

In this document we describe the challenges introduced to the project by the geographically

distributed nature of the project partners and our approach to ensuring an efficient

development methodology based on “agile” principles. We propose the use of DevOps to

support incremental software releases and ongoing requirements updates, and show, using

examples from the GRAVITATE platform development, how this is being implemented.

D2.2

Workflow Guidelines

v1.0.1: 2016-08-11

Ilan Shimshoni (Technion/Haifa)

Stephen C. Phillips (IT Innovation)

Horizon 2020

Grant agreement number 665155

gravitate-project.eu

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 1

Project acronym GRAVITATE

Full title Geometric Reconstruction and Novel Semantic Reunification of
Cultural Heritage Objects

Grant agreement number 665155

Funding scheme Research and Innovation Action

Work programme topic H2020-REFLECTIVE-7-2014

Project start date 2015-06-01

Project duration 36 months

Workpackage 2 User Requirement Analysis and Planning

Deliverable lead organisation Technion/Haifa

Authors Ilan Shimshoni (Technion/Haifa)

Stephen C. Phillips (IT Innovation)

Reviewers Paul Walland (IT Innovation)

Version 1.0.1

Status Final

Dissemination level PU: Public

Due date PM12 (2016-05-31)

Delivery date v1.0: 2016-07-27; v1.0.1: 2016-08-11

Version Changes

1.0 Initial release

1.0.1 Fixed minor formatting issue

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 2

Table of Contents

1. Introduction .. 3

2. Agile Software Development .. 4

3. Technical Solutions for a Distributed Team .. 6

3.1. DevOps .. 6

4. Workflows for Requirements ... 10

5. Conclusions ... 13

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 3

1. Introduction

GRAVITATE is a complex software system developed by two research groups from the UK (IT

Innovation (ITInnov) and The British Museum (BM)), a group from Italy (IMATI), a group from

the University of Amsterdam (UVA), the Cyprus Institute (CyI), and group from the Technion

and the University of Haifa in Israel. The project is thus geographically highly distributed. It

consists of a complex architecture and on-going research efforts for which the requirements are

usually not provided by the researchers themselves, who are computer scientists, but by members

of other partners (BM & CyI) and external experts from the field of cultural heritage with whom

the partners consult.

For such a project to succeed it has to be carefully planned taking into account the special

characteristics of the project. Even though in the first year of the project requirements were

collected from domain experts in the various fields of cultural heritage, additional requirements

will surely turn up. It is therefore important not to assume that the standard waterfall model for

software design could be used. The project will therefore use the agile project development

methodology. Its main principles and how these principles apply to GRAVITATE will be

described in Chapter 2. As mentioned above GRAVITATE is being developed by a geographically

distributed team. As frequent face to face meetings are not possible and since a large number of

developers are involved in the project, state-of-the-art development tools are being used in

implementing the GRAVITATE system; tools especially designed to work well in a distributed

environment. The tools that have been chosen and how they will be used will be presented in

Chapter 3.

Even though the agile design methodology and the development tools that we are using are

essential for a successful project, it is also important to define the interfaces between the research

groups as clearly as possible and keep their number at a minimum. For these reasons the

architecture of the system was designed taking that in mind. In Section 4 we will give a short review

of the architecture emphasizing its distributed nature and the ability of the different partners to do

most of their work without requiring them to get the consent of all the partners for each small

design decision they make. Moreover, changes made in the implementation will usually not affect

the other partners. This is even though the components built by the partners are closely connected,

providing input to each other and working together achieve the user’s goals. The chapter will also

list several types of requirements and the interactions between software components that we

foresee that we will have to deal with and how the way the system is designed will enable the

partners to deal with them efficiently.

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 4

2. Agile Software Development

The GRAVITATE project is committed to “agile” software development, but what does this mean

in practice? The Agile Manifesto1 is based on twelve principles:

1) The highest priority is customer satisfaction by early and continuous delivery of valuable

software.

2) Changing requirements are welcomed, even late in development.

3) Working software is delivered frequently (weeks or at most a couple of months).

4) There must be close, daily cooperation between business people and developers.

5) Projects are built around motivated individuals, who should be supported and trusted.

6) Face-to-face conversation is the best form of communication within a development

team.

7) Working software is the primary measure of progress.

8) It should be possible to maintain a constant pace indefinitely.

9) Agility is enhanced by continuous attention to technical excellence and good design.

10) Simplicity—the art of maximizing the amount of work not done—is essential

11) The best architectures, requirements, and designs emerge from self-organizing teams

12) Regularly, the team reflects on how to become more effective and adjusts accordingly.

In applying the Agile Manifesto to the GRAVITATE project we must address several questions:

 Why is Agile appropriate?

 Who is the “customer”?

 How do we deal with changing requirements, even late in the process?

 What technical processes do we need to deliver software frequently?

 What do we need to enable a distributed development team to work effectively together?

 How do we prioritise and ensure working software?

 How can we provide continuous attention to technical excellence and good design?

Agile development is well suited to small development teams: in the GRAVITATE project the

dashboard (WP4) and platform (WP5) are led by CNR and ITInnov and the majority of these

components will be developed by the two partners with UVA and BM also providing significant

effort in the work-packages. Each partner has a small number of developers assigned to the project

and so the communication channels are simple. The development process is confounded

somewhat by the distributed nature of the development team, but on the other side we have the

advantage of the developers including an end user partner (BM) as well as researchers.

Of course, the main point of Agile is to be just that: agile. In a Research and Innovation project

such as GRAVITATE it is naive to think that a waterfall model can be followed where all

requirements can be captured early on in the project, a design can be finalised, software created

and then delivered at the end. Even an iterative waterfall model will encounter problems because

of late requirements. Late requirement arise naturally from inevitable changes in research direction

1 The Agile Manifesto: http://www.agilemanifesto.org/

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 5

when a research idea does not fully succeed or from changes in user requirements arising from

users gradually understanding the potential of new technologies and techniques: we are not

building a product type that is already available and understood. By building Agile processes into

the development, the utility of the final software can be much increased.

The GRAVITATE Grant Agreement specified that the project will be Agile but unfortunately also

encodes an iterative waterfall model into the Gantt chart. It has been agreed with the Project

Officer that the requirements work-package (WP2) should be extended to cover the first two years

rather than just the first year to support continued requirements capture which, even in an Agile

process, is still more intense earlier on in the project. In the third year the Agile processes can be

supported through the T6.4 evaluation task.

The answer to the question “who is the customer?” is complicated. One answer is that the

customer is the European Commission (in that the Commission provides the funding) but we

should treat the Commission more as a “sponsor” in this discussion. Agile processes are predicated

on developing a product for a customer and the closest mapping to GRAVITATE is that the

product is the GRAVITATE platform (incorporating the dashboard as the primary user interface)

and the customer is the cultural heritage (CH) institutions both within the project (the British

Museum and Cyprus Institute) and more widely.

The requirements document from the first year identifies several specific end users (customers)

from CH institutions who provide requirements: the curator, illustrator, researcher and

conservator. However, requirements come from less direct forms of exploitation already identified

in the project involving other “customers”. For instance, exploitation opportunities of an

algorithm may be increased by taking into account reassembly issues in another domain.

In the remainder of this document we describe some technical details of how to achieve an Agile

but distributed development process (Section 3) and go into some of the specifics regarding how

requirement changes have an impact on the different work-packages and software components

(Section 4).

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 6

3. Technical Solutions for a Distributed Team

As the agile manifesto states, “The most efficient and effective method of conveying information

to and within a development team is face-to-face conversation.” The very nature of collaborative

European projects often enforces a distributed development environment. The added complexity

introduced by this situation is often relieved through having an architecture mapping to a task

breakdown in which many partners produce single components with defined interfaces which are

then integrated into a “platform” by a single partner.

In GRAVITATE we are adopting this approach to some extent, for instance in task T5.3 ITInnov

leads the task and will be responsible for the delivery of the functional prototype and CNR-IMATI,

UVA, Haifa and Technion help with the geometric algorithm integration. Again, in T5.6, ITInnov

leads the “system integration” with the assistance of the other partners.

One particular area with a complex dependency is between the user interface (a web dashboard

and a high-performance desktop client) and the supporting web services. Here the partners

involved (primarily CNR-IMATI and ITInnov but also Technion/HAIFA and UVA) need to

work closely together to evolve the interfaces as the development process proceeds.

For communication between the developers there are four key points:

 Skype for face to face communication (all consortium members register their Skype ID

in a central location).

 An understanding of each other’s working hours (across time zones) and the use of the

“busy” flag in Skype only when absolutely necessary with the willingness to accept

conversation requests most of the time.

 The use of the Mattermost software2 for text chat, providing persisted chat rooms linked

to the version control system deployed at ITInnov.

 Clear communication of issues and software changes using the version control system.

Many of the other commitments made in the Agile Manifesto are facilitated by what is known as

“DevOps” which brings development techniques and operational deployments closer together.

3.1. DevOps
An area of software engineering known as “DevOps” has come to the fore in the last few years as

agile methods have gained in popularity and tools for managing virtual machines and containers

have rapidly developed.

In many IT environments there are entirely different teams assigned to software development and

operational deployment of software, each taking care of different concerns. Deploying a new piece

of software, or a new software release, operationally is traditionally a time-consuming process

involving extensive quality assurance. DevOps encourages the use of the same tools and processes

in the development phase as in the QA and operational deployment phases, thus smoothing the

2 Mattermost: http://www.mattermost.org/

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 7

journey from one to the other. This has been driven by the demand from agile processes to make

many small incremental releases.

In GRAVITATE, the software being developed in WP4 and WP5 will be deployed in WP6. The

key stages of development and deployment and the associated tools to be used are as follows:

 Code:

o Version control through GitLab3 hosted by IT Innovation

o Developer communication via Mattermost4, hosted by IT Innovation

o Code review in GitLab

o Continuous integration on master branches through GitLab

 Build

o Gradle build tool automating the build and compile-time dependencies

o A common environment will be provided by Docker5 containers and/or Vagrant6

virtual machines with run-time dependencies managed with Ansible7

 Test

o Unit tests and system tests with Junit

o Further code quality checks will be performed using SonarQube8, deployed at IT

Innovation

 Package

o Gradle will also build documentation and package the software

 Release

o Will be done manually

 Deploy

o To be done with Docker and/or Vagrant

GitLab provides an excellent interface to the Git version control system as well as many other

useful features. Git is very flexible and does not impose any particular branching style but certain

ways of working must be defined for a team.

There is a very good description of some of the common Git branching workflows on the Atlassian

site9 which also documents the Git command line commands required to perform the various

3 GitLab: https://about.gitlab.com/
4 Mattermost: https://www.mattermost.org/
5 Docker: https://www.docker.com/
6 Vagrant: https://www.vagrantup.com/
7 Ansible: https://www.ansible.com/
8 SonarQube: http://www.sonarqube.org/
9 Git worlkflows: https://www.atlassian.com/git/workflows

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 8

operations. The “Feature Branch Workflow” is a fundamental pattern which we will adopt. In

this pattern when a feature is to be added then a branch is made from the master (with a name

describing the feature) and the development work goes on the branch. Generally just one

developer will work on a feature but this is a preference to avoid conflicts, not a constraint. If it

seems that more than one developer should be working on a feature then we should consider if

the task can be logically split into smaller features. Once the main developer of a feature thinks it

is ready to merge back into the master a “pull request” (sometimes called “merge request”) is

issued. Other developers then do QA on the feature’s code and if it passes then the merge is made

and the master is updated.

In Figure 1 below a branch called “feature/annotate” is created, worked on and merged into the

master. Ideally, feature branches are small, independent and merged quickly but sometimes a

feature (such as “feature/search” in the Figure) takes a long time. In these cases it is acceptable

to pull from the master into the feature branch to bring in new code that the feature depends

upon.

Figure 1. Git feature branch workflow.

The well-known “Gitflow” workflow builds on the Feature Branch Workflow to add in a

“Develop” branch for merging features into, a “Release” branch for working on releases (not

features) and uses the “Master” branch for storing the tagged releases themselves. It also defines

“Hotfix” branches, branched off the Master for fixing issues in releases. Here we propose a

variation on the Gitflow workflow which allows for the maintenance of multiple releases.

master

feature/annotate

feature/search

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 9

Figure 2. Proposed Git workflow.

master

feature/search

feature/login

release/v2.0

release/v2.1

issue/XXX

feature/annotate

Tag: v2.0

Tag: v2.0.1

v2.1-snapshot

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 10

4. Workflows for Requirements

Due to the research nature of the GRAVITATE system, its architecture was designed in a loosely

coupled manner. This way, modifications in various components which are due to direct user

requirements, or new datasets or use cases which yield changes in requirements can be performed

independently by the partners without requiring system-wide integration. There are of course cases

in which system-wide modifications will be needed but those should be as rare as possible.

The GRAVITATE system consists of the following components.

 The Graphical User Interface (GUI) which is being designed and implemented within

WP4 and WP5 by ITInnov and IMATI.

 The ResearchSpace database and query tool which is being modified to address the

special needs of GRAVITATE. This component is being designed and implemented

within WP3, WP4, and WP5 by BM IMATI and ITInnov.

 The underlying GRAVITATE infrastructure. This is designed and implemented by

ITInnov within WP5.

 The data repository. This includes the triple store database, the scans of the artifacts and

their images, and stored computed features and their indices. This repository is managed

by the GRAVITATE infrastructure. This repository is populated mainly by the cultural

heritage partners CyI and BM, while the features are designed by IMATI.

 The algorithms. In order to make the project manageable from the software engineering

point of view, most of the algorithms developed within WP3 and WP4 are invoked as

executables by the GRAVITATE infrastructure. The algorithms will be developed by the

IMATI, UVA, and Technion partners.

Figure 3. The interface between the fragment software library and GRAVITATE components

Each of these components will be managed by its owner as a separate project using the software

engineering tools described above. In order for the project as a whole to be manageable the

interfaces between the components have to be well defined on the one hand and flexible on the

other hand.

Reassembly

Processes

Similarity

Computation

Fragment

Annotation

Fragment

URI

3D Visualization

Images 3D Scans

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 11

In the following sections we give some important examples on how this can be achieved:

1) We will first consider the interface between the data repository and the other

GRAVITATE components such as the GUI and the various algorithms, illustrated in

Figure 3. When a GRAVITATE user will want to add a new fragment to the repository,

it will include besides the textual description (metadata) 3D scans and accompanying

images. These will be acquired according to GRAVITATE guidelines, but the user will

have the freedom to make decisions on how this is done depending on the 3D and 2D

features that are required to be visible. According to those decisions the scans and

images will be generated. Scans might also be maintained in several resolutions generated

from the original scan. Since these scans and images will be used by most of the

components of GRAVITATE, where each of them might have different requirements

on the quality of these objects, it is important for each application to be able choose the

most suitable scan or set of images. This requires that the object representing the

fragment (part of the GRAVITATE infrastructure) will be able to communicate

information related to the scans and images to the application so it can automatically

choose the most appropriate one; for example, for visualization low resolution scans are

needed. Another algorithm might want higher resolution scans but not too complex

since its running time depends on the size of the mesh. Thus, when given the URI of a

fragment, the algorithm will be able to choose from the available scans and images and

their attributes which ones to use.

2) One of the basic user requirements for the GRAVITATE system is that given a set of

objects, the GRAVITATE system will cluster them in an archeologically meaningful

manner within the reassociation process. This vague requirement has to be spelled out by

examples and use cases. Quite a few of these examples can be generated using the

Salamis data set but other data sets might also be needed. The clustering will be

performed using both the metadata and similarity measures based on combinations of

similarity measures of geometric features computed from the scans and the images. It is

therefore quite possible that in order for the system to successfully cluster the fragments

according to the user’s requirements new geometric and colour features and similarity

measures might be needed. It is therefore important that when it is decided to add or

remove such a feature or similarity measure to the system, a standard procedure will be

available to perform it. This means that the procedure (which will be given as input to

the function which computes the feature) will compute the new measure for all existing

fragments, save the results in the repository and for all new fragments this feature will

also be computed. Once this new feature or similarity measure has been added, the

applications that use it to perform similarity should be able to use it without

modification. Here again a flexible interface between the computed features stored in the

repository and the algorithms will be provided.

3) Considering the two examples above, they are examples of the interface between the data

repository and the other components of GRAVITATE. Thus, an input/output library

with these characteristics will be implemented and used by the algorithms to access the

repository. Thus, if it will be decided to make a modification to the structure of the

repository, only this library will have to be modified leaving the all the other components

that use it unchanged.

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 12

4) Another source of changes to the system that can be required by GRAVITATE users or

by the GRAVITATE partners are at the high and middle levels of the system. Consider

the following two examples from the realm of reassembly, although the idea is general:

Examples of changes at the high level could include trying several variants of the

reassembly module and user interface. In the final version of the system only one or two

of them will remain, but it could be very useful to let users experiment with more

variants so an intelligent choice can be made. It is also possible that different types of

users might be interested in different variants of the algorithm or its user interface. At

the middle level, the premating component could try to work with several variants of the

mating algorithm. This should be done to make experimentation possible. The final

decision on what will go into the GRAVITATE system will of course be made by the

partners based on the performance of the components and how well they satisfy the user

requirements.

5) The collections on which the GRAVITATE system operates come from several different

museums, where each one has its own database with its own schema. One of the main

strengths of the ResearchSpace software package is its ability to work with different

database schemas in parallel. Thus, a query given by the user to ResearchSpace is

translated into appropriate queries which can be answered by the different databases. We

have already started working on incorporating collections from CyI, BM, the Ashmolean

Museum, and the Fitzwilliam museum under GRAVITATE. If it will be required to add

more collections to GRAVITATE, all the work will be done by the BM partner who is

the ResearchSpace expert with some help provided by ITInnov.

6) The user might make requests to modify the system’s user interface. If the requirement is

limited only to the user interface, it can be done within work packages 4 & 5 by IMATI

and ITInnov. If however, as it sometimes happens, the modification will require

extended algorithmic capabilities, the relevant partner will be asked to provide it as part

of its work in WP3.

This list of possible requirements and modification requests is not complete and more examples

may be considered, but we believe that since we will be able to deal with the examples given above

without too much disruption to the other project members working on other components of the

system, we will likewise be able to deal with other change requests in a similar manner.

GRAVITATE Dissemination level: PU

© Copyright Technion/Haifa and other members of the GRAVITATE consortium 2016 13

5. Conclusions

In this document we described the geographically distributed nature of the GRAVITATE project

members and the problems it brings in developing a state-of-the-art software tool which includes

a novel architecture and whose components are currently still in the research phase. Moreover, the

system requirements are not given by the developers themselves, but by the other partners and

external cultural heritage experts. In order for such a project to be a success these challenges have

to be addressed from the beginning of the project. The project is therefore being developed using

the agile methodology which is designed to deal with new requirements elicited at various times

during the development of the system and not all collected at the beginning of the development

of the project. We are using state-of-the-art software development tools which enable groups of

developers to work together and to discuss and document requirements for changes in the system.

The architecture of the system was designed taking into account the distributed nature of the

development team, enabling its members to work independently most of the time while still

enabling them to cooperate closely in solving their research questions and provide a cohesive

system which addresses the users’ requirements and meets their expectations. In the document we

gave a list of possible requirements and requests for change that we expect that we will have to

address and how the project members will be able to address them efficiently. There is of course

no way to know that we have considered all the types of modifications that we will have to deal

with, but we believe that we will be able to deal with them without too much disruption if and

when they occur.

