of the STM with an alter-

native representation by using the Floquét theory to avoid numerical problems in the

computation of the STM, (Wiesel and Pohlen, 1994). The FMs are a particular modal

approach applied for time-invariant Hamiltonian systems with periodic solutions. Note

that, the advantage of using a modal analysis is well known in structural engineering

when studying the dynamical properties of a system. Thus, the computation of the

Floquét modes in the CR3BP is (Keeter, 1994):

Ẽ(t, t0) = Φ(t, t0) · Se−J̃t (5.65)

where, S is a real matrix and collects all the eigenvectors of the monodromy matrix

M = Φ(T, t0) by separating their real and imaginary parts, and J̃ is the Jordan matrix

which is a function of the eigenvalues of the monodromy matrix. The columns of the

matrix Ẽ correspond to the Floquét mode that are periodic eigenvectors associated to

the monodromy matrix.

A summary of the FM control approach is presented by following the notation of Keeter

(1994) as it is useful for the following comparison of the FM and HSP control algorithms.

As previously stated, the FM controller aims to cancel the projection of the state error

onto the unstable direction. The controller uses the information from all the components

of the state error vector in position δr and in velocity δṙ. Since the state error should

be projected onto the FM (Ẽ with column component vectors ēi), once the FM are

determined, it is possible to compute the correction manoeuvres by first computing the

projection tensor as:

Πi =
ēi · ēTi
ēTi · ēi

i = 1, . . . , 4 (5.66)

then, by considering that δx = {δr, δṙ} is the difference between the actual trajectory

and the target orbit, each components δxi can be determined as:

δxi = Πi · δx i = 1, . . . , 4 (5.67)

where, δx1 is the unstable direction to be counteracted; while, δx2, δx3 and δx4 are

associated to the stable, centre and centre direction respectively. The controller is de-

signed so that a ∆v is given to compensate δx1 (Gómez et al., 2001; Keeter, 1994) as

follows:

∆v =

(
n∑
i=2

αi · δxi

)
− δx1 (5.68)



Chapter 5 Hamiltonian Structure-Preserving Control 131

where, the unknowns are αi and ∆v. Note that the index n is equal to 4 for planar

motion and 6 for three dimensional dynamics. The velocity components are also required

to cancel out the unstable part; however, there are more unknowns than equations. For

this reason, there is an infinite number of solutions and for 3-axis control an optimisation

is required to minimise a cost function. However, for our purposes, a x-axis control was

considered where a closed-form solution exists (see Appendix E.2 for more details).

5.4 Comparison of the Hamiltonian structure preserving

and the Floquét modes approaches

Both the HSP and the FM control methods aim to project the error state vector along

the eigenvectors of the STM. The main difference between these two approaches is that

the HSP control law uses the information of the local eigenvectors of the linearised

equations in Eq. (5.3) as an approximation of the STM instantaneous stability map,

whereas the FM uses the information of the global eigenvectors in Eq. (5.65) (i.e. the

eigenvectors that belong to the monodromy matrix) of the linearised equations.

For time-invariant systems with small time variations (Scheeres et al., 2003a), a good

approximation of the STM is computed as shown in Appendix C.9, is:

Φ(t) = eA(X̄(t))·t; (5.69)

where, A(X̄(t)) is the matrix of the linearised equations of motion. The HSP controller

uses the eigenstructure of A(X̄(t)); while, the FM uses the eigenstructure of Φ. Eq.

(5.69) is the link between the HSP and the FM approaches since both controllers are

linear.

Another important aspect is that the effect of the HSP controller is to remove both the

stable and unstable directions of the instantaneous map in Eq. (5.55); while, the FM

controller compensates only the unstable directions of the target orbit (mapped at each

orbital period) in Eq. (5.68). As already mentioned, the reasoning behind the control

law proposed by Scheeres is that both the stable and unstable directions need to be

compensated to guarantee simple Lyapunov stability, Eq. (5.4). Indeed, the Lyapunov

stability cannot be achieved by only compensating for the unstable direction. Thus, a

main difference between the HSP and FM control strategies is related to the Lyapunov

stability. By adding the effect of the HSP or FM control to the dynamics, Eq. (3.39)

changes into:
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HSP :


ẍ− 2ω0ẏ = Vx + acx

ÿ + 2ω0ẋ = Vy + acy

z̈ = Vz + acz

FM :


ẍ− 2ω0ẏ = Vx

ÿ + 2ω0ẋ = Vy

z̈ = Vz

(5.70)

where acx, acy, a
c
x are the components acceleration of ac. In the case of the FM, the effect

of the ∆v = {∆ẋ,∆ẏ,∆ż} is added to the spacecraft velocity as v = {ẋ+∆ẋ, ẏ +∆ẏ,

ż +∆ż}, at the time of the given impulsive manoeuvre. The HSP controller is designed

for low thrust applications as the control law is given as a continuous acceleration.

Whereas, the FM controller is usually used for impulsive manoeuvres where a discrete

∆v is required; however, it can also be extended to low thrust applications.

From a physical point of view, the HSP controller creates an artificial centre manifold

that eliminates the stable and unstable directions; thus, the controller changes the shape

of the potential function. However, the spacecraft will not stay indefinitely on the target

orbit since the HSP controller can only guarantee simple Lyapunov stability. This means

that the decay of the spacecraft is now slower, from an exponential decay (i.e. no control)

to a polynomial decay (i.e. HSP control). In comparison, the FM controller gives an

instantaneous ∆v that changes the energy of the system; therefore, the potential function

is unchanged. However, between two manoeuvres, the spacecraft will start drifting and

the decay can be compensated for by a new ∆v. This is since the HSP controller uses the

eigenvalues and eigenvectors of the actual trajectory, whereas the FM uses the modes of

the target orbit.

From Orbit Determination (OD), a complete and exact knowledge of the state of the

spacecraft is not possible (Gordon, 1993); thus, an important aspect in selecting a control

law from the OD point of view is the knowledge of the state vector of the spacecraft.

The HSP controller requires the knowledge of the spacecraft position, whereas the FM

requires the knowledge of both the position and velocity. Moreover, uncertainty in

determining the spacecraft state vector is often related to an inadequate representation

of the dynamical model. For example, a further approximation is to use the linearised

system of equations to model the nonlinear system (Gordon, 1993). However, Scheeres

demonstrated the robustness of the HSP control with nonlinearities. Therefore, in the

following, a sensitivity analysis is performed for both the HSP and FM controllers to

identify the characteristics and the robustness of these approaches.

Finally, when it is of interest to find the optimal solution, both the controllers require

the definition of a weight matrix that describes the propellant cost. Thus, it is necessary

to select the optimum gains of the HSP control or to choose the minimum ∆v for a

3-axis FM control.

In this study, the sensitivity analysis of the two controllers is performed by changing

the most important design parameter (the gains for the HSP control and the time of
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Table 5.1: Summary of HSP and FM main features.

manoeuvre for the FM control), rather than finding an optimal solution. In this way,

the results will depend on the time of the manoeuvre along the orbit for the x-axis FM

control and the gain for the HSP control. Table 5.1 lists a summary of the main features

of the HSP and the FM approaches.
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Thruster Type Isp [s] Thrust

RIT-10 Ion 2500-3700 0.3-41 [mN]
FEEP Cesium 7000-11000 0.1-1200 [µ N]
FEEP Indium 10000 1-100 [µ N]
Colloid - 500-1500 0.5-25 [µ N]

Table 5.2: Thrusters data sheet (Leach and Neal, 2002).

5.5 Robustness to failure in the orbit insertion manoeuvre

In the previous section, a qualitative comparison of the HSP and the FM was given

and their main features and differences were presented in Table 5.1. Conversely, in

this section, a sensitivity analysis of the control parameters is carried out to verify

the robustness of the two control laws. An injection error due to the launch vehicle

uncertainties or due to failures in the Halo Orbit Insertion (HOI) manoeuvre is taken

into account.

The ESA/NASA’s SOHO spacecraft is selected as a mission scenario as it has a nominal

orbit similar to the ISEE-3 mission. Other authors such as Keeter (1994) used similar

orbits as a reference for a comparison between FM and the target point controllers.

Therefore, this allows a comparison of this work with other control laws. The SOHO

spacecraft is in a halo orbit at L1 with a period of 177.86 days.

The sensitivity analysis is performed as a function of the gains for the HSP control law

and of the ∆t between two manoeuvres for the FM control. The performance of the

HSP and FM controllers are presented regarding the total ∆v required, computed as

∆v =

∫ t

t0

|ac|dτ (5.71)

for the HSP control and as

∆v =

m∑
k=1

∆vk, (5.72)

for the FM control, where m is the number of manoeuvres; while, t0 and t are the

initial and final times respectively. The HSP gives a continuous acceleration (small

thrusters) and it is possible to compute the approximate thrust profile by multiplying

the acceleration by the wet spacecraft mass (which in the case of SOHO is 1853 kg).

However, the fuel consumption is not taken into account; thus, the requirements of the

thrust are more conservative as the time increases. Note that, a threshold concerning the

minimum and maximum thrust provided by the propulsion system should be taken into

account. However, the acceleration is not bounded in our simulations but the level of

thrust provided by the thrusters, shown in Table 5.2, will be compared with the required

controlled acceleration (Leach and Neal, 2002).



Chapter 5 Hamiltonian Structure-Preserving Control 135

In the case of the FM control, there is a minimum ∆t between two manoeuvres due to

OD and telecommunication constraints, which is around 30 days. Furthermore, in real

applications, the minimum ∆v should not be lower than 2 cm/s. Otherwise, the ∆v

would be of the same order of magnitude as the tracking errors (Keeter, 1994). Also

in this study, the ∆v and the tracking error constraints are not considered to make the

FM performance comparable to the HSP, without being influenced by any thresholds.

This investigation uses the equations of motion shown in Eq. (3.39) without the effect

of SRP, as = 0. Thus, the two control laws are compared independently from the SRP

effect. SOHO’s orbit has eigenvalues that are real pairs and pure imaginary (∆ > 0).

The control law was extended to the z direction in Appendix E.1 here instead is presented

for planar dynamics. For the case of the FM control, the control law given by Eq. (5.72)

of Appendix E.2 is used. The results are obtained by increasing the injection error

in both position and velocity to emulate an error in the HOI manoeuvres caused by

the launcher. Thus, the spacecraft is displaced from its target orbit. The range in the

injection error is selected to include representative errors conditions and possible failures

in the manoeuvre. Different test cases were analysed where, the injection error is, firstly,

given in position along the x-, y- and z- axis respectively by progressively increasing the

injection error in the range of {0, 10, 100, 1000, 104, 105} km. Then, an injection error

given in velocity along each single axis is also explored, where the range is selected as

{0, 2, 4, 6, 8, 10} m/s. The values in the selected injection error are chosen to push the

performance of the two controllers into a non-linear dynamical regime.

Each test is performed for the HSP and the FM controllers, but in the first case a

sensitivity analysis in the gain parameter is carried out where set of twenty gains is

selected such that:

• fifteen gains, G, are equally distributed within 1 and 10,

• G = 15,

• G = 30,

• G = 60,

• G = 90, and

• G = 100.

Also for the FM control, twenty different ∆t values between two consecutive manoeuvres

are selected by defining the number of intervals N along the period, T , where the

manoeuvre occurs. Thus, ∆t = T/N and values of N are selected such as:

• N is between 2 and 14 with step 1,
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• N is between 17 and 40 with step 5,

• N = 50, and

• N = 177.

These values in N correspond to values in ∆t within 1 day and 89 days.

Under the contingency, test the threshold of orbit stability is defined in this study as an

orbit that stays within a maximum distance of 105 km from the target orbit for at least

nine orbital periods (which corresponds to 4.4 years of the mission lifetime).

Figure 5.7 shows SOHO’s orbits (coloured scale curves) after an initial displacement

along the z-axis from the target orbit (black curve) is given. The color scale in Figure

5.7 indicates the selected gain for the HSP control (Figure 5.7(a)) or the ∆t between

two manoeuvres for the FM control (Figure 5.7(b)). As shown in Figure 5.7(a), a higher

gain stabilises the orbit for the HSP control; while, lower ∆t between two manoeuvres

stabilise the orbit for the FM control as in Figure 5.7(b). For both the HSP and the

FM strategies, it is evident that both controllers are robust to errors along the z-axis in

both position and velocity since the required ∆v is relatively low and few solutions lead

to an uncontrolled orbit. This advantage is due to the fact that the controlled orbits

have a smaller amplitude along z compared with the target orbit as shown in Figure 5.7.

(a) HSP control.
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(b) FM control.

Figure 5.7: Controlled trajectories for 105 km of z-axis injection error.

The next step is to analyse the case of positional injection errors along either the x or y

axis. The two controllers can not be pushed to high errors in velocity due to failures in

stabilising the orbit. Figure 5.8 shows as before the controlled orbit after a given offset

along the y-axis. The HSP shown in Figure 5.8(a) is more robust to contingency cases

when compared to the FM data in Figure 5.8(b) since high offsets in positions requires

relatively small gains. For the HSP controller, the effect of an initial injection error in

position excites the frequency of the artificial centre manifold such that the spacecraft

oscillates along the target orbit. Although the satellites orbit oscillates around the



Chapter 5 Hamiltonian Structure-Preserving Control 137

target orbit, the control approach manages to stabilise the orbit to a sufficient degree of

accuracy.

Figure 5.9 shows the required ∆v for both controllers as a function of the errors along

the y-axis which is calculated from the gains for the HSP control (Figure 5.9(a)) and

from the ∆t between two manoeuvre for the FM control (Figure 5.9(b)). The ∆v is

computed using Eq. (5.71) for the HSP control and using Eq. (5.72) for the FM control

and it is presented using a logarithmic scale. As can be seen in Figure 5.9(a) the HSP

control requires a very low total ∆v, in the range of 3.53 · 10−7 m/s to 7 m/s. Instead,

the FM requires ∆v between 4.19 · 10−3 m/s and 7210 m/s as shown in Figure 5.9(b).

Note that the performance of the FM could be further improved with a 3-axis control

and the ∆v could approximately be reduced to a third of these values. Therefore, the

requirements for the FM with 3-axis control would be expected to be between 1.39 ·10−3

m/s and 2400 m/s. This is a conservative approach since the ∆v obtained with 3-axis

control is higher than shown by Keeter (Keeter, 1994). In any case, the HSP control

requires a lower fuel consumption when compared to the FM control.

(a) HSP control.
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Figure 5.8: Controlled trajectories for 105 km of y-axis injection error.

Figure 5.10 and Figure 5.11 show a sensitivity analysis as a function of the gain for

the HSP, Figure 5.10, and ∆t between two manoeuvres for the FM, Figure 5.11; the

maximum position error between the SOHO spacecraft and the target orbit is shown.

This has been calculated for different injection errors along the y-axis from 10 to 105 km.

Note that, the FM often requires manoeuvres to be performed more frequently than the

OD limit of 30 days and, for this reason, several solutions should be discarded as shown

in Figure 5.9(b).

Figure 5.10 shows how to select the gain to achieve the minimum error, |dr|, after a

certain number of orbital periods n, for a specific initial injection error. |dr| is the error

between the spacecraft’s distance from the origin of the synodic reference frame and a

threshold of 105 km. This threshold was selected to identify all the unstable trajectories

that may occur. This might be useful information for OD. Note that, with a small gain;



138 Chapter 5 Hamiltonian Structure-Preserving Control

1.64286

2.92857

4.21429

5.5    

6.78571

8.07143

9.35714

15     

60     

100    

0 10 10^210^310^410^5

−10

−5

0

5

 

Y−axis injection error [km]

Gain

 

lo
g 10

 (
∆ 

v x [m
/s

])
log

10
 (∆ v

x
 [m/s])

−6

−5

−4

−3

−2

−1

0

(a) HSP control.

59

36

25

20

16

14

10

 7

 5

 1

0 10 10^2 10^3 10^4 10^5

−4

−2

0

2

4
 

Y−axis injection error [km]

D t [days]

 

lo
g 10

 (
∆ 

v x [m
/s

])
 

log
10

 (∆ v
x
 [m/s])

−2

−1

0

1

2

3

(b) FM control.

Figure 5.9: error in logarithmic scale.

a tiny white area indicates unstable solutions for the HSP control as the gain is not high

enough to stabilise the orbit. Instead, for the FM the white area in Figure 5.11 denotes

uncontrolled orbit solutions. The white area increases with the injection error when the

time between manoeuvres (∆t) is constrained, decreasing the stabilisation of the orbit.

Thus, these maps can be used in trade-off studies for OD and to determine the overall

time mission duration as a function of the initial injection error for both controllers.

The previous tests verified the robustness of the two control laws under contingency

analysis due to failure in the insertion launcher manoeuvre. Now a nominal injection

error due to uncertainty in the spacecraft’s position and velocity will be considered. A

standard order of magnitude of the injection error in the position and velocity is around

10 km and 1 m/s respectively (Keeter, 1994), by taking into account that launcher vehicle

errors are typically on the same order of magnitude in velocity of 1 m/s Serban et al.

(2002). Thus, this analysis will study a realistic nominal injection error. The injection

error is given in a random direction: in position, in velocity and position and velocity

together. In these tests, the modulus of the error in the position is selected to be around

15 km and the one in velocity is chosen to be around 3 m/s. A typical injection error in

position is r = {6.49, 11.25, 7.5} km and in velocity is ṙ = {0.0013, 0.00225, 0.0015}
km/s. A∆t of 30 days and a gain of 10 is selected for the FM control systems respectively.

In order to cancel the error in position, the total ∆v is 0.98 m/s for the FM and 1.4 ·10−4

m/s for the HSP. For the case of an error in velocity, the total ∆v is 440 m/s for the FM

and 2.14 · 10−2 m/s for the HSP. Finally, when an error both in position and in velocity

is given, the total ∆v is 2250 m/s for the FM and 2.96 · 10−2 m/s for the HSP.

Figure 5.12 shows the scenario when the injection error is given in both position and

velocity. The controlled orbits are shown respectively in Figure 5.12(a) for the HSP

and Figure 5.12(c) for the FM. Figure 5.12(b) shows the control thrust required for the

HSP control reported that can be compared to values to the typical thruster values; this
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Figure 5.10: HSP control: sensitivity analysis of |dr| at each orbital period n as
a function of the selected control gains.

can be compared in Table 5.2; while, Figure 5.12(d) shows the ∆v required for the FM

control. Once again, the requirements in the HSP control in term of total ∆v are lower

than with the FM approach.
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Figure 5.11: FM control: sensitivity analysis of |dr| at each orbital period n as
a function of the time between two consecutive manoeuvres ∆t.
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Figure 5.12: Controlled orbit and control requirements in case of an injection
error in position and velocity with a modulus of 15 km and 3 m/s.
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5.5.1 Remarks

The Hamiltonian-Structure Preserving control was compared with the Floquét mode

approach. By giving a high initial injection error due to failure in the halo insertion

manoeuvre, it was possible to verify the robustness of the two methods by comparing

their performances:

• the HSP control has shown to be robust when a failure in the halo insertion

manoeuvre occurs, whereas the FM control does not always converge to a stable

solution;

• the HSP control also works in a regime of non-linearities as already proven by

Scheeres et al. (2003a);

• the advantage of the HSP control is that only an estimation of the state position

error is needed;

• the HSP control does not depend on the selected orbit as for the FM control;

• the continuous acceleration required by the HSP control is tiny (the overall ∆v is

less when compared to the FM control requirements).

These results suggest that the HSP control is preferable for low-thrust applications or,

when possible, for propellant-free systems that exploit SRP. The advantage of the HSP

control is in exploiting the natural dynamics of the restricted three-body problem to

stabilise the motion of the spacecraft and it has been shown to be a promising approach.

5.6 Actuators model: deployable reflective structures

As shown by Farrés and Jorba (2008) and Xu and Xu (2009), the control accelerations

can be expressed with the linear approximation in the orientations angles and area, so

as is defined as:

as(α, δ, β) = as(α0, δ0, β0) + ∂as

∂α

∣∣∣∣
(α0,δ0,β0)

(α− α0) + ∂as

∂δ

∣∣∣∣
(α0,δ0,β0)

(δ − δ0)

+∂as

∂β

∣∣∣∣
(α0,δ0,β0)

(β − β0) +O(2).
(5.73)

It is possible to write ∆α = (α−α0), ∆δ = (δ− δ0) and ∆β = (β−β0) and by imposing

that the SRP acceleration is given by the HSP control as as(α, δ, β) = ac, Eq. (5.73)
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can be rewritten as:

ac = as(α0, δ0, β0) +

[
∂as

∂Θ

] ∣∣∣∣
(α0,δ0,β0)

∆Θ +O(2), (5.74)

where, ∆Θ is defined such as {∆α,∆δ,∆β}T , and the Jacobian matrix is defined as:[
∂as

∂Θ

] ∣∣∣∣
(α0,δ0,β0)

=

[
∂as

∂α

∣∣∣∣
(α0,δ0,β0)

, ∂as

∂δ

∣∣∣∣
(α0,δ0,β0)

, ∂as

∂β

∣∣∣∣
(α0,δ0,β0)

]
. (5.75)

The derivatives of the SRP acceleration in Eq. (5.75) is given in Appendix E.3 and by

inverting Eq. (5.74), the variation in the control parameters is given by:

∆Θ =

[
∂as

∂Θ

]−1 ∣∣∣∣
(α0,δ0,β0)

(ac − as(α0, δ0, β0)) . (5.76)

5.7 Study of stability with the effect of the solar radiation

pressure acceleration

The performance of the HSP control when used with SRP acceleration can now be

investigated; the control acceleration is given by the actuators model described in Section

5.6, and the control law proposed by A. McInnes (2000). A. McInnes (2000)’ work is

based on a trajectory station-keeping technique proposed by Howell and Pernicka (1993),

the target point approach, and modified by A. McInnes (2000) such that the manoeuvres

are given by the effect of SRP acceleration when changing the sail orientation angles. The

work of A. McInnes has been extended to include variations in the lightness parameter,

β, to allow the comparison. Note that A. McInnes assumed that the variation of the

control parameters (α, δ and in this extended case β) are constants along the trajectory

arc of interest (Target point approach). Thus, the variational equations can be written

as:

d

dt

 δr

δṙ

δs

 =

 0 I 0

Vrr 2ω0J asrs
0 0 0


 δr

δṙ

δs

 ; (5.77)

where, as for Eq. (5.3), δr is the position error with respect to the target orbit, δṙ is the

velocity error with respect to the target, J is defined as in Eq. (5.3) and δs = {α, δ, β} is

the vector of the control parameters in term of SRP angles and the lightness parameter.

Note that Eq. (5.3) and Eq. (5.77) differ for the selected state variables where here the

SRP control parameters, δs, are included in the state. The target point algorithm is

written in term of a cost function that contains the deviation of the actual trajectory,

given by:

δx̄(t) = Φ(t, t0) · δx̄(t0), (5.78)
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where Φ is the STM shown in Appendix C.9, which is now affected by the SRP acceler-

ation. The deviation from the actual trajectory is then used to design the target point

cost function (for further details refer to Howell and Pernicka (1993) and A. McInnes

(2000)). The aim here is not to derive the target point algorithm but to study the

Lyapunov stability of Eq. (5.77). The target point algorithm is compared to the HSP

control where Ac(X̄(t)) is defined as in Eq. (5.8) to demonstrate that the effect of the

SRP acceleration in the target point algorithm in Eq. (5.77) does not affect the local

stability. However, the orbit stability is affected by SRP acceleration since this control

modifies the STM in Eq. (3.111) as for the Floquét Mode approach. Howell and Per-

nicka (1993) compared the target points and the Floquét Mode approaches. The idea

is to study the stability of this new linearised equations; where, the characteristic poly-

nomial is given by computing the determinant of D(λ) = |Df c − λI| = 0, where here

Df c is defined as the matrix in Eq. (5.77). For the planar dynamics, the characteristic

polynomial is found to be:

Λ2 + (4− Vxx − Vyy)Λ+ (VxxVyy − V 2
xy) = 0. (5.79)

From Eq. (5.79), it becomes clear that these modified linearised equations do not affect

the local behaviour of the system since it was found the same characteristic polynomial as

the planar case without the effect of SRP acceleration in Eq. (5.4). Thus, changing the

angles or β will not stabilise the system and the system will still have hyperbolic×centre

eigenvalues or couples of complex and conjugate values. The simple Lyapunov stability

cannot be reached; thus, an artificial potential that affects the sign of b, c and ∆ is

needed as for the HSP control. However, note that the eigenvalues of the monodromy

matrix are affected by the SRP acceleration in Eq. (3.111) through Eq. (5.77). Thus,

the target point approach cannot guarantee Lyapunov stability.

5.8 Hamiltonian structure preserving control through so-

lar radiation pressure actuactors

The purpose of this study is to investigate the use of SRP for station-keeping of spacecraft

in high amplitude DPOs. The selected orbits are high-amplitude DPOs (in Figure 5.3(a))

and planar-Lyapunov orbits shown in Figure 5.3(b). When SRP is incorporated, to have

a feasible acceleration, the values of the unstable manifold should never be negative (i.e.

the spacecraft should be escaping outwards from the Sun). Gómez et al. (2001) named

this peculiarity as the “always towards the Sun rule”. This effect causes saturation

in the actuator system when the lightness parameter, β, is constrained between zero

and one and the orientation angles should be limited between −π/2 and +π/2 in both

α and δ. Gómez et al. (2001) explained that this effect cannot be overcome unless a

very high area-to-mass ratio is used. A previous extension of HSP with SRP proposed
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by Xu and Xu (2009) fulfilled the “always towards the Sun” rule by selecting a very

high area-to-mass ratio to avoid saturation in the control parameters. Xu and Xu

(2009) selected a Lissajous orbit to apply their control law and they used an initial

lightness parameter β0 of 0.5059 which for a spacecraft with the same mass as SOHO

(order of 103 kg) corresponds to an initial area of 6.1270·105 m2 (which is equivalent to a

782.75 m span of a square sail area). Currently, JAXA’s IKAROS mission demonstrated

the capability to deploy a 20 m span sail (Tsuda et al., 2013); thus, this size of area

required, as an example, for SOHO is infeasible with current technology. As our study

aims to understand which parameters affect the pointing requirements and the size

of the actuator area for high amplitude orbits, the structural requirements were first

analysed for the simple case of halo orbits (relevant to the SOHO mission) where the

SRP acceleration is provided by the HSP control law designed by Scheeres et al. (2003b).

5.8.1 SOHO mission scenario

In this section, SOHO is used as a mission scenario to verify when SRP is a feasible

option to control a spacecraft in a Halo orbit using the HSP controller. In this case,

the control works in the regime of the hyperbolic equilibrium and a gain of G1 = 10 is

required to stabilise the orbit. The mass of SOHO is set to 1000 kg and the necessary

control parameters are regarding reflective area, A, in-plane angle, α, and out-of-plane

angle, δ. These are computed as a function of the injection error and the primary

reflective area of the spacecraft. The spacecraft is originally Sun-pointing before the

action of the HSP controller. The controller is tested for a maximum of nine orbital

periods that corresponds to 4.4 years.

In this analysis, the spacecraft has an initial reflective area of A0 when the control

action is off. Due to the effect of the control law, the primary area A0 can be reduced

or increased to meet the control requirements and the range in the controlled area is

denoted here by A. The results are shown in Table 5.3 where it can be seen that high

injection errors require a higher initial area, A0, to guarantee a feasible solution. For

example, Figure 5.13 shows the case of A0 = 20 m2 and an offset of −40 km. The

solution is not feasible because of the requirements of a negative area; thus, for this

specific initial injection error a minimum initial area of 35 m2 in A0 is required to have

a feasible deployable area as shown in Table 5.3. In the case of no error in the HOI

manoeuvre, the pointing requirements and the area needed to control the spacecraft are

very tiny as shown in Table 5.3 for the case of A0 = 70 m2. This shows that the HSP

control requires very little acceleration to stabilise the orbit. This is confirmed by Figure

5.14 that compares the same case scenario with (Figures 5.14(a), 5.14(c) and 5.14(e))

and without (Figures 5.14(b), 5.14(d) and 5.14(f)) an initial injection error. Note that,

when the injection error is not considered, the controller acceleration is zero at the first

orbital period because the spacecraft is precisely placed on the target orbit. Table 5.3
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Table 5.3: Area and orientations angles required for different initial reflective
area and injection errors.

shows that for A0 = 20 m2 and an injection error of −5 km the solution exist and it

requires reasonable variations in the area required and in the orientation angles. It also

shows that, in this case, the controller should be limited to changes in just the area and

the in-plane angle, α, since the variations in the out-of-plane angle, δ, are very tiny;

thus are not feasible.
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Figure 5.13: Required area when the initial area is 20 m2 and an initial offset
in x of -40 km is taken into account.

These results suggest that the HSP controller is a good candidate to perform propellant-

free control using SRP acceleration. The primary area required depends on the initial

injection error; however, an initial offset is required to avoid tiny control requirements

that cannot be physically achieved. For example, an offset of −5 km from the target

orbit requires an initial area of 20 m2 with variations of the area of 15.5-21.5 m2 as

shown in Table 5.3. The pointing requirements are feasible in the angle α required by

the controller. α shows to be on the same order of magnitude of the telescopes’ sunshade

Sun-tracking angle for LPOs; while, in this case in δ a control action is not necessary.

In case of the design of variable geometry actuators, the control acceleration should be

limited in the variations of the control area required. Thus, the Hamiltonian structure

preserving control acceleration should be a discrete time control to avoid a continuous

change in time of the reflective area.

5.8.2 High amplitude planar distant prograde orbits and libration point

orbits

In this section, the performance of the HSP controller enhanced by SRP is tested for

high amplitude orbits where couples of complex and conjugate eigenvalues occur. The

controller devised in Section 5.1 is used. The mass of the spacecraft is still 1000 kg and

the gains required to stabilise the orbit are G1 = G2 = G3 = 31. The controller was

tested for the planar LPOs in Figure 5.3(a) and for the DPOs orbit shown in Figure

5.3(b). A primary reflective area of 70 m2 is selected and an initial offset along the

x−axis is included to avoid tiny control requirements. Figure 5.15 shows the required

area and in-plane angle for the selected high amplitude orbits. In this case, the controller

cannot be subjected to high injection errors due to infeasible solutions; thus, a minimum

offset of −1 km and −0.5 km are selected for the LPO (Figure 5.15(a) and 5.15(c)) and

for the DPO (Figure 5.15(b) and 5.15(d)) respectively. In both cases, a small offset
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(a) Area required: offset of −40 km in x− axis.
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(c) In-plane angle, α: offset of −40 km in x− axis.
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(d) In-plane angle, α: no offset in x− axis.
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(e) Out-of-plane angle, δ: offset of −40 km in x− axis.
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(f) Out-of-plane angle, δ: no offset in x− axis.

Figure 5.14: Comparison of the effect of the initial injection error along the
x-axis on to reflective area and orientations angle required for stabilising the
orbit when an initial area of 70 m2 is selected.

required relatively high variations in area and α when compared to the SOHO case

study. This is because these orbits have an index of stability that are much smaller than

Halo orbits; thus, a small deviation from the target shows higher values in the control

requirements. Therefore, high amplitude orbits require a precise insertion manoeuvre

with a tiny deviation from the target if the control is to be performed using SRP.
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(a) Area required for the planar-LPO: offset of −1 km
in x−axis.
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(b) Area required for the DPO: offset of −0.5 km in
x−axis.
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(c) In-plane angle for the planar-LPO, α: offset of −1
km in x−axis.
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(d) In-plane angle for the DPO, α: offset of −0.5 km
in x−axis.

Figure 5.15: Area and in-plane angle required for the planar-LPO in Figure
5.3(b) and the DPO in Figure 5.3(a).
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5.9 Deployable structure solutions

As shown in Section 5.8, the HSP control requires small variations in the reflective

area and in the in-plane angle, α. It was also found that the variation in the out-of

plane angle, δ is very small, on the order of 10−5-10−8 degrees. Thus, in this case, the

controller is effective in the variation of area and α. The variation in the angle α is

achievable with the LPO’s spacecraft pointing requirements. For example, SOHO and

Herschel spacecraft require a 3-axis attitude stabilisation with pointing accuracy of 1

arcsec, while Gaia spacecraft is spin-axis stabilised, where the angle between the spin

axis and the Sun-line direction (shown in Figure 5.16) is of 45◦. The area variation of the

reflective control actuators depend on the effect of the disturbances, where initial offset

of the spacecraft from the target orbit due to failure in the orbit insertion manoeuvre

was evaluated.

In this section, the required additional flaps to achieve a variable geometry actuator

system is presented for a class of LPOs spacecraft similar to SOHO mission shown in

Appendix B.3.2. Figure 5.16 shows an example of nominal configuration1 for a spacecraft

that has a near perfect reflective deployable area of 20 m2 and a mass of 1000 kg. The

case studied is shown in Table 5.3 for A0 = 20 m2 when an initial offset in position of

−5 km is considered. It is supposed that the square area of the spacecraft bus is not

reflective (white prism in Figure 5.16). The bus area is 11.61 m2 (3.4073 m × 3.4073

m). It is also assumed that one side of the solar array and of the reflective actuator flap

match the side of the spacecraft bus with a width of 3.4073 m as shown in Figure 5.16.

The SOHO spacecraft solar array are designed to have an area of 21.9 m2. Each of the

four solar paddle (blue area in Figure 5.16) has thus an area of 5.475 m2. By knowing

that the width of the solar paddle is 3.4073 m (as the solar bus size), the length of each

of the four solar paddle is 1.6068 m.

From Table 5.3, the initial β0 required for a near perfect area is of 3.06 · 10−5. The

reflectivity coefficient of the solar array, Csar , is 1.08 at the beginning of life. The

lightness parameter for the solar array, βsa, can thus be calculated through Eq. (3.30).

The solar array lightness parameter, βsa, for a 1000 kg spacecraft corresponds to 1.8227

·10−5. An initial near perfect reflective flap, Cfr = 2, has to be added to reach the β0

condition2. The lightness number associated to the nominal reflective flap, βf0 , is given

by:

βf0 = β0 − βsa. (5.80)

The initial total area of the reflective flaps is 8.0867 m2 (βf0 = 1.2373 · 10−5). Two flaps

of area Af0 = 4.0434 m2 (1.1867 m × 3.4073 m) are required (yellow area in Figure 5.16).

1The nominal configuration of the control area was previously denoted with A0. It is the initial area
before activating the control law.

2Note that Cfr = 2 is a theoretical value and it is true at the beginning of life; however, some concern
should be given on the degradation of reflectivity due to the space environment.
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Note that it is possible to sum lightness numbers of different area with different reflec-

tivity since the definition of equivalent reflectivity coefficient is given by:

C∗r =
2 · Cfr ·Af0 + 4 · Csar ·Asa

2 ·Af0 + 4 ·Asa
, (5.81)

where C∗r is an equivalent reflectivity coefficient. The total lightness number β0 is given

by Eq. (3.30) and it turns into:

β0 =
P ∗

msc

(
2 ·Af0 + 4 ·Asa

)
·C∗r =

P ∗

msc
·
(

2 · Cfr ·A
f
0 + 4 · Csar ·Asa

)
= βf0 +βsa, (5.82)

where msc is the total mass of the spacecraft and P ∗ = Psrp−1AU
r2Earth−Sun

µSun
. From Eq.

(5.82), it is clear that operations within lightness numbers of different reflective surfaces

are possible.

The total length of the spacecraft in its nominal configuration is therefore 13.5525 m.

The length of SOHO spacecraft without the reflective actuator flaps was originally of

9.8 m.

As shown in Table 5.3 for a near perfect reflective area3 of A0 = 20 m2, the total area

variation needed to meet the control requirements is between 15.5-21.5 m2, thus the

variation in the total reflective area 2 ·∆Af0 as to be between -4.5 m2 and 1.5 m2. For

each reflective flap, the initial Af0 has to be reduced by 2.25 m2 (0.6603 m × 3.4073 m)

or increased by 0.75 m2 (0.2201×3.4073 m). In summary, the minimum flap area is of

Afmin = 1.7934 m2, the maximum flap area is of Afmax = 4.7934 m2, while the nominal

flap area is Af0 = 4.0434 m2.

Figure 5.16: Actuators configuration for a class of spacecraft like SOHO mission.

3Note that here A0 is the contribution of the solar array and the additional flaps area at the nominal
condition, thus A0 = 4 ·Asa + 2 ·Af0 .
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The material proposed to design highly reflective and light actuator flap is solar sail

technology. The best sail substrate is kapton and has a surface density of 7.1 g/m2.

The best choice of the surface coating is aluminium with a surface density of 1.35 g/m2

(McInnes, 1999). The maximum area of one flap is of 4.7934 m2 and the mass of the

flap material is 40.5 g (0.0405 kg). To support the flap material, a 7.9914 m of mast

structure, as shown in Figure 5.17, is required that has a linear mass of 70 g/m (Murphy

and Macy, 2004), which totals 560 g (0.56 kg). The total mass of one flap is therefore

600.5 g, and the total mass of the two flaps is 1.201 kg. Allowing a 20% mass margin

(McInnes, 1999), the total mass of the reflective actuator system is 1.4412 kg. Figure

5.17 shows the front and the back view of the reflective actuator flap with a maximum

area of Afmax = 4.7934 m2.

Shahid and Kumar (2010) proposed a sliding-mode control for LPO spacecraft enhanced

by solar radiation pressure. In Shahid and Kumar (2010) case, the initial area required

for the control is around 40 m2. For a 1000 kg spacecraft, it was proposed by Shahid

and Kumar (2010) the use of a solar sail with a final mass of 6 kg. In this thesis, two

additional flaps to the spacecraft solar array is proposed with a total area of 8.0867 m2

and an additional mass of 1.4412 kg.

Figure 5.17: Front and back views of the reflective actuator flap for Afmax =
4.7934 m2.

Table 5.4 summarises the overall size of the spacecraft and the size in the reflective

actuator flaps. Note that the nominal area is 20 m2 for a near perfect reflective area.

However, the contribution of 21.9 m2 of solar array was taken into account thus A0

now include the area of the near perfect flaps and of the solar array with reflectivity

coefficient 1.08. Due to the non perfect reflective property of the solar array, a nominal

area of 31.4868 m2 is therefore required.

An example of variable shape areas were proposed by Borggräfe et al. (2013) who also

suggested the use of electro-chromic devices for the control of multi-purpose variable-

shape sails. Borggräfe et al. (2013) consider distributed masses with variable reflectivity

allowing a change of the sail shape from a flat configuration, i.e. active trajectory control,

to a parabolic shape for use as a remote sensing device or communication antenna. A
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Area m2 Number

Spacecraft bus 11.61 1
Solar paddle, Asa 5.475 4

Reflective actuator flap, Afmax 4.7934 2
Nominal area from Table 5.3, A0 20 -
Control area required from Table 5.3, Amin-Amax 15.5-21.5 -

Nominal area needed, A0 = 4 ·Asa + 2 ·Af0 31.4868 -

Variation of the reflective actuator, Afmin-Afmax 1.7934-4.7934 2

Table 5.4: Spacecraft areas datasheet.

similar approach can be adopt here by having a reflective actuator flap covered by pixel

of reflective control device. The control law can thus be transformed in electric impulse

to switch on (highly reflective pixel, in yellow in Figure 5.18) and off (absorption pixel,

in gray in Figure 5.18) the reflective control devices. In this case, the shape of the flap

is kept fixed and the effect of variable geometry is obtained by changing the surface

luminosity of the flaps. Figure 5.18 shows how to modify the reflective area of the

flap through reflective control device. The advantage of this method is in allowing the

change of the reflective area without mechanical moving parts. This method could also

add flexibility in the control law mission design. It would be possible to adjust the

requirements of the control law by reshaping the on/off switching configuration. The

main disadvantage is related to the effect of degradation of the material in the space

environment, thus a margin in the area should be included to compensate effect of

degradations during the all duration of the mission.

Figure 5.18: Concept of pixel Reflective Control Device (RCD).

Other options investigate the use of mechanism to change the geometry of the controlled

area. Recently, Ceriotti et al. (2013) proposed a variable geometry cone sail achieved

using controlled mechanisms. Current, mechanical solutions do not allow a continuous



154 Chapter 5 Hamiltonian Structure-Preserving Control

variation of the area thus the proposed controlled acceleration has to limit the fluctuation

in the required area when using the current space mechanism.

The continuous variable area requires the design of deployable mechanisms that enhance

the variable shape of the SRP actuators. As previously stated, current space technology

does not provide solutions for a continuously varying geometry actuator system. This

suggests that further study should be done in the design of future space missions to find

innovative solutions. Future deployment concepts could explore new design approaches

based on bio-inspired robotic engineering. This approach is a promising solution which

draws on concepts in nature and applies these concepts to engineering systems, devel-

oping features such as variable skin shape and muscle-like filaments.

An example of bio-inspired design is a soft materials developed by the Massachusetts

Institute of Technology team that mimic the octopus ability to change its shape (Guttag

and Boyce, 2015). The material is composed from two different polymers with different

degree of stiffness where more rigid particles (in black in Figure 5.19) are embedded

within a matrix of a more flexible polymer (in gray in Figure 5.19). This material was

produced by a 3-D printer and when squeezed (black arrows in Figure 5.19), the mate-

rial’s surface changes from smooth to a pattern of flat apexes and valleys. The material

design depends primary on the geometry of the particles. The texture control was reach

through physical pressure, however it is suggested that can be achieved through electric

charge (Guttag and Boyce, 2015). This is a very interesting concept that it has been

proposed to change for example the area of the aircraft wings to reduce the drag forces.

A similar concept could be investigated for space applications to have a variable geom-

etry flap to enhance the solar radiation pressure effect. In this case the polymer surface

should be reflective by adding a coating material. There are also some requirements

that polymeric materials must meet for space applications (Willis and Hsieh, 1999) as:

• the capability to function in hard vacuum,

• a very low outgassing,

• resistance to ultraviolet light,

• endurance over wide temperature, and

• the ability to survive the life mission.

Although the proposed controllable surface is not tested to meet the space requirements

listed above, the ploymeric materials are the basis for many spacecraft components such

as adhesives, circuit boards, blankets, coatings, electrical insulation, paints and high

stiffness components (Willis and Hsieh, 1999). It seems thus interesting to consider this

approach as possible candidate for electro-mechanical variable geometry reflective area.
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Figure 5.19: Controllable geometry surface (image credit Guttag and Boyce
(2015)).

Other examples of variable geometry mechanism is a flower robot with six 3-D printed

muscles that can open and close as shown in Figure 5.20. The concept behind this

design is to make use of a standard ninjaflex filament 3-D printer controlled through

air pressure. This, therefore, utilises air-powered actuators systems. Although this

innovative technology is not designed for space applications, it represents an example of

a future deployment approach which could utilised for satellite control.

Figure 5.20: Flower robot with six 3D printed muscles that can open and close
(image credit www.3ders.org).
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The optical model used in this thesis for orbit control and design do not take into

account of the optical degradation of the thin metallised polymer film due to the erosive

effect of the space environment. Dachwald et al. (2005) proposed a parametric model

for optical solar sail degradation and its effect onto trajectory and attitude control.

One of the major problem related to degradation of the material is not only a lower

intensity in the solar radiation pressure forces but also it reduces the controllability

of the sail as the magnitude of solar radiation pressure is reduced in its perpendicular

component (Dachwald et al., 2005). In Dachwald et al. (2005) model, the solar photons

and particles are the solely source of degradation. Dachwald et al. (2005) show that

the effect of degradation affect the spacecraft trajectory for example an increase of

degradation factor has a remarkable consequences on the time of flight for Mars and

Mercury randevouz missions and fast Neptune flyby missions. Future analysis has to

take into account the effect of optical degradation when using reflective actuator flaps

for LPO orbit control.
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5.10 Summary

The Hamiltonian structure-preserving control aims to stabilise the unstable periodic

orbit as a result of removing the hyperbolic equilibrium with an artificial centre solution.

The local stability of the linearised equation is important to understand the impact of

the control to the PO stability. A comparison between the HSP and the Floquét mode

control was performed to assess their robustness to error in the initial injection. An

HSP control law was derived here for high amplitude orbits where couples of complex

and conjugate solutions occur. The HSP was then applied for fuel-free solar radiation

pressure propulsion.

This chapter has demonstrated that the HSP control has better performance than the

FM method and by comparing their features, it has been shown that the HSP control:

• is robust to failures in the halo insertion manoeuvre;

• works in a regime of non-linearities;

• requires solely the estimation of the spacecraft position error;

• is independent of the selected orbit;

• requires a little continuous acceleration.

The key research findings of this chapter are:

• a new HSP control law for high amplitude orbits was fully derived by opening up

the use of the HSP control for a general case where the solution is independent of

the target orbit size (i.e., space missions to distant prograde orbits),

• the control acceleration is feasible with a solar radiation pressure actuators system,

• to enhance a feasible control acceleration the spacecraft has to be offset in position

from the target orbit,

• a variable geometry actuators system is required where the reflective area varies

with time,

• the control area pointing requirements shows to match the LPO spacecraft pointing-

requirements where the major action of control is given in the in-plane angle rather

than in the out-of-plane angle.

In the case of orbit control manoeuvres, this study shows that variable geometry de-

ployable actuators should be further investigated.
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Besides the spacecraft’s nominal mission phase, additional operational manoeuvres may

be required for example to prevent the spacecraft from entering in the Earth’s shadow by

compromising its vital functionality. In other cases, when the nominal mission reaches

its end, the space agencies can approve an extension of the mission that requires new

trajectory design planning. The design of transfer trajectories between LPOs through

SRP manoeuvres are explored in the following chapter to meet these additional mission

requirements.



Chapter 6

Design of Transfer Trajectories

enhanced by Solar Radiation

Pressure

Space missions often require additional spacecraft manoeuvres from the nominal orbit

design, for example to prevent the spacecraft from crossing the Earth’s shadow as this

would compromise its functionality. Space agencies can also approve an extension of

the mission when the primary mission goals are achieved. To meet these additional

mission requirements, the design of transfer trajectories between LPOs through SRP

manoeuvres is explored here.

This chapter investigates the design of transfer trajectories within the Sun-Earth sys-

tem. This chapter is the result of a four month collaboration between the University

of Southampton (Southampton, UK) and the Institut d’Estudis Espacials de Catalunya

and the Universitat de Barcelona (Barcelona, Spain) within the Astronet-II programe

and it aims to answer the following research question:

Q.4 - Which methodology can be used to perform transfers between quasi-periodic orbits

enhanced by solar radiation pressure manoeuvres?

The invariant manifold theory, presented in Chapter 2, is used here to answer the above

research question. The motion of the spacecraft is described in the circular restricted

three-body problem with the effect of SRP. The equations of motion and the SRP

acceleration were presented in Chapter 3.

In this chapter, the geometry of the equilibrium points of the Sun-Earth system is ex-

ploited to perform transfer within Lissajous orbits. In this case, the approximated ana-

lytical solution presented in Section 3.8.1 is extended to the case of saddle×focus×center

159



160 Chapter 6 Design of Transfer Trajectories enhanced by Solar Radiation Pressure

equilibrium. The normal vector, N̂ , to the reflective area for the SRP acceleration is

defined through the cone and the clock angles presented in Section 3.2.2.

This strategy enhances transfer within Lissajous orbits assisted by the SRP acceleration

and it makes use of the linearised equations of motion to evaluate wherever it is possible

to perform a transfer. The main idea is to give a manoeuvre that counteracts the

unstable manifold of the target Lissajous orbit so that the spacecraft will follow a stable

trajectory to reach the target Lissajous orbit. Canalias et al. (2003) was the first to

investigate a similar strategy through impulsive, ∆v, manoeuvres to avoid the spacecraft

being eclipsed with the Earth. The approach proposed by Canalias et al. (2003) was

used by Colombo et al. (2015b) to compute the eclipse avoidance manoeuvre for the

Gaia mission.

A preliminary study is presented in this chapter; where, two main cases are analysed.

In the first case, a Sun-pointing area was selected; where, the SRP transfer manoeuvre

is given through changes in the reflective area. A second option is explored; where, the

manoeuvre is provided in the x-y plane through changes in the cone angle, α, for a fixed

area.

The results of this chapter are part of a publication in preparation (Soldini et al., 2015b).

6.1 Design of the transfer strategy through solar radiation

pressure manoeuvres

The design of the investigated transfer technique makes use of the geometry of the

equilibrium points of the Sun-Earth system. A semi-analytical approach is utilised for

the computation of the Lissajous orbits and their correspondent invariant stable and

unstable manifolds following the procedure presented in Section 3.8.1. The idea is to

give a manoeuvre assisted through the SRP acceleration that aims to cancel out the

unstable manifold of the target Lissajous orbit.

As said in Section 3.8.1, the linearised equations of motion are written in a reference

system centred at the libration point as in Eq. (3.88). The effect of SRP acceleration

displaces the position of the collinear equilibrium points of the CR3BP along the x, y

and z axis of the synodic reference frame centred on the Sun-Earth’s center of mass,

Figure 3.15. The positions of the pseudo libartion points, SLi, as a function of the cone

and clock angles and the lightness parameter, β, are shown in Section 3.5.2. Depending

on the location of the equilibrium points after the SRP manoeuvre, the stability of the

equilibrium points can change from saddle×center×center to saddle×focus×center as it

can be seen in Figure 3.18. Thus, the analytical solution of the linearised equations of

motion will depend on the stability of the equilibrium points.
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As the effect of the SRP manoeuvre changes the location and the stability of the equilib-

rium points, the proposed transfer strategy makes use of the geometry of two equilibrium

points: one for the departure Lissajous orbit (before the SRP manoeuvre) and the sec-

ond for the target Lissajous orbit (after the SRP manoeuvre). Thus, the solution of the

linearised equations of motion is initially referred to a system centred at its correspon-

dent libration point; however, after the manoeuvre, the solution is centred at the new

equilibrium point of the target Lissajous orbit.

This transfer strategy requires the definitions of three reference systems: the synodic

(rotating) reference frame centred on the Sun-Earth’s center of mass, the synodic ref-

erence system centred at the departure libration point (SLi) with coordinates ξ, η and

ζ, and a synodic reference system centred at the libration point of the target Lissajous

orbits (SL′i) with coordinates ξ′, η′ and ζ ′. Figure 6.1 shows the position of the equi-

librium point before (SL1) and after (SL′1) the SRP manoeuvre and their respectively

reference frames. Thus, transformations within these reference frames are needed to

perform the transfer strategy. In Figure 6.1, γ1 and γ′1 are the distances from the Earth

to the libration points before (SLi) and after (SL′i) the SRP manoeuvre respectively;

while, ∆γ is the distance between the two libration points.

The SRP manoeuvre is given such as the effect of the unstable manifold of the target

Lissajous orbit is cancelled out. When using the semi-analytical approach presented in

Section 3.8.1, this condition corresponds to have the unstable manifold’s amplitude, A1,

of the target Lissajous orbit equal to zero.

In the work of Canalias et al. (2003), transfer within Lissajous orbits is proposed through

∆v manoeuvres. In the case of ∆v manoeuvres, the motion of the spacecraft is described

in the CR3BP; where the positions of the five libration points remain invariant after

the manoeuvre. Thus, in this case, the target Lissajous orbit shares the same libration

point with the departure Lissajous orbit. The transfer strategy through a ∆v manoeuvre

makes use of the geometry of one libration point as the ∆v does not affect the position

of the libration points. When harnessing SRP, the SRP manoeuvre can be seen as an

instantaneous change in position with the reference frame centered in the libration point;

conversely, the ∆v manoeuvre results in an instantaneous change in velocity. This is the

main difference between this thesis work, and the one of Canalias et al. (2003).
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Figure 6.1: Position of the equilibrium points before (SL1) and after (SL′1) the
SRP manoeuvre.

6.1.1 Transformations for changes in coordinates

The coordinate transformation from a synodic reference frame, centered at the Sun-

Earth’s center of mass, to a reference frame, centred at the libration point, is shown in

Eq. (3.86). Thus, by using Eq. (3.86) before (SLi) and after (SL′i) the SRP manoeuvre,

it is possible to write the following transformation:

ξ′ = ξ + xSLi − xSL′i
η′ = η + ySLi − ySL′i
ζ ′ = ζ + zSLi − zSL′i
ξ̇′ = ξ̇

η̇′ = η̇

ζ̇ ′ = ζ̇

. (6.1)

Eq. (6.1) represents the composition of reference systems centered at the libration points

when a SRP manoeuvre is given. The variable with the symbol [′] are the one after the

SRP manoeuvre. From the point of view of a reference frame centered at the Sun-

Earth’s center of mass, the state vector of the spacecraft ({x,y,z,ẋ,ẏ,ż} in Eq. (3.86))

does not change at the instant of time when the SRP manoeuvre is given. Indeed, a SRP

manoeuvre can be seen as a low-thrust propulsion; where, the spacecraft’s acceleration

is changed in a continuous way.

From Eq. (6.1), it is also clear that the transfer strategy with SRP manoeuvre makes use

of the geometry of the libration point before (SLi) and after (SL′i) the manoeuvre. In the

case of Canalias et al. (2003)’s work, the impulsive manoeuvre causes an instantaneous

change in the spacecraft’s velocity of the synodic reference frame centered at the center

of mass; while the libration point coordinate does not change (SLi).
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6.1.2 Design of the transfer trajectory

The procedure used to design a transfer trajectory assisted by a SRP manoeuvre that

uses the geometry of two libration points is described in the following steps:

1) Design of the departure Lissajous orbit:

For the design of the departure Lissajous orbit, a semi-analytical solution is used

to approximate the center manifold. The departure Lissajous orbit can be defined

as in Eq. (3.103) for the case of a Sun-pointing reflective area. Eq. (3.103) is

shown here as: 

ξ = Ax cos(ωt+ Φ0)

η = kAx sin(ωt+ Φ0)

ζ = Az cos(νt+ Ψ0)

ξ̇ = −ωAx sin(ωt+ Φ0)

η̇ = kωAx cos(ωt+ Φ0)

ζ̇ = −νAz sin(νt+ Ψ0).

(6.2)

As already mentioned in Section 3.8.1, ω and ν are the in-plane and out-of-plane

frequencies of their respectively center manifolds; while, Φ0 and Ψ0 are the in-

plane and the out-of-plane phases. The effective phases Φ and Ψ are defined as

Φ = ωt + Φ0 and Ψ = νt + Ψ0, respectively. Thus, the departure Lissajous orbit

requires the definition of the amplitudes in Ax or Ay
1 and Az. On the other

hand, the frequencies in Eq. (6.2) depends on the stability of the eigenvalues

of the linearised matrix of the selected libration point as shown in Section 3.8.1.

Eq. (6.2) holds for a Sun-pointing reflective area; where, the frequencies change

because the position of the pseudo libration point is influenced by the selected

lightness parameter, β.

There are two ways to represent Lissajous orbits: in the Cartesian reference frame

centered at the center of mass (or centered at the libration point) and in the phase

space. Figure 6.2 shows the departure Lissajous orbit in the synodic reference

system centered at the center of mass of the Sun-Earth system and the phase

space. In this case, it was selected a square Lissajous orbit such as Ay = Az with

an amplitude of 250,000 km. In the Cartesian system, Figure 6.2(a), the Lissajous

orbit is represented by its coordinates; while, in the phase space, Figure 6.2(b), is

represented through its effective phases, Φ and Ψ .

Once the amplitude and the equilibrium point, for instance β, are selected, it is

possible to define the Lissajous orbit through the time, t, by fixing the initial

Φ0 and Ψ0 as shown in Figure 6.2 in black curve for the Cartesian frame (Figure

6.2(a)) and black stars for the phase space (Figure 6.2(b)). Conversely, it can be

1It is possible to choose the amplitude in x or y since their relationship is Ay = kAx.
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convenient to fix the time, t, equal to zero and vary Φ0 and Ψ0 between 0 and 2π as

shown in gray in the Cartesian frame (Figure 6.2(a)) and gray squares for the phase

space (Figure 6.2(b)). The advantage of representing the Lissajous orbit through

the phases (when t is fixed and Φ0 and Ψ0 are free to vary) is that the points

along the Lissajous orbit (grey cylinder in Figure 6.2) are equally distributed in

the phase space where the points that belong to the Lissajous orbit are the grey

squares in Figure 6.2(b). By observing Figure 6.2(b), it is clear that the design of

the Lissajous orbit through the phases gives uniform solutions in the phases where

the grey squares cover an entire rectangles in the phase space. When the Lissajous

orbit is defined through the time for a fix Φ0 and Ψ0, the initial conditions along

the orbit are not uniformly distributed in the phase space as the black stars in

Figure 6.2(b) do not covers the grey squares. Thus, if the phase space is used

to design the manoeuvre a better representation of the Lissajous orbit is given

through its phases rather than with the time.
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(b) Liassajous orbit in the phase space.

Figure 6.2: Departure Lissajous orbit in the synodic reference frame and in the
phase space.

Current and future space missions that make use of Lissajous orbits have am-

plitudes in Ay varying between 81,000 km to 750,000 km; while, 90,000 km and

450,000 km in Az. In this chapter, the focus is on square Lissajous orbits around

SL1 where Ay = Az. Three amplitudes where selected 25,000 km, 250,000 km and

750,000 km for the design of the departure Lissajous orbits. In Appendix F, a

solution is shown for a Lissajous orbit like Gaia mission that has Ay = 340,000

km and Az = 90,000 km. Note that an overview of Gaia mission can be found in

Appendix B.3.3.

Once the departure Lissajous orbit is selected, an SRP manoeuvre given along the

departure Lissajous orbit was investigated to compute the values in the amplitudes

of the unstable, A1, and stable, A2, manifolds of the target Lissajous orbit. The

aim is to follow a stable trajectory of the target Lissajous orbit; where due to the

SRP manoeuvre the unstable effect is cancelled out (A1 = 0).
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2) Composition of the reference systems centered at the libration points due to the

SRP manoeuvre:

A spacecraft placed at a departure Lissajous orbit associated to the libration point

for a selected initial lightness parameter, β0, will follow the geometry of SLi(β0).

When a SRP manoeuvre is given, the lightness parameter is now βM and the

motion of the spacecraft is now driven by the geometry of the new equilibrium

point, SLi(βM ). This effect is given by the transformation in Eq. (6.1) that for a

Sun-pointing reflective area can be written as:



ξ′ = ξ + xSLi(β0)− xSLi(βM )

η′ = η

ζ ′ = ζ

ξ̇′ = ξ̇

η̇′ = η̇

ζ̇ ′ = ζ̇

. (6.3)

Once the state vector of the spacecraft expressed in the synodic reference frame

centered at the new equilibrium point, SLi(βM ), is given after the SRP manoeuvre,

it is possible to find the amplitudes associated to the target Lissajous orbit. This

can be done through the transformation in Eq. (3.106) and Eq. (3.107). Eq.

(3.104) and Eq. (3.105) give the state vector of the spacecraft in the synodic

system centered at the libration point as a function of the amplitudes. Eq. (3.104)

and Eq. (3.105) can be written in a compact way as:

ξ = S(β, t) ·A. (6.4)

In Eq. (6.4) the matrix S is function of the time, t, and the lightness parameter,

β, for a Sun-pointing reflective area. ξ is the state vector of the spacecraft for

a synodic reference frame centered at the libration point; while, A is the vector

of the amplitudes ({A1, A2, A3, A4, A5, A6}). The inverse transformation shown in

Eq. (3.106) and Eq. (3.107) is defined in a compact way such as:

A = S−1(β, t) · ξ. (6.5)

3) Computation of the amplitudes of the target Lissajous orbit when the SRP ma-

noeuvre is given:

By using Eq. (6.5) for the spacecraft’s state vector at the time of the given SRP

manoeuvre, ξ′, in Eq. (6.3), it is possible to find the amplitudes of the target
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Lissajous orbit, A′ such as:

A′ = S−1(βM , tM ) · ξ′. (6.6)

In Eq. (6.6), tM is the time when the SRP manoeuvre is given. Now it is possible

to check if the amplitude A′1 is zero. In case the unstable manifold of the target

Lissajous orbit is zero (A′1 = 0), it is possible to follow the stable manifold of the

target orbit, A′2. The amplitudes, the frequencies and the phases of the target

Lissajous orbit can be thus computed. The amplitudes of the target Lissajous are

given by:

A′x =
√
A′23 +A′24 A′z =

√
A′25 +A′26 ; (6.7)

while, the phases are given by:

Φ′0 = arctan

(
−A

′
4

A′3

)
Ψ ′0 = arctan

(
−A

′
6

A′5

)
. (6.8)

The in-plane, ω′, and out-of-plane, ν ′, frequencies are function of βM ; thus, the

target Lissajous orbit is defined as follow:

ξ′ = A′x cos(ω′t+ Φ′0)

η′ = k′A′x sin(ω′t+ Φ′0)

ζ ′ = A′z cos(ν ′t+ Ψ ′0)

ξ̇′ = −ω′A′x sin(ω′t+ Φ′0)

η̇′ = k′ω′A′x cos(ω′t+ Φ′0)

ζ̇ ′ = −ν ′A′z sin(ν ′t+ Ψ ′0).

(6.9)

Eq. (6.9) expressed in the synodic reference frame centered at the departure

libration point, SLi(β0), can be found by applying the inverse transformation of

Eq. (6.3) such as:

ξ = A′x cos(ω′t+ Φ′0)− xSLi(β0) + xSLi(βM )

η = k′A′x sin(ω′t+ Φ′0)

ζ = A′z cos(ν ′t+ Ψ ′0)

ξ̇ = −ω′A′x sin(ω′t+ Φ′0)

η̇ = k′ω′A′x cos(ω′t+ Φ′0)

ζ̇ = −ν ′A′z sin(ν ′t+ Ψ ′0).

(6.10)

In Eq. (6.10), the effective phases are Φ′ = ω′t + Φ′0 and Ψ ′ = ν ′t + Ψ ′0. Thus,

the departure and the target Lissajous orbits will show in the phase space an

instantaneous change in the effective phases (from Φ and Ψ to Φ′ and Ψ ′) as a

consequence of the SRP manoeuvre.
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4) Computation of the spacecraft’s trajectory after the SRP manoeuvre:

The trajectory followed by the spacecraft after the SRP manoeuvre is given by

Eq. (6.4) and it turns into:

ξ′2 = S(βM , t2) ·A′. (6.11)

In Eq. (6.11), t2 is the time along the trajectory after the time of manoeuvre, tM .

5) Trajectory of the spacecraft in the synodic system centered at the Sun-Earth’s

center of mass:

It is now possible to express the trajectory in the synodic reference frame centered

at the center of mass of the Sun-Earth system through the transformation in Eq.

(3.86) that for a Sun-pointing spacecraft becomes:



x = ξ′2 + xSLi(βM )

y = η′2
z = ζ ′2
ẋ = ξ̇′2
ẏ = η̇′2
ż = ζ̇ ′2

. (6.12)

6.2 Phase space for a Sun-pointing spacecraft

In this section, the SRP manoeuvre to perform transfers between Lissajous orbits is

investigated for a Sun-pointing reflective area; where, the manoeuvre is achieved through

changes in the lightness number, β.

First, it was verified if a direct transfer from the departure Lissajous orbit towards the

target Lissajous orbit is possible. Then, an intermediate manoeuvre was included to

inject the spacecraft in the unstable manifold of the departure Lissajous orbit; where

the SRP moreover is finally given to reach the target orbit.

6.2.1 Solar radiation pressure manoeuvre given at the departure Lis-

sajous orbit

Initial conditions uniformly distributed in phases were considered along the departure

Lissajous orbit to perform a direct transfer towards the target Lissajous orbit. A square

Lissajous of amplitudes Ay = Az of 250,000 km was selected; thus, in the phase space

the departure Lissajous orbit is a rectangle as shown in Figure 6.2(b) for the grey
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squares. For each grey squares of Figure 6.2(b) that represent a point along the departure

Lissajous orbit, the transfer procedure shown in Section 6.1.2 was applied. Thus, the

amplitudes of the target Lissajous orbit, A′, are computed through Eq. (6.6). Therefore,

it was possible to check the values in the amplitudes associated to the unstable, A′1, and

stable, A′2, manifolds of the target Lissajous orbit.

Figure 6.3 shows the values in the amplitudes associated to the unstable, A′1, and stable,

A′2, manifolds of the target Lissajous orbit when the manoeuvre is given along the

departure Lissajous orbit. Three values in βM are selected to perform the manoeuvre

from an initial value in the lightness parameter of β0 = 0 to a final value of βM of 0.001

in Figure 6.3(a)-6.3(b), of 0.01 in Figure 6.3(c)-6.3(d) and of 0.02 in Figure 6.3(e)-6.3(f).

From Figure 6.3, it is possible to note that a direct transfer from the departure Lissajous

orbit is not possible as A′1 6= 0. Indeed, a direct transfer from the departure Lissajous

orbit to the target Lissajous orbit is possible if the manoeuvre could cancel the effect

of the instability of the target Lissajous orbit, A1. Moreover, the amplitudes A′1 and

A′2 assume the same value when the manoeuvre is given. The effect of SRP manoeuvre

affect the effective phase Φ, while Ψ remain constant, and by increasing the effect of βM ,

the amplitudes increase in magnitude.

Figure 6.4 shows an example of the manoeuvre where the initial β0 is decreased rather

than increased like in Figure 6.3. An initial β0 of 0.01 is considered where, after the

manoeuvre, βM is set to zero. Also in this case, A′1 is equal to A′2 with A′1 6= 0 showing

the same behaviour of Figure 6.3 with a difference in the sign of the amplitudes.

As a direct transfer from the departure Lissajous orbit is not possible with a Sun-pointing

area, the next step is to investigate if it is possible to perform an orbital transfer by first

leaving the departure Lissajous orbit along its unstable manifold and then by giving the

SRP manoeuvre. Note that the condition A′1 6= 0 does not exclude the possibility to

perform transfers within transit orbits; however, in this preliminary study, the focus was

on transfers within Lissajous orbits (bottleneck region) 2.

2In the Sun-Earth’s R3BP, a spacecraft can move from the region around the Sun to the region close
to the Earth and vice versa following transit orbits; while it remains in the same region if it follows a
non-transit orbit (Koon et al., 2008).



Chapter 6 Design of Transfer Trajectories enhanced by Solar Radiation Pressure 169

Φ [rad]

Ψ
 [r

ad
]

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A
1

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8
x 10

−5

(a) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: βM = 0.001.
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(b) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: βM = 0.001.
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(c) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: βM = 0.01.
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(d) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: βM = 0.01.
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(e) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: βM = 0.02.
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(f) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: βM = 0.02.

Figure 6.3: Amplitude of the unstable, A′1, and stable, A′2, manifolds of the
target Lissajous orbit with β0 = 0 when the SRP manoeuvre is given along the
departure Lissajous orbit.
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(a) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: βM = 0.
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(b) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: βM = 0.

Figure 6.4: Amplitude of the unstable, A′1, and stable, A′2, manifolds of the
target Lissajous orbit with β0 = 0.01 when the SRP manoeuvre is given along
the departure Lissajous orbit.

6.2.2 Solar radiation pressure manoeuvre given along the unstable

manifold

In this section, an SRP manoeuvre for a Sun-pointing area is investigated to transfer

from a departure to a target Lissajous orbit. The spacecraft is initially injected into

the unstable manifold of the departure Lissajous orbit and then an SRP manoeuvre

is given to reach the target orbit. An arc of the departure square Lissajous orbit was

selected as shown in Figure 6.5 with Ay = Az = 250,000 km. Figure 6.5 shows the

selected arc of the departure Lissajous orbit in the synodic reference frame centered on

the Sun-Earth’s center of mass (black curve in Figure 6.5(a)) and in the phase space

(black stars in Figure 6.5(b)).

In this case, the design of the transfer trajectories described in Section 6.1.2 requires an

intermediate step between point 1) and 2). After the selection of an arc of the departure

Lissajous orbit, the spacecraft has to be injected into its unstable manifold. Thus, a

impulsive manoeuvre3 is given such that A1 = 10−6 and A2 = 0. For the design of

the unstable manifold, the value in A1 was selected to minimise the error between the

spacecraft’s state vector at the departure Lissajous orbit and the state vector at the

time of injection onto the unstable manifold.

Figure 6.6 shows the transfer strategy for one trajectory that belongs to the unstable

manifold of the departure Lissajous orbit. The spacecraft is first injected in the unstable

trajectory (black curve in Figure 6.6) when the initial β0 of the spacecraft is equal to

3In order to fall off from the Lissajous orbit it is assumed an impulsive ∆v provided by the atti-
tude thrusters. Future analysis will consider to perform this manoeuvre with solar radiation pressure.
However, SRP is constrained in direction, thus it is expected that only manurers in the anti-sunward
manifold can be given.
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0.03. Thus, the spacecraft will initially follow the geometry of SL1. When the SRP

manoeuvre is given (red point in Figure 6.6), the spacecraft has a final value in βM

equal to zero. At this point, A′1 of the target Lissajous orbit is close to zero on the order

of 10−8 in non-dimensional unit and the spacecraft follows the stable manifold of the

target Lissajous orbit around SL′1 (blue curve in Figure 6.6).

Figure 6.7 shows the same transfer sequence shown in Figure 6.6 but in the phase space.

The black circles are representative of points along the departure Lissajous orbit where

the spacecraft can be injected onto the unstable manifold. One point was selected to

inject the spacecraft in an unstable trajectory as shown in green. After that green point,

the spacecraft will follow the unstable trajectory (black line). The red star represents

the point in which the SRP manoeuvre is given that causes an instantaneous change in

the phases. Finally, the spacecraft will follow the stable manifold of the target Lissajous

orbit (blue line). It is quite convenient to make use of the phase space as the trajectories

are simply represented as straight lines and it clearly shows the effect of the manoeuvre

in the phases.
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(a) Arc of Lissajous orbit in the synodic reference
frame.
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(b) Arc of Liassajous orbit in the phase space.

Figure 6.5: Selected arc of the departure Lissajous orbit to perform the SRP
manoeuvre shown in the synodic reference frame and in the phase space.



172 Chapter 6 Design of Transfer Trajectories enhanced by Solar Radiation Pressure

Figure 6.6: Transfer strategy in the synodic reference frame centered at the
Sun-Earth’s center of mass.

Figure 6.7: Transfer strategy in the phase space.

When the manoeuvre aims to decrease the lightness parameter of the spacecraft (from

a big to a smaller reflective area), the spacecraft reaches a final orbit with a higher

amplitude with respect to the departure one as shown in Figure 6.8. In Figure 6.8, the

black Lissajous orbit is the departure one; while, the red orbit is the target Lissajous

orbit. The reason why, due to the decreasing of β, the spacecraft can reach higher

amplitudes can be explained by checking the energy of the spacecraft and the shape

of the potential function with a particular attention to the zero-velocity curves. The

equation of the spacecraft’s energy for a Sun-pointing reflective area was shown in Eq.

(3.82). By observing Eq. (3.82), the energy of the spacecraft decreases with a smaller

value of β. Moreover, the effect of a decrease in β affects the shape of the potential as

shown in Figure 3.14. Thus, a decrease in β will cause the ZVCs to be more open at the
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bottleneck of the Lagrangian point after the SRP manoeuvre. In this way, the target

orbit reaches higher amplitudes.

Figure 6.9 shows the energy of the spacecraft along the departure (black) and the target

(red) Lissajous orbits. The intersection of the spacecraft’s energy with the potential

gives the shape of the ZVC before and after the SRP manoeuvre.

The point along the unstable manifold where the SRP manoeuvre is given such as A′1
of the target Lissajous orbit is equal to zero can be analytically found by using the first

equation of Eq. (6.6) such that:

A′1(β) =
k(β)

d2(β)
ξ̇ +

1

d1(β)
η̇ − k(β)ω(β)

d1(β)
[ξ +∆xL1(β)] +

ω(β)

d2(β)
η; (6.13)

where, ∆xL1(β) is:

∆xL1(β) = xL1(tM−)− xL1(tM ). (6.14)

In Eq. (6.14), tM− is the time before the SRP manoeuvre while tM is the instant in

which the manoeuvre is given. Thus, it is possible to find β and tM to minimise A′1:

min
β
A′1(β) ' 0. (6.15)

It was verified that a good approximation in the transfer strategy for the linearised

equations of motion can be achieved when A′1 is on the order of 10−8-10−9 or lower

values.

The natural effect of the Sun-light deflected by the spacecraft’s reflective area causes

an acceleration in the Sun opposite direction. Figure 6.10 shows that is not possible

to return to the departure Lissajous orbit due to the constraints in direction of the

solar radiation pressure acceleration. Thus, a spacecraft cannot return to the departure

Lissajous orbit if a second manoeuvre is performed along the target orbit such that β

is increased to the initial value of β0 (Figure 6.10). In conclusion, it is not possible to

perform the inverse manoeuvre from the final to the departure Lissajous orbit through

SRP manoeuvre as this strategy shows to be unidirectional, and the spacecraft can

transfer just in the opposite direction of the Sun (McInnes, 1999). The SRP manoeuvre

for a Sun-pointing area can be only designed by decreasing the effect of β. Figure 6.10

shows that by increasing β, the spacecraft will follow a trajectory (red curve) in opposite

direction with the Sun.
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Figure 6.8: Lissajous of the departure (black) and target (red) orbit.

Figure 6.9: Energy and Zero Veocity curves associated to the departure (black)
and target (red) Lissajous orbit.

Figure 6.11 shows a schematic representation of the transfer strategy for a Sun-pointing

reflective area. The main properties of an SRP manoeuvre for a Sun-pointing area are:
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(a) View in the x-y plane of the synodic reference
frame centered at the center of mass.

(b) 3D view in the synodic reference frame centered
at the center of mass.

Figure 6.10: Evolution of the trajectory when a second SRP manoeuvre is given
by changing the lightness parameter, β, to the initial value.

• The effect of a change in β causes a shift along the x-axis in the position of the

equilibrium point. Thus, the libration point gets closer to the Sun for high value

of β;

• The transfer is allowed when a change in β is given from high to lower values.

The spacecraft will always move in the opposite direction with the Sun due to the

effect of the SRP acceleration as shown in Figure 6.11 for the black arrow;

• The transfer is possible at the heteroclinic connection when the unstable mani-

fold of the departure Lissajous orbit (red line in Figure 6.11) intersect the stable

manifold of the target Lissajous orbit (green line in Figure 6.11);

• A direct transfer from the departure Lissajous orbit is not possible for a geometrical

reason. Indeed, the stable manifold of the target Lissajous orbit does not intersect

the departure Lissajous orbit but just its unstable manifold as shown in Figure

6.11;

• The values in the initial β0 and the final βM depend on the geometrical intersection

at the heteroclinic point. Indeed, the heteroclinic point has to be located between

the two equilibrium points as shown in Figure 6.11. This condition depends on

the location of the equilibrium points, for instance on β0 and βM .
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Figure 6.11: Heteroclinic connection between the equlibrium points before (SLi)
and after (SL′i) the SRP manoeuvre.

After analysing the transfer along one unstable trajectory of the departure Lissajous

orbit, the transfer was then performed along the entire unstable manifold. The selected

arc of the departure Lissajous orbit is the same shown in Figure 6.5 with an initial β0

equal to 0.04. Due to the SRP manoeuvre, the initial lightness parameter was reduced

of 50% such that βM = 0.02.

Figure 6.12 shows the amplitudes of the unstable, A′1, in Figure 6.12(a) and stable, A′2,

in Figure 6.12(b) manifolds of the target Lissajous orbit as a function of the time along

the unstable manifold of the departure orbit (in x) and the time along the departure

Lissajous orbit (in y). As one can see, A′1 decrease along the unstable manifold of the

departure Lissajous orbit; while, A′2 increases. The time of SRP manoeuvre can be

found when A′1 reaches values of the order of 10−8.

As before, Figure 6.13 shows the transfer strategy for a Sun-pointing area. The black

tube identifies the unstable manifold of the departure Lissajous orbit; while the blue

tube shows the stable manifold of the target Lissajous orbit after the SRP manoeuvre.

Different leaving trajectories from the departure Lissajous reaches the same target Lis-

sajous orbit from different phases. Figure 6.13(b) shows in black the selected arc of

the departure Lissajous orbit. Conversely, the red curves are associated to the target

Lissajous orbit that can be better seen in Figure 6.14.

Figure 6.15 and Figure 6.16 show the phase space for eight leaving trajectories of the

departure Lissajous orbit. It is interesting to note that the instantaneous change in

the phase space is influenced by the selected trajectory in which the SRP manoeuvre is

given. For instance, the trajectories number 21 in Figure 6.15(d), 22 in Figure 6.16(a)

and 25 in Figure 6.16(b) show a little instantaneous change in the phase space due to

the SRP manoeuvre. On the other end, the trajectories number 1 in Figure 6.15(a), 9
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(a) Amplitude A′1 of the unstable manifold of the tar-
get Lissajous orbit.
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Figure 6.12: Amplitude of the unstable, A′1, and stable, A′2, manifolds of the tar-
get Lissajous orbit as a function of the leaving point of the departure Lissajous
orbit and the points along its unstable manifold.

in Figure 6.15(b), 20 in Figure 6.15(c), 30 in Figure 6.16(c) and 40 in Figure 6.16(d)

show big instantaneous changes in the phase space.
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(a) Transfer trajectories.
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(b) departure and target Lissajous orbits.

Figure 6.13: Transfer trajectories from the departure (black) and target (red)
Lissajous orbits.
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Figure 6.14: Target Lissajous orbit.
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(a) Leaving trajectoy number 1.
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(b) Leaving trajectoy number 9.
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(c) Leaving trajectoy number 20.
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(d) Leaving trajectoy number 21.

Figure 6.15: Phase space of trajectories number 1, 9, 20 and 21 of the unstable
manifold of the departure Lissajous orbits.
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(a) Leaving trajectoy number 22.
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(b) Leaving trajectoy number 25.
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(c) Leaving trajectoy number 30.
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(d) Leaving trajectoy number 40.

Figure 6.16: Phase space of trajectories number 22, 25, 30 and 40 of the unstable
manifold of the departure Lissajous orbits.
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A sensitivity analysis was carried out by changing the departure square Lissajous orbit

amplitude on the order of 25,000 km 250,000 km and 750,000 km and it is possible to

make the following considerations:

• If the amplitude of the departure Lissajous orbit is increased, it is necessary to

select a higher value in initial lightness parameter, β0, to guarantee the heteroclinic

connection between the two Libration points. For example, for Ay = Az = 25,000

km a β0 = 0.01 (i.e., SOHO’s spacecraft in Table 2.6) and a βM = 0.001 guarantees

the heteroclinic connection. However, for Ay = Az = 250,000 km requires a

β0 = 0.03 (i.e., Herschel’s spacecraft in Table 2.6) and a βM = 0 (the manoeuvre

decreases of 100% the initial β0 );

• If the amplitude of the departure Lissajous is fixed, the more β0 is increased

a smaller fraction in the reduction of β0 due to the manoeuvre is required to

guarantee a heteroclinic connection. For example for Ay = Az = 250,000 km

and β0 = 0.03, it is necessary to reduce the reflectivity by 100 %; however, for a

β0 = 0.04 (i.e., JWST’s spacecraft in Table 2.6) the reflectivity is reduced by 50%.

The choice in the initial β0 is a design trade-off to be considered based on the

spacecraft’s mission requirements when the spacecraft reaches the target orbit.

In Appendix F, an example is shown for a non-square Lissajous orbit with departure

orbit like Gaia’s mission.

When using SRP manoeuvre, it is possible to connect Libration orbits of different ener-

gies through the invariant manifold. In this case, the spacecraft moves from two libration

points that belong to a different system due to the effect of the SRP acceleration. Con-

versely, Canalias et al. (2003) connected Libration point orbits of different energies that

belong to the same equilibrium point of the CR3BP.

Although the injection manoeuvre (that places the spacecraft onto the unstable manifold

of the departure Lissajous orbit) makes use of the natural dynamics of the CR3BP,

further options for the design of the first manoeuvre should be investigated to have

an optimal solution. Specially when designing a transfer trajectory that takes into

account of the parameters of the target orbit rather than the departure one. Moreover,

the transfer time could result in being a further parameter to take into account for a

optimal transfer.
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6.3 Phase space for solar radiation pressure manoeuvres

in the x-y plane

In the previous section, it was demonstrated that a direct transfer from the departure

Lissajous orbit to the target Lissajous orbit is not possible for SRP manoeuvres that

involve a Sun-pointing area. The interest in a direct transfer is justified when the

transfer strategy aims to avoid the spacecraft being in eclipse with the Earth as shown

by Canalias et al. (2003). Thus, in this section, SRP manoeuvres that involve a re-

orientation of the spacecraft with the Sun-line direction are investigated. Manoeuvres

in the x-y plane for a fixed β were considered. This condition is reached when the clock

angle, δ, is equal to 90◦ and the cone angle, α, is free to assume values between ±90◦.

6.3.1 Analytical solution for a saddle×focus×center equilibrium

When the libration point moves in the x-y plane, the equilibrium of the collinear points

changes from saddle×center×center to saddle×focus×center. Thus, the solutions in Eq.

(3.100) does not hold for a general cone angle, α, orientation. In order to find the semi-

analytical solution for a saddle×focus×center equilibrium, the general solutions of Eq.

(3.87) are:

ξ =
4∑
i=1

Aie
λit η =

4∑
i=1

Bie
λit ζ =

6∑
i=5

Aie
λit. (6.16)

In Eq. (6.16), Ai and Bi are constants and can be found by imposing the initial con-

ditions. By substituting Eq. (6.16) to the first equation in Eq. (3.87), it is possible to

find the relationship between the constants A1,2,3,4 and B1,2,3,4:

Aiλ
2
i e
λit − 2Biλie

λit − V̄ ∗xxAieλit − V̄ ∗xyBieλit = 0 (i = 1, . . . , 6); (6.17)

where, Bi is a function of Ai such as:

Bi =
λ2
i − V̄ ∗xx

2λi + V̄ ∗xy
·Ai = ki ·Ai (i = 1, . . . , 6). (6.18)

The semi-analytical solution can be found by substituting the solutions in Eq. (6.16) to

the linearised equations of motion in Eq. (3.87) as:

ξ = A1e
λ1t +A2e

λ2t +A3e
λ3t +A4e

λ4t

η = B1e
λ1t +B2e

λ2t +B3e
λ3t +B4e

λ4t

ζ = A5e
λ5t +A6e

λ6t

ξ̇ = λ1A1e
λ1t + λ2A2e

λ2t + λ3A3e
λ3t + λ4A4e

λ4t

η̇ = λ1B1e
λ1t + λ2B2e

λ2t + λ3B3e
λ3t + λ4B4e

λ4t

ζ̇ = λ5A5e
λ5t + λ6A6e

λ6t.

. (6.19)
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Thus, by substituting the relationship in Eq. (6.18) to Eq. (6.19), the semi-analytical

solution turns into:

ξ = A1e
λ1t +A2e

λ2t +A3e
λ3t +A4e

λ4t

η = k1A1e
λ1t + k2A2e

λ2t + k3A3e
λ3t + k4A4e

λ4t

ζ = A5e
λ5t +A6e

λ6t

ξ̇ = λ1A1e
λ1t + λ2A2e

λ2t + λ3A3e
λ3t + λ4A4e

λ4t

η̇ = λ1k1A1e
λ1t + λ2k2A2e

λ2t + λ3k3A3e
λ3t + λ4k4A4e

λ4t

ζ̇ = λ5A5e
λ5t + λ6A6e

λ6t.

. (6.20)

The semi-analytical solution in Eq. (6.20) is associated to the eigenvalues of the type

saddle×focus×center equilibrium where:

λ1,2 ' ±λ λ3,4 = α± ω · i λ5,6 = ±ν · i. (6.21)

Figure 6.17 shows the positions and the stability of the pseudo libration point SL1 when

β = 0.005, the clock angle, δ, is equal to 90◦ and the cone angle is varied from ±90◦.

When the libration point is in the positive y-axis, α is negative and the equilibrium

point has a stable focus; while it has an unstable focus in the negative y-axis when α

has positive values. When α is 0◦ or 90◦, the equilibrium point belongs to the x-axis

and it is of the type saddle×center×center. Specifically, for α = 0◦ the spacecraft is

Sun-pointing; while, for α = 90◦, the effect of the SRP acceleration vanishes and the

equilibrium point corresponds to the solution of the CR3BP dynamics.

Figure 6.17: Stable and Unstable focus for β = 0.005, δ = 90◦ and α varied
between ±90◦.
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The variable ki in Eq. (6.20) is defined as follows:

1) For the eigenvalues of the hyperbolic equilibrium, λ1,2, k1,2 is defined as:

k1 =
λ2 − V̄ ∗xx
2λ+ V̄ ∗xy

k2 =
λ2 − V̄ ∗xx
−2λ+ V̄ ∗xy

; (6.22)

2) For the eigenvalues of the focus equilibrium, λ3,4, k3,4 is defined as:

k3 =
(α+ ω · i)2 − V̄ ∗xx
2(α+ ω · i) + V̄ ∗xy

k4 =
(α− ω · i)2 − V̄ ∗xx
2(α− ω · i) + V̄ ∗xy

. (6.23)

The position vector of the semi-analytical solution in Eq. (6.20) can be written such as:
ξ = A1e

λ1t +A2e
λ2t +A3e

αt cos(ωt) +A4e
αt sin(ωt)

η = k1A1e
λ1t + k2A2e

λ2t +B3e
αt cos(ωt) +B4e

αt sin(ωt)

ζ = A5 cos(νt) +A6 sin(νt)

; (6.24)

where B3 and B4 are defined respectively:

B3 = A3<(k4) +A4=(k4) B4 = A4<(k3) +A3=(k3). (6.25)

In Eq. (6.25), <(�) and =(�) denote the real and imaginary part of a complex number.

The planar solution in ξ and η is now considered since the out-of plane solution ζ is

still the one shown in Eq. (3.105). The relationship between the amplitudes and the

spacecraft’s state vector can be written in a compact way:
ξ

η

ξ̇

η̇

 = M ·


A1

A2

A3

A4

 ; (6.26)

where, M is defined as:

M = [M1|M2|M3|M4] . (6.27)

In Eq. (6.27), the columns M1 and M2 of matrix M are:

M1 =


eλ1t

k1e
λ1t

λ1e
λ1t

k1λ1e
λ1t

 M2 =


eλ2t

k2e
λ2t

λ2e
λ2t

k2λ2e
λ2t

 ; (6.28)
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while, M3 is:

M3 =


eαt cos(ωt)

eαt [<(k4) cos(ωt) + =(k3) sin(ωt)]

eαt [α cos(ωt)− ω sin(ωt)]

eαt {<(k4) [α cos(ωt)− ω sin(ωt)] + =(k3) [α sin(ωt) + ω cos(ωt)]}

 , (6.29)

and M4 is:

M4 =


eαt sin(ωt)

eαt [=(k4) cos(ωt) + <(k3) sin(ωt)]

eαt [α sin(ωt) + ω cos(ωt)]

eαt {=(k4) [α cos(ωt)− ω sin(ωt)] + <(k3) [α sin(ωt) + ω cos(ωt)]}

 . (6.30)

The design of the transfer strategy for a general orientation of the spacecraft requires to

change the semi-analytical solution presented in Section 6.1.2 for a Sun-pointing area ac-

cordingly to the general semi-analytical solution for a saddle×focus×center equilibrium.

Note that the general solution also holds also for the Sun-pointing case.
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6.3.2 Solar radiation pressure manoeuvre given at the departure Lis-

sajous orbit

Figure 6.18 and 6.19 show the amplitudes of the stable, A′1, and unstable, A′2, manifold

of the target Lissajous orbit when a SRP manoeuvre in the cone angle, α, is given. The

departure orbit is a square Lissajous orbit with Ay = Az = 250,000 km. A lightness

parameter, β0, equal to 0.001 was chosen. The cone angle, α, was varied within ±90◦.

In the case of Figure 6.18, the SRP manoeuvre is given for positive values of α; thus,

the equilibrium point moves in the negative y-axis. Conversely, Figure 6.19 shows the

amplitudes when a negative value of α is selected and the equilibrium point moves in

the positive y-axis.

In Figure 6.18, it is possible to observe that for small angles A′1 6= A′2 with A′1 < 0

and A′2 > 0; however, they share the same order of magnitude 10−7. Thus, even if A′1
tends to zero, A′2 is not big enough to enhance a direct transfer of the spacecraft. This

fact can open up to the design of transfers within transit orbits; however, as previously

mentioned, the focus of this study is primarily on transfers within Lissajous orbits.

Moreover, the more the cone angle is increased, the more the order of magnitude of A′1
and A′2 increases. This suggests that the effect of large angles makes the solution worse.

Indeed, the effect of increasing the angle decreases the reflectivity of the spacecraft by

making the value in A′1 and A′2 of the same order and sign.

Figure 6.19 shows the same behaviour in the solutions of Figure 6.18; however, the

solution is mirrored. In Figure 6.18, the minimum of A′1 and A′2 is achieved for values in

Φ between π and 2π; while, in Figure 6.19, the minimum in A′1,2 is given for Φ between

0 and π.

Figure 6.20 shows the amplitudes for a fix value of α = 1.46◦ for β0 to 0.01 and 0.02.

By increasing the value of the initial β, the value in the amplitudes increases for the

same value of α. Thus, it is possible to conclude that also in this case a direct transfer

from the departure Lissajous orbit is not possible and an intermediate manoeuvre that

aims to inject the spacecraft onto the unstable manifold of the departure orbit should

be investigated.
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(a) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: α = 1.46◦.

Φ [rad]

Ψ
 [r

ad
]

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A
2

2

4

6

8

10

12
x 10

−7

(b) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: α = 1.46◦.

Φ [rad]

Ψ
 [r

ad
]

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A
1

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2
x 10

−5

(c) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: α = 16.62◦.
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(d) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: α = 16.62◦.
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(e) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: α = 33.82◦.
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(f) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: α = 33.82◦.

Figure 6.18: Amplitude of the unstable, A′1, and stable, A′2, manifolds of the
target Lissajous orbit with β0 = 0.001 when the SRP manoeuvre is given along
the departure Lissajous orbit for α > 0◦.
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(a) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: α = −1.46◦.
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(b) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: α = −1.46◦.
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(c) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: α = −14.90◦.
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(d) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: α = −14.90◦.
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(e) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: α = −37.83◦.
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(f) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: α = −37.83◦.

Figure 6.19: Amplitude of the unstable, A′1, and stable, A′2, manifolds of the
target Lissajous orbit with β0 = 0.001 when the SRP manoeuvre is given along
the departure Lissajous orbit for α < 0◦.
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(a) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: β0 = 0.01.
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(b) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: β0 = 0.01.
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(c) Amplitude of the unstable manifold, A′1, of the
target Lissajous orbit: β0 = 0.02.
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(d) Amplitude of the stable manifold, A′2, of the target
Lissajous orbit: β0 = 0.02.

Figure 6.20: Amplitude of the unstable, A′1, and stable, A′2, manifolds of the
target Lissajous orbit with β0 = 0.01 and 0.02 when the SRP manoeuvre is
given along the departure Lissajous orbit for α = 1.46◦.
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6.4 Deployable structure solutions

The design of the transfer trajectories enhanced by solar radiation pressure acceleration

requires the use of a fixed variable reflective area Sun-pointing or fixed geometry re-

orientable reflective area.

In the first case, the reflectivity of an initial Sun-pointing area is reduced to allow transfer

between Lissajous orbits. Thus, the use of Reflective Control Devices (RCDs) can be

exploited to reduce the reflectivity of a sunshade structure as demonstrated by the Ikaros

mission (Tsuda et al., 2013). In Earth’s orbit missions, Lücking et al. (2012c) uses the

RCDs to travel in the phase space. Figure 6.21 shows that when the RCDs are on, the

effective reflective area is white; while, when the RCDs are off (gray areas), the effective

reflective area is reduced (white areas). Similar results can be achieved for solar panels

through the use of flaps that aim to reduce the reflective area as shown in Figure 6.22.

Figure 6.21: Sunshade with reflecive control devices.

For example in Figure 6.13, an initial lightness number of β0 = 0.04 and a final lightness

number of βM = 0.002 were presented. If the sunshade of the satellite is considered as

the major reflective surface, a reflectivity coefficient, Csr , of 1.92 at the beginning of life

was taken into account. Table 6.1 shows the size in the reflective area needed for different

class of satellites. Note that the James Webb Space Telescope have a sunshade of 264

m2 with a spacecraft mass of 6500 kg while in this case a 272.33 m2 of sunshade can be

used for SRP transfer manoeuvre of a 10 kg spacecraft. In this chapter, a preliminary

study on using solar radiation pressure to enhance transfer within Lissajous orbits was

carried out, thus further studies are required to find optimal solution for example in

minimising the reflective deployable area required. It seems quite challenging for a class
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Mass [kg] A0 [m2] AM [m2]

1 27.233 13.616
10 272.33 136.165
100 2723.3 1361.65
1000 2.723 ·10−4 1.361 ·10−4

Table 6.1: Spacecraft area required before and after the manoeuvre for different
class of satellites.

of satellites as LPO spacecraft where a mass of the order of 1000 kg is usually required.

This technique seems more promising for small class of satellite like nanosatellites (1-

10 kg). This is related to problem in packing extended deployable structures for large

science missions. The current transfer technique could be possibly used for solar sail

mission at LPO. For the example previously shown, a total mass of the spacecraft of 85

kg (included the weight of the sail) with 48.11 m-span for a squared solar sail is required.

For a kapton substrate (7.1 g/m2) and aluminium surface coating (1.35 g/m2), the solar

sail weight is 19.56 kg. For the mast structure (2 × 68.0413 m) with linear density of 70

g/m an additional mass of 9.5257 kg has to be allocated to support the solar sail. Thus,

29.0857 kg are associated to the solar sail by ensuring 55.91 kg allocated for the payload

from the total spacecraft mass that correspond to the bus weight of JAXA Ikaros solar

sail (20 m-span). Currently, JAXA is performing a ground test to deploy a 50 m-span

solar sail for JAXA future mission to Trojans asteroids. However, a lighter system is

needed to ensure sufficient mass allocated for the payload.

Figure 6.22: Solar panels with flaps.

Finally, in the case of a fixed reflective area, attitude control manoeuvres are investi-

gated to perform the transfer between Lissajous orbits by re-orienting the pre-existing

spacecraft’s reflective on-board structures such as:
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• the solar panels,

• the sunshade, or

• the spacecraft’s antennas.

In this case, we can’t draw any conclusion about the feasibility of re-orienting transfer

manoeuvres onto the spacecraft structural configuration as a satisfactory solution was

not found yet. The re-orientation manoeuvre approach has to be studied further for

demonstrating wherever it is a feasible technique or not. The analysis shown in this

chapter was mainly focused in developing the technique to ensure the transfer within

Lissajous orbits for a Sun-pointing spacecraft, however further works should aim in

minimising the area required to ensure the fuel-free transfer for LPO class of satellite.

An important remark is that this study do not include the effect in the optical degra-

dation when designing the SRP manoeuvre. As shown by Dachwald et al. (2005), the

effect of degradation affects the position of the equilibrium points presented in Section

3.5.2. The effect of the degradation do not affect much equilibrium solutions around

L1, Figure 3.7, while equilibrium solutions about L2, Figure 3.7, are severely restricted

by limiting the regions where transfer within Lissajous orbits can be done with a SRP

manoeuvre.
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6.5 Summary

In this chapter, the invariant manifold theory is applied for the design of transfer trajec-

tories within the Sun-Earth system enhanced by the solar radiation pressure acceleration.

When a solar radiation pressure manoeuvre is given, the libration point’s coordinates

change position. A semi-analytical approximation is used to design the transfer strategy

that makes use of the geometry of two libration points: the one before and after the

manoeuvre. The semi-analytical solution depends on the stability of the equilibrium

points. Thus, due to the effect of a solar radiation pressure manoeuvre, the equilibrium

points to become a saddle×focus×center type; where, the semi-analytical solution is

extended here to the case of focus equilibrium. Two types of solar radiation pressure

manoeuvres have been investigated: for a Sun-pointing area, where the lightness param-

eter is changed, and for a fixed reflective area, where the spacecraft is re-oriented with

the Sun-line direction.

This chapter has succeeded in demonstrating that transfer trajectories between Lissajous

orbits are possible for a Sun-pointing spacecraft while SRP manoeuvres that involve a

re-orientation of the spacecraft needs to be further explored. The major research findings

of this chapter are:

• the development of a strategy that use the geometry of a moving equilibrium point,

• the change in a Sun-pointing spacecraft reflectivity allows transfers toward higher

amplitude orbits (i.e. for a possible extension of the spacecraft’s nominal mission),

• the Sun-pointing manoeuvre can be done by exploiting on board deployable struc-

tures (i.e. by equipping deployable structures with embedded RCDs devices or by

adding additional flaps),

• the semi-analytical solution of the center manifold was derived for a general ori-

entation of the spacecraft’s reflective deployable areas.

When an LPO spacecraft reaches the end-of-life, if no action is taken then the uncon-

trolled spacecraft presents a collision risk for future LPO missions. To prevent the for-

mation of space debris in the Earth-LPO region, an end-of-life disposal strategy to safely

dispose the LPO spacecraft needs to be formulated. This problem will be addressed in

next chapter.



Chapter 7

End-of-Life Disposal through

Solar Radiation Pressure

Many years of unregulated human space activities have created a significant amount

of space pollution. Pollution is partially caused by spacecraft reaching the end of their

operational life. This causes an increase in the number of dismissed and uncontrolled

man-made objects in space, compromising future space activities. As mentioned in

Chapter 1 and Chapter 2, space agencies are currently investing their resources to pre-

serve the space environment. Much effort is made to tackle the problem of space debris

for spacecraft in low Earth orbit. However, less concern is given to spacecraft in libration

point orbits.

Since new technologies are investigated in this thesis for future LPOs missions, concern

is given to include the end-of-life mission phase in this space mission study and to answer

the last research question stated in Chapter 1:

Q.5 - How can we design an end-of-life disposal strategy that makes use of solar radi-

ation pressure enhancing devices to dispose of a spacecraft safely in a graveyard

trajectory?

Thus, this chapter presents an EOL disposal option to prevent the formation of space

debris for the disposal of LPO spacecraft. The EOL represents a new topic for this kind

of space mission as space agencies do not currently have guidelines for the EOL of LPO

spacecraft. This work was initiated within a European project lead by the University

of Southampton in collaboration with the University of Strathclyde and SpaceDyS and

founded by the European Space Agency. This ESA project investigates EOL disposal

concepts for LPO and high elliptical orbit missions (Colombo et al., 2014b, 2015a) where

the author was in charge of the design of a fuel-free solution for the LPO end-of-life

disposal.

193
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An EOL propellant-free disposal strategy for libration point orbits which uses solar

radiation pressure to restrict the evolution of the spacecraft motion is proposed here.

The spacecraft is initially disposed of in the unstable manifold leaving the libration

point orbit before a reflective Sun-pointing surface is deployed to enhance the effect

of the SRP acceleration. Therefore, the consequent increase in energy prevents the

spacecraft’s return to Earth. Three European Space Agency missions are selected as test

case scenarios: Herschel (Appendix B.3.1), SOHO (Appendix B.3.2) and Gaia (Appendix

B.3.3). The SRP EOL disposal was initially investigated in the circular restricted three-

body problem dynamics with SRP. Then, the effect of the Earth’s orbit eccentricity onto

the proposed disposal is taken into account. Thus, the SRP EOL disposal is extended

to the elliptic restricted three-body problem dynamics with SRP. Finally, guidelines for

the EOL disposal of future libration point orbit missions are proposed. Olikara et al.

(2015) initially proposed a disposal option through a ∆v manoeuvre and a comparison

between the two EOL disposal is investigated in this chapter.

The results of this chapter were published in Soldini et al. (2016a) and in an under

review publication (Soldini et al., 2015b).

7.1 Disposal strategy concept

In Section 3.6, it was shown that the effect of SRP acceleration has consequences on the

shape of the total potential energy and, for instance, on the form of the zero velocity

curves. From Figure 3.14, it was clear that the effect of a SRP manoeuvre can cause the

closure or the opening of the ZVCs in correspondence of the libration points’ bottle neck

regions. In Chapter 6, this phenomenon was exploited to enhance transfer trajectories

within the Sun-Earth system by opening the ZVCs at the bottle neck regions after the

manoeuvre. Conversely, in the design of the end-of-life disposal, the spacecraft must

avoid to cross the libration points’ bottle neck regions and re-enter on Earth. Thus, an

EOL SRP manoeuvre is given to close the ZVCs at the bottle neck regions.

For the EOL disposal enhanced by the SRP acceleration, the main goal is to find the

minimum deployable area required to close the zero-velocity curves at the pseudo libra-

tion point, SL2, to confine the motion of the spacecraft outside the Earth-L2 protected

regions. The minimum area is determined through numerical optimisation by satisfying

the constraint. This restriction requires that the additional area should increase the

energy of the system to reach the energy at the pseudo libration point.

To design a strategy that enables the SRP manoeuvre to close the ZVCs at SL2, the

unstable manifold towards the outer part of the system is followed. The unstable man-

ifold is computed by integrating the trajectory forward in time with a perturbation of

+ε = 10−6 which corresponds to a displacement error in the spacecraft position of 200
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km (Koon et al., 2008; Gómez et al., 2001). Further details in the numerical computation

of the unstable manifolds were given in Section 3.11.

Figure 7.1 shows an example of the SRP disposal strategy for a two-dimensional case.

The time used for the manifold evolution is about 400 non-dimensional time units; which

corresponds to 63.5 years. A number of trajectories (in grey, Figure 7.1(a)) which belong

to this unstable tube are selected with their initial condition close to the LPO.

As can be seen from Figure 7.1(a), a spacecraft injected towards the unstable manifolds

without closing the ZVCs is unsafe. Indeed, the disposed spacecraft could represent

a potential hazard to other operating spacecraft in LPOs or Earth’s orbit; hence, this

approach is not sustainable. In particular, the highlighted trajectory in Figure 7.1(a)

(bold black line) shows that after 29.5 years the spacecraft will encounter the Earth and

the L2 regions since the ZVCs have a trajectory gateway at L2.

A point P1 along each natural trajectory legs is selected (Figure 7.1(b)), where a Sun-

pointing reflective surface is deployed (Figure 7.1(c)). This allows the closure of the

ZVCs at SL2. The trajectories evolution after the deployment of the SRP enhancing

device was verified by computing the new trajectory legs with the added effect of β

(Figure 7.1(d)). In this case, β corresponds to a value of 0.001321. It can be verified

that, in correspondence of any point of the following evolution, the ZVCs are closed

(see dashed line in Figure 7.1(d)). By enhancing the effect of SRP, the energy of the

system was changed without any propellant costs. Afterwards, the energy does not

change along the resulting trajectory if the deployable area is passively stabilised with

the Sun. Finally, even if the L2-LPO region is not completely protected (Figure 7.1(d)),

the probability of crossing region close to L2 is now lower.

1This value of β corresponds to 861 m2 for a 1000 kg of spacecraft.
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x
0.99 1 1.01 1.02 1.03

y

×10-3

-8

-6

-4

-2

0

2

4

6

8

SL
2

SL
1 Earth

Disposal (P
1
)

(b) Selected trajectory where the deployment is done
after 68.04 days from the leaving LPO.
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(c) Deployment of a Sun-pointing area in P1 to close
the zero-velocity curves in SL2.
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(d) Trajectory evolution after the deployment in P1,
black dashed is integrated for 63.5 years.

Figure 7.1: End-of-life disposal manoeuvre at 68.04 days since the manifold
injection, with 63.5 years of trajectory evolution. This is a critical case to make
the strategy more clear, i.e. before the deployment the SRP was zero.
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7.2 Energy approach in the circular restricted three-body

problem with solar radiation pressure

A spacecraft equipped with a deployable EOL device, can close the ZVCs at SL2. This

device is configured to be Sun-pointing (r̂ = N̂) and auto-stabilised, so the SRP force

admits a potential form as shown in Section 3.3 (DRL-101-08, 1996; Ceriotti et al., 2013).

The same formulation was analysed in two different cases:

• the first one when the effect of SRP is taken into account only after the surface

deployment, and

• the second one when the effect of SRP is considered since the injection into the

manifold. Then the minimum area required is computed as a delta SRP effect

due to, for example, the deployment of reflective flaps from the original spacecraft

sunshade configuration.

In this thesis, only the second case is discussed because including the SRP from the

manifold injection influences the manifold evolution (i.e., small perturbations in the

position), while the required reflective area for the disposal is very similar in the two

cases. When a near-perfect reflective flap is deployed, the energy equation in Eq. (3.81)

increases to:

E(x, y, z, ẋ, ẏ, ż, β0, ∆β) =
1

2
(ẋ2 + ẏ2 + ż2)− V (x, y, z) + Us(x, y, z, β0 +∆β) (7.1)

where, β0 represents the nominal spacecraft configuration and ∆β the effect of the

additional area. The full expression of the terms in Eq. (7.1) is rewritten such as:

E(x, β0, ∆β) =
1

2
v2 − 1

2
(x2 + y2)− (1− β0)

µSun
rSun−p

− µEarth
rEarth−p

+∆β
µSun
rSun−p

(7.2)

where, v is the magnitude of the spacecraft velocity {ẋ, ẏ, ż} along the manifold (before

the deployment β = β0, in Eq. (C.79)). In order to find the minimum area required to

close the ZVCs at SL1 or SL2, it is necessary to satisfy the following constraint:

E(xSLj , β0, ∆βmin) = E(xP1 , β0, ∆βmin) (7.3)

where, xSLj =
{
xSLj , 0, 0, 0, 0, 0

}
is the position of the collinear Lagrange point with

SRP. So Eq. (3.81) can be written as:

1
2v

2
P1

= 1
2(x2

P1
+ y2

P1
− x2

SLj
)− µSun(1− β0)

[
1

rSun−SLj
− 1

rSun−P1

]
−µEarth

[
1

rEarth−SLj
− 1

rEarth−P1

]
+ µSun∆β

[
1

rSun−SLj
− 1

rSun−P1

] (7.4)
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where the index “j” refers to the location (either SL1 or SL2) where the closure occurs.

From the numerical point of view the boundaries of ∆β required during the optimisation

are 0 and 1-β0. Note that the expression of ∆β cannot be found explicitly from Eq. (7.4)

since the position of the pseudo libration point is function of ∆β as well, see Table 3.3,

thus a numerical optimisation is required. By comparing this strategy with the strategy

by Olikara et al. (2015), where a ∆v manoeuvre is used to close the curves, the energy

is increased, as shown in Figure 7.2(b) (dashed line), rather than decreased (dashed line

in Figure 7.2(a)). As previously shown in Chapter 3, this behaviour is explained by

knowing that changes in the shape of the potential energy are a result of the effect of

the SRP manoeuvre (light gray line in Figure 7.2(b)). Figure 7.2 is done for a value of

µ = 0.3 to aid visualisation, where in both cases the black straight line corresponds to

the energy of the spacecraft before the disposal.
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(b) Due to the effect of a deployable area, the energy
of the system increases to reach the energy of SL2

(dashed line).

Figure 7.2: Comparison between the traditional ∆v and SRP disposal strategies.

The constraints in the SRP strategy with respect to the traditional ∆v are investigated.

When using SRP, β can assume values between zero and one thus limiting the value

assumed by the energy at the pseudo libration point, SLj . Moreover, the acceleration

of SRP is constrained in direction and this will restrict the location of the spacecraft’s

motion after the deployment.

To demonstrate this, without loss of generality, the problem was simplified to a planar

motion with β0 = 0, therefore β = β0 + ∆β = ∆β. For simplicity, a state vector

P1 that has only one non-zero component in the x-direction and a velocity magnitude

which respects the conservation of the energy is considered. In this way, it is possible to

investigate when the energy intersection, in Eq. (3.81) is feasible for the zero velocity

closure in SLj .

Figure 7.3 and Figure 7.4 displays the right (i.e., coloured gray scale line) and the left

(i.e., black line) hand side of Eq. (3.81) evaluated at SL1 and SL2, respectively for
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different values of β. As it can be seen, a feasible solution that allows the ZVCs curves

to be closed does not always exist. This is evident in Figure 7.3 for the solution x = 0.65.

As already mentioned, β is constrained within 0 and 1, so the value of the increased

energy is constrained (see Table 7.1). Finally, it is interesting to note that, by comparing

Figure 7.3 and Figure 7.4, a lower β is required to close the ZVCs in SL2 rather then in

SL1.

Figure 7.3: Intersection with E(xSL1 , β) and right side of Eq. (3.81) in corre-
spondence of SL1.

Figure 7.4: Intersection with E(xSL2 , β) and right side of Eq. (3.81) in corre-
spondence of SL2 with zoom in correspondence of region of intersection.

Another main difference with the traditional ∆v is that, due to the constraint in the

direction of the SRP acceleration, the spacecraft cannot be disposed toward the Sun by

closing the curves at SL1. This evidence was already demonstrated in Chapter 6; where,

a transfer trajectory towards the Sun direction was not possible.

In the case of traditional propulsion, the ∆E is defined by Olikara et al. (2015) such as:

∆E = EL2 − E =
1

2
(V 2
clsr − V 2) < 0, (7.5)
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where, V 2
clsr is introduced in Eq (G.2) of Appendix G.1. The shape of the ZVC for

closure is given by the energy of L2. Vclsr can be computed at any point where the

motion is permitted with the only constraint of V 2
clsr > 0 (no point inside the forbidden

region). In case of SRP, there is less freedom in the selection of the point since Us > 0

is the constraint in ∆E such as:

∆E = ESL2 − E = Us; (7.6)

where, ESL2 is the energy of SL2, E is the energy of the spacecraft before the deployment

as in Eq. (7.3) for β = β0 and Us is defined as in Eq. (3.26) by setting β = ∆β.

Indeed, Us is the potential of SRP forces which are constrained in direction and it is

function of β that assumes values within 0 and 1. Thus, Umins (β = 0) < Us(β) <

Umaxs (β = 1) (where Umins (β = 0) = 0), so 0 < Us(β) < Umaxs (β = 1). This constraint

obliges the spacecraft to be always at the right-hand side of the maximum coordinate of

SL2 that occurs when β = 1. The higher is β, the more the region around the Sun and

the Earth decreases since SL1 and SL3 collapse in the centre of mass (circa the Sun) and

SL2 gets very close to the Earth, as shown in Figure 3.6(b).

In Figure 7.5, a comparison with SRP and ∆v manoeuvres for the closure of the ZVCs

is shown. A point along the LPO is selected for the EOL manoeuvre (black star) which

is on the left-hand side of L2. As one can see, when SRP is used the Lagrangian point

moves such that after the closure the spacecraft is disposed on a graveyard orbit around

the Sun, Figure 7.5(a)-7.5(b), while with traditional ∆v the disposal is towards the Sun

Figure 7.5(c)-7.5(d).

This can be verified also by looking at Eq. (7.4), which, in the case considered, is

simplified as:

1
2v

2
P1

= 1
2(x2

P1
+ y2

P1
− x2

SLj
)− µSun(1− β)

[
1

rSun−SLj
− 1

rSun−P1

]
−µEarth

[
1

rEarth−SLj
− 1

rEarth−P1

]
,

(7.7)

when, β0 = 0. In order to achieve the closure at SLj , it is necessary to satisfy Eq. (7.7).

The left side of Eq. (7.7) contains the squared velocity for a generic point P1, which is

a positive term. Therefore, in order to demonstrate that with SRP the closure towards

the Sun is not permitted, the sign of Eq. (7.7) is studied to ensure that its left-hand side

is positive (that means v2
P1
> 0). In this thesis, only the case in which P1 is between the

Earth and SL2 region is shown (see Figure 7.6); however, it can be easily demonstrated

that the same results can be achieved if P1 is one of the gray points in Figure 7.6.

For the case shown in Figure 7.6, the condition of V 2
P1

> 0 can be guaranteed only if

P1 stays at the right-hand side of the Lagrangian point at which the curve is closed

(for example SL1). This can be easily demonstrated for β = 1 when the gravitational
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β xL1 xL2

0 0.989985982354727 1.010075200010617
1 −0.105864912811615 · 10−4 1.001739126300185

Table 7.1: Positions of L1 and L2 as a function of SRP.

effect of the Sun is counteracted by the SRP: the square of the velocity can be positive

only if the point is on the right-hand side of the Libration point. This result can be

extended for cases where β is less than one by studying the sign of each term in Eq.

(7.7) accordingly. In conclusion, to ensure that V 2
P1
> 0, the key point is that P1 should

stay at the right side of SL2. This condition is necessary, but not sufficient to find β

that closes the ZVCs since, as already shown, there are some cases where a solution does

not exist, for instance when the β required is higher than 1, as shown in Figures 7.3-7.4.

Finally, it is interesting to note that, when the velocity in P1 is zero, P1 is coincident to

SLj .
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(a) EOL disposal with SRP. The β required is 0.02499.
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(b) After the closure the spacecraft is at the right-
hand side of SL2.
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(c) EOL disposal with ∆V manoeuvre.
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(d) After the closure the spacecraft is at the left-hand
side of L2.

Figure 7.5: Comparison of SRP and ∆V strategies when the point of disposal
is at the left-hand side of the Lagrangian point L2.
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Figure 7.6: Reference system for studying the clousure in SLj .

7.2.1 Solar radiation pressure equivalent ∆v

The SRP equivalent ∆veq quantifies how much theoretical ∆v would be needed for a tra-

ditional propulsion system to augment the energy of the spacecraft achieved by a reflec-

tive SRP manoeuvre. Note that, this ∆veq cannot be effectively achieved by a propulsion

system since the effect of SRP also changes the shape of the potential, which is not pos-

sible with a traditional propulsion-based approach. E0 = E(x0, y0, z0, ẋ0, ẏ0, ż0, β0) (see

Eq. (7.3)) is set as the initial energy of the system before the deployment and ESL2 is

set as the energy of the system after the deployment (Eq. (7.2) evaluated at SL2). Now

let’s make the hypothesis that ESL2 is achieved with a traditional propulsion system;

therefore, the energy is written as in Eq. (7.2) by setting ∆β = 0 and find Vclsr. Vclsr is

the velocity on the manifold after a hypothetical manoeuvre is given and the equivalent

∆veq can be derived as:

∆veq = Vclsr − V =

√
V 2 + 2∆β

µSun
rSun−p

− V. (7.8)

This equation will be applied in the next section in order to compare the proposed

strategy with the one of Olikara et al. (2015) in term of ∆v budget. The traditional ∆v

equation with the effect of SRP is reported in Appendix G.1 in Eq. (G.2)-(G.3) derived

by Olikara et al. (2015).

7.2.2 Disposal constraints

When disposing a spacecraft into a graveyard orbit around the Sun-(Earth+Moon) sys-

tem, it is important to identify safe regions to avoid the spacecraft from returning to the

vicinity of the Earth, threatening its artificial satellites. This is particularly the case for

spacecraft around L1 (i.e., SOHO spacecraft); where, a departing ∆v is given towards L2

to achieve the condition of the ZVCs closure as SL2 after an SRP manoeuvre is provided

along the LPO’s unstable manifold. This is done because it was demonstrated that the
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spacecraft cannot be bounded with this strategy in the region on the left of SL1. For

this reason, the deployment is done only beyond L2 that means:

x > xL2 . (7.9)

In the case of a spacecraft at L1, there are two more checks to take into account. One

related, to the Earth’s safe region, where all trajectories that cross a protected sphere

around the Earth are discarded through:

dEarth−p ≥
R

AU
. (7.10)

In Eq. (7.10), AU is one astronomical unit, R was set equal to 60,000 km (greater than

the GEO distance) and dEarth−p is the distance Earth-Spacecraft defined such as:

dEarth−p = ||rEarth − rp||. (7.11)

In Eq. (7.11), rEarth and rp are the distances of the Earth and the spacecraft from the

centre of mass. Secondly, among the trajectories that safely pass close to the Earth,

some of them come back after few revolutions to L1 towards the Sun; also, in this case,

the trajectories are discarded for the disposal and the condition in Eq. (7.9) holds.
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7.3 Mission like scenarios
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Figure 7.7: The disposal strategy scheme in the CR3BP-SRP: LPO (dashed
line), unstable manifold (gray trajectories), injection point (black point), point
of deployment (star) and SL2 (plus symbol).

In this section, three ESA mission like scenarios are investigated: Gaia, Herschel and

SOHO. The initial spacecraft parameters in terms of: initial deployable area (A0), dry

mass (mdry), initial area-to-mass ratio (A0/mdry) and its correspondent lightness pa-

rameter (β0) are shown in Table 7.2.

Figure 7.7 shows a qualitative representation of the disposal strategy designed in the

CR3BP-SRP used for the numerical computation. A number of trajectories which belong

to the unstable tube are selected (grey trajectories in Figure 7.7) with their initial

condition (black point in Figure 7.7) close to the LPO (dashed black line). Then, to

assess the deployable area requirements, a series of points along each natural trajectory

legs are selected (black stars), where a Sun-pointing reflective surface can be deployed.

Deploying a reflective structure in one of these points allows the closure of the ZVCs at

SL2 as shown in Figure 7.1.

Gaia was placed in a Lissajous orbit around L2 and its mission objective is to provide

a 3D map of our galaxy (Hechler and Cobos, 2002). Gaia’s mission overview is given in

Appendix B.3.3. For the EOL analysis, several trajectories were selected starting along

the Lissajous orbit, from 5.59 to 6.1 years since the start of the mission. Each unstable

trajectory is obtained by integrating forward in time over six years. Figure 7.8(a) shows

the area-to-mass requirement as a function of the curvilinear coordinate on the LPO

(y-axis and black point in Figure 7.7) and the time along the trajectory leg (x-axis and

black stars in Figure 7.7). The time step selected along the trajectory leg (between two
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Figure 7.8: Gaia area-to-mass ratio and equivalent ∆veq.

black stars in Figure 7.7) is 0.05 in non-dimensional units, which, corresponds to 2.89

days.

Figure 7.8(b) shows the magnitude of the ∆veq due to the effect of the increasing energy

of the system after the deployment. The spacecraft-Sun distance and the initial solar

radiation pressure acceleration of Gaia are represented in Figure 7.9 as a function of

the curvilinear coordinate on the Lissajous during six years of disposal. This also shows

that the peaks in the area-to-mass ratio required are due to the fact that, along one

trajectory, the spacecraft motion oscillates around the ZVCs.

Finally, it is interesting to compare the equivalent ∆veq, Figure 7.8(b) with the tradi-

tional ∆v (Olikara et al. (2015) and Colombo et al. (2014b)) in Figure 7.10. In the case

of using a traditional propulsion system, the energy is decreased rather than increased

by giving a ∆v to close the curve as said in Section 7.2. For this traditional case it is not

always possible to perform the manoeuvre close to the departing epoch from the initial

orbit as the white area in Figure 7.10 is representative of the forbidden region; where

the manoeuvre can not be performed. This does not happen when exploiting SRP since

the shape of the potential is changing and the velocity of the spacecraft does not change

at the moment of the deployment.

Herschel was launched in 2009 (Bauske, 2009) and its mission objective was to study the

stars and galaxy formations. Herschel was placed in a halo orbit around L2 with a period

of 180 days (see Appendix B.3.1). To study the disposal of Herschel, 40 trajectories

equally distributed along the halo were selected in this work. The time step along

the halo was set to 4.6 days; where the initial condition considered along the halo

is on the side further from the Sun. Each single unstable trajectory is obtained by

integrating forward in time for six years. The time step selected along the trajectory leg

is 0.05 in non-dimension units, which corresponds to 2.89 days. Figure 7.11(a) represents

the required area-to-mass ratio at the EOL. Compared with the Gaia’s spacecraft, the
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Figure 7.9: Distance from the Sun and SRP acceleration for Gaia A/Mdry =
0.059 m2/kg.
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Figure 7.10: Gaia ∆v for the closure in L2 within six years with traditional
propulsion, where the initial β0 of Gaia is included in the dynamics.

maximum area required is higher since Herschel has a higher total mass than Gaia.

Consequently, the trend in the equivalent ∆veq is also higher (see Figure 7.11(b)).

SOHO was lunched in 1995 and it was placed in a halo orbit with a period of 178 days

around L1 as shown in Appendix B.3.2; therefore, the disposal in SL2 should be done

more carefully than in the case of Herschel and Gaia as SOHO spacecraft is in a orbit

around L1. After the injection from the halo to the unstable manifold towards the outer

system, the disposal was investigated up to 6 years from the moment of injection. In the

case of SOHO, it is necessary to select carefully the trajectories crossing the region of

the Earth as outlined in Section 7.2.2. Figure 7.13(a) shows, as for Herschel and Gaia,

the trend in the area-to-mass ratio required at the EOL.

Regarding the results, SOHO is a satellite with a similar mass magnitude as Gaia. Since

SOHO is placed in a halo around L1, it is interesting to note that the disposal is not



Chapter 7 End-of-Life Disposal through Solar Radiation Pressure 207

C
ur

vi
lin

er
 c

oo
rd

in
at

e 
on

 L
P

O
 

t (year)

 

 

0 1 2 3 4 5 6
0

π/2

π

 3/2 π

2 π

A
/m

 [m
2 /k

g]

5

10

15

20

25

30

35

(a) Herschel area-to-mass ratio for disposal within six
years.

C
ur

vi
lin

er
 c

oo
rd

in
at

e 
on

 L
P

O
 

t (year)

 

 

0 1 2 3 4 5 6
0

π/2

π

 3/2 π

2 π

∆ 
V

eq
 k

m
/s

2

4

6

8

(b) Herschel ∆veq for the closure in SL2 within six
years.

Figure 7.11: Herschel area-to-mass ratio and equivalent ∆veq.

S/C A mdry A/mdry β (@A/mdry)

Gaia 69 1392 0.059 8.98 · 10−5

Herschel 16 3144 0.0051 7.803 · 10−6

SOHO 22 1602 0.021 3.2 · 10−5

Table 7.2: Initial spacecraft parameters (Colombo et al., 2014b).

always possible when compared with Herschel and Gaia cases. Indeed, it is possible to

see that the white strips correspond to two class of trajectories: the one that goes bellow

60,000 km from Earth and the one that never passes by the gateway at L2
2. Moreover,

the coloured stripes show when the spacecraft crosses the L2 gateway; therefore, some

unstable trajectories can spend several years crossing the Earth region and then reaching

L2. For example, trajectories that cross L2 after two years are not fast and efficient

disposal solution as they increase the costs of missions operations. The range of values

in the area-to-mass ratio and the ∆veq for SOHO are an average of the Herschel and

Gaia cases (see Figure 7.12).

As already proved, when exploiting SRP it is not possible to dispose of the spacecraft

towards the Sun as for the ∆v manoeuvre. However, Van Der Weg et al. in Colombo

et al. (2014b) presented a comparison in the ∆v required for the SOHO mission for a

disposal towards the Sun and towards the outer part of the solar system, after L2. It can

be seen that the order of magnitude in the required ∆v is similar for both the disposal

options. The main difference is in the additional operational cost of transferring from

L1 to L2 that it is the only option when using SRP.

2After several revolutions around the Earth, this trajectory goes back towards the Sun.
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(b) SOHO∆veq for the closure in SL2 within six years.

Figure 7.12: SOHO area-to-mass ratio and equivalent ∆veq.

7.3.1 Deployable structure solutions

The minimum required delta area in the CR3BP-SRP is a deployed square area with a

span of around 28 m for Herschel, an equivalent 21 m-span for SOHO and 11 m-span

for Gaia as shown in Table 7.3, where the range in the area-to-mass ratio presented

in Figures 7.8(a), 7.11(a) and 7.13(a) are also shown in the table. An additional EOL

device for Herschel mission cannot be easily achieved with additional flaps since their

current sunshade configuration in term of shape does not allow the deployment of flaps.

SOHO can potentially support additional solar panel flaps; however, the area provided

by the solar panel is too small to support 20-m span area (i.e., solar concentrator), while

Gaia spacecraft configuration can potentially enhance EOL devices.

Note that JAXA has recently demonstrated the capability to deploy a 20 m-span sail

with the Ikaros mission (Tsuda et al., 2013). Therefore, the disposal of Herschel seems

to be the most technologically challenging to achieve with a deployed area due to the

required 28 m span. However, spacecraft with the same characteristics in terms of con-

figurations and masses such as Herschel and SOHO, would need an specifically designed

EOL stabilising deployable cone sail like the one used for attitude control (i.e., GOES

mission (DRL-101-08, 1996)) or the pyramid sail proposed by Ceriotti et al. (2013) in

order to achieve passive attitude stabilisation.

In the cases studied, the EOL change in area is on the order of a 20 m-span square sail

which will cover the spacecraft bus when deployed. Thus, a different configuration should

be investigated to accommodate the area required (for example, in case the spacecraft’s

sunshade is covered by the EOL device, the EOL area should be bigger enough to include

the shaded sunshade area).

Table 7.3 shows the minimum deployable area required for the end-of-life. An example

of self-stabilised structure are cone-sail. Cone-sail have a kapton substrate (7.1 g/m2
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of density) and an aluminium surface coating of 1.35 g/m2 density. The correspondent

weight for the cone-sail is 1.5879 kg for Gaia spacecraft, 7.066 kg for Herschel and 3.79

kg for the case of SOHO spacecraft. The final weight of the cone-sail depends on the

height of the cone which is a parameter that needs to be determined by considering the

torques effect on to the satellite. For example, Gaia spacecraft has a circular sunshade

of radius 4.68 m. By choosing a cone-sail with a base of radius 4.68 m, the heigh of the

cone is given by:

hc =
1

r

√
A2
min

π2
− r4, (7.12)

which correspond to a cone-sail heigh of 11.89 m for Gaia, 56.68 m for Herschel and

30.147 m for SOHO. Gaia spacecraft is the best solution for the LPO class of satellites

studied. The heigh determine the weight of the boom to support the cone-sail with

density between 20-70 g/m that for Gaia spacecraft correspond to an additional mass

of 0.24-0.8 kg. Figure 7.13(a) shows the configuration of the EOL disposal cone-sail for

Gaia spacecraft. Note that in this mass budget analysis, it was supposed that the on-

board reflective deployable structures of the satellite such as sunshade and solar array

do not contribute to the initial area of the end-of-life deployable device. However, the

deployment of flaps could potentially reduce the area needed for passively stabilising the

spacecraft after the end-of-life manoeuvre.

Importantly, this study shows that, the EOL phase should be taken into account as part

of the mission design; in this way, it would be possible to include additional deployable

areas which would expand on the existing projected area of the satellite; where the final

shape configuration should be such that it guarantees passive attitude stabilisation. An

example of alternative design for a class of spacecraft like Gaia would be to consider

the circular sunshade of Gaia’s spacecraft as the minor base of a truncated cone of a

self-stabilised end of life device. Thus, A0 is the area of the sunshade (minor base) and

correspond to 69 m2 (4.68 m radius r). The major base of the truncated cone is supposed

to have a radius R = 1.5 · r that correspond to 7.02 m. The heigh of the truncated cone

cane be calculated as:

htc =

√
∆A2

min

π2(R+ r)2
− (R− r)2, (7.13)

which correspond to 2.23 m. In this case, the mass of the cone-sail lateral surface

(yellow area in Figure 7.13(b)) is 1.005 kg. The major base of the truncated cone could

be potentially kept in shape by a toroidal support ring as for reflectors and antennas. A

boom of perimeter 44.107 m is here required with correspondent mass included between

0.88-3.08 kg. This solution is lighter than the previous option as an additional boom

(external boom in Figure 7.13(a)) between the cone sail and the spacecraft should be

considered for the first configuration. In the second configuration, the heigh of the end-

of-life device is just 2.23 m compared with the 11.89 m required for the first configuration.

Note that Gaia spacecraft heigh is 2.3 m while the heigh of the EOL device proposed

in Figure 7.13(b) is 2.23 m. In conclusion, the design of sunshade and solar array
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S/C A/m [m/kg] β(@A/m) Amin [m] ∆Amin [m] (m-span3)

Gaia 0.135-15.98 2.1 · 10−4-0.02446 187.92 118.92 (10.9)
Herschel 0.266-38.52 4.06 · 10−4-0.059 836.304 820.304 (28.64)
SOHO 0.28-18.08 4.35 · 10−4-0.028 448.56 426.56 (20.65)

Table 7.3: Required reflective area and lightness parameter.

(a) End-of-life cone-sail: first configuration. (b) End-of-life device:
second configuration.

Figure 7.13: End-of-life structural concept for Gaia spacecraft.

for LPO spacecraft should take into account of deployable mechanism and structural

configurations to enhance the effect of SRP at the end-of-life.

Olikara et al. (2015) proposed a similar EOL option by using a traditional impulsive

manoeuvre to perform the closure of the ZVCs. Figure 7.10 shows the requirement in

∆vclsr for Gaia spacecraft. The required range of ∆vclsr along the manifold is between

10-120 m/s. As for the case of EOL devices, the total initial mass of the spacecraft

is 1000 kg where the finial total mass after the ∆vclsr manoeuvre is given through the

Tsiolkovsky equation:

mf = m0e
−∆vclsr

Ispg0 . (7.14)

In Eq. (7.14), m0 is the initial wet mass of the spacecraft before the manoeuvre (1000

kg), Isp is the specific impulse of the engine and for Gaia spacecraft correspond to 291 s,

g0 is the gravity acceleration and mf is the final wet mass of the spacecraft. The mass

of propellant consumed to perform the ∆vclsr is given by:

mp = m0 −mf , (7.15)

3E.g., squared flap or additional EOL device (not to scale).
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that correspond to a mass of propellant between 3.6223-42.612 kg. The second configu-

ration presented in Figure 7.13(b) for the EOL device of Gaia spacecraft requires a mass

between 1.885-4.085 kg. This evidence shown that if the EOL device concept make use

of pre-existing deployable reflective areas on the spacecraft, such as sunshade and solar

array, the mass required for the EOL device is comparable to the mass of propellant

required for the traditional propulsion. It is possible to conclude that next generation

of LPO satellite that make use of SRP propulsion can take advantage of the EOL tech-

nique presented in this chapter, where the additional mass required for the EOL device

can be further reduce in the design phase of deployable reflective structures. Compared

with traditional propulsion technique, the EOL devices are a new developing technology,

while impulsive propulsion represents a highly reliable space system. However, current

mission do not allocate a ∆v for EOL disposal and space agencies have to select an EOL

option based on the left propellant at the end of the operational mission. Thus, also in

case of traditional propulsion, the EOL manoeuvre should be taken into account in the

mass budget at the design phase of LPO mission.

7.3.2 Discussion

The main features of the disposal strategy by means of solar radiation pressure for the

ZVCs closure are:

• The device should be constrained to be Sun-pointing; thus, a self-stabilised de-

ployable structure is required;

• The disposal using SRP can be achieved to close the ZVCs at SL2; while, the

condition of closing the curves at SL1 and dispose the spacecraft towards the Sun

can not be achieved;

• It should be also taken into account that, to inject the spacecraft onto the unstable

manifold a small ∆v manoeuvre is required for current mission in LPO;

• Since the acceleration of SRP is a function of the inverse square of the Sun-

spacecraft distance, the minimum required area for the disposal is lower if the

deployment is done far away from the Sun. Thus, SL2 is much closer to L2. There-

fore, it is possible to better protect the L2 region. Note that, half of the nominal

halo orbit is also protected from spacecraft impact hazards once the curves are

closed because it is at the far side of L2 and SL2 with the Sun.

• In the case where the energy associated with the initial spacecraft orbit is higher,

a higher area is required to perform the closure of the ZVCs at the same distance

from the Sun as already proved for traditional propulsion by Olikara et al. (2015).
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The effect of the Earth’s orbit eccentricity on to EOL disposal strategy is extended for

the elliptic restricted three-body problem dynamics with SRP to verify the robustness

of the SRP EOL strategy for LPO missions.

7.4 End-of-life disposal through solar radiation pressure:

energy approach in the elliptic restricted-three body

problem

The proposed disposal strategy exploits the effect of solar radiation pressure to bound

the spacecraft’s motion in a safely graveyard orbit around the Sun. The design of the

deployed area was made without taking into account of the effect of perturbations. The

effect of perturbations as the Earth’s orbit eccentricity can affect the energy of the

spacecraft. Thus, the energy variation from the value used in the manoeuvre design

cannot guarantee a safely disposal as the bottleneck region can potentially reopen at L2.

An energy approach in the ER3BP-SRP is now investigated that builds on the work

previously developed for the CR3BP-SRP. Chapter 4 presents the theory in the ER3BP-

SRP. In particular, the equations of motion, the energy and the approximation of ZVCs

were previously introduced.

When taking into account the effect of the Earth’s orbit eccentricity, a similar approach

to the CR3BP-SRP is adopted. When a near-perfect reflective surface is deployed, the

energy for the elliptic dynamics in Eq. (4.23) increases to:

E(f0,x(f0), f, β0, ∆β) =
1

2
v2 −Ω(β0, ∆β) + I(β0, ∆β) (7.16)

where, v is the magnitude of the spacecraft’s velocity {x′, y′, z′} in pulsating coordinates

along the manifolds (before the deployment β = β0, in Eq. (7.16)). In order to find the

minimum area required to close the ZVCs at SL2, it is necessary to satisfy the constraint

in Eq. (7.3) for the ER3BP-SRP dynamics.

7.4.1 Disposal constraints for the elliptic restricted-three body prob-

lem disposal

As for the CR3BP-SRP dynamics, to identify the possible solution region in the ER3BP-

SRP, it is convenient to look at the sign of the squared velocity of the spacecraft after

the area has been deployed since an exact representation of the ZVCs is not known,

V 2
new = 2 [E(xSL2 , β0, ∆βmin) + 2Ω − 2I] . (7.17)
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The solution obtained after the optimisation is feasible if the following inequality con-

dition in the spacecraft’s velocity is preserved:

V 2
new > 0. (7.18)

A further condition is added so that, long transfer trajectories are discarded if they

are not pass through the L2 gate within the disposal time of six months. This can be

guaranteed by checking that the x component of the spacecraft position (black stars,

Figure 7.7) is higher than the minimum distance from the LPO (point along the dashed

line in Figure 7.7 with minimum distance from the barycentre) such as:

x(for any time within 6 months) > min(xLPO). (7.19)

Note that in this work, the passage of the spacecraft in vicinity of L2 after the insertion

into an heliocentric graveyard orbit is defined as the Close Approach (CA).

7.4.2 Numerical implementation

The condition in Eq. (7.3) for the ER3BP-SRP dynamics was further simplified to

decrease the time required for the computation of the lightness parameter. Considering

a true anomaly where the deployment occurs, fd, the integral I has a discontinuity due

to the effect of the added ∆β when f ≥ fd+ . Thus, the integral I, across the deployment,

corresponds to a step function. The energy of the spacecraft right after the deployment,

fd+ , is:

E(fd+) =
1

2
V (fd+)2 −Ω(fd+) +

∫ fd

f0

e sin f

(1 + e cos f)2
Wddf +

∫ fd+

fd

e sin f

(1 + e cos f)2
Wd+df ;

(7.20)

where Ω(fd+) is:

Ω(fd+) = 1
(1+e cos fd+ )

[
1
2

(
x(fd+)2 + y(fd+)2 − e · z(fd+)2 cos fd+

)
+

[1− (β0 +∆β)] µSun
rSun−P (f

d+
)

+ µEarth
rEarth−P (f

d+
)

]
.

(7.21)

while, Wd before and Wd+ after the deployment are respectively:

Wd =
1

2

[
x(f̃)2 + y(f̃)2 + z(f̃)2

]
+ (1− β0)

µSun

r(f̃)Sun−P
+

µEarth

r(f̃)Earth−P
, (7.22)

and

Wd+ =
1

2

[
x(f̃)2 + y(f̃)2 + z(f̃)2

]
+ [1− (β0 +∆β)]

µSun

r(f̃)Sun−P
+

µEarth

r(f̃)Earth−P
. (7.23)
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Note that if the distance between fd and f2 (point after the deployment) is infinitesimal,

f2 tends to fd+ , the second integral in Eq. (7.20) turns to zero and the energy in Eq.

(7.20) is approximated to:

E(fd+) =
1

2
V (fd+)2 −Ω(fd+) +

∫ fd

f0

e sin f

(1 + e cos f)2
Wddf. (7.24)

The important remark here is that the integral does not depend on ∆β so it effectively

becomes a constant value for the optimiser. The same consideration can be done for the

pseudo libration point energy:

E(xSL2(fd+)) = −Ω(xSL2(fd+)) +
∫ fd
f0

e sin f̃

(1+e cos f̃)2
W (xL2(fd))df̃+∫ fd+

fd
e sin f̃

(1+e cos f̃)2
W (xSL2(fd+))df̃ .

(7.25)

where,

W (xL2(fd)) =
1

2
x2
L2

+ (1− β0)
µSun

rSun−L2

+
µEarth

rEarth−L2

(7.26)

and

W (xSL2(fd+)) =
1

2
x2
SL2

+ [1− (β0 +∆β)]
µSun

rSun−SL2

+
µEarth

rEarth−SL2

. (7.27)

Finally, Eq. (7.25) can be further simplified as:

E(xSL2(fd+)) =
1

1 + e cos fd
[W (xL2(fd))−W (xSL2(fd+))]− W (xL2(fd))

1 + e cos f0
. (7.28)

The condition of deployment in Eq. (3.81) is numerically implemented as:

E(xSL2(fd+)) = E(fd+). (7.29)

The main advantage of this formulation with respect to Eq. (7.3) is that the integral,

I, does not depend of ∆β therefore this avoid the added computational time required if

β was inside the integral.

7.4.3 Robustness of the surface of minimum energy for the end-of-life

study: application to the Gaia mission

Due to the non-autonomous nature of the ER3BP-SRP, an approximation of the integral,

I, is needed. In Chapter 4, a comparison of different ZVCs approximations was carried

out by also showing a lack in the literature; where a good understanding of the ZVCs for

the ER3BP-SRP and their relation with the spacecraft’s dynamics was missing. Through

this comparison, modified version of the surface of minimum energy by Luk’yanov (2005)

was chosen to approximate the ZVCs.
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The aim of this section is to demonstrate that a closure at L2 guarantees a safe disposal

also under the effect of the Earth’s orbit eccentricity. Thus, this section investigates the

robustness of the surface of minimum energy and how to link the SME to the behaviour

of the spacecraft. Four trajectories leaving the LPO when the Earth+Moon are at f0

= 0◦, 90◦, 180◦ and 270◦ are selected to verify when the representation of the ZVCs by

Luk’yanov (2005) is robust. Note that the leaving points of the LPO are a function of

f0 (black point, Figure 7.7). The goal here is to link the behaviour along the spacecraft

trajectories to the approximated ZVCs. The energy along the trajectory is conserved

and constant when f0 is fixed. This is shown in Figure 7.14, where the energies at

L2 (black coloured lines) and of the spacecraft (grey coloured lines) are shown for the

ER3BP (straight line) and CR3BP (dashed line) respectively. As it is more evident for

f0 = 90◦, Figure 7.14(b), and for f0 = 270◦, Figure 7.14(d), the energy of the spacecraft

is above the energy at the libration point L2 for both the CR3BP and ER3BP. This

suggests that the ZVCs are open at L2 in both cases. Thus, a manoeuvre is required

when disposing the spacecraft into a graveyard orbit around the Sun to close the gateway

at L2.
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Figure 7.14: Energy in the ER3BP and CR3BP of the spacecraft and L2 for
trajectories leaving the LPO of Gaia at f0 = 0◦, 90◦, 180◦ and 270◦.
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As already proven in Section 4.4.3, Wmin does not correspond to a condition of Imin;

this means that using this approximation can be conservative or can underestimate the

integral I. Since an exact representation of the ZVCs is not possible, the analysis of

the robustness of this approximation can be performed by looking at the energy of the

spacecraft along a selected leaving trajectory from the LPO (grey trajectories, Figure

7.7). In this way, some conclusions can be made. First of all, Campagnola et al. (2008)

already showed that Ω can be split into two parts containing the pulsating true anomaly

effect and the position of the spacecraft.

Figure 7.15 shows, for the case of f0 = 0◦, the comparison of the trend of 2I with

respect to the pulsating part of Ω, ΩA (Figure 7.15(a)) and the error between the two

terms (Figure 7.15(b)). It is possible to note that the two terms almost cancel out as

shown in Figure 7.15(a). From this observation, Campagnola et al. (2008) concluded

that the oscillation of the approximated ZVCs is possibly an artificial behaviour due to

the approximation.
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Figure 7.15: Comparison with the oscillation of the integral I and the pulsat-
ing part of the potential energy ΩA: the two terms have opposite behaviour;
however, they do not completely cancel out, for f0 = 0◦.

In Figure 7.15(b), two oscillations can be observed. The low-frequency oscillations corre-

spond to a 16-year cycle and it is due to the spacecraft CA at L2 while the high-frequency

oscillations are related to the inversion of the spacecraft velocity along the trajectory

that occurs due to the spacecraft encounter of the ZVCs.

Since the exact ZVCs in Eq. (4.33) cannot be represented, Figure 7.16 shows, for f0 = 0◦,

the exact energy of the spacecraft computed as in Eq. (7.16) in comparison with the

approximated energy as in Eq. (4.43) moreover, the correspondent error. Figure 7.16(a)

show that Luk’yanov’s approximation can underestimate or overestimate the real energy

of the spacecraft (bold black line) while the error between the two energies is −2 · ũ as

expected from Figure 7.16(b). −2 · ũ is the error made when approximated the energy

with the Surface of Minimum Energy (SME). As the spacecraft reaches the CA point,
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the approximated energy is a good representation of the energy of the system. The CA

is the point of interest when a manoeuvre for closing the ZVCs at L2 is given.
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Figure 7.16: Energy and the error commeted, for f0 = 0◦, when computing
the approximated energy of the spaceraft. In Figure 7.16(a), the energy of the
spacecraft is in black dashed line while the SME approximated energy is in black
line.

The dependence of ΩA from the true anomaly and the spacecraft position vector can be

further simplified as shown in Eq. (4.35). The term e cos f/(1+e cos f) is a trigonometric

function that depends just on the true anomaly which is the independent variable for

the integration. Figure 7.17 shows the trend of the term 2(Ωc+ 0.5z2) that is a function

of the spacecraft distance from the centre of mass as shown in Figure 7.17(b). Figure

7.17(c) indicates that this term has a parabolic behaviour with the distance from the

centre of mass.
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Figure 7.17: Trend of 2 · (ΩC − 0.5z2) as a function of the integration time and
the distance from the centre of mass for f0 = 180◦ .

The term ΩA is thus a composition between two functions, one trigonometric and one

dependant on the distance of the spacecraft with respect to the centre of mass.

Figure 7.18 shows the correlation of the exact, Eq. (4.33), (dashed black line) and

approximated, Eq. (4.43), (black and gray line) potential energy along the trajectory

(Figure 7.18(a)-7.18(c)). The grey line represents the approximation with the SME
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while the black line is the approximation for I = 0. Note that the error produced in

the estimation of the potential energy of the spacecraft by neglecting I is very high

while the approximation with the SME (grey line) is a good approximation. The error

produced in the potential energy is shown in Figure 7.18(d)-7.18(f) where the zero

line is the desired value. The grey shadow box represents condition with ∆Ω < 0,

where the approximated potential energy is conservative while the approximation is

underestimating the exact solution when it is above the zero line. By looking at the

approximated ZVCs at one fixed instant along the simulation time, as shown in Figure

7.18(g)-7.18(h), it is possible to predict (thanks to the sign of ∆Ω of the spacecraft)

whether the spacecraft is inside (∆Ω < 0, overestimation of the ZVCs) or outside (∆Ω ≥
0, underestimation of the ZVCs for solution > 0, exact estimation for solution equal 0)

the approximated forbidden regions. The oscillations are bigger when the integral is

discarded while the error produced by the SME approximation is tiny and the results

are very close to the ∆Ω = 0 line.

A sensitivity analysis between the error produced with the approximated integral and

the characteristic of the system in term of µ and second primary’s orbit eccentricity e is

carried out. In Table 3.2 a combination of µ and e are listed for different systems. Figure

7.19(a) shows the amplitude in the integral approximation error (max(−2 · ũ)−min(−2 ·
ũ)) for µ between 10−8 − 0.5 and e between 0 − 0.9, while Figure 7.19(b) shows the

trend of the error for smaller value in µ and e. Figure 7.19 was obtained by setting

the energy of the spacecraft at L2 and placing the spacecraft at its initial condition for

x0 = xL2 + 0.005 and y0 = z0 = 0. Starting with this set of position data and energy

at L2, the modules of the velocity were found. The orientation of the velocity was set

as α =25◦ in the azimuth and δ =0◦ in the elevation (Figure 4.12). Each trajectory

departs when the second primary is at the pericenter (f0 = 0◦ in the true anomaly).

The integration time of each trajectory is set to 15 years. For each trajectory, ũ and its

amplitude were computed.

When e = 0, the system turns into the CR3BP, thus the error is zero since I = 0. In

general, the approximation is good for small eccentricities, which is the case for Gaia

spacecraft in the Sun-(Earth+Moon) system. However, when the eccentricity (e) is low,

the error seems to increase with µ for a fixed value of e, while for high values of e (Figure

7.19(b)) it decreases with µ. This suggests that the SME is not a good approximation

of the dynamics for a system like double-stars.

The effect of the eccentricity plays an important role when predicting the probability of

a spacecraft’s re-entry after the injection into the unstable manifold. For example, if the

spacecraft is injected into the unstable manifold when the Earth+Moon true anomaly is

195.2◦ and the trajectory is integrated in both the CR3BP and the ER3BP dynamical

models, it is shown in Figure 7.20 that the ER3BP model predicts the re-entry of the

spacecraft after 30 years while the CR3BP model does not. The idea is to investigate

if the energy approach prevents the spacecraft’s re-entry when analysed in the ER3BP
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Figure 7.18: Correlation between the exact and approximated potential energy
along the spacecraft trajectory and the approximated ZVCs.

after a long simulation time. Using this method, the spacecraft that previously re-

entered after 30 years, does not now re-enter over a simulation time of 600 years due

to the area deployment. When the spacecraft gets close to SL2, its velocity is inverted

in the rotating frame, suggesting that the effect of SRP has closed the ZVCs in the

elliptical case.

Here, the aim is to verify that the ZVCs approximated are closed at the Earth CA. To

avoid the re-entry, the ZVCs has to be closed when the spacecraft is in the vicinity of
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Figure 7.19: Amplitude in the approximation error as a function of the mass
parameter, µ, and the eccentricity, e.
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Figure 7.20: Trajectory evolution in the CR3BP (dashed line) and in the ER3BP
when leaving the LPO at f0 = 195.2 [deg]. The simulation time is of 30 years.

the gateway in L2. Note that the curve can be open at L2 when the spacecraft is at

a significant distance from the Earth gateway. Indeed, it was demonstrated that the

SME are a good approximation for the Sun-(Earth+Moon) system at the CA. Figure

7.21, shows the evolution of the spacecraft trajectory in the CR3BP (dashed line), in the

ER3BP when no deployment is performed (black line) and the evolution of the trajectory

in the ER3BP after the deployment (grey line). The deployment occurs 1.7 years after

departing from the LPO while the first Earth’s encounter happens after 15.3 years.

A good approximation of the ZVCs can be achieved when ∆Ω is close to zero as shown in

Figure 7.22(a). Two epochs were selected before the deployment (black dashed circles)

and at the CA (black circle) in Figure 7.22(a). These two conditions are shown in Figure

7.22(b) where the black dashed rectangle corresponds to an epoch of 1.6802 years after
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the departure (epoch before the deploy is performed) and the black rectangle shows the

ZVCs at an epoch of 15.2879 (epoch of the first CA). In conclusion, the SME are an exact

representation of the ZVCs when ∆Ω is close to zero and this condition occurs when the

spacecraft is close to the Earth. Consequently, it is possible to conclude that, the SME

are a good approximation of the exact ZVCs in the ER3BP when the spacecraft is at the

CA. By using the SME approximation, it is possible to check that the ZVCs at the CA

are effectively closed in SL2 as a consequence of the disposal manoeuvre. This confirms

the validity of the energy approach: therefore, from now on, this method will be used

to compute the area-to-mass ratio required since the closure at SL2 is guaranteed at the

CA.

Figure 7.21: Trajectory of the spacecraft in the CR3BP (dashed line), ER3BP
without deployment (black line) and evolution of the trajectory in ER3BP after
the deployment (gray line).
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(a) ∆ Energy and ∆Ω along the spacecraft trajectory.

(b) Approximated SME ZVCs before the deployment and at the first Earth close approach.

Figure 7.22: The surfaces of minimum energy are shown, when ∆ΩSME is circa
zero: before and after the deployment.

7.4.4 Remarks for the disposal in the elliptic restricted three-body

problem

The ZVCs cannot be easily computed for the ERTBP-SRP dynamics; thus, approxi-

mated solutions have been investigated. The SME were selected since they are a good

approximation of the ZVCs for small eccentricity, e. In order to link the ZVCs tool with

the dynamics, a different interpretation of the Jacobi constant definition is given by the

author. The effect of the approximation adds an artificial oscillating behaviour of the

approximated ZVCs as demonstrated by Campagnola et al. (2008).

7.5 End-of-life disposal for Gaia mission with the effect of

the Earth’s orbit eccentricity

In this section, the effect of the Earth’s orbit eccentricity on the disposal of Gaia is

investigated. A sensitivity analysis of the area-to-mass ratio required for the disposal
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is performed as a function of the LPO initial injection manoeuvre. Thus, uncertainties

related to the selected unstable manifold are also considered.

7.5.1 Design of the unstable manifold: sensitivity analysis

A small ∆v manoeuvre is required to inject the spacecraft onto the selected unstable

manifold. A sensitivity analysis on the required deployable area is done as a function of

the orientation angles, α and δ, (as shown in Figure 4.12) and of the ∆v magnitude. Note

that the LPO injection manoeuvre in this analysis is assumed to be a ∆v manoeuvre

using attitude control thrusters engine as, in this work, the focus is on the design of the

second manoeuvre. After the injection onto the unstable manifold, the area deployed

is computed at each point of the unstable trajectories leaving the LPO (grey curves,

Figure 7.7). However, future missions in LPOs could use the effect of SRP to perform

both the initial injection and disposal (black point, Figure 7.7) manoeuvres through two

successive area deployments.

Four leaving points along Gaia’s orbit are selected as examples of the initial injection,

when the true anomaly (f0) of the Earth+Moon is equal to 0◦ (perigee), 90◦, 180◦

(apogee) and 270◦ and the magnitude in the ∆v changes by 0.1, 1, 10 and 100 m/s.

The change in the ∆v direction results in different trajectory legs departing from the

same initial point of the LPO. Eq. (4.19) is integrated for a maximum of 1 year (grey

trajectory, Figure 7.7). This mission constraint in the time of disposal is given by ESA

to limit the mission operational costs; where it is preferable to perform the deployment

within six months after leaving the LPO (Colombo et al., 2014c).

The area required for the deployment is computed using Eq. (3.81) along each point,

that lies on the trajectory leg. The analysis produced 464 solutions in δ (29 angles) as a

result of the ∆v (4 values) and the leaving point from the LPO (f0, 4 points) as shown

in Figure 7.23. Each solution is then computed for different value of α (29 angles).

Figure 7.23 represents the minimum area-to-mass ratio 4 required to reach the energy

of SL2 along each trajectory departing from a single point from the LPO, f0, with a

fixed magnitude in the ∆v and a change in the ∆v orientations angles. Note that in this

analysis, a sensitivity study to check the evolution of the area-to-mass ratio required

to reach the energy of SL2 under the effect of the unstable manifold uncertainties is

carried out. This helps to understand how uncertainties in the first manoeuvre affect

the area-to-mass ratio required in the ER3BP.

Images in the same row in Figure 7.23 have the same departing point from the LPO

while each column in Figure 7.23 have the same fixed ∆v. In Figure 7.23, the ∆v is

4For minimum area-to-mass ratio here we refer to the area-to-mass required to achieve the energy
of SL2 indeed a higher energy above SL2 should be considered to avoid uncertainties in the pointing
requirements and the reflectivity of the area deployed.
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increased along each row of figures from left to right. By raising the ∆v as you move

from Figure 7.23(a) to Figure 7.23(d), it can be seen that the white area increases. This

corresponds to regions where α identifies inward trajectories (i.e., towards the Sun) that

are discarded since the interest is to dispose of the spacecraft towards the outer solar

system. Moreover, the effect of increasing the ∆v corresponds to a higher area-to-mass

ratio required for the closure within one year. This is due to the increasing spacecraft

velocity as the energy of the system is increased; thus, the zero-velocity curves are opened

further and a higher area-to-mass ratio is required to close than the curves at SL2.

When the ∆v is too high as in 100 m/s, the optimiser gives the maximum theoretical

value of βmax = 1 (i.e., maximum area-to-mass ratio). Thus, in this case, the closure is

not achieved for high ∆v values of the first manoeuvre. For departing trajectory legs

when the Earth+Moon is at a value of f0 between 0◦ and 180◦, the minimum area-to-

mass ratio is achieved for small α and δ. Conversely, for 90◦ and 270◦, small in-plane

and out-of-plane angles correspond to high area-to-mass ratio solutions (Figure 7.23).

It should be noted that there is not a unique solution of α and δ that guarantees a

minimum area-to-mass ratio for the four departing trajectories analysed when the ∆v

values are of the order of 0.1 m/s. Indeed, when α and δ are close to zero, the area is

minimum for f0 = 0◦ and 180◦, while it is maximum for f0 = 90◦ and 270◦. However,

for ∆v values of the order of 1 m/s and 10 m/s, it is possible to identify a fixed α and

δ for the four departing trajectories analysed. An optimum value of α and δ should be

picked for any given trajectory as a function of the ∆v.

As previously shown, there is some general symmetry in δ; thus, a general analysis can

be done by assuming this symmetry in the domain because the changes are minor when

δ is varied. Under this approximation, the study will be focused on half of the solutions.

A particular case is when δ = −90◦ or 90◦, where the solution does not depend on

α. In this case, the solution is constant and continuous in α. This case is explored in

more depth in Figure 7.24(a), where the figure displays the leaving trajectories when

δ = −90◦. As one can see for any value of α, there is a unique leaving trajectory and the

required area-to-mass ratio is shown in Figure 7.24(b). Thus, this simple scenario allows

the evolution of the area-to-mass ratio as a function of ∆v and the departure point from

the LPO. The possible solution region is pointed along the trajectories, where after the

optimisation a feasible area-to-mass ratio can be found and the spacecraft reaches the

energy of SL2.

From Figure 7.24, it should be noted that the solution is coincident for all values of α

(a unique trajectory leg can be found when δ = ±90◦ for any α). The minimum area

required corresponds to a large distance along the trajectory from when the spacecraft

velocity drifts to zero. In some cases, the minimum corresponds to a perigee solution,

but this depends on the initial true anomaly, f0, of the Earth+Moon when leaving the

LPO. The bold line in Figure 7.24(b) shows when the solution has a β value less than
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(b) f0 = 0◦ and ∆v = 1
m/s.
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(c) f0 = 0◦ and ∆v = 10
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(g) f0 = 90◦ and ∆v = 10
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(h) f0 = 90◦ and ∆v =
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(l) f0 = 180◦ and ∆v =
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(n) f0 = 270◦ and ∆v = 1
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(o) f0 = 270◦ and ∆v =
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(p) f0 = 270◦ and ∆v =
100 m/s.

Figure 7.23: Minimum area-to-mass ratio required for the zero-velocity
curves closure as a function of the departing point from the LPO when the
Earth+Moon is at specific epoch (f0). At each epoch, the LPO leaving trajec-
tory is function of the magnitude in the ∆v and its orientation. The overall
simulation time is set to 1 year. The color bar denotes the area-to-mass ration
in m2/kg.

or equal to 0.02446 which is the maximum lightness parameter found for Gaia in the

CR3BP-SRP study. In this case, all the solutions in Figure 7.24(b) have an area-to-mass

lower than the required one in the CR3BP-SRP.

This is also demonstrated in Figure 7.26 where the sequence of figures shows how the

possible solution region evolves (discontinuity in α) by changing the out-of-plane angle,

δ. The ∆v to leave the LPO is 1 m/s and the departure point from the LPO is when

the Earth+Moon has a true anomaly of 270◦. Starting with δ = −90◦ in Figure 7.26(a),
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(b) Area-to-mass ratio required along the trajectories
as a function of α, when δ = −90◦.

Figure 7.24: Solution departing when the Earth+Moon is at f0 = 0◦ (perigee),
δ = −90◦ and ∆v = 0.1 m/s.

δ is steadily increased so that in Figure 7.26(f) δ reaches a value of 0◦ (exploiting the

symmetry of δ). In particular, Figure 7.26(a), shows that the solution is independent

of α and it is representative of the case previously shown in Figure 7.24, while Figure

7.26(l) shows the evolution of the area-to-mass ratio when δ is less than or equal to zero

degrees.

As δ is increased from −90◦ to 0◦, the number of feasible area-to-mass ratio solutions

is shown to decrease. This corresponds to the decrease in the possible solution region,

as demonstrated by the discontinuity in time for a fixed α (white area). Note that; the

possible solution region occurs when β is close to 1. The interpretation of the possible

solution region is different from the case of the forbidden region created when using

traditional propulsion (Olikara et al., 2015). Indeed, the spacecraft is always on the

right-hand side of the pseudo Libration point after the SRP manoeuvre. Thus, the

condition in Eq. (7.18) is guaranteed when SRP is exploited. However, the check in

Eq. (7.18) is done here to verify the solution from the optimisation. When β is close

to 1 but less than the maximum, the solution can be found and the area-to-mass is

around 653.59 m2 kg−1. When the spacecraft is close to the condition of zero velocity,

the optimiser returns β = 1, but in reality the constraint in Eq. (3.81) is not achieved;

thus, the check in Eq. (7.18) allows these solutions to be numerically spotted. From

Figure 7.26(f) to Figure 7.26(l) the influence of α can begin to be seen; therefore this

results in the increase of the overall area-to-mass ratio required.

For small δ, the region of re-entry trajectories increases (white area for all the time for a

fixed α) with a consequent reduction in the range of α, where the deployment is possible

from -50◦ to 100◦, Figure 7.26.

Figure 7.25 shows the evolution of the area-to-mass ratio as a function of α for δ =

−64.28◦, −51.43◦ and −38.57◦, which correspond to the same solutions shown in Figure
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∆v [m/s] f = ◦ f = ◦ f = ◦ f = ◦

0.1 0.152-0.25 0.0587-0.3 0.1712-0.28 0.0587-0.3
1 2.1182-25 0.0587-35 2.2787-30 0.0587-25
10 0.0587-450 0.0587-400 0.0587-450 0.0587-450
100 653.59 653.59 653.59 653.59

Table 7.4: Range of area-to-mass [m2 kg−1] ratio required in 1 year.

7.26(d)-7.26(f). The peaks in Figure 7.25(c) correspond to solutions where the spacecraft

velocity goes close to zero and the corresponding discontinuity in the peak is due to the

appearance of the infeasible solution region. Note that in this case, the minimum-area-

to-mass ratio required is higher than the case found in the CR3BP-SRP (bold lines in

Figure 7.25). This shows the importance of determining the uncertainty in the LPO

initial injection manoeuvre.
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(c) δ = −38.57◦.

Figure 7.25: Area-to-mass ratio required to achive the condition in Eq. (3.81)
along the trajectories as a function of the in-plane angle, α, for a fixed value
in the out-of-plane angle, δ , when the Earth+Moon is at f0 = 270◦ on the
departing point of the LPO, ∆v = 1 m/s and the integration is over a period of
1 year.



228 Chapter 7 End-of-Life Disposal through Solar Radiation Pressure

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

10

20

30

40

50

60

70

80

90

(a) δ = −90◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

10

20

30

40

50

60

70

80

90

(b) δ = −83.57◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

10

20

30

40

50

60

70

80

90

100

(c) δ = −77.14◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

20

40

60

80

100

120

140

(d) δ = −64.28◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

50

100

150

200

250

300

350

400

(e) δ = −51.43◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

100

200

300

400

500

600

(f) δ = −38.57◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

100

200

300

400

500

600

(g) δ = −32.14◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

100

200

300

400

500

600

(h) δ = −25.71◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

100

200

300

400

500

600

(i) δ = −19.28◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

100

200

300

400

500

600

(j) δ = −12.86◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

100

200

300

400

500

600

(k) δ = −6.43◦.

t [year]

α 
[d

eg
]

 

 

0.4 0.6 0.8 1 1.2

−150

−100

−50

0

50

100

150

A/m [m2/kg]

100

200

300

400

500

600

(l) δ = 0◦.

Figure 7.26: Area-to-mass ratio required to achive the condition in Eq. (3.81)
along the trajectories as a function of the out-of-plane, δ, and the in-plane angle,
α, when the Earth+Moon is at f0 = 270◦ on the departing point of the LPO,
∆v = 1 m/s and the integration is over a period of 1 year.
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Figure 7.27: Evolution of the area-to-mass ratio, the distance from the barycen-
tre, the position angle, θz, and the true anomaly of the Earth+Moon along the
unstable manifold for 6 years.

7.5.2 Area required along a selected manifold

From the sensitivity analysis on the injection into the unstable manifold, a manifold is

selected in which the ∆v orientation angles are δ = −90◦ and α = 0◦. As said, the

solution is, in this case, simple and independent of α. This clear case helps to identify

which parameters influence the minimum area-to-mass ratio required in the ER3BP-

SRP. The magnitude in the ∆v is 1 m/s.

Figure 7.27 shows the evolution along the unstable manifold of the area-to-mass ratio.

The minimum lightness parameter required, β, is 8.98 ·10−5, which corresponds to a

minimum area-to-mass ratio of 0.0587 m2/kg as shown in Figure 7.27(a). Figure 7.27(a)

shows values in the area-to-mass ratio where the white region denotes infeasible solutions

for the optimiser, while Figure 7.27(b) shows the area-to-mass ratio for solutions below

30 m2/kg (feasible area).

Figure 7.28 shows, the integral I, the distance of Gaia spacecraft from the barycentre,

the position angle on the barycentre of the synodic system and the position of the

Earth+Moon regarding the true anomaly. Figure 7.28(a) shows the evolution of the

integral, I, of Eq. (4.25) along the manifold before the deployment (β = β0) as a

function of f0. It can be seen that the minimum of I is achieved when departing at the

apocenter (180◦) while the maximum is when departing at the pericenter (0◦ or 360◦)

which is consistent with Figure 4.4(b).

The minimum area-to-mass ratio does not always correspond to the maximum distance

of the spacecraft from the barycentre since the solution depends on other parameters

in the ER3BP-SRP. Thus, the area-to-mass ratio trend along the manifold is compared

with three main effects: the spacecraft’s distance from the barycentre shown in Figure

7.28(b), the position angle with respect to the barycentre in the synodic frame, θz =



230 Chapter 7 End-of-Life Disposal through Solar Radiation Pressure

Time [years]

T
ru

e 
an

om
al

y 
(d

eg
 fr

om
 L

P
O

 in
je

ct
io

n)

 

 

0 1 2 3 4 5

50

100

150

200

250

300

350

I

−0.05

0

0.05

(a) Integral I before the deployment.

Time [years]

T
ru

e 
an

om
al

y 
(d

eg
 fr

om
 L

P
O

 in
je

ct
io

n)

 

 

0 1 2 3 4 5

50

100

150

200

250

300

350

r@CM

1

1.02

1.04

1.06

1.08

1.1

1.12

(b) Gaia’s distance from the barycentre.

Time [years]

T
ru

e 
an

om
al

y 
(d

eg
 fr

om
 L

P
O

 in
je

ct
io

n)

 

 

0 1 2 3 4 5

50

100

150

200

250

300

350

θ
z
 [deg]

−150

−100

−50

0

(c) Position angle with respect to the barycentre of
the synodic system.

Time [years]

T
ru

e 
an

om
al

y 
(d

eg
 fr

om
 L

P
O

 in
je

ct
io

n)

 

 

0 1 2 3 4 5

50

100

150

200

250

300

350

f [deg]

5

10

15

20

25

30

35

40

(d) True anomaly of the Earth+Moon evolution.

Figure 7.28: Evolution of the area-to-mass ratio, the distance from the barycen-
tre, the position angle, θz, and the true anomaly of the Earth+Moon along the
unstable manifold for 6 years.

tan−1(y/x), Figure 7.28(c), and the true anomaly of the Earth+Moon along Gaia’s

trajectory in Figure 7.28(d). In Figure 7.27(b), the peaks in the area-to-mass ratio

required correspond to the minimum distance of the spacecraft from the centre of mass

(Figure 7.28(b)). Over six years in the simulation time (time constraint of disposal), it

seems that the spacecraft area-to-mass ratio is primarily influenced by the spacecraft

distance from the centre of mass that is circa the distance from the Sun in the Sun-

(Earth+Moon) system. However, phenomena of drifting in the distance from the centre

of mass can be spotted in Figure 7.28(b) which is due to the effect of the position angle,

θz and the true anomaly, f of the Earth+Moon (Figures 7.28(c)-7.28(d)). In this case,

the exact area required for the ZVCs closure along the manifold was found. Note that

this value is the required β to reach the condition in Eq. (7.3) instantaneously.

As already demonstrated in Section 4.4 through the SME approximation of the ZVCs,

the condition in Eq. (7.3) guarantees the closure at SL2; however, the optimum solution

should be investigated along the manifold depending on the disposal requirements as the
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time within the disposal can be performed due to mission operations constraints (six

months) and the time in which the closure after the deployment is guaranteed.

7.6 Perturbing effects

The perturbing effects that can affect the ZVCs closure are interesting aspects to assess-

ing in future work. Among them, it should be mentioned:

• The effects of uncertainties in the lightness parameter due to the shape of the

spacecraft or due to the decline in the reflectivity through the time. The decade in

the reflectivity property of the deployed area will affect the energy of the spacecraft.

It will reduce the effect of the effective reflective area. Thus, we expect that

the curves can open again due to the decrease in the spacecraft energy. This

justifies the inclusion of an area margin depending on how long the closure after

the deployment has to be guaranteed;

• Uncertainties in the pointing direction will cause the ZVCs to open. A conservative

approach is to find the maximum area-to-mass ratio required within six months

along the selected disposal unstable trajectory to be given at any time within

six months and include a margin due to uncertainties in the reflectivity of the

spacecraft and the pointing angle requirements;

• As previously stated, a ∆v manoeuvre is required to leave the LPO. However, this

depends on the type of technology. For example, current missions to LPOs use a

traditional propulsion system throughout the regular mission lifetime. Therefore,

it is more convenient to use a small ∆v manoeuvre to leave the LPO rather than

SRP, this ∆v can be achieved by using the attitude control engines. Conversely,

for future solar sail missions to LPO, it would be interesting to exploit SRP also

to leave the LPO. In this way, two consecutive deployments are needed to fall off

the LPO and to close the zero-velocity curves in SL2.
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7.7 Summary

This chapter proposes an end-of-life strategy which uses a solar radiation enhancing

deployable device to close the zero velocity curves at the pseudo-Lagrangian point SL2,

preventing the spacecraft’s Earth return. The simulations have focused on studying

the motion of the spacecraft after the deployment of a device at one location along the

unstable manifold. Furthermore, an area margin should be included to counteract the

effect of perturbations in the full body system. Therefore, an analysis was performed in

the ER3BPs to verify the effect of the Earth’s eccentricity on the disposal strategy and

to quantify the area margin that should be included. From this study, it appears that

the effect of the Earth’s eccentricity can not be neglected when performing the closure

of the zero-velocity curves.

This chapter successfully developed a disposal strategy for solar radiation assisted mis-

sions at LPOs. The major research findings for the disposal in the CR3BP are:

• the spacecraft has to be Sun-pointing and the disposal manoeuvre is given with a

passively-stabilised deployable structure (i.e. cone sail);

• the disposal using SRP can be achieved to close the ZVCs at SL2; while, the

condition of closing the curves at SL1 and the disposal of the spacecraft towards

the Sun can not be achieved;

• the minimum required area for the disposal is lower if the deployment is done

further away from the Sun;

• in the case where the energy associated with the initial spacecraft orbit is higher,

a higher area is required to perform the closure of the ZVCs at the same distance

from the Sun.

When the effect of the Earth’s orbit eccentricity is taken into account, this chapter has

demonstrated that:

• the modified surface of minimum energy derived in Chapter 4 is a good approxi-

mation of the ZVCs when the spacecraft is at the Earth’s close approach;

• the surfaces of minimum energy were used as a tool to demonstrate that the energy

approach developed in the CR3BP still holds for the ER3BP;

• the requirements of the area-to-mass ratio were analysed under the effect of un-

certainness in the computation of the unstable manifold. It was shown that the

injection manoeuvre to leave the LPO influences the area-to-mass ratio required

to close the ZVCs. High initial ∆v requires higher deployable area;
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• along a selected unstable manifold, the area required depends primarily on the

spacecraft’s distance from the Sun. However, a phenomenon of drifting in the area

required is due to the effect of the position angle, θz and the true anomaly, f .





Chapter 8

Conclusions and Future Work

This research study was set out to explore the use of Solar Radiation Pressure (SRP)

for the design and control of trajectories in the restricted three-body problem of the

Sun-Earth system and has identified:

• a control law for the station-keeping of spacecraft in libration point orbits;

• a methodology to transfer between quasi-periodic orbits, and

• an end-of-life strategy to safely dispose of the spacecraft into a graveyard orbit

around the Sun.

The study has also sought to determine where it is possible to control a spacecraft in

an LPO by using solar radiation pressure manoeuvres from the beginning to the end of

the mission and, consequently, to derive the structural drivers in term of:

• reflective area required, and

• spacecraft pointing accuracy.

The state of the art on harnessing SRP for the design and control of space missions in

the RTBP is inconclusive on several important questions within the design of reflective

deployable devices and the required methodologies for trajectories design and control.

The study sought to answer two main research questions:

Q.1 - Can pre-existing spacecraft’s reflective deployable structures enhance the design

and control of solar radiation pressure assisted missions in the restricted three-

body problem?

Q.2 - Which structural requirements are needed for the design of solar radiation pressure

missions from the beginning to the end of the spacecraft’s lifetime?

235
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To answer to those ultimate questions, former questions had to be formulated and

answered such as:

Q.3 - What type of control law can be used for stabilising spacecraft at libration point

orbits that make use of solar radiation pressure propulsion?

Q.4 - Which methodology can be used to perform transfers between quasi-periodic orbits

enhanced by solar radiation pressure manoeuvres?

Q.5 - How can we design an end-of-life disposal strategy that makes use of solar radia-

tion pressure enhancing devices to dispose of a spacecraft safely into a graveyard

trajectory?

8.1 Research findings

The main research findings are chapter specific and were summarised within the respec-

tive chapters:

Chapter 5 - Hamiltonian Structure-Preserving Control,

Chapter 6 - Design of Transfer Trajectories enhanced by Solar Radiation Pressure, and

Chapter 7 - End-of-Life Disposal through Solar Radiation Pressure.

This section will synthesise the research findings to answer the study five research ques-

tions. The approach used to answer question 3 to 5 focuses on the design of spacecraft

trajectories through SRP manoeuvres that make use of the invariant manifold theory.

Q.3 - What type of control law can be used for stabilising spacecraft at libration point

orbits that make use of solar radiation pressure propulsion?

• Preserving the Hamiltonian structure of the R3BP: The Hamiltonian

structure preserving control has been shown to exploit the natural dynam-

ics of the R3BP by preserving its Hamiltonian nature. The effect of the

HSP control is to create an artificial centre equilibrium that makes use of

the Lyapunov stability to remove the hyperbolic equilibrium. Compared to

other techniques that take advantage of the invariant manifold theory such

as the Floquét Modes control, the HSP control is robust to non-linearities

and requires a little control acceleration.

• Control of high amplitude orbits: The available literature on the HSP

control is restricted to low amplitude orbits where the stability along the

orbit is of the centre×centre×hyperbolic type. In the case of high ampli-

tude planar LPOs and DPOs, the stability along the orbit change from
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centre×centre×hyperbolic to centre×centre×focus; thus, an extended HSP

control law was derived from handling the change of stability along the orbit.

This opens up the use of HSP controllers independently from the size of the

selected orbit.

• Harnessing solar radiation pressure: The HSP control requires a low-

thrust control acceleration that was shown to be a good candidate for har-

nessing SRP. It requires an actuator system with variable geometry; while,

the spacecraft’s pointing accuracy is on the same order of magnitude of the

spacecraft’s sunshade pointing requirements. The most efficient control pa-

rameters are the reflective area and the in-plane angle, α. As high amplitude

orbits are highly unstable when compared with low amplitude orbits, a space-

craft in high amplitude orbits requires precise orbit insertion manoeuvre and

high reflective surfaces to keep the spacecraft on the nominal orbit.

Q.4 - Which methodology can be used to perform transfers between quasi-periodic orbits

enhanced by solar radiation pressure manoeuvres?

• Design of solar radiation pressure manoeuvres that cancel out the

unstable invariant manifold: This transfer approach makes use of the

natural dynamics of the linearised equations of motion for the design of SRP

manoeuvres. The idea is to cancel out the unstable manifold of the target

Lissajous orbit by means of the SRP manoeuvre. This guarantees that, after

the given SRP manoeuvre, the spacecraft will follow the stable manifold of

the target Lissajous orbit.

• Use of the phase space and the geometry of the equilibrium points:

The phase space is used to understand how the SRP manoeuvre affects the

phases of the Lissajous orbit. It was shown that depending on when the ma-

noeuvre is given, the effect of the SRP results in an instantaneous change in

the Φ and Ψ effective phases. This transfer method uses the geometry of two

equilibrium points to achieve the desired transfer as the effect of SRP results

in changes in the position of the equilibrium points. Thus, before and after

the manoeuvre, the spacecraft follows the dynamics of two different equilib-

rium points. This results in a transfer strategy between orbits with different

energies that also belongs to different CR3BP-SRP systems. Moreover, the

SRP manoeuvre can be seen as an instantaneous change in the spacecraft’s

position (with respect to the libration point reference frame); while, for the

traditional propulsion, the ∆v manoeuvre results in an instantaneous change

in the spacecraft’s velocity.

• Change in reflectivity or the in-plane orientation: The SRP manoeu-

vre was designed in two different ways. First, it was analysed as a manoeuvre

which was controlled by changes in the reflectivity of a Sun-pointing deploy-

able structure. Thus, the SRP manoeuvre is controlled by changes in the
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lightness parameter, β. Secondly, a fixed reflective deployable area was con-

sidered (i.e., β is fixed); where, the SRP manoeuvre is achieved through

changes in orientation of the spacecraft’s in-plane angle, α. In both cases, a

direct transfer from a departure Lissajous orbit was analysed; where the ma-

noeuvre was given at the departure Lissajous orbit. It was shown that a direct

transfer to the target Lissajous orbit is not possible as the SRP manoeuvre

does not cancel out the unstable manifold of the target Lissajous orbit. Al-

though a direct transfer among Lissajous orbits is not possible through SRP

manoeuvres, it could be that transfers among transit orbits of the R3BP are

possible when the manoeuvre is given at the departure Lissajous orbit.

For the case when the SRP manoeuvre is enhanced by changes in reflec-

tivity, a two manoeuvre transfer strategy was also investigated. The first

manoeuvre was carried to inject the spacecraft into the unstable manifold

of the departure Lissajous orbit; while, the second manoeuvre was enhanced

through SRP. Therefore, the SRP manoeuvre aims to cancel out the unstable

manifold of the target Lissajous orbit. This manoeuvre is feasible when the

spacecraft’s reflectivity is reduced (since the SRP acceleration is constrained

in direction) and it allows transfers from low to high amplitude Lissajous

orbits.

Q.5 - How can we design an end-of-life disposal strategy that makes use of solar radia-

tion pressure enhancing devices to dispose of a spacecraft safely into a graveyard

trajectory?

• End of Life disposal strategy: The end of life disposal strategy enhanced

by SRP manoeuvre was first designed in the CR3BP. First, a manoeuvre

is given to fall off from the LPO. The spacecraft is thus injected into the

unstable manifold of the LPO. Along the unstable manifold, a Sun-pointing

reflective deployable device is deployed to confine the spacecraft in a heliocen-

tric graveyard orbit. The effect of increasing the reflectivity of the spacecraft

affects the shape of the potential energy. Thus, by deploying a Sun-pointing

reflective device, it is possible to close the zero velocity curves at the L2 bot-

tleneck region, preventing the spacecraft’s Earth re-entry at the end of its

lifetime.

The optimal area required for the disposal manoeuvre, designed in the CR3BP,

is computed by using an energy approach. Along the unstable manifold, the

area required decreases depending on how far the spacecraft is from the Sun.

As this is a disposal manoeuvre, the deployed area should passively stabilise

the spacecraft. For example a conic sail could be used with the proper space-

craft design to achieve the right positioning of the center of mass with respect

to the centre of pressure.
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It was also demonstrated that it is not possible to dispose the spacecraft

towards the Sun. Thus, spacecraft in orbit around L1 should be injected

towards L2 before performing the disposal manoeuvre. This is one of the

major differences between a disposal manoeuvre with traditional ∆v and the

SRP.

• Effect of the Earth’s orbit eccentricity: The effect of the Earth’s orbit

eccentricity for the SRP EOL disposal was investigated. The validity of

the EOL energy approach was verified for the disposal strategy designed in

the ER3BP. This required the approximation of the zero velocity curves for

the ER3BP as an explicit solution cannot be found in this case. A modified

definition of the surface of minimum energy extended to SRP applications was

proposed. By applying this definition, it was possible to demonstrate that the

energy approach developed for the CR3BP still holds for the ER3BP. Finally,

a sensitivity analysis on uncertainty in the injection manoeuvre was carried

out for the ER3BP. The area required for the disposal of the spacecraft

is a function of the first injection manoeuvre and on the position of the

Earth+Moon barycentre with the Sun.

After the design of a control law for LPOs, a transfer methodology between Lissajous

orbits and an end-of-life disposal strategy, it was possible to answer to the ultimate

research questions.

Q.1 - Can pre-existing spacecraft’s reflective deployable structures enhance the design

and control of solar radiation pressure assisted missions in the restricted three-

body problem?

• Deployable harnessing SRP devices: The study shows that there is no

unique answer to this question. Especially when considering the spacecraft

mission design from the beginning to the end of the satellite lifetime. In the

case of transfers between Lissajous orbits, it is possible to conclude that pre-

existing spacecraft’s reflective deployable structures can be used to perform

the SRP manoeuvre. On the other hand, the end of life disposal strategy

proposed requires deployable structures that can passively stabilise the space-

craft. This could be achieved through cone-shape devices; however, further

research should be done to investigate that this effect can be accomplished by

deploying additional flaps from existing areas. The case of the orbit control

actuators requires the design of a new variable geometry deployable struc-

ture. This study attempts a preliminary answer to this ultimate research

question. However, further research should be done to perform a thorough

analysis on the problem.

Q.2 - Which structural requirements are needed for the design of solar radiation pressure

missions from the beginning to the end of the spacecraft’s lifetime?
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• Orbit control actuators: The HSP control law for SRP applications re-

quires a variable reflective area and a re-orientation of the spacecraft. In this

case, it should be investigated how to vary the geometry of the actuators.

Although the type of variable area should be further investigated, the point-

ing accuracy required for the HSP control is on the order of magnitude of

the spacecraft’s sunshade pointing requirements.

• Transfer control devices: The SRP transfer manoeuvre between Lissajous

orbits can be achieved by using reflective control devices that aim to reduce

the reflective area of a Sun-pointing sunshade or by using solar panel flaps

to achieve the same effect. Conversely, if the reflective area is fixed, the

manoeuvre can be given by re-orienting the spacecraft on board deployable

structures.

• End of life disposal devices: The SRP end-of-life strategy requires the

deployment of a fixed area that is Sun-pointing. It must passively stabilise the

spacecraft thus the use of cone shape devices should be further investigated.

One of the primary research outcomes is the development of a dynamical system tools

called ‘Controlled Routes by Using Innovative Solar-radiation Equipment’. The CRUISE

toolbox merges well known methods for the computation of dynamical objects (i.e.,

target orbit, invariant manifolds and zero velocity curves) in the restricted three-body

problem as well as the newly developed methodologies for the design and control of LPOs

mission assisted by SRP manoeuvres. The CRUISE algorithm architecture is presented

in Appendix A.

8.2 Research impact

If the influence of solar radiation pressure can be utilised then mission lifetimes will

no longer be so restricted by propellant usage. These lifetimes would increase which

in turn would consequential reduce the rate of increase in these post mission lifetime

debris objects. The reduction of man-made objects will have a positive impact on to

the overall mission costs and will contribute to preserving the space environment. This

research represents a starting point for the design of new SRP harnessing devices which

would be an area of new commercial development and investment. The study attempts

to provide the mission applications and the associated methodologies for the design

of SRP manoeuvres in the R3BP; where SRP is the main source of propulsion. The

impact of this research was already recognised by the European Space Agency as the

end-of-life disposal enhanced by solar radiation pressure was selected as one possible

disposal option for future missions in LPOs. The research proposed could influence

further understanding and applications of SRP propulsion. Possible areas of further

understand are identified below:
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• The development of advanced technology for the design of future spacecraft where

SRP devices are part of the spacecraft’s propulsion system.

• Making end-of-life disposal for LPOs part of the mission planning phase.

• The study investigated the design of missions in the Sun-Earth system, where the

major scientific space missions are related to monitoring the Sun or observing the

Universe. However, it can be potentially extended to all missions; where, a fuel-

free solar radiation assisted propulsion is possible. This requires that the solar

radiation is a strong environmental effect compared with the planets gravitational

effects. An example of a strongly perturbed environment in the solar system can

be found in Near Earth Objects (NEOs).

NEOs are small sized objects (of the order of 1 km) and, consequently, the order of

magnitude of solar radiation acceleration is comparable to the asteroids’ gravita-

tional effect. Asteroids proximity operations are difficult for several reasons such

as the gravitational acceleration of the Sun and other planets, the solar radiation,

the irregular asteroids’ shape and their spinning motion. This technical challenge

has highly demanding requirements in the Guidance, Navigation and Control, and

Attitude, Determination and Control subsystems design. As a result of the pro-

posed research, the CRUISE toolbox can be easily extended, for example, to space

missions in the Sun-Asteroid system.

• The findings of this study could be exploited for missions to mitigate global warm-

ing for example by placing a thin film reflectors in L1 to reduce the solar radiation

reaching the Earth. However, as shown by Bewick et al. (2012) thin film reflectors

still present a high manufacturing engineering challenge.

• The methodology developed in this study can be potentially extended to large

inflatable structures such as solar power collectors. A space solar power satellite

is a concept that has emerged over several decades; the solar power is collected in

space and used for terrestrial applications. Current advanced concepts considered

by NASA are the integrated symmetrical concentrator and the Abacus/Reflector

concept (Wie and Roithmayer, 2001). In the case of a SSPS such as Abacus,

the area-to-mass ratio is around 0.4 m2/kg, which is large when compared to

0.02 m2/kg for a typical geosynchronous communication satellite. This requires

large control torques to counteract SRP. For example, abacus requires 85,000 kg of

propellant per year for station-keeping, and attitude control (Wie and Roithmayer,

2001). As a result, this leads to a heavy and consequently expensive system. Thus,

the proposed study can potentially inspire methodologies for harnessing SRP in

SSPS applications.
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8.3 Study limitations

This study has proposed methodologies for the design of space missions in the R3BP

assisted by SRP. As a direct consequence of these methods, this study encountered some

limitations, which need to be considered:

• As a general comment, the study has shown that a substantial reduction of the

spacecraft’s onboard propellant can be achieved when SRP is the major method

of control. However, in the design of the transfer trajectories and the end-of-life

disposal, an intermediate manoeuvre was required to inject the spacecraft onto the

unstable manifold. In this case, an impulsive ∆v manoeuvre given by the attitude

control thrusters was considered. It would be interesting to investigate if an SRP

manoeuvre could be used instead. In this way, two consecutive deployments are

needed to leave the LPO and to perform the transfer or the end of life manoeuvres.

• The dynamical model used is valid under certain hypotheses; thus, an uncertainty

analysis should be carried out to add the gravitational effect of the Moon or other

planets (i.e. high fidelity model). Note that the hypotheses made do not com-

promise the main research findings as they are based on widely used methods for

preliminary missions design. Moreover, the R3BP is a good starting dynamical

model to develop new trajectories design and control techniques.

• In this study, the spacecraft was modelled as a point mass; thus, the effect of the

attitude dynamics are not coupled with the spacecraft’s trajectory dynamics. This

represents the next step to further the current research study.

• The proposed HSP control law is designed for the CR3BP and it should be verified

in the case of more complex dynamics. Moreover, an automatic search of the

control’s gains should be investigated to determine an optimal solution. Finally,

the HSP control law does not include any constraints in time or in the magnitude of

the control acceleration. Thus, further work should include the mission operational

constraints. For example, the variations in the controlled area required should be

limited through a discrete control law.

• The transfer methodology proposed is currently designed for the linearised dynam-

ics of the CR3BP. It should be extended to the non-linear dynamics of the CR3BP

and then to a high fidelity model. Moreover, a preliminary result in transfer tra-

jectories through re-orienting the spacecraft are proposed but should be further

investigated. For example, an optimised transfer solution should be investigated

with the possibility of including the transfer time as an optimum parameter and

a discrete control law to limit fluctuations in the area required.

• The proposed end-of-life disposal strategy requires a deployable structure that

passively stabilises the spacecraft. Thus, the coupled attitude and orbit dynamics



Chapter 8 Conclusions and Future Work 243

should be included in further study to determine the EOL device’s shape and the

inertia needed to achieve this condition.

8.4 Recommendation for future research

From the research gaps shown in Section 8.3, future work is needed to fill the gaps

presented by the limitations of this study. Moreover, the ultimate goal of this research

is to eventually enable space missions to achieve their mission objectives solely by using

SRP. Exploring the following as future research strategies can facilitate the attainment

of this goal:

• The design of a multi-body dynamics tool including the spacecraft’s attitude dy-

namics to the current design.

• An investigation into using solar radiation pressure manoeuvres to leave the LPO.

• For the case of the Hamiltonian structure-preserving control, it will be interesting

to investigate the design of variable-geometry deployable actuators or to have a

discrete control law to facilitate the design of the actuators.

• In the case of transfer trajectories, future works will continue the analysis initiated

in this preliminary study. The aim will be to analyse the advantage of using SRP

manoeuvres that involve a re-orientation of the spacecraft. Moreover, it would be

beneficial to extend the solution to the non-linear dynamics and to investigate an

optimal transfer solution. This methodology could be potentially investigated for

transfer between transit orbits of the R3BP.

• For the case of the end-of-life disposal, it is critical to examine uncertainties in the

pointing requirements. When the deployed structure is not perfectly Sun-pointing,

the SRP acceleration cannot be modelled as potential energy. Thus, this would

opens up further understanding into how this affects the closure of the zero velocity

curves.

Future work will also aim to couple the attitude dynamics of a Sun-pointing deploy-

able structure with the spacecraft’s dynamics in the restricted three-body prob-

lem. This will enhance the design of passively stabilised structures with a cone-like

shape. The inertia required and the distance of the cone-sail with the spacecraft’s

centre of mass will depend on the desired torques to keep the spacecraft passively

stabilised.

Finally, when a high fidelity model is used, the zero velocity curves no longer exist;

thus, further research should aim to investigate the proposed end-of-life strategy

for the generalised dynamical model.
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The time required to address the proposed future works depends on the astrodynamics

research tool available to researchers that aim to further the current thesis work. For

example, researcher with experience in high-fidelity model or coupling attitude dynamics

with the spacecraft dynamics will have a great advantage in furthering the current study.

The task proposed are an extension of the current research in: orbit control, transfer

trajectories and end-of-life for libration point spacecraft and they are intended to be a

near future research work.

Solar radiation pressure assisted missions have been shown to be feasible for the design

and control of trajectories of LPOs from the beginning to the end of the spacecraft

lifetime. SRP is a natural and unlimited source of propellant. Due to this unlimited

propellant, space missions that use SRP have longer mission lifetimes, potentially de-

creasing the number of spacecraft launched to LPOs. Reducing the number of launches

will reduce the Space Agencies overall cost budget allocated for LPOs missions. A re-

duced number of spacecraft at LPOs will also make the space market more sustainable

by limiting the potential space debris in the vicinity of the libration points. Further-

more, the single space mission cost budget is highly related to the mass of the spacecraft,

where the pre-storage of onboard propellant has a significant impact on the overall single

mission cost. Thus, a SRP device has the key advantage of reducing the costs relating to

the propulsion system. These facts provide evidence that underlines the importance to

further research into solar radiation pressure enhancing devices for LPO missions which

is needed to make this technology economically accessible.



Appendix A

Controlled Routes by Using

Innovative Solar-radiation

Equipment (CRUISE) code

architecture

CRUISE code is an Astrodynamic toolbox written in Matlab. It merges well known tools

in Astrodynamics for the computation of dynamical objects (for example target orbit,

stability criterion, equations of the dynamics and others) label as Astrodynamic Tools

in Figure A.1 as well as new Astrodynamic Techniques as a result of this thesis work

(Figure A.1). Figure A.2, Figure A.3 and Figure A.4 show a schematic representation

of the three branches of CRUISE code: Orbit Control (OC), Orbital Transfer (OT) and

End-Of-Life (EOL) disposal.
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(CRUISE) code architecture

Figure A.1: CRUISE code scheme

Figure A.2: CRUISE code scheme: Orbit Control (OC).
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Figure A.3: CRUISE code scheme: Orbital Transfer (OT).

Figure A.4: CRUISE code scheme: End-Of-Life (EOL) disposal.





Appendix B

Restricted Three-Body Problem

B.1 Orbital elements

In space mission design, the Kepler problem describes the motion of a spacecraft or

a small celestial body around a massive celestial body that is a solution of Eq. (2.1),

Section 2.1. The solutions of the Kepler problem are keplerian orbits or conics as circular

and ellipse shape orbits. Thus, the motion of the spacecraft can be determine through

six scalar quantities as the three components in position and velocity. Alternatively,

there exist other six scalar quantities that can unequivocally determine the shape and

the orientation of the spacecraft’s orbit. These quantities are known as orbital elements.

Figure B.1 shows the definition of the orbital elements with respect to two reference

frames: the inertial and the Perifocal (PQW) reference frames. The inertial reference

frame is usually centred at the celestial body of interest with coordinates xi, yi and

zi as shown in Figure B.1(a). The xi and yi components define the “reference plane”

shown in Figure B.1(a). Figure B.1(a) shows the orientation of the spacecraft’s orbit with

respect to the reference plane. The perifocal reference frame (PQW) has the spacecraft’s

orbit plane as reference and it is centred in the selected celestial body, Figure B.1(b).

The axis p indicate the pericenter (minimum distance from the celestial body) and w

is perpendicular to the orbit plane; while, q is oriented such as to define a right-hand

system. The intersection of the reference plane of the inertial system and the spacecraft’s

orbit plane is called ascending node.

The orientation of the orbit with respect to the inertial frame requires the definition

of three angles: the right angle of the ascending node, Ω, the argument of perigee, ω,

and the inclination, i. The right angle of the ascending node, Ω, is the angle between

the xi and the ascending node, N , the argument of perigee, ω, is the angle between the

ascending node and the pericenter, p; while, the inclination, i, is the angle between zi

and w.
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The remaining three elements define the shape and the position of the spacecraft with

respect to the pericenter. The true anomaly, f , is the angle between the pericenter, p,

and the spacecraft distance from the celestial body, r, as shown in Figure B.1(b). The

shape of the orbit is determined by the semimajor axis, a, that is half of the pericenter-

apocenter distance and the eccentricity, e, that tells how much is the deviation of the

orbit from being a circle. The eccentricity, e, is greater or equal to 0 (circle). When

e = 1, the orbit is open and is a parabola; while, for e strictly between 0 and 1, the

orbit is a close loop and is an ellipse. In case of e major then 1, the orbit as a shape of

an hyperbole.

(a) Definition of the orbital elements. (b) Perifocal reference frame (PQW).

Figure B.1: Definition of the orbital elements and the perifocal reference frame
(PQW).

Finally, the trajectory of the spacecraft, r, can be expressed as a function of the orbital

elements:

r =
a(1− e2)

1 + e cos f
. (B.1)

B.2 Physical interpretation of the L1,2 collinear points

For the 3rd Kepler law, the closer an object is to the Sun, the faster it will move. Thus,

any spacecraft placed in a keplerian orbit around the Sun, smaller than Earth’s, will soon

overtake our planet. However, if the spacecraft is placed directly between the Sun-Earth

line, the Earth’s gravity pull is in opposite direction and will cancel some of the Sun’s

pull. The spacecraft will slow done as a weaker pull towards the Sun requires less speed

to maintain its orbit. If the distance from the Sun is such that the Earth and the Sun

gravity pulls cancel out, the spacecraft will travel slowly to keep the its position between

the Sun and the Earth. This is what happen to a spacecraft placed at L1. L1 is a good

platform to monitor the Sun since the solar wind reaches L1 an hour before reaching

Earth. SOHO is the ESA/NASA current mission at L1 to study the Sun’s outer corona.
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Similar to L1, a spacecraft placed in a orbit beyond the Earth’s orbit should travel slower

than the Earth. However, the extra pull of our planet added to the Sun’s pull allows

the spacecraft to move faster. This is the case of a spacecraft at L2. Spacecraft at L2

are in a good location to observe the Universe as the Earth is in a smaller orbit around

the Sun and cannot interfere with the spacecraft filed of view. Examples of missions at

L2 are: Hershel, Plank and Gaia.

B.3 Mission Scenario

B.3.1 Herschel mission

Herschel spacecraft is a space telescope that was placed in a Lissajous orbit in L2.

Herschel has 3.5 m single mirror telescope used to perform infrared observation of the

dark universe. The Herschel spacecraft was 7.5 m high with a cross section of 4×4 m.

The launch mass was about 3.4 tonnes. The orbits amplitude are 750,000 km along the

y-axis (Ay) and 450,000 km along the z-axis (Az). Table B.1 summarises the Herschel

mission fact sheet. Figure B.2 shows the Herschel spacecraft (Figure B.2(a)) and its

nominal orbit (Figure B.2(b)).

Hershel

Launch 2009
End of mission 2013
Mass [kg] 3400
Size [m] 7,5 m (high) and 4×4 (cross section)
Orbit Lissajous orbit around L2 of the Sun-Earth system
Objectives • Study of the formation of the galxies;

• Creation of the stars;
• Observe the chemical composition of the atmospheres

and surfaces of comets, planets and satellites;
• Examine of the molecular chemistry of the universe.

Table B.1: Herschel fact sheet.
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(a) Herschel spacecraft. (b) Herschel trajectory.

Figure B.2: Herschel spacecraft and orbit overview (image credit ESA).

B.3.2 SOHO mission

SOHO mission is designed to study the internal structure of the Sun, its atmosphere and

the origin of the solar wind. SOHO spacecraft has a total mass of 1850 kg. The length

of the spacecraft along the Sun-pointing axis is of 4.3 m. The solar panels of SOHO has

a span of 9.5 m. Table B.2 shows the SOHO mission fact sheet. The SOHO spacecraft

and its orbit are shown in Figure B.3. The halo orbit of SOHO has 106,448 km in Ax,

666,672 km in Ay and 120,000 km in Az.

SOHO

Launch 1995
End of mission 2018
Mass [kg] 1850
Size [m] 4.3 m (length) with solar panels of 9.5 m (span)
Orbit Halo orbit around L1 of the Sun-Earth system
Objectives • Database of the solar surface;

• Discoverer of comets even if not design for this purpose;
• Rapid changes of the magnetic field.

Table B.2: SOHO fact sheet.
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(a) SOHO spacecraft. (b) SOHO trajectory.

Figure B.3: SOHO spacecraft and orbit overview (image credit ESA).

B.3.3 Gaia mission

Gaia mission spacecraft is in a Lissajous orbit around L2. Gaia mission objectives are

to observe our Galaxy to map the stars and investigate its origin. Gaia has a 12.8 m2

triple-junction solar array to provide the required power and a sunsheild disk of 10 m in

diameter. Gaia’s orbit amplitudes are 340,000 km in Ay and 90,000 km in Az. Table B.3

shows Gaia mission data sheet; while, Figure B.4 shows the spacecraft and its nominal

orbit.

Gaia

Launch 2013
End of mission nominal mission of 5 years (2018)
Mass [kg] 2030
Size [m] 10 m diameter sunsheild and 12.8 m2 in the solar array
Orbit Lissajous type orbit around L2 of the Sun-Earth system
Objectives • Survey of the stars of our Galaxy;

• Investigate the origin and
the evolution of our Galaxy.

Table B.3: Gaia fact sheet.
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(a) Gaia spacecraft. (b) Gaia trajectory.

Figure B.4: Gaia spacecraft and orbit overview (image credit ESA).



Appendix C

Circular Restricted Three-Body

Problem

C.1 Derivative of the direction cosine matrix and velocity

composition theorem

Cri(t) is the direction cosine matrix between the rotating frame, Fr, and the inertial

frame, Fi, which are related as:

Fr = Cri(t)Fi. (C.1)

Eq. (C.1) can be inverted as follow:

F T
i = F T

r Cri(t). (C.2)

By deriving Eq. (C.2) in time, Eq. (C.2) turns into:

0 = Ḟ T
r Cri + F T

r Ċri. (C.3)

By noticing that, in Eq. (C.3), the terms Ḟ T
i vanishes, the term Ḟ T

r becomes a function

of:

Ḟ T
r = [ωri]×F T

r , (C.4)

where, ωri is the angular velocity of Fr with respect to Fi, and it is defined as: ωri =

ωTriFr. Finally, it is possible to rewrite Eq. (C.4) such as:

0 = F T
r ([ωri]×Cri + Ċri), (C.5)
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and the differential equation of Cri(t) is:

Ċri = −[ωri]×Cri. (C.6)

C.1.1 Velocity composition theorem

The change of coordinates from a syderal to a synodic reference frame for the spacecraft

position vector is:

ri = CT
rir, (C.7)

while, the velocity can be derived through the velocity composition theorem such as:

ṙi = ṙi + ωri × ri. (C.8)

Thus, if we now add Eq. (C.7) in Eq. (C.8), it is possible to obtain the follow relation

in the spacecraft velocities:

ṙi = CT
riṙ + ωri ×CT

rir, (C.9)

which, turns into its full expression such as:

ṙi =

 0 −n 0

n 0 0

0 0 0


 cosnt − sinnt 0

sinnt cosnt 0

0 0 1

 r +

 cosnt − sinnt 0

sinnt cosnt 0

0 0 1

 ṙ. (C.10)

A compact way to write the spacecraft inertial velocities is:

ṙi =


ẋi − ωzyi
ẏi + ωzxi

żi

 . (C.11)

C.2 Lagrangian approach: rotating dynamics

The equations of motion in the rotating dimensionless dynamics are derived here. The

absolute acceleration, aa, is a function of: the relative acceleration, ar, the system

acceleration, aτ , and the Coriolis acceleration, ac, such as:

aa = ar + aτ + ac. (C.12)

The system acceleration, aτ , is stated such as:

aτ = aCM + ω̇ × dCM + ω × ω × dCM . (C.13)
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In the CR3BP, ω̇ and aCM are null, so Eq. (C.13) turns into:

aτ = ω × ω × dCM . (C.14)

For this reason, aτ has only the contribution of the centrifugal acceleration. The Coriolis

acceleration, ac, is defined as:

ac = 2ω × vr. (C.15)

Finally, the equations of motion now turns into:

aa = ar + ω × ω × r + 2ω × vr; (C.16)

where, the relative acceleration is shown to be such as:

ar =


ẍ

ÿ

0

 . (C.17)

The distance from the centre of mass is defined such as:

r =


x

y

0

 , (C.18)

while, the centrifugal and Coriolis accelerations are:

acentr =


−n2x

−n2y

0

 , (C.19)

and

ac =


−2nẋ

2nẏ

0

 , (C.20)

respectively. Finally, the equations of motion in the rotating Lagrangian dimensionless

coordinate are: 
ẍ− 2nẋ− n2x = −µSun(x−xSun)

r3Sun−p
− µEarth(x−xEarth)

r3Earth−p

ÿ + 2nẏ − n2y = − µSuny
r3Sun−p

− µEarthy
r3Earth−p

z̈ = − µSunz
r3Sun−p

− µEarthz
r3Earth−p

, (C.21)

where, the mean motion, n is unitary.
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C.3 Cannonball solar radiation pressure model

The SF can be expressed as function of the Sun luminosity, LSun, so that:

SF =
LSun

4πr2
Earth−Sun

. (C.22)

For a specular reflective surface1, the Eq. (3.22) turns into:

as = 2Psrp
A

m

〈
N̂ · r̂

〉2
N̂ . (C.23)

The mass-to-area ratio, m/A, is renamed as σ, the sail load, and by substituting Eq.

(3.24) and Eq. (C.22) to Eq. (3.28), it possible to have:

as =
2LSun

4πr2
Earth−Sunc

r2
Earth−Sun
r2
Sun−p

1

σ

〈
N̂ · r̂

〉2
N̂ . (C.24)

Having multiplied and divided Eq. (C.23) by the Sun gravitational parameter, µSun,

the equation becomes:

as =
LSun

2πcµSun

1

σ

µSun
r2

〈
N̂ · r̂

〉2
N̂ . (C.25)

Eq. (C.25) can be further simplified as:

as = β
µSun
r2
Sun−p

〈
N̂ · r̂

〉2
N̂ , (C.26)

where, in Eq. (C.26), β = σ∗/σ is the lightness parameter and σ∗ = LSun
2πcµSun

is the Sun

load.

C.4 Solar radiation pressure model: cone and clock angles

The equations of the normal to the reflective surface are given here in more details as:

N̂ = cosα
|rSun−p|


x− xSun

y

z

+ sinα cos δ
|(rSun−p×ẑ)×rSun−p|


−(x− xSun)z

−yz
y2 + (x− xSun)2


+ sinα sin δ

|rSun−p×ẑ|


y

−(x− xSun)

0

 ,

(C.27)

1ρs = 1 and ρa = ρd = 0
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where |rSun−p| is given by:

|rSun−p| =
√

(x− xSun)2 + y2 + z2, (C.28)

while, |rSun−p × ẑ| is defined as:

|rSun−p × ẑ| =
√

(x− xSun)2 + y2. (C.29)

Finally, |(rSun−p × ẑ)× rSun−p| is obtained as:

|(rSun−p × ẑ)× rSun−p| =
√

(x− xSun)2z2 + y2z2 + ((x− xSun)2 + y2)2. (C.30)

C.5 Collinear Lagrangian points computation

In this section, the fifth-order polynomial for the computation of the collinear libration

points is derived. The two celestial bodies selected are the Sun and the Earth; however,

the solution holds for different values of µ. In case of SL1, rSun−p = xSL1 + µ and

rEarth−p = 1−µ−xSL1 . By substituting the value of rSun−p, rEarth−p, xSun and xEarth,

Eq. (3.58) turns into:

xSL1 −
(1− β)(1− µ)(xSL1 + µ)

(xSL1 + µ)3
− µ(xSL1 + µ− 1)

(1− µ− xSL1)3
= 0. (C.31)

The Eq. (C.31) can be simplified as follow:

xSL1 −
(1− β)(1− µ)

(xSL1 + µ)2
+

µ

(xSL1 + µ− 1)2
= 0, (C.32)

and, it is also possible to rewrite Eq. (C.32) as:

xSL1(xSL1 + µ)2(xSL1 + µ− 1)2 − (1− β)(1− µ)(xSL1 + µ− 1)2 + µ(xSL1 + µ)2

(xSL1 + µ)2(xSL1 + µ− 1)2
= 0.

(C.33)

In order to find the position of SL1 with respect to the Earth (i.e. smaller celestial

body), the expression of xSL1 = 1− µ− γ1 should be substituted in Eq. (C.33):

(1− µ− γ1)(1− γ1)2(−γ1)2 − (1− β)(1− µ)(−γ1)2 + µ(1− γ1)2 = 0. (C.34)

The final expression of the fifth-order SL1 polynomial is:

γ5
1 − (3− µ)γ4

1 + (3− 2µ)γ3
1 − (µ+ (1− µ)β)γ2

1 + 2µγ1 − µ = 0. (C.35)
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In case of SL2, r1 = xSL2 + µ and r2 = −1 + µ + xSL2 . By substituting the value of

rSun−p, rEarth−p, xSun and xEarth, the Eq. (3.58) turns into Eq.(C.36):

xSL2 −
(1− β)(1− µ)(xSL2 + µ)

(xSL2 + µ)3
− µ(xSL2 + µ− 1)

(−1 + µ+ xSL2)3
= 0. (C.36)

The Eq. (C.36) can be simplified as follow

xSL2 −
(1− β)(1− µ)

(xSL2 + µ)2
− µ

(xSL2 + µ− 1)2
= 0. (C.37)

Again, Eq. (C.37) should be written as:

xSL2(xSL2 + µ)2(xSL2 + µ− 1)2 − (1− β)(1− µ)(xSL2 + µ− 1)2 − µ(xSL2 + µ)2

(xSL2 + µ)2(xSL2 + µ− 1)2
= 0.

(C.38)

The position of SL2 with respect to the Earth can be found by substituting the expression

of xSL2 = 1− µ+ γ2 in the equation Eq. (C.38):

(1− µ+ γ2)(1 + γ2)2(γ2)2 − (1− β)(1− µ)(γ2)2 − µ(1 + γ2)2 = 0. (C.39)

The final expression of the fifth-order SL2 polynomial is:

γ5
2 + (3− µ)γ4

2 + (3− 2µ)γ3
2 + (−µ+ β(1− µ))γ2

2 − 2µγ2 − µ = 0. (C.40)

In case of SL3, rSun−p = −xSL3 − µ and rEarth−p = 1 − µ − xSL3 . By substituting the

value of rSun−p, rEarth−p, xSun and xEarth, the equation Eq.(3.58) turns into:

xSL3 −
(1− β)(1− µ)(xSL3 + µ)

(−xSL3 − µ)3
− µ(xSL3 + µ− 1)

(1− µ− xSL3)3
= 0. (C.41)

The Eq. (C.41) can be simplified as follow

xSL3 +
(1− β)(1− µ)

(xSL3 + µ)2
+

µ

(xSL3 + µ− 1)2
= 0. (C.42)

Finally, the Eq. (C.42) has been written as:

xSL3(xSL3 + µ)2(xSL3 + µ− 1)2 + (1− β)(1− µ)(xSL3 + µ− 1)2 + µ(xSL3 + µ)2

(xSL3 + µ)2(xSL3 + µ− 1)2
= 0.

(C.43)

In order to find the position of SL3 with respect to the Sun (i.e. bigger celestial body),

the expression of xSL3 = −µ− γ3 can be substituted in Eq. (C.43):

(−µ− γ3)(−γ3)2(−1− γ3)2 + (1− β)(1− µ)(−1− γ3)2 + µ(−γ3)2 = 0. (C.44)
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The final expression of the fifth-order SL3 polynomial is:

γ5
3 +(2+µ)γ4

3 +(1+2µ)γ3
3−(1−β)(1−µ)γ2

3−2(1−β)(1−µ)γ3−(1−β)(1−µ) = 0. (C.45)

C.6 Double derivatives of the total potential, V

The second derivatives of the potential V are:

• In the x-axis, Vxx:

Vxx = 1− µSun
r3
Sun−p

[
1− 3(x− x1)2

r2
Sun−p

]
− µEarth
r3
Earth−p

[
1− 3(x− x2)2

r2
Earth−p

]
(C.46)

• In the y-axis, Vyy:

Vyy = 1− µSun
r3
Sun−p

[
1− 3y2

r2
Sun−p

]
− µEarth
r3
Earth−p

[
1− 3y2

r2
Earth−p

]
(C.47)

• In the z-axis, Vzz:

Vzz = − µSun
r3
Sun−p

[
1− 3z2

r2
Sun−p

]
− µEarth
r3
Earth−p

[
1− 3z2

r2
Earth−p

]
. (C.48)

The cross derivative in x and y, Vxy is:

Vxy = µSun
3(x− x1)y

r5
Sun−p

+ µEarth
3(x− x2)y

r5
Earth−p

. (C.49)

The cross derivative in x and z, Vxz is:

Vxz = µSun
3(x− x1)z

r5
Sun−p

+ µEarth
3(x− x2)z

r5
Earth−p

. (C.50)

The cross derivative in y and z, Vyz is:

Vyz = µSun
3y · z
r5
Sun−p

+ µEarth
3y · z

r5
Earth−p

. (C.51)
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C.7 Double derivatives of the solar radiation pressure ac-

celeration, as

The double derivatives of the SRP acceleration is defined as:

asrr = K ·Nrr, (C.52)

where K is defined as:

K = β
µSun
r2
Sun−p

cos2 α, (C.53)

and the matrix Nrr is defined as:

Nrr =

 N̂xx N̂xy N̂xz

N̂yx N̂yy N̂yz

N̂zx N̂zy N̂zz

 . (C.54)

The components of matrix Nrr are defined as:

• N̂xx:

N̂xx = −2(x−xSun)N̂x
r2Sun−p

+ cosα(y2+z2)
r3Sun−p

− sinα sin δy(x−xSun)
|rSun−p×z|3

+ sinα cos δz((x−xSun)4−y2z2−y4)
|(rSun−p×ẑ)×rSun−p|3 ;

(C.55)

• N̂xy:

N̂xy = − 2yN̂x
r2Sun−p

− cos δ(x−xSun)y
r3Sun−p

+ sinα sin δ(x−xSun)2

|rSun−p×ẑ|3

+ sinα cos δ(x−xSun)yz(2(x−xSun)2+2y2+z2)
|(rSun−p×ẑ)×rSun−p|3 ;

(C.56)

• N̂xz:

N̂xz = − 2zN̂x
r2Sun−p

− cosα(x−xSun)z
r3Sun−p

− sinα cos δ(x−xSun)((x−xSun)2+y2)2

|(rSun−p×ẑ)×rSun−p|3 ; (C.57)

• N̂yx:

N̂yx = −2(x−xSun)N̂y
r2Sun−p

− cosα(x−xSun)y
r3Sun−p

− sinα sin δy2

|rSun−p×ẑ|3

+ sinα cos δ(x−xSun)yz(2(x−xSun)2+2y2+z2)
|(rSun−p×ẑ)×rSun−p|3 ;

(C.58)

• N̂yy:

N̂yy = − 2yN̂y
r2sun−p

+ cosα((x−xSun)2+z2)
r3Sun−p

+ sinα sin δy2

|rSun−p×ẑ|3

− sinα cos δz((x−xSun)2(z2+(x−xSun)2)−y4)
|(rSun−p×ẑ)×rSun−p|3 ;

(C.59)

• N̂yz:

N̂yz = − 2zN̂y
r2Sun−p

− cosαzy
r3Sun−p

− sinα cos δy((x−xSun)2+y2)2

|(rSun−p×ẑ)×rSun−p|3 ; (C.60)
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• N̂zx:

N̂zx = −2(x−xSun)N̂z
r2Sun−p

− cosα(x−xSun)z
r3Sun−p

+ sinα cos δ(x−xSun)z2((x−xSun)2+y2)
|(rSun−p×ẑ)×rSun−p|3 ;

(C.61)

• N̂zy:

N̂zy = − 2yN̂z
r2Sun−p

− cosαyz
r3Sun−p

+ sinα cos δyz2((x−xSun)2+y2)
|(rSun−p×ẑ)×rSun−p|3 ; (C.62)

• N̂zz:

N̂zz = − 2zN̂z
r2Sun−p

+ cosα((x−xSun)2+y2)
r3Sun−p

− sinα cos δz((x−xSun)2+y2)2

|(rSun−p×ẑ)×rSun−p|3 . (C.63)

C.8 Double derivatives of the total potential at the equi-

librium points, V̄ ∗

In this case, the system is still conservative and for a Sun-pointing sail the double

derivatives of the potential are:

• L1: V̄ ∗xy = V̄ ∗xz = V̄ ∗yz = 0 and:

V̄ ∗xx = 1− 2

[
(µ− 1)(1− β)

|γ1 − 1|3
− µ

γ3
1

]
= 1 + 2c2,β, (C.64)

V̄ ∗yy = 1− (1− µ)(1− β)

|γ1 − 1|3
− µ

γ3
1

= 1− c2,β, (C.65)

and

V̄ ∗zz = −(1− µ)(1− β)

|γ1 − 1|3
− µ

γ3
1

= −c2,β; (C.66)

where c2,β is:

c2,β =
(1− µ)(1− β)

|γ1 − 1|3
+

µ

γ3
1

. (C.67)

• L2: V̄ ∗xy = V̄ ∗xz = V̄ ∗yz = 0 and:

V̄ ∗xx = 1− 2

[
(µ− 1)(1− β)

|γ2 + 1|3
− µ

γ3
2

]
= 1 + 2c2,β, (C.68)

V̄ ∗yy = 1− (1− µ)(1− β)

|γ2 + 1|3
− µ

γ3
2

= 1− c2,β, (C.69)

and

V̄ ∗zz = −(1− µ)(1− β)

|γ2 + 1|3
− µ

γ3
2

= −c2,β; (C.70)

where c2,β is:

c2,β =
(1− µ)(1− β)

|γ2 + 1|3
+

µ

γ3
2

. (C.71)
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• L3: V̄ ∗xy = V̄ ∗xz = V̄ ∗yz = 0 and:

V̄ ∗xx = 1− 2

[
(µ− 1)(1− β)

γ3
3

− µ

|γ3 + 1|3

]
= 1 + 2c2,β, (C.72)

V̄ ∗yy = 1− (1− µ)(1− β)

γ3
3

− µ

|γ3 + 1|3
= 1− c2,β, (C.73)

and

V̄ ∗zz = −(1− µ)(1− β)

γ3
3

− µ

|γ3 + 1|3
= −c2,β; (C.74)

where c2,β is:

c2,β =
(1− µ)(1− β)

γ3
3

+
µ

|γ3 + 1|3
. (C.75)

C.9 State transition matrix

The state transition matrix Φ gives the linear relationship between a small initial and a

final displacement:

δx(t1) = Φ(X0, t1)δx(t0), (C.76)

where, Φ(X0, t1) is defined as in Eq. (C.77) and φ(t1, x0) is its flow map:

Φ(X0, t1) =
∂φ(t1, x0)

∂x0
. (C.77)

The state transition matrix can be computed only numerically by means of the dynamical

linearised equations, and it becomes important when using the differential correction,

computing the manifolds and design the Hamiltonian structure preserving control:

Φ̇(X0, t) = AΦ(X0, t); (C.78)

where, the matrix A is defined as in Eq. (3.88).

When, t = t0 the state transition matrix is an identity so that Φ(X0, t0) = I. On the

other hand, when t = T the state transition matrix after one period, T is known as

the monodromy matrix M = Φ(T ) of the periodic orbit (PO). It determines if initial

perturbations decay or grow, so this matrix becomes important when studying the PO

stability.

C.10 Differential correction algorithm in x0 and ẏ0

For the condition of a periodic orbit in 3D, the initial guess is located on the x−z plane

with a component of velocity along the y-axis. The x−z plane is the plane of symmetry

of the orbit, where the position in y, the velocity in x and in y should be zero at t0 = 0.
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The state vectors are respectively defines as: X(t0 = 0) = {x(t0), 0, z(t0), 0, ẏ(t0), 0}
and X(t1 = T

2 ) = {x(t1), 0, z(t1), 0, ẏ(t1), 0}. The system of equations is now:
ẍ− 2ω0ẏ = Vx + asx

ÿ + 2ω0ẋ = Vy + asy

z̈ = Vz + asz

. (C.79)

Where, V has been previously defined in Eq. (3.40). The six first-order equations can be

rewritten by redefining the state vector as X = {x1, x2, x3, x4, x5, x6} = {x, y, z, ẋ, ẏ, ż}
or more simply X = {x1, x2, x3, x4, x5, x6} = {x, y, z, vx, vy, zz}.

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = 2x5 + ∂V
∂x1

+ ∂as

∂x1

ẋ5 = −2x4 + ∂V
∂x2

+ ∂as

∂x2

ẋ6 = ∂V
∂x3

+ ∂as

∂x3

. (C.80)

The equations of motion can be represented in a compact way: Ẋ = f(X). The solution

to the differential equation is Φ(X, t) (state transitional matrix), where Φ(X, 0) = X

and ∂Φ(X, t)/∂t = f(Φ(X, t)). The initial guess will be X = {x, 0, z, 0, vy, 0} which is a

necessary condition for having a symmetric and periodic orbit. In that way, Φ(X, T1/2) =

{x, 0, z̃, ṽx, ṽy, ṽz}. The differential correction aims to have ṽx = 0 and ṽz = 0 , and it

will change the initial guess in vy0 and x0 by having fixed the initial position in z0 until

it converges after half a period:

Φ(X +∆X, T1/2 +∆T ) = Φ(X, T1/2) +

[
∂Φ(X, T1/2)

∂X

]
∆X +

∂Φ(X, T1/2)

∂t
∆t. (C.81)

The choice is restricted to the initial condition so that ∆X = {∆x, 0, ∆z, 0, ∆vy, 0} and

the system to solve is:

[
∂Φ(X, T1/2)

∂X

]


∆x

0

∆z

0

∆vy

0


+ f(Φ(X, T1/2))∆t =



x∗

0

z∗

0

v∗y

0


−



x

0

z̃

ṽx

ṽy

ṽz


; (C.82)
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where,

[
∂Φ(X, T1/2)

∂X

]
=



φ11 φ12 φ13 φ14 φ15 φ16

φ21 φ22 φ23 φ24 φ25 φ26

φ31 φ32 φ33 φ34 φ35 φ36

φ41 φ42 φ43 φ44 φ45 φ46

φ51 φ52 φ53 φ54 φ55 φ56

φ61 φ62 φ63 φ64 φ65 φ66


. (C.83)

The system to solve is:
φ21∆x+ φ23∆z + φ25∆vy + f2∆t = 0

φ41∆x+ φ43∆z + φ45∆vy + f4∆t = −ṽx
φ61∆x+ φ63∆z + φ65∆vy + f6∆t = −ṽz

. (C.84)

In Eq. (C.84), ∆x, ∆z, ∆vy and ∆t are the unknown. Having fixed the initial condition

in z where ∆z = 0, now the system of Eq. (C.84) are three equations in three unknowns.

This will provide the position along the x-axis, the velocity along the y-axis and the half

orbit period. ∆t is computed by

∆t = −φ21∆x+ φ25∆vy
f2

. (C.85)

By substituting ∆t (Eq. (C.85)) in the second and the third equations of Eq. (C.84).

The system can be simplified as:{
A∆x+B∆vy = −ṽx
C∆x+D∆vy = −ṽz

. (C.86)

In Eq. (C.86), A, B, C and D are:
A = (φ41 − f4

f2
φ21)

B = (φ45 − f4
f2
φ25)

C = (φ61 − f6
f2
φ21)

D = (φ65 − f6
f2
φ25)

. (C.87)

Thus, ∆vy and ∆x are respectively:

∆vy =
(−ṽz + C

A ṽx)

(D − C·B
A )

(C.88)

and,

∆x = −(ṽx +B)

A
∆vy. (C.89)
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Then, at every new iteration the initial guess is modified as follow:

Xi+1 = Xi +∆X =



xi

0

zi

0

viy

0


+



∆x

0

0

0

∆vy

0


. (C.90)

C.11 Differential correction algorithm in E0

The differential correction algorithm is now modified for having x-axis symmetric pe-

riodic orbit with E0 fixed. The state vector is now augmented with the energy as

X(t) = {x(t), y(t), ẋ(t), ẏ(t), E(t)}. By looking for x-axis symmetric and periodic so-

lution, the position in y and the velocity in x should be zero at t0 and t1 = T/2:

X(t0) = {x(t0), 0, 0, ẏ(t0), E(t0)} and X(t1) = {x(t1), 0, 0, ẏ(t1), E(t1)}. Then, the

equation of the energy derivative Eq. (C.91) should be added to the dynamic equa-

tions Eq. (C.79):

Ė = ẍẋ+ 2ẏẋ+ Vxẋ+ asxẋ+ ÿẏ − 2ẋẏ + Vyẏ + asyẏ. (C.91)

The four first-order equations can be written by redefining the state vector as X =

{x1, x2, x3, x4, x5} = {x, y, ẋ, ẏ, E} or more simplyX = {x1, x2, x3, x4, x5} = {x, y, vx, vy, E}
and the equations of motion are:

ẋ1 = x3

ẋ2 = x4

ẋ3 = 2x4 + ∂V
∂x1

+ ∂as

∂x1

ẋ4 = −2x3 + ∂V
∂x2

+ ∂as

∂x2

ẋ5 = ẋ3x3 + Vxx3 + asxx3 + ẋ4x4 + Vyx4 + asyx4

. (C.92)

As before, the equation of motion can be written in a compact way: Ẋ = f(X). The so-

lution of the differential equation is Φ(X, t) (state transitional matrix), where Φ(X, 0) =

X and ∂Φ(X, t)/∂t = f(Φ(X, t)). The initial guess will be X = {x, 0, 0, vy, E},
which is a necessary condition for having a symmetric and periodic orbit. In that

way, Φ(X, T1/2) = {x̃, 0, ṽx, ṽy, Ẽ}. The differential correction aims to have ṽx = 0 and

Ẽ = E∗, and it will change the initial guess in vy0 and in x0 by having fixed the initial

energy E0 until it converges to a null velocity in x after half a period. The choice of

the initial condition is restricted to ∆X = {∆x, 0, 0, ∆vy, ∆E} and solve the following



268 Appendix C Circular Restricted Three-Body Problem

equations:

[
∂Φ(X, T1/2)

∂X

]


∆x

0

0

∆vy

∆E


+ f(Φ(X, T1/2))∆t =



x∗

0

0

v∗y

E∗


−



x̃

0

ṽx

ṽy

Ẽ


, (C.93)

where, the derivative in Φ is:

[
∂Φ(X, T1/2)

∂X

]
=


φ11 φ12 φ13 φ14 φ15

φ21 φ22 φ23 φ24 φ25

φ31 φ32 φ33 φ34 φ35

φ41 φ42 φ43 φ44 φ45

φ51 φ52 φ53 φ54 φ55

 , (C.94)

and the system turns into:
φ21∆x+ φ24∆vy + φ25∆E + f2∆t = 0

φ31∆x+ φ34∆vy + φ35∆E + f3∆t = −ṽx
φ51∆x+ φ54∆vy + φ55∆E + f5∆t = E∗ − Ẽ

. (C.95)

In Eq. (C.95), ∆x, ∆vy, ∆E and ∆t are four unknown. Having fixed the initial con-

ditions in E, ∆E = 0, so now Eq. (C.95) are three equations in three unknowns. This

will provide the velocity along y-axis, the position in x and the half orbit period. ∆t is

defined as:

∆t = −φ21

f2
∆x− φ24

f2
∆vy. (C.96)

The Eq. (C.95) can be rewrite as Eq. (C.97){
a∆x+ b∆vy = −ṽx
a∆x+ b∆vy = E∗ − Ẽ

. (C.97)

Where, a = φ31 − f3
f2
φ21, b = φ34 − f3

f2
φ24, c = φ51 − f5

f2
φ21 and d = φ54 − f5

f2
φ24.

Finally, ∆x can be found as:

∆x = − b
a

(
d− cb

a

)−1(cṽx
a

+ E∗ − Ẽ
)
, (C.98)

and ∆vy as:

∆vy =

(
d− cb

a

)−1(cṽx
a

+ E∗ − Ẽ
)
− ṽx

a
. (C.99)
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Then, at every new iteration the initial guess is modified as follow:

Xi+1 = Xi +∆X =



xi

0

0

viy

Ei


+



0

0

0

∆vy

∆E


. (C.100)





Appendix D

Elliptic Restricted Three-Body

Problem

D.1 Description of the primaries motion: Kepler problem

The equation of the ellipses, r, is defined in Eq. (B.1) of Section B.1. A synodic reference

frame with angular velocity, ḟ = df/dt∗, is introduced. The angular motion is given by

the third Kepler’s Law as follow:

h = r2 df

dt∗
. (D.1)

By knowing that the momentum of angular motion is defined as:

h =
√
µa(1− e2), (D.2)

the angular velocity is now:

df

dt∗
=

h

r2
=
µ

1
2 (1 + ecos(f))

1
2

a
3
2 (1− e2)

3
2

. (D.3)

D.2 Coordinate transformation

For a planar motion in the x-y plane, the transformation from synodic to sidereal refer-

ence frames is given by: {
X = x̄ cos(nt∗)− ȳ sin(nt∗)

Y = x̄ sin(nt∗) + ȳ cos(nt∗)
; (D.4)

where, X and Y are the dimensional coordinates in a fix (sidereal) system. Instead

x̄ and ȳ are the dimensional coordinate in a rotating (synodic) system. Eq. (D.4) is

271
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written in a compact way as:

R = Ar; (D.5)

where, the matrix A is defined as:

A =

[
cos(nt∗) − sin(nt∗)

sin(nt∗) cos(nt∗)

]
(D.6)

However, it is simpler to introduce the complex vector Ψ by writing:

Ψ = ψeif ; (D.7)

where, Ψ is:

Ψ = X + iY, (D.8)

and ψ is:

ψ = x̄+ iȳ (D.9)

D.3 Transformation to a non-uniformly synodic reference

frames

By using the complex vector Ψ in Eq. (D.8), the equations of motion in a sidereal

reference frame are:

d2Ψ

dt∗2
= −MSunG

Ψ − ΨSun
R3
Sun

−mEarth+MoonG
Ψ − ΨEarth
R3
Earth

. (D.10)

By substituting Eq. (D.7) in Eq. (D.10), the left-hand side of Eq. (D.10) turns into:

d2Ψ

dt∗2
=

d2

dt∗2

(
ψeif

)
=

d

dt∗

[
d

dt∗

(
ψeif

)]
, (D.11)

d

dt∗

[
d

dt∗

(
ψeif

)]
=

d

dt∗

[
dψ

dt∗
eif + ψeif i

df

dt∗

]
, (D.12)

d

dt∗

[
dψ

dt∗
eif + ψeif i

df

dt∗

]
=
d2ψ

dt∗2
eif+

dψ

dt∗
eif i

df

dt∗
+
dψ

dt∗
eif i

df

dt∗
+ψeif i

df

dt∗
i
df

dt∗
+ψeif i

d2f

dt∗2
,

(D.13)

and
d2Ψ

dt∗2
=

[
d2ψ

dt∗2
+ 2i

dψ

dt∗
df

dt∗
+ i2ψ

(
df

dt∗

)2

+ ψi
d2f

dt∗2

]
eif . (D.14)
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Instead, the right-hand side of Eq. (D.10) turns into:[
−GMSun

(ψ − ψSun)

R3
Sun

−GmEarth+Moon
(ψ − ψEarth)

R3
Earth

]
eif . (D.15)

By imposing Eq. (D.14) equal to Eq. (D.15), the following equality holds:[
d2ψ
dt∗2

+ 2i dψdt∗
df
dt∗ + i2ψ

(
df
dt∗

)2
+ ψi d

2f
dt∗2

]
eif =[

−GMSun
(ψ−ψSun)
R3
Sun

−GmEarth+Moon
(ψ−ψEarth)
R3
Earth

]
eif

, (D.16)

and

d2ψ
dt∗2

+ 2i dψdt∗
df
dt∗ = −GM1

(ψ−ψSun)
R3
Sun

−GmEarth+Moon
(ψ−ψEarth)
R3
Earth

+ ψ
(
df
dt∗

)2
− ψi d

2f
dt∗2

;

(D.17)

where, RSun and REarth are:

RSun = |Ψ − ΨSun| = |ψ − ψSun| = |ψ − x̄Sun| = |x̄− x̄Sun + iȳ| (D.18)

and

REarth = |Ψ − ΨEarth| = |ψ − ψEarth| = |ψ − x̄Earth| = |x̄− x̄Earth + iȳ|, (D.19)

respectively. Finally, Eq. (D.18) and Eq. (D.19) turn into:

RSun =
[
(x̄− x̄Sun)2 + ȳ

] 1
2

(D.20)

and

REarth =
[
(x̄− x̄Earth)2 + ȳ

] 1
2
, (D.21)

respectively. The complex component of the primaries are always on the real axis, and

for the Russian convention (Szebehely and Giacaglia, 1964), it is possible to write:

ψSun = x̄Sun =
PSun

1 + e cos f,
(D.22)

and

ψEarth = x̄Earth = − PEarth
1 + e cos f

. (D.23)

PSun and PEarth are positives and their relation is 1

PSun
PEarth

=
aSun
aEarth

=
mEarth+Moon

MSun
; (D.24)

1For the CRTB, the balance between the gravitational and the centrifugal forces requires:
G
MSunmEarth+Moon

l2
= mEarth+Moond2CM = MSund1CM
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where, aSun and aEarth are the semimajor axis of the elliptic orbits of MSun and

mEarth+Moon. In case of, f = nt∗, e = 0, PSun = aSun = d1CM and PEarth = aEarth =

d2CM these equations correspond to the circular restricted three body problem.

D.4 Transformation to dimensionless pulsating coordinates

The pulsating coordinates for the complex vector are:

ξ =
ψ

r
=
x̄

r
+ i

ȳ

r
= x+ iy. (D.25)

The primaries are fixed in the synodic reference frame and their coordinates are:

xSun =
x̄Sun(1 + e cos f)

a(1− e2)
(D.26)

and

xEarth =
x̄Earth(1 + e cos f)

a(1− e2)
. (D.27)

By substituting Eq. (D.22-D.23) to Eq. (D.26-D.27), we have:

xSun =
PSun

a(1− e2)
=
aSun(1− e2)

a(1− e2)
=
aSun
a

, (D.28)

and

xEarth = − PEarth
a(1− e2)

= −aEarth(1− e2)

a(1− e2)
= −aEarth

a
. (D.29)

For the American and European formulations, the primaries coordinates are:

xSun = − PSun
a(1− e2)

= −aSun(1− e2)

a(1− e2)
= −aSun

a
, (D.30)

and

xEarth =
PEarth
a(1− e2)

=
aEarth(1− e2)

a(1− e2)
=
aEarth
a

. (D.31)

D.5 From var ψ and t∗ to var x, y and f

By knowing that ψ = ξr, it is possible to define:

ψ̇ = ξ̇r + ξṙ, (D.32)

and

ψ̈ = ξ̈r + ξ̇ṙ + ξ̇ṙ + ξr̈; (D.33)



Appendix D Elliptic Restricted Three-Body Problem 275

which, it is the first term of the left side of the Eq. (D.17) and ξ̇ = dξ/dt∗. The true

anomaly angle, f , was chosen as the independent variable as:

d

dt∗
=

df

dt∗
d

df
. (D.34)

Thus,
d2ψ

dt∗2
=

d2ξ

dt∗2
r + 2

dξ

dt∗
dr

dt∗
+ ξ

d2r

dt∗2
; (D.35)

where ,

d2ξ

dt∗2
r =

d

dt∗

[
df

dt∗
dξ

df

]
r =

[
d2f

dt∗2
dξ

df
+

(
df

dt∗

)2 d2ξ

df2

]
r (D.36)

and

2
dξ

dt∗
dr

dt∗
= 2

df

dt∗
dξ

df

dr

dt∗
(D.37)

therefore
d2ψ

dt∗2
=

[
d2f

dt∗2
dξ

df
+

(
df

dt∗

)2 d2ξ

df2

]
r + 2

df

dt∗
dξ

df

dr

dt∗
+ ξ

d2r

dt∗2
. (D.38)

The second term on the left-hand side of Eq. (D.17) is:

2i
df

dt∗
dψ

dt∗
= 2i

df

dt∗

[
ξ
dr

dt∗
+ r

dξ

df

df

dt∗

]
; (D.39)

while, the right-hand side of Eq. (D.17) is:

−GMSun
ξ − ξSun
r2r3

Sun

−GmEarth+Moon
ξ − ξEarth
r2r3

Earth

, (D.40)

so

r2
Sun = |ξ − ξSun|2 = (x− xSun)2 + y2 (D.41)

and

r2
Earth = |ξ − ξEarth|2 = (x− xEarth)2 + y2. (D.42)

For the Russian formulation, the dimensionless primaries’ coordinates are:

xSun =
aSun
a

=
µa

a
= µ (D.43)

and

xEarth = −aEarth
a

= −(1− µ)a

a
= µ− 1. (D.44)

For the American and European formulation, the dimensionless primaries’ coordinates

are:

xSun = −aSun
a

= −µa
a

= −µ, (D.45)

and

xEarth =
aEarth
a

=
(1− µ)a

a
= 1− µ. (D.46)
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Eq. (D.17) is written as:

[
d2f

dt∗2
dξ

df
+

(
df

dt∗

)2 d2ξ

df2

]
r + 2

df

dt∗
dξ

df

dr

dt∗
+ ξ

d2r

dt∗2
+ 2i

df

dt∗

[
ξ
dr

dt∗
+ r

dξ

df

df

dt∗

]
=

−GMSun
ξ − ξSun
r2r3

Sun

−GmEarth+Moon
ξ − ξEarth
r2r3

Earth

+ ξr

(
df

dt∗

)2

− iξr d
2f

dt∗2
(D.47)

so

r

(
df

dt∗

)2 [d2ξ

df2 + 2i
dξ

df

]
+ ξ

[
d2r

dt∗2
− r

(
df

dt∗

)2
]

+

(
dξ

df

)(
r
d2f

dt∗2
+ 2

dr

dt∗
df

dt∗

)
= −GMSun

ξ − ξSun
r2r3

Sun

−GmEarth+Moon
ξ − ξEarth
r2r3

Earth

; (D.48)

where, r = a(1−e2)
1+e cos f which is the solution of the Kepler problem involving the two

primaries. The angular momentum integral is defined as:(
r2 df

dt∗

)2

= a(1− e2)G(MSun +mEarth+Moon); (D.49)

while, the derivative of the angular momentum is:

r
d2f

dt∗2
+ 2

dr

dt∗
df

dt∗
= 0. (D.50)

The equations of motion are derived as:

d2r

dt∗2
− r

(
df

dt∗

)2

= −G(MSun +mEarth+Moon)

r2
. (D.51)

By substituting the integral of the angular momentum to Eq. (D.51), Eq. (D.51) turns

into:
d2r

dt∗2
− r

(
df

dt∗

)2

= − r2

a(1− e2)

(
df

dt∗

)2

. (D.52)

Now Eq. (D.48) over r
(
df
dt∗

)2
gives:

r

(
df

dt∗

)2

=
G(MSun +mEarth+Moon)a(1− e2)

r3
; (D.53)

where, Eq. (D.48) is written in a compact way as:

rḟ2ξ
′′
+ξ(r̈−rḟ2)+ξ

′
(rf̈+2ṙḟ) = −GMSun

ξ − ξSun
r2r3

Sun

−GmEarth+Moon
ξ − ξEarth
r2r3

Earth

. (D.54)
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By combining Eq. (D.50) and Eq. (D.51), Eq. (D.54) turns into:

rḟ2ξ
′′
+rḟ22iξ

′−ξG(MSun +mEarth+Moon)

r2
= −GMSun

ξ − ξSun
r2r3

Sun

−GmEarth+Moon
ξ − ξEarth
r2r3

Earth

.

(D.55)

Eq. (D.55) over rḟ2 gives:

ξ
′′

+2iξ
′−ξG(MSun +mEarth+Moon)

r2rḟ2
= −GMSun

rḟ2

ξ − ξSun
r2r3

Sun

−GmEarth+Moon

rḟ2

ξ − ξEarth
r2r3

Earth

,

(D.56)

and by substituting the expression of rḟ2 in Eq. (D.56), Eq. (D.56) becomes:

ξ
′′

+ 2iξ
′ − ξ r

a(1−e2)
= − MSun

MSun+mEarth+Moon

r
a(1−e2)

ξ−ξSun
r3Sun

− mEarth+Moon

MSun+mEarth+Moon

r
a(1−e2)

ξ−ξEarth
r3Earth

. (D.57)

By knowing that r = a(1− e2)/(1 + e cos f), it is possible to write:

ξ
′′

+ 2iξ
′ − ξ

1+e cos f = − MSun
MSun+mEarth+Moon

1
1+e cos f

ξ−ξSun
r3Sun

− mEarth
MSun+mEarth+Moon

1
1+e cos f

ξ−ξEarth
r3Earth

, (D.58)

so

ξ
′′

+ 2iξ
′

=
1

1 + e cos f

[
ξ − µSun

ξ − ξSun
r3
Sun

− µEarth
ξ − ξEarth
r3
Earth

]
. (D.59)

By recalling that ξ is the complex dimensionless coordinate ξ = x+ yi, the equations of

motion in dimensionless pulsating coordinate are: x
′′ − 2y

′
= 1

1+e cos f

[
x− µSun x−xSunr3Sun

− µEarth x−xEarthr3Earth

]
y
′′

+ 2x
′

= 1
1+e cos f

[
y − µSun y

r3Sun
− µEarth y

r3Earth

]
.

(D.60)

For the Russian formulation, rSun and rEarth are:

rSun =
√

(x− µ)2 + y2, (D.61)

and

rEarth =
√

(x+ 1− µ)2 + y2, (D.62)

respectively; while, for the American and European formulation, they correspond to:

rSun =
√

(x+ µ)2 + y2, (D.63)

and

rEarth =
√

(x+ µ− 1)2 + y2, (D.64)

respectively.
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D.6 Spatial elliptical restricted three-body problem

In this section, the equations of motions are extended to the third dimension. This can

be done as the third coordinate, z, does not take place in the transformation (since the

rotation is along the z-axis). By knowing that:

z =
ζ

r
, (D.65)

the equations of motion along the z-axis in dimensional coordinates are:

ζ̈ = −GMSun(ζ − ζSun)

R3
Sun

− GmEarth+Moon(ζ − ζEarth)

R3
Earth

. (D.66)

Eq (D.65) is rewritten as:

ζ = zr(f); (D.67)

where, r(f) is defined as:

r(f) =
a(1− e2)

1 + e cos(f)
= (1 + e cos(f))−1a(1− e2). (D.68)

By deriving Eq (D.67) two times in time, Eq. (D.67) becomes,

ζ̇ = ṙz + rż, (D.69)

for the first derivative and,

ζ̈ = r̈z + ṙż + ṙż + rz̈, (D.70)

for the second derivative.

Given a vector, �, the derivative of � in t∗ is:

�̇ =
d�
dt∗

=
df

dt∗
d�
df

= ḟ�
′
. (D.71)

From Eq. (D.71), Eq (D.70) in dimensionless coordinates is:

ζ̈ = r̈z + 2ṙḟ z
′
+ r

d

dt∗

[
ḟ z
′
]
, (D.72)

and

ζ̈ = r̈z + 2ṙḟ z
′
+ r

[
f̈ z
′
+ ḟ2z

′′
]
. (D.73)

Eq. (D.73) is the left-hand side of the equations of motion along z and Eq. (D.73) over

rḟ2 gives:
r̈z

rḟ2
+

2ṙḟ z
′

rḟ2
+
rf̈z

′

rḟ2
+ z

′′
= ... (D.74)



Appendix D Elliptic Restricted Three-Body Problem 279

and

z
′′

+
r̈z

rḟ2
+

z
′

ḟ2r

[
2ṙḟ + rf̈

]
= ... (D.75)

In Eq (D.75), the derivative of the angular momentum, (r2ḟ)2, is zero (2ṙḟ + rf̈ = 0) ,

thus Eq. (D.75) simplifies as:

z
′′

+
r̈z

rḟ2
= ... (D.76)

The first derivative of Eq (D.68) is:

ṙ =
ae(1− e2) sin f

(1 + e cos f)2
ḟ , (D.77)

while, the second derivative over rḟ2 is:

r̈

rḟ2
=
ae(1− e2) sin f

(1− e cos f)2

f̈

rḟ2
+
ae(1− e2) cos f

(1 + e cos f)2

1

r
+

2ae2(1− e2)(sin f)2

(1 + e cos f)3

1

r
. (D.78)

The first term on the right-hand side of Eq. (D.78) is simplified by the definition of

r = a(1− e2)/(1 + e cos f) as:

ae(1− e2) sin f

(1− e cos f)2

f̈

rḟ2
=

e sin f

(1− e cos f)

f̈

ḟ2
. (D.79)

ḟ and f̈ over ḟ2 are:

ḟ =
G1/2(MSun +mEarth+Moon)1/2

a3/2(1− e2)3/2
(1 + e cos f)2, (D.80)

and
f̈

ḟ2
= − 2e sin f

(1 + e cos f)
, (D.81)

respectively. Finally, the first term on the right-hand side of Eq. (D.78) is:

ae(1− e2) sin f

(1− e cos f)2

f̈

rḟ2
= − 2e sin f

1 + e cos f
. (D.82)

The second term on the right-hand side of Eq. (D.78) is:

ae(1− e2) cos f

(1 + e cos f)2

1

r
=

e cos f

1 + e cos f
. (D.83)

The third term on the right-hand side of Eq. (D.78) is:

2ae2(1− e2)(sin f)2

(1 + e cos f)3

1

r
=

2e2(sin f)2

(1 + e cos f)2
. (D.84)
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Finally, Eq. (D.78) turns into:

r̈

rḟ2
=

e cos f

1 + e cos f
= 1− 1

1 + e cos f
. (D.85)

The equations of motion along z-axis are:

z
′′

+

[
1− 1

1 + e cos f

]
z =

[
−GMSunz

r2r3
Sun

− GmEarth+Moonz

r2r3
Earth

]
1

rḟ2
. (D.86)

The first term on the right-hand side of Eq. (D.86) is:

− GmEarth+Moonz

r2r3
Earth

1

rḟ2
= − µEarthz

(1 + e cos f)r3
Earth

. (D.87)

Finally, the equations of motion along z-axis are:

z
′′

+ z =
1

1 + e cos f

[
z − µSun

r3
Sun

z − µEarth
r3
Earth

z

]
. (D.88)

The system of equations of motion are in dimensionless, non-uniformly rotating and

pulsating coordinates are:
x
′′ − 2y

′
= 1

1+e cos f

[
x− µSun x−xSunr3Sun

− µEarth x−xEarthr3Earth

]
y
′′

+ 2x
′

= 1
1+e cos f

[
y − µSun y

r3Sun
− µEarth y

r3Earth

]
z
′′

+ z = 1
1+e cos f

[
z − µSun

r3Sun
z − µEarth

r3Earth
z
] . (D.89)

For the Russian formulation, rSun and rEarth are:

rSun =
√

(x− µ)2 + y2 + z2, (D.90)

and

rEarth =
√

(x+ 1− µ)2 + y2 + z2, (D.91)

respectively; while, for the American and European formulation, they are:

rSun =
√

(x+ µ)2 + y2 + z2, (D.92)

and

rEarth =
√

(x+ µ− 1)2 + y2 + z2, (D.93)

respectively.



Appendix E

Hamiltonian Structure Preserving

and Floquét Mode Controllers

E.1 Hamiltonian structure preserving control law extended

to the third dimension

The eigenvalues of the linearised dynamics are the solutions of the characteristic equa-

tions D(λ) = |A− λI| = 0, where the characteristic polynomial is:

Λ3 + b Λ2 + c Λ+ d = 0. (E.1)

In Eq. (E.1), b, c and d are defined as:
b = 4− Vxx − Vyy − Vzz
c = −V 2

xy − V 2
xz + VxxVyy − V 2

yz − 4Vzz + VxxVzz + VyyVzz

d = −|Vrr|
. (E.2)

The aim of the controller is to place the poles on the imaginary axis, so an artificial centre

manifold stabilises the periodic orbit by removing the stable and unstable manifolds (i.e.

hyperbolic equilibrium). The discriminant of the equation must be > 0 in order to have

three real and distinct roots:

∆ = b2 c2 − 4 c3 − 4 b3 d− 27 d2 + 18 b c d. (E.3)

In order to have an instantaneous map of real eigenvalues and two pairs of imaginary

eigenvalues, the polynomial in Eq. (E.1) must have one positive and two negative roots.

If ∆ > 0 there are three real and distinct solutions. For a cubic polynomial, it is

281
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possible to guarantee only one positive root by following the Descartes’ rule of signs.

Thus, b > 0, c < 0, d < 0 (or |Vrr| > 0) and ∆ > 0. When, ∆ < 0 there are two couples

of complex and conjugate roots and one real root. However, the extension to this case

is not included yet in our analysis.

E.1.1 Eigenvalues of the characteristic polynomial

The solutions of Eq. (E.1) are (Spigel et al., 2013):

Q =
3c− b2

9
, R =

9bc− 27d− 2b3

54
, S = (R+

√
Q3 +R2)1/3, T = (R−

√
Q3 +R2)1/3,

(E.4)

and 
Λ1 = S + T − b

3

Λ2 = − (S+T )
2 − b

3 + (S−T )·i
2

Λ3 = − (S+T )
2 − b

3 −
(S−T )·i

2

. (E.5)

So now the six eigenvalues can be found as: λ1 =
√
Λ1, λ2 = −

√
Λ1, λ3 =

√
Λ2,

λ4 = −
√
Λ2, λ5 =

√
Λ3 and λ6 = −

√
Λ3.

E.1.1.1 Eigenvectors of the characteristic polynomial

The eigenvectors can now be found by solving the system: (A− λiI) · x̂ = 0, so:

˙̂x = λix̂
˙̂y = λiŷ
˙̂z = λiẑ

(Vxx − λ2
i )x̂+ (Vxy + 2ω0λi)ŷ + Vxz ẑ = 0

(Vxy − 2ω0λi)x̂+ (Vyy − λ2
i )ŷ + Vyz ẑ = 0

Vxzx̂+ Vyz ŷ + (Vzz − λ2
i )ẑ = 0

. (E.6)

Setting an arbitrary parameter for x̂ = 1, one of the infinitive eigenvectors for λi can be

determined. The interest here is in solving the following system:
(Vxx − λ2

i ) + (Vxy + 2ω0λi)ŷ + Vxz ẑ = 0

(Vxy − 2ω0λi) + (Vyy − λ2
i )ŷ + Vyz ẑ = 0

Vxz + Vyz ŷ + (Vzz − λ2
i )ẑ = 0

(E.7)
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which has three equations and two unknowns. Thus, there are three different options to

find the solution. The general eigenvector is defined as:



x̂

ŷ

ẑ
˙̂x
˙̂y
˙̂z


=



1

ui

u2i

λi

λi · ui
λi · u2i


. (E.8)

In the case of solving the first two equations of Eq. (E.7), the solution is:

ŷ =
Vxz(Vxy − 2ω0λi) + Vyz(λ

2
i − Vxx)

Vyz(Vxy + 2ω0λi)− Vxz(Vyy − λ2
i )

= ui, (E.9)

and

ẑ =
(−V 2

xy + 4ω2
0λ

2
i − Vyyλ2

i + VyyVxx + λ4
i − λ2

iVxx)

Vyz(Vxy + 2ω0λi)− Vxz(Vyy − λ2
i )

= u2i . (E.10)

If now the first and the third equations of Eq. (E.7) are solved together, the solution

becomes:

ŷ =
(Vxx − λ2

i )(Vzz − λ2
i )− V 2

xz

VxzVyz − (Vxy + 2ω0λi)(Vzz − λ2
i )

= ui ẑ =
(Vxy + 2ω0λi)Vxz − (Vxx − λ2

i )Vyz
VxzVyz − (Vxy + 2ω0λi)(Vzz − λ2

i )
= u2i .

(E.11)

Finally by solving the second and the third equations of Eq. (E.7), the solution turns

into:

ŷ =
(Vxy − 2ω0λi)(Vzz − λ2

i )− VyzVxz
V 2
yz − (Vyy − λ2

i )(Vzz − λ2
i )

= ui ẑ =
(Vyy − λ2

i )Vxz − (Vxy − 2ω0λi)Vyz
V 2
yz − (Vyy − λ2

i )(Vzz − λ2
i )

= u2i .

(E.12)

E.2 Floquét mode control: x-axis control (single axis)

In this case, a single axis control in the x direction is selected (Keeter, 1994), which is

the one with higher contributions of the gravity source (∆vx 6= 0 and ∆vy = ∆vz = 0).

Thanks to this simple case, there are now only five unknowns:
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

δ1x

δ1y

δ1z

δ1ẏ

δ1ż


=


δ2x δ3x . . . δ6x

δ2y δ3y . . . δ6y

δ2z δ3z . . . δ6z

δ2ẏ δ3ẏ . . . δ6ẏ

δ2ż δ3ż . . . δ6ż

 ·


α2

α3

α4

α5

α6


δx1x = Ẽx · ᾱ (E.13)

therefore ᾱ and ∆vx are:

ᾱ = Ẽ−1
x · δx1x ∆vx =

n∑
i=2

αi · δiẋ − δ1ẋ. (E.14)

E.3 Derivatives of the solar radiation pressure acceleration

In Section 5.6, the control acceleration is given by the solar radiation pressure actuators,

where knowledge of the Jacobian matrix in Eq. (5.75) is required. In this section, the

derivatives of the SRP accelerations with respect to α (in-plane angle), δ (out-of-plane

angle) and β (lightness parameter, function of the area-to-mass ratio) is shown. The

spacecraft-Sun vector is defined with respect to the rotating system by two angles: Φ

(in-plane) and Ψ (out-of-plane). These two angles are function of the spacecraft-Sun

vector components and are defined as:

Φ = arctan

(
y

(x− xSun)

)
, and Ψ = arctan

(
z

(x− xSun)2 + y2

)
, (E.15)

respectively. The projection of the spacecraft-Sun vector on the x-y plane is defined as:

rxy,Sun−p =
√

(x− xSun)2 + y2. (E.16)

The partial derivatives of the SRP acceleration with respect to α are defined as:

∂a

∂α
=


axα

ayα

azα

 , (E.17)

where the components in x, y and z are:

axα =
β·(µ−1) cos(δ+Ψ)·[−2z·rxy,Sun−p cos( 3α

2
+Φ) sin(α

2
) sin(δ)

[(x+µ)2+y2+z2]
3
2

+ cos(δ)(z2 sin(α+Φ)·r2
xy,Sun−p sin(2α+Φ))]

[(x+µ)2+y2+z2]
3
2

,
(E.18)
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ayα =
−[β(µ−1) cos(δ+Φ)(cos(δ)(z2 cos(α+Ψ)+r2

xy,Sun−p cos(2α+Φ))

[(x+µ)2+y2+z2]
3
2

+2zrxy,Sun−p sin(α
2

) sin( 3α
2

+Ψ))]

[(x+µ)2+y2+z2]
3
2

,
(E.19)

and

azα =
β(µ− 1) sin(α)

[
r2
xy,Sun−p cos(δ)− zrxy,Sun−p sin(δ) sin(δ + Ψ)

]
[(x+ µ)2 + y2 + z2]

3
2

. (E.20)

As for the partial derivatives in α, the definition for the derivatives in δ is:

∂a

∂δ
=


axδ

ayδ

azδ

 , (E.21)

where the partial derivative in x is:

axδ =
β(1−µ) cos(α+Ψ)[cos(δ+Φ)(−zrxy,Sun−p(−1 cos(α)) cos(δ)−(z2+r2

xy,Sun−p cos(α)) sin(δ))

[(x+µ)2+y2+z2]
3
2

− ((z2+r2
xy,Sun−p cos(α)) cos(δ)−zrxy,Sun−p(−1 cos(α)) sin(δ)) sin(δ+Φ)]

[(x+µ)2+y2+z2]
3
2

,

(E.22)

the derivative in y is:

ayδ =
β(1−µ) sin(α+Φ)[cos(δ+Ψ)(−zrxy,Sun−p(−1 cos(α)) cos(δ)−(z2+r2

xy,Sun−p cos(α)) sin(δ))

[(x+µ)2+y2+z2]
3
2

− ((z2+r2
xy,Sun−p cos(α)) cos(δ)−zrxy,Sun−p(−1+cos(α)) sin(δ)) sin(δ+Ψ)]

[(x+µ)2+y2+z2]
3
2

,

(E.23)

while the derivative in z is:

azδ =
β(1−µ)[cos(δ+Ψ)((z2+r2

xy,Sun−p cos(α)) cos(δ)−zrxy,Sun−p(−1 cos(α)) sin(δ))

[(x+µ)2+y2+z2]
3
2

(−zrxy,Sun−p(−1 cos(α)) cos(δ)−(z2r2
xy,Sun−p cos(α)) sin(δ)) sin(δ+Ψ)]

[(x+µ)2+y2+z2]
3
2

.
(E.24)

For the case of the derivatives in β, the solution is written in a compact way as:

∂a

∂β
= (1− µ)

〈
rSun−p
|rSun−p|

, N̂

〉2

· N̂ . (E.25)

In Eq. (E.25), the scalar product between the spacecraft-Sun vector and the normal

vector to the reflective surface is defined as:〈
rSun−p
|rSun−p|

, N̂

〉
=

(z2 + (y2 + (x+ µ)2) cos(α)) cos(δ)− z · rxy,Sun−p(cos(α)− 1) sin(α)

(x+ µ)2 + y2 + z2
,

(E.26)
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where, the normalised spacecraft-Sun vector is a function, by definition, of the angles Φ

and Ψ :

rSun−p
|rSun−p|

=


cos(Φ) · cos(Ψ)

sin(Φ) · cos(Ψ)

sin(Ψ)

 . (E.27)



Appendix F

Transfer Trajectory for a

Sun-pointing manoeuvre for

Gaia’s Lissajous Orbit

Figure F.1 shows the selected arc of the departure Lissajous orbit to perform the transfer.

The departure Lissajous orbit has the same amplitudes Ay and Az of Gaia’s mission

presented in Appendix B.3.3. In this case an initial β0 equal to 0.04 is selected and βM

turns to 0.02 due to the SRP manoeuvre.
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(a) Lissajous orbit in the synodic refernce frame cen-
tred at the centre of mass.
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(b) Liassajous orbit in the phase space centred at the
centre of mass.

Figure F.1: Departure Lissajous orbit in the synodic reference frame and in the
phase space.

Figure F.2 shows the amplitudes of the unstable, A1, and stable, A2, manifolds of the

target Lissajous orbit along the unstable manifold of the departure Lissajous orbit.
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Figure F.2: Amplitude of the unstable, A1, and stable, A2, manifolds of the tar-
get Lissajous orbit as a function of the leaving point of the departure Lissajous
orbit and the points along its unstable manifold.

Figure F.3, shows the unstable manifold of the departure Lissajous orbit, in black, and

the stable manifold of the target Lissajous orbit, in blue. The departure and the target

Lissajous orbits are shown in Figure F.3(b) in black and red respectively.
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(a) Transfer trajectories.
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(b) Departure and target Lissajous orbits.

Figure F.3: Transfer trajectories from the departure (black) and target (red)
Lissajous orbits.

Figure F.4 shows the transfer strategy in the phase space of four unstable trajectory

leaving the departure Lissajous orbit. The trajectory number 21 in Figure F.4(b) shows

a tiny jump in the phase space. Conversely, the trajectories number 20, 28 and 48 show

instantaneous variations in the phases due to the SRP manoeuvre.
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(a) Leaving trajectoy number 20.
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(b) Leaving trajectoy number 21.
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(c) Leaving trajectoy number 28.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Φ [rad]

Ψ
 [r

ad
]

(d) Leaving trajectoy number 40.

Figure F.4: Phase space of trajectories number 20, 21, 28 and 40 of the unstable
manifold of the departure Lissajous orbit.





Appendix G

End-of-Life Disposal

G.1 Traditional ∆v with the effect of solar radiation pres-

sure

In this section, the strategy with the ∆v disposal by Olikara et al. (2013) is presented

here with the additional effect of the SRP perturbation. In case that Olikara et al.

(2013) would have taken into account the effect of SRP for a Sun-pointing spacecraft,

the condition of closure would be:

ESL2 =
1

2
V 2
clsr −

1

2
(x2 + y2)− (1− β0)

µSun
rSun−p

− µEarth
rEarth−p

(G.1)

and Vclsr is now defined as:

Vclsr =

√
2ESL2 + (x2 + y2) + 2

[
(1− β0)

µSun
rSun−p

+
µEarth
rEarth−p

]
. (G.2)

The ∆v for closing the zero-velocity curves when an initial effect of SRP (β0) is included

is:

∆vs = Vclsr − V, (G.3)

as shown in Figure 7.10.

Now, if Eq. (G.2-G.3) is compared with the one presented by Olikara et al. (2013) it

is possible to verify that the effect of SRP implies a higher ∆v. Indeed, with the same

initial state vector V , the ∆vs required (when SRP is considered) would be higher than

the ∆v required without considering SRP. In conclusion, also when using traditional ∆v

to close the curves, it can be useful to include a margin in the ∆v due to the uncertainty

in the reflectivity of the spacecraft since SRP is one of the major perturbations after

the gravitational effect. The solution presented in Figure 7.10 makes use of Eq. (G.3).
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Thus, it is slightly different when compared with the results of Olikara et al. (2013), for

instance, the location of the forbidden region is shifted.
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Hénon, M. (1966a). Numerical Exploration of the Restricted Problem. III. Astron. and

Astrophys., 1:57.



REFERENCES 299
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timal Station Keeping Control of Halo Orbits. Acta Astronautica, 15:391–397. Doi:

10.1016/0094-5765(87)90175-5.

Sohon, R. L. (1995). Attitude stabilization by means of solar radiation pressure. ARS

Journal, 29(5):371–373. Doi: 10.1016/0038-092X(59)90167-7.

Soldini, S., Colombo, C., and Walker, S. (2013). Adaptive structures for spacecraft

orbit control. In Proceedings of the 64th International Astronautical Congress, IAC-

13.C1.9.10, Beijing, China, 23-27 September, 2013.

Soldini, S., Colombo, C., and Walker, S. (2014a). Comparison of hamiltonian structure-

preserving and floquét mode station-keeping for libration-point orbits. In Proceedings

of the AIAA/AAS Astrodynamics Specialist Conference, AIAA-2014-4118, San Diego,

California, 4-7 August 2014.

Soldini, S., Colombo, C., and Walker, S. (2014b). A feasibility study of solar radiation

pressure feedback control strategy for unstable periodic orbits in the restricted three-

body problem. In Proceedings of the 65th International Astronautical Congress, IAC-

14.C1.6.13, Toronto, Canada, 29 September-3 October, 2014.

http://dx.doi.org/10.2514/2.5015


304 REFERENCES

Soldini, S., Colombo, C., and Walker, S. (2015a). Solar radiation pressure end-of-life

disposal for libration-point orbits in the elliptic restricted three-body problem. In Pro-

ceedings of the AAS/AIAA Astrodynamics Space Flight Mechanics Meeting, Williams-

burg, VA, 11-15 January, 2015.

Soldini, S., Colombo, C., and Walker, S. (2015b). Solar radiation pressure enhanced

disposal in the elliptic restricted three-body problem: applications to the gaia mission.

Celestial Mechanics and Dynamical Astronomy, December 2015. (Under review).

Soldini, S., Colombo, C., and Walker, S. (2016a). The end-of-life disposal of satellites in

libration-point orbits using solar radiation pressure. Adv. Space Res., 57:1664–1679.

Doi:10.1016/j.asr.2015.06.033.

Soldini, S., Colombo, C., and Walker, S. (2016b). Solar radiation pressure feedback

control strategy for unstable periodic orbits in the restricted three-body problem.

Journal of Guidance, Control, and Dynamics, January 2016. (Under review).

Soldini, S., Colombo, C., Walker, S., and Landgraf, M. (2014c). Libration-point orbit

missions disposal at the end-of-life through solar radiation pressure. In Proceedings of

the 2nd International Academy of Astronautics Conference on Dynamics and Control

of Space Systems (DyCoSS), Rome, Italy, 24-26 March, 2014.
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