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There is a growing body of evidence to suggest that stem cell populations from both the embryo and
the adult are heterogeneous in their gene expression patterns. However, the underlying mechanisms are
not well understood. This thesis explores cell-to-cell variability in both multipotent and pluripotent
stem cell populations using mathematical models to provide a theoretical framework to understand
the collective dynamics of stem cell populations.

In the first part of the thesis we investigate the possibility that fluctuations in the transcription fac-
tor Nanog – which is central to the embryonic stem cell transcriptional regulatory network (ESC
TRN) – regulate population variability by controlling important feedback mechanisms. Our analy-
ses reveal the ESC TRN is rich in feedback, with global feedback structure critically dependent on
Nanog, Oct4 and Sox2, which collectively participate in over two thirds of all feedback loops. Using
a general measure of feedback centrality we show that removal of Nanog severely compromises the
global feedback structure of the ESC TRN. These analyses indicate that Nanog fluctuations regulate
population heterogeneity by transiently activating different regulatory subnetworks, driving transi-
tions between a Nanog-expressing, feedback-rich, robust and self-perpetuating pluripotent state and
a Nanog-diminished, feedback-sparse and differentiation-sensitive state.

The majority of studies characterising heterogeneity in Nanog expression have used live-cell fluorescent
reporter strategies. However, recent evidence suggests that these reporters may not give a faithful
reflection of endogenous Nanog expression because the introduction of the reporter construct can
perturb the kinetics of the underlying regulatory network. To investigate the role of Nanog further
we therefore sought to model in detail the dynamics of Nanog expression in heterozygous fluorescent
knock-in reporter cell lines. We develop chemical master equation, chemical Langevin equation and re-
action rate equation models of the reporter system to determine how this might disturb normal Nanog
transcriptional control. Our analyses indicate that the reporter construct can weaken the strength of
autoactivatory feedback loops that are central to Nanog regulation, and thereby qualitatively perturbs
endogenous Nanog dynamics. These results question the efficacy of commonly used reporter strategies
and therefore have important implications for the design and use of synthetic reporters in general, not
just for Nanog.

In the second part of this thesis we consider the dynamics of populations of multipotent adult
hematopoietic stem cells (HSCs). It is known that fluctuations within individual HSCs allow them
to transit stochastically between functionally distinct metastable states, while the overall population
distribution of expression remains stable. To investigate the relationship between single cell and
population-level dynamics we propose a theoretical framework that views cellular multipotency as an
instance of maximum entropy statistical inference, in which an underlying ergodic stochastic process
gives rise to robust variability within the cell population. We illustrate this view by analysing ex-
pression fluctuations of the stem cell surface marker Sca1 in mouse HSCs and find that the observed
dynamics naturally lie close to a critical state, thereby producing a diverse population that is able to
respond rapidly to environmental changes. Although we focus on Sca1 dynamics, comparable expres-
sion fluctuations are known to generate functional diversity in other mammalian stem cell systems,
including in pluripotent stem cells. Thus, the generation of ergodic expression fluctuations may be
a generic way in which cell populations maintain robust multilineage differentiation potential under
environmental uncertainty.
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Chapter 1

Introduction

It is now well documented that temporal gene expression fluctuations at the single-cell level

give rise to heterogeneity in clonal stem cell populations [3], but the functional role of this

diversity and the underlying molecular mechanisms are not well understood. In this thesis, we

use mathematical models describing the regulation of gene expression to explore cell-to-cell

variability in both adult and embryonic stem cell populations.

An important example of expression variability in embryonic stem cells is given by the protein

Nanog, which is a key component of the mammalian embryonic stem cell regulatory network

- a network of interacting proteins that governs embryonic stem cell fate decisions by influ-

encing the expression of many genes associated with specific cell types. In Chapter 2, we

explore models of gene expression in the core regulatory network to elucidate the underlying

mechanisms that regulate variability. In Section 2.2, we investigate the role that feedback

loops and the inherent stochasticity in transcription and translation have in controlling the

variability of protein expression levels at the population level, and cell fate decisions at the

single cell level. In Section 2.3, we focus on the experimentally observed heterogeneity of

Nanog expression. Although many studies report a bimodal distribution of expression, new

evidence suggests that this heterogeneity might be a result of the measurement method - a

heterozygous knock-in reporter - interfering with the Nanog autoregulatory feedback loop, as

opposed to a true reflection of the distribution of Nanog expression. We present a stochastic

model of positive feedback to demonstrate how Nanog expression could be perturbed by the

heterozygous knock-in strategy, thus supporting the notion that the observed bimodality is

a reporter artefact.

1
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In Chapter 3, we use tools from statistical mechanics and information theory to propose a

theoretical framework for the functional role of the considerable cell-cell variability commonly

exhibited by adult stem cells. In order to illustrate our perspective, we use a simple stochastic

model to analyse the dynamics of a single protein in blood forming stem cells in vitro.

We begin by providing the biological background required to understand the systems mod-

elled and analysed in this thesis. Starting with an introduction to genes and their expression,

we then explain the role of transcription factors in the complex process of gene expression.

Following an overview of cell types, we introduce genetic regulatory networks and their un-

derlying biological processes.

In Section 1.2 of this chapter, we present the mathematical background common to all studies

in this thesis. A review of the historical understanding of cell fate determination provides the

foundation for the modelling methods used in the subsequent chapters. We then explain how

mathematical models can provide the basis for theoretical description of genetic regulatory

networks, and offer a deeper insight into the mechanisms that control heterogeneity in gene

expression. Starting with the chemical master equation, we demonstrate how the progressive

introduction of assumptions enables the transition from detailed stochastic models to deter-

ministic reaction rate equations. Finally, in Section 1.3, we discuss noise in gene expression

and highlight the importance of accounting for the stochasticity in this process in models of

regulatory networks.

1.1 Molecular Biology

1.1.1 DNA and Genes

Deoxyribonucleic acid (DNA) is a molecule that contains information used to create proteins

that are required for the development, function and reproduction of all known living organ-

isms. DNA is stored in the cell nucleus, and consists of two long chains of small molecules

called nucleotides that coil around each other to form a double helix. Each nucleotide is

composed of one of the bases cytosine (C), guanine (G), adenine (A), or thymine (T), and

other molecules that form the structure of the nucleotide. A gene is a section of DNA whose

sequence of bases dictates the linear sequence of amino acids in the corresponding protein.
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1.1.2 Gene Expression

Gene expression is the process of creating a protein from the information given by the DNA

sequence of a gene. Many of the tasks involved in this process are carried out by molecular

machines, which are assemblies of molecules that perform specific mechanical motions in

response to external stimuli. RNA polymerase II (RNAP II) is a molecular machine that

reads a gene sequence and transcribes it into messenger RNA (mRNA) molecules. This step

- shown in Fig. 1.1, top left - is known as transcription, and produces a portable copy of the

gene sequence. Transcription starts at a region of the gene called the promoter. Transcription

stops at a terminator site at which point both the DNA and the completed mRNA molecule

are released from the RNAP II.

The mRNA molecule is then transported outside the nucleus into the cell cytoplasm. Inside

the cytoplasm are large molecular machines known as ribosomes, which bind to mRNA and

translate it into a string of amino acids. This step, known as translation, is illustrated in Fig.

1.1, bottom left.

The string of amino acids becomes a protein when it folds into a specific three-dimensional

structure. A sequence of three mRNA nucleotides codes for a single unique amino acid, and a

complete mRNA molecule provides the template for the amino acid sequence of the protein.

The way in which the protein folds, and therefore its resulting shape, depends on how the

amino acids that make up the sequence are attracted or repelled by each other, and whether

or not they are repelled by water (hydrophobic) or attracted to it (hydrophilic). The function

of the resulting protein depends on its shape and the amino acids that make up the exterior,

as this determines which other proteins may interact with it and to what extent. Interaction

between proteins occurs due to an attraction between regions of their exterior amino acid

sequences, and complementary shapes enable them to fit together like a lock and key. The

coordinated behaviour of these proteins determines the physiological properties of the cell.

1.1.3 Transcription Factors

Some proteins become part of the structure of the cell, and others catalyse chemical reactions,

such as the breakdown of a food source or toxin. In this thesis we are particularly interested in

certain proteins called transcription factors (TFs). These proteins can enter the nucleus and

interact with DNA, altering the rate of transcription of genes. Each gene contains a cluster



4 Chapter 1 Introduction

RNA
polymerase

mRNA

amino acid
chain

ribosome

DNA

mRNA

DNA

RNA polymerase
(reads the DNA)

Transcription
Factors

Figure 1.1: An illustration of the gene expression process. Left: The transcription process
(top) and the translation process (bottom). Right: Transcription factors can bind to the
promoter region of a gene and alter the rate of transcription by attracting or repelling the
RNA polymerase II.

of binding sites, known as the promoter region, whose DNA sequences determine which TFs

can control the activation or repression of the gene. TFs can bind to these promoter regions

because they contain an external sequence of amino acids that has an affinity for a particular

section of the DNA sequence in the promoter region. This enables them to control the

expression of genes by promoting or blocking the recruitment of RNAP II to the promoter,

thus initiating or preventing gene expression. Each TF is a single protein but they can form

multiprotein complexes. They may work alone at the target site or together with other

transcription factors. Fig. 1.1 (right) shows an illustration of a DNA-bound complex of TFs

attracting an RNAP II to the promoter region of a gene.

In addition to the action of TFs, gene expression is also regulated by epigenetic regulatory

mechanisms, such as histone acetylation and DNA methylation [5, 6], and signalling networks

[7]. Proteins called histones lack DNA binding sequences, but can package DNA by acting as

spools around which the DNA is wound. Together, they make up chromatin, whose structure

is controlled by histone modifications and DNA methylation. Methylation (the addition of

a methyl group to a molecule) of DNA tightens chromatin, and the acetylation of histones

loosens the bindings [8–11]. Since tightly coiled chromatin is not accessible to the TFs and

transcriptional machinery, whereas regions of chromatin that are less condensed allow active

transcription, structure modification provides an additional mechanism for controlling gene

expression.

Studies show that TFs control the opening of chromatin at specific sites [12–15], which
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suggests that TFs and chromatic modification work together to activate or silence genes.

It was previously thought that gene silencing was irreversible, however recent studies have

shown that that histone modifications are reversible and dynamic [16, 17], which means that,

in principle, each gene can be reversibly switched on and off.

1.1.4 Cell Types, Stem Cells and Development

Almost every cell in a multicellular organism contains the same set of DNA, but development

(of an organism) gives rise to a wide range of cell types, each with very different physical

characteristics. These differences are largely due to differences in gene expression i.e. which

genes are turned “on” and which are “off”. Therefore, cell types are characterised by their

distinct morphology or function, and by distinct patterns of mRNA or protein expression.

Mammalian cells can be divided into three basic types: germ cells, somatic cells and stem

cells. Germ cells give rise to gametes (sex cells - eggs or sperm), and somatic cells make up

most of the body e.g. skin and muscle cells. Stem cells can give rise to somatic cells through

the process of development in the embryo [18], and tissue maintenance and repair in the adult

[19, 20].

There are two major categories of mammalian stem cells [21]:

1. Embryonic stem cells (ESCs), which are derived from the inner cell mass of the blasto-

cyst [22, 23], eventually give rise to the structures of the fetus [24]. ESCs are pluripotent,

which means that they can differentiate into all of the specialised embryonic cell types,

and they can replicate indefinitely [25].

2. Adult (or somatic) stem cells can be found in small numbers in most adult tissues.

They repair tissues in adult organisms by replenishing specialised cells and maintaining

regenerative organs during normal cell turnover [19, 20]. Unlike ESCs, adult stem cells

are usually multipotent [26], which means that their specialisation potential is limited

to one or more specific lineages.

ESCs are characterised by two properties:

1. They can renew themselves indefinitely in culture through mitotic cell division [21, 25].

A stem cell can proliferate by dividing while maintaining the undifferentiated state
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[27]. Cell division results in two daughter cells, and stem cells can divide symmetrically

and produce two stem cells identical to the original, or they can divide symmetrically

into two differentiated daughter cells. They can also divide asymmetrically to give rise

to two different daughter cells, where one is a copy of the original stem cell and the

other is differentiated [28]. Distinct daughter cells can be created because of an uneven

distribution of regulatory molecules in the parent cell; the distinct cytoplasm that each

daughter cell inherits results in a distinct pattern of differentiation for each daughter

cell [28, 29].

2. They have the capacity to differentiate into any adult cell type [30]. Cellular differen-

tiation is the process by which stem cells produce increasingly specialised progeny [31],

and is generally accompanied by coordinated changes in gene expression and alterations

in DNA structure that affect transcriptional access [5, 6].

Mammalian development begins when a sperm fertilises an egg and creates a single cell,

called a zygote. The zygote (and subsequent blastomeres) are able to differentiate into all

cell types, including the placental tissue, and are therefore totipotent [32]. The zygote divides

into identical cells and after several cycles of cell division, these cells begin to specialise,

forming a hollow sphere of cells, called a blastocyst [33]. The blastocyst has an outer layer

of cells, and attached to the inside wall of this outer layer is a cluster of cells called the inner

cell mass [33]. The cells of the inner cell mass go on to form nearly all of the tissues of the

body [34, 35].

During the early stages of mammalian embryonic development, ESCs can give rise to three

different groups of cells called germ-layers, and each group can generate a distinct set of

tissue lineages [36–38]. The three germ layers are

• the ectoderm, which develops into skin and neural tissue;

• the mesoderm, which gives rise to blood, bone, cartilage, muscle, and fat;

• the endoderm, which generates tissues of the respiratory and digestive tracts.

Adult stem cells typically belong to one of these three germ-layers, to which their regeneration

potential has been considered to be restricted, although recent experiments have challenged

this notion and suggested that under certain circumstances these cells may convert from one
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tissue lineage into a cell of an entirely distinct lineage (transdifferentiate), to contribute to a

much wider range of specialised cell than previously anticipated [38]. Somatic cells are referred

to as terminally differentiated [39] in that they are specialised cells that have reached the

final stage of development after which no further specialisation is thought to occur. Somatic

cells are generated from adult stem cells, which are not terminally differentiated; the job of

an adult stem cell is to produce cells that carry out a specialised function [19, 20]. A stem

cell differentiates into a progenitor cell, which is more committed to a particular lineage than

a stem cell. A progenitor cell can differentiate to one or more type of cell, but can divide

only a limited number of times [40, 41]. Some examples of stem and progenitor cells are:

• Hematopoietic stem cells give rise to red blood cells, white blood cells, and platelets,

for example, and can be found in adult bone marrow [42, 43]. In Chapter 3, we focus

on the expression of the protein Sca1 in hematopoietic stem cells.

• Mesenchymal stem cells give rise to stromal cells, fat cells, and types of bone cells, for

example, and can also be found in adult bone marrow [44].

• Epithelial cells are progenitor cells that give rise to cells that line hollow organs and

glands, and also make up the outer surface of the body [45].

• Muscle satellite cells are progenitor cells that contribute to the generation of adult

muscle tissue [46].

1.1.5 Genetic Regulatory Networks

In mathematical terms a regulatory network is a set of interconnected components, called

nodes – which represent the molecular entities involved (generally genes and proteins) –

along with connections between them called links. Links represent interactions between

molecular components and can be directed or undirected. For instance, much attention has

been paid to using high-throughput experimental techniques to identify physical protein-

protein interactions [47–51]. These data allow the inference of protein-protein interaction

networks (PPINs), using a combination of experimental methods [49, 52, 53] and reverse

engineering by the use of computational techniques [54–57]. In PPINs the nodes represent

proteins and links represent physical interactions between proteins (i.e. binding). In this

case, the links have no specific orientation: if protein A interacts with protein B then B also

interacts with A. PPINs are therefore undirected. Although PPINs map out the physical
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A
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Figure 1.2: A transcriptional regula-
tory network with three TFs. Promo-
tion of transcription is represented by
an arrow, and inhibition by a T-bar.

interactions between proteins – and thus the pos-

sible protein complexes which may form – they do

not incorporate the consequences of these physi-

cal interactions, such as the induction or repres-

sion of gene expression by multi-protein com-

plexes.

These interaction effects can be represented in

the form of a transcriptional regulatory network

(TRN) and much attention has also been paid to determining the structure and function

of TRNs [58–63]. In TRNs the nodes are TFs and the links represent regulation of gene

expression by upstream TFs. Unlike physical interactions between proteins there is a definite

orientation to transcriptional regulatory interactions: if TF A regulates the transcription of

TF B, it is not necessarily true that B regulates the transcription of A. Consequently, tran-

scriptional regulatory networks are directed. Figure 1.2 shows an example of a transcriptional

regulatory network consisting of three TFs labelled A, B and C. Promotion of transcription

is represented by an arrow, and inhibition by a T-bar, thus A promotes the transcription of

B, B promotes the transcription of C, and C represses that of A.

1.2 Mathematical Models of Regulatory Networks

The inherent complexity of the TRN makes it impossible to determine cell behaviour from the

regulatory network architecture using experiment and intuition alone [64]. In this section we

explain how mathematical models can provide the basis for theoretical description of TRNs,

and offer a deeper insight into the mechanisms that control expression levels.

Mathematical models of regulatory networks convert known structural information (in the

form of experimentally-derived protein-protein and protein-DNA interactions, for instance)

into a set of equations that describe how molecular expression levels change over time as a

result of the interactions between the components [65]. These equations can then be solved in

order to reproduce observed dynamics and make novel predictions concerning cell behaviour

[66].

There are numerous approaches to modelling regulatory networks, each of which has its

own strengths and weaknesses, capturing the dynamic behaviour of the regulatory network
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at different levels of detail [66]. Although closer to reality, detailed models involve a large

number of parameters and therefore require a lot of information. In contrast, the simplest

coarse-scale models only require knowledge of the architecture of the regulatory network,

which can make them easier to construct and interpret [67].

In this thesis we make use of three different types of differential equation to model TRNs

consisting of a small number of genes. Following a brief history of modelling cell fate, we

describe these models in detail and explain how those that incorporate stochasticity can be

simulated using computational methods. Starting with the chemical master equation (CME),

we show how a series of approximations lead progressively to the stochastic chemical Langevin

equation (CLE), the chemical Fokker-Planck equation (CFPE), and then to a set of ordinary

differential equations (ODEs) known as the reaction rate equations (RREs).

1.2.1 History of Modelling Cell Fate

An early significant attempt to understand cell fate was presented in the 1950s by the de-

velopmental biologist Conrad Waddington when he introduced the notion of the ‘epigenetic

landscape’ as a qualitative picture of development [68]. Waddington imagined the specifica-

tion of different cell types occurring as a ball rolling down sloping channels in a landscape

consisting of hills and valleys, whose geological structure is moulded by the genes that control

development (see Fig. 1.3, left). As the ball (representing the cell) rolls down the hill, it

reaches a point at which the channel splits in two, forcing the cell to chose between the dif-

ferent valleys. The downhill motion of the ball represents how the process moves inexorably

forward in developmental time, while differentiation is controlled by the hills, which act as

a barrier separating the landscape into distinct valleys. This intuitive metaphor for devel-

opment and the discrete nature of cell fates was particularly insightful given that relatively

little was known about protein synthesis prior to the discoveries of Watson and Crick, whose

work on the structure of DNA was also published throughout the 1950s [69, 70].

A minor adaptation to Waddington’s landscape was later proposed by Peter Andrews [71] who

suggested that a rougher landscape featuring a series of dips in the valleys more accurately

represents the progression through a series of relatively stable transitory cell types that occurs

during differentiation (see Fig. 1.3, right). In this picture, the likelihood of movement from

one state to another depends on the height of the terrain that surrounds the cell. Low
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Figure 1.3: Left: Waddington’s “Epigenetic landscape” was presented as a conceptualisation
of development. The ball represents a cell whose development is driven by the slope of the
landscape. As it rolls downhill, it must choose between discrete fates that are represented
by the different valleys. Right: Andrews’ adaptation of Waddington’s epigenetic landscape,
includes a series of dips in the valleys that represent the succession of metastable expression
profiles that occur during development. Source: [71]

barriers between two adjacent dips would result in a high frequency of transitions, whereas

high barriers would result in transitions occurring infrequently.

Cell Types and Attractors of Complex Regulatory Networks

The notion that cell fate decisions are regulated by complex networks was envisioned as

early as the 1940s. The physicist Max Delbruck was an early proponent of the notion that

distinct cell types correspond to dynamically stable states of underlying molecular regulatory

networks [72, 73]. This notion was supported in 1960 by the molecular biologists Jaques

Monod and Francois Jacob [74], who note that microbial regulatory elements “... could be

connected into a wide variety of ’circuits’ endowed with any desired degree of stability”.

Similarly (and also in the 1960s) the theoretical biologist Stuart Kauffman envisioned cell

fates as arising from the dynamics of complex genetic regulatory networks [75, 76]. Since the

structure of genetic regulatory networks was unknown in the 1960s, he used computational

models to generate random networks in which each gene is a boolean variable (either “on” or

“off”), and randomly assigned rules of interaction between them. Simulation of these models

showed that large randomly structured regulatory networks obeying certain conditions give

rise to some characteristics of a real differentiation process. In particular, he noted that they

gave rise to relatively few attractor states, corresponding to the fact that the number of adult

human cell types is considerably less than the number of possible genetic configurations. This

led Kauffman to propose that mature cell types correspond to attractors of high-dimensional

regulatory networks.

Experimental evidence supporting Kauffman’s attractor hypothesis has been provided by

Sui Huang and coworkers [77]. They showed that two biochemically distinct stimuli (the
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solvent DMSO and the hormone ATRA) were both able to trigger neutrophil differentiation

in human promyelocytic HL60 cells. Moreover, they demonstrated that these stimuli did not

trigger differentiation in the same way: time-series data revealed that initially the two stimuli

triggered divergent patterns of gene expression, but the two different trajectories eventually

converged to the same differentiated neutrophil state, suggesting the presence of an attractor.

After 60 years of study, the molecular complexity of cell fate regulation is only just becoming

clear and the dynamics of the cell fate regulatory networks that underlie development are

still the subject of considerable research interest.

1.2.2 The Chemical Master Equation

As is the case for all the modelling approaches in this thesis, the master equation framework

ignores spatial information and simply keeps track of the number of molecules of each type

[78]. This simplification is valid for a well-stirred system, where molecules of each species

are spread uniformly throughout the spatial domain in which they are confined [78]. Since

we do not know the exact positions and velocities of the molecules, we think in terms of

the probability that each reaction takes place [79]. It is also assumed that the system is in

thermal equilibrium and that the volume of the spatial domain is fixed [80].

In a chemically reacting system there are N molecular species S1, . . . , SN that take part in

one or more of M reactions R1, . . . , RM [80]. Reaction Rj describes a single instantaneous

physical event that changes the copy number of at least one species [81]. For example, a

molecule of species A can bind to a molecule of species B to create a molecule of species C,

thus decreasing the copy number of both species A and B by one, and increasing that of C

by one.

The number of molecules of each species at time t is quantified by the state vector

x(t) = (x1(t), . . . xN (t))T

where xi(t) is a non-negative integer that represents the number of molecules of species i

present in the system at time t [79]. The state vector, x(t), changes when one of the M

reactions takes place.
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In the chemical master equation (CME) formulation, each reaction is characterised by two

quantities [81, 82]:

1. The first is the resulting change in the copy numbers of the molecular species. The

jth reaction has an associated stoichiometric, or state-change vector, νj ∈ RN , whose

ith component, νij is the change in the number of molecules of species i as a result of

the jth reaction. Thus when reaction j occurs, the state vector changes from x(t) to

x(t) + νj . These column vectors form the N ×M stoichiometric matrix [ν1, . . . ,νM ].

2. The second quantity is the propensity function aj(x). The quantity aj(x)dt is the

probability that reaction Rj occurs within the next infinitesimal time interval [t, t+dt),

given that the system is in state x at time t.

A chemical reaction is written in the form [83]

reactants
reaction rate−−−−−−−−→ products.

For example, consider a reaction where a molecule of A binds to a molecule of B, at rate k,

to create a molecule of C. This is written as A+B
k−→ C.

Every reaction may be decomposed into a series of elemental reactions that involve either

one molecule (unimolecular) or two molecules (bimolecular) whose interaction yields one or

more molecular products [81]. A unimolecular reaction is written as

Si
k−→ products,

and a bimolecular reaction as

Si + Si′
k−→ products.

The ‘products’ could be one or two molecules of any species, including those on the left hand

side of the arrow. Reactions involving three or more molecules can be broken down into a

series of elemental reactions [84]. For example, S1 + S2 + S3 → S4 + S5 could be written as

S1 + S2 → S12 followed by S12 + S3 → S4 + S5. In the CME formalism it is assumed that

reaction Rj is a unimolecular or a bimolecular reaction.
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Assuming the kinetics follow the law of mass action, the form of the function aj(x) for a

bimolecular reaction is

aj(x) = kjhj(x) (1.1)

where kj is the probability rate constant or reaction rate constant for reaction j, defined such

that the probability that a randomly chosen pair of molecules Si and Si′ will collide and

actually react according to Rj in the next time period dt [79]. The function hj(x) is the

number of unique combinations of molecules Si and Si′ present (the number of opportunities

for the required molecules to collide). So for example, if R1 is the reaction S1+S2
k1−→ S3, then

a1(x) = k1x1x2, and if R2 is the reaction S1 +S1
k2−→ S4, then a2(x) =

k2

2
x1(x1−1). If Rj is a

unimolecular, reaction Eq. (1.1) still applies, and the function hj(x) is just the copy number

of the reactant species. For example, if R3 is the reaction S1
k3−→ S2 then a3(x) = k3x1.

To model a constant rate of production of a species from an entity whose abundance we are

not interested in capturing, we write the reaction in the form [85]

φ
kj−→ products,

where aj(x) = kj .

Given the probabilistic nature of the dynamics, we would like to study the evolution of the

probability p(x, t) that the system is in state x at time t. A time evolution equation for

p(x, t) can be deduced using the laws of probability. We do this by writing an equation for

the probability of being in state x at time t+∆t, given that we know the probability of being

in any possible state at time t and assuming ∆t is small enough that at most one reaction

can take place in the interval [t, t + ∆t) [79]. To be in state x at time t + ∆t, the system

must have either already been in state x at time t and no reaction took place over [t, t+ ∆t),

or the system was in state x − νj for some 1 ≤ j ≤ M at time t and the jth reaction took

place in the interval [t, t+ ∆t), causing the system to transition to state x. So from the law

of total probability we obtain [80]

p(x, t+ ∆t)− p(x, t)
∆t

=
M∑
j=1

(aj(x− νj)p(x− νj , t)− aj(x)p(x, t)) +O(∆t).
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If we now let ∆t→ 0 we get the CME [79]

dp(x, t)

dt
=

M∑
j=1

aj(x− νj)p(x− νj , t)− aj(x)p(x, t). (1.2)

Since the state vector x can take a large number of possible values, the CME (1.2) is a very

large system of coupled, linear ODEs. The kth equation gives the probability of the system

being in the kth state at time t. Generally, the CME cannot be solved analytically, so we use

the stochastic simulation algorithm (SSA, also known as Gillespie’s algorithm) to obtain an

evolving probability distribution by computing sample trajectories of the state vector x(t).

The SSA (Gillespie’s Algorithm)

The SSA [86, 87] enables us to build up an evolving probability distribution by computing

sample trajectories of the state vector x(t). This involves successively advancing the system

from its current state by exactly one reaction event, where the probability of a particular

reaction occurring reflects the corresponding probability given by the CME.

At the heart of the SSA is the generation of two random numbers: the time τ to the next

reaction, and the index j of that reaction. Thus the key quantity is p(τ, j|x, t)dτ , the proba-

bility that, given x, the next reaction will occur in the time interval [t+ τ, t+ τ + dτ), and it

will be the jth reaction. Since x(t) is a Markov process, we can begin to derive an expression

for this probability by writing

p(τ, j|x, t).dτ = p (no reaction takes place over [t, t+ τ))

× p (jth reaction takes place over [t+ τ, t+ τ + dτ)) , (1.3)

where dτ is so small that at most one reaction can take place over that length of time. One

way to derive the first probability on the RHS of this equation is to divide [t, t + τ) into n

intervals, as illustrated below, and determine the limit as n → ∞. Now, the probability of
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no reactions occurring in a time interval of length τ/n is

1− a0(x)
τ

n
,

where

a0(x) =

M∑
j=1

aj(x),

so the probability of no reactions occurring in all n consecutive intervals is

lim
n→∞

(
1− a0(x)

τ

n

)n
= e−a0(x)τ .

The second term on the RHS of Eq. (1.3) – the probability that the jth reaction takes place

over the interval [t+ τ, t+ τ + dτ) – is simply aj(x)dτ , thus

p(τ, j|x, t)dτ = e−a0(x)τaj(x)dτ,

⇒ p(τ, j|x, t) = e−a0(x)τaj(x). (1.4)

This can be re-written as

p(τ, j|x, t) =
aj(x)

a0(x)
a0(x)e−a0(x)τ . (1.5)

So the joint probability density function p(τ, j|x, t) can be written as the product of two

separate density functions:

1. j is the integer random variable with probability mass
aj(x)
a0(x) .

2. τ is the continuous random variable with an exponential probability density with mean

1
a0(x) .

The fact that τ and j are statistically independent is very useful from a computational per-

spective, since it allows us to simulate a reaction index and a reaction time independently,

using a sample from the uniform distribution on the interval (0, 1) and the cumulative distri-

bution functions.

The “direct” method” (we will see some approximations later) of implementing the SSA is

therefore as follows:
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1. Given that the system is in state x at time t, evaluate a1(x), . . . , aM (x) and a0(x) =∑M
j=1 aj(x).

2. Draw two random numbers from the uniform distribution on the interval (0, 1), r1 and

r2, and calculate τ and j according to:

τ = 1
a0(x) ln

(
1
r1

)
j = the smallest integer satisfying

j∑
k=1

ak(x) > r2a0(x)

3. Update t→ t+ τ and x→ x+ νj

4. Return to step 1 or end the simulation.

The SSA is an exact stochastic method to simulate a chemical reaction system, in the sense

that the statistical properties that underlie the CME are reproduced precisely [78]. It is

easy to implement, but can be very slow when there are large numbers of molecules in the

system because reactions occur frequently, resulting in many iterations within a given period

of time. An alternative strategy called the tau-leaping approximation speeds up simulations

of the CME by making approximations to the probabilities assigned to the successive states

[81], and as we will see, features in the transition from the CME to the chemical Langevin

equation.

1.2.3 The Chemical Fokker-Planck Equation

The Chemical Fokker-Planck Equation (CFPE) is a multivariate partial differential equation

that describes the time evolution of the joint probability distribution of the state of a chem-

ically reacting system. We now show how the multivariate CFPE can be derived from the

CME.

First, we relax the condition that the components of x are integers, and allow them to take

real values (which is reasonable for a continuous, large number approximation). Assuming

that the function fj(x) = aj(x)p(x, t) is analytic (infinitely differentiable) in the real variable

x, we can use Taylor’s theorem to expand the first term on the right hand side of Eq. (1.2).

The Taylor series expansion of a general function f(x) is

f(x− ν) = f(x)− νTDf(x) +
1

2
νTD2f(x) ν + . . . ,
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where Df(x) is the Jacobian of f(x) and D2f(x) is the Hessian matrix. Substituting f(x)

with aj(x)p(x, t) and cancelling the first term of the Taylor Series expansion with the last

term on the RHS of Eq. (1.2), the CME becomes:

∂p(x, t)

∂t
= −

M∑
j=1

νTj D[aj(x)p(x, t)] +
1

2

M∑
j=1

νTj D
2[aj(x)p(x, t)]νj + . . . ,

= −
N∑
i=1

∂

∂xi

 M∑
j=1

νijaj(x)p(x, t)

+
1

2

N∑
i=1

N∑
k=1

∂2

∂xixk

 M∑
j=1

νijνkjaj(x)p(x, t)

+ . . .

= −
N∑
i=1

∂

∂xi
[Fi(x)p(x, t)] +

1

2

N∑
i=1

N∑
k=1

∂2

∂xixk
[Dik(x)p(x, t)] + . . . , (1.6)

where Fi(x) =
M∑
j=1

νijaj(x) and Dik(x) =
M∑
j=1

νijνkjaj(x). Eq. (1.6) is the Kramers-Moyal

expansion of the CME. Truncation after the second order term leads to the multivariate

CFPE. The CFPE is a partial differential equation that describes the time evolution of the

probability distribution function, p(x, t). It can be written in the form

∂p(x, t)

∂t
= −∇ ·

[
F(x)p(x, t)− 1

2
∇ · [D(x)p(x, t)]

]
, (1.7)

where F (x) = S a(x) is the N × 1 drift vector, S is the N ×M stoichiometric matrix, a(x)

is the M×1 column vector of propensity functions, and D(x) =
M∑
j=1
νj ν

T
j aj(x) is the N×N

diffusion matrix.

In one dimension the CFPE reads:

∂p(x, t)

∂t
= − ∂

∂x

 M∑
j=1

νjajp(x, t)

+
1

2

∂2

∂x2

 M∑
j=1

ν2
j ajp(x, t)

 , (1.8)

which is commonly written as

∂p(x, t)

∂t
= − ∂

∂x
[F (x)p(x, t)] +

1

2

∂2

∂x2

[
σ2(x)p(x, t)

]
, (1.9)

where F (x) =
M∑
j=1

νjaj and σ2(x) =
M∑
j=1

ν2
j aj , or

∂p(x, t)

∂t
= − ∂

∂x
J(x, t), (1.10)

where

J(x, t) = F (x)p(x, t)− 1

2

∂

∂x

[
σ2(x)p(x, t)

]
. (1.11)
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At the steady-state, the probability current J(x, t) = c, where c is a constant. Since there

is no probability flow through x = 0 (i.e. negative numbers of molecules are not possible), c

must equal zero, and so the stationary probability density function, p∞(x) satisfies

dp∞(x)

dx
+

(
2

σ2(x)

dσ2(x)

dx
− F (x)

σ2(x)

)
p∞(x) = 0.

Using the integration factor

I(x) = exp

(
2 ln

(
σ2(x)

)
−
∫ x

0

F (y)

σ2(y)
dx

)
,

we obtain

p∞(x) =
Z−1

σ2(x)
exp

[
2

∫ x

0

F (y)

σ2(y)
dy

]
, (1.12)

where

Z =

∫ ∞
0

1

σ2(x)
exp

[
2

∫ x

0

F (y)

σ2(y)
dy

]
, dx (1.13)

is a normalising constant which ensures that p∞(x) is a proper probability distribution.

1.2.4 The Chemical Langevin Equation

The Chemical Langevin Equation (CLE) is a stochastic differential equation that describes

the time evolution of the state of a chemically reacting system. It is mathematically equivalent

to the CFPE, and the probability density function of x(t) obeys Eq. (1.7) [79]. The CLE can

be written in the form

dx

dt
= F (x) + σ(x)ξ(t), (1.14)

where F (x) and σ(x) are known functions, and ξ(t) is a rapidly fluctuating stochastic term,

known as white noise. A stochastic process ξ(t) is called white noise if its time average value

is zero i.e., 〈ξ(t)〉 = 0, and for t 6= t′, ξ(t) and ξ(t′) are statistically independent (i.e. the

fluctuation function has no correlation at different times), i.e., 〈ξ(t)ξ(t′)〉 = δ(t− t′).

The function σ(x) in Eq. (1.14) denotes the form of the amplitude of the noise. If σ(x) is a

constant then the system is subject to additive noise, otherwise it is subject to multiplicative

noise.
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For a system with more than one species, the multi-dimensional CLE reads:

dx

dt
= F (x) + σ(x)ξ(t). (1.15)

We can derive the form of the the functions F (x) and σ(x) directly from the CME to obtain

the CLE. A common derivation [79] begins with a formula that was originally proposed to

speed up the CME simulation algorithm [88]. It involves approximately advancing the system

from state x at time t by a preselected time τ , during which more than one reaction may

occur. Placing two conditions on τ will allow us to transition from the CME to the CLE.

If we choose τ small enough such that all the propensity functions remain approximately

constant during that time period, i.e., if

aj(x) = const in [t, t+ τ), ∀j, (1.16)

then we can define the Poisson random variable with mean aτ , P(aτ), to be the number of

reactions that will occur in a time τ , given that the probability of a reaction occurring in the

next infinitesimal time dt is adt, where a is a positive constant. Together with Eq. (1.1), this

implies that the number of times reaction j occurs in the next τ is P(aj(x)τ). Since reaction

j changes the state of the system by νj , the state of the system at time t+ τ is

x(t+ τ) = x+
M∑
j=1

P(aj(x)τ)νj . (1.17)

Eq. (1.17) is called the tau-leaping formula, and it forms the basis of the tau-leaping algorithm.

The errors introduced by this approximation will be small as long as the state vector updates

are relatively small, and can be reduced by adaptively choosing the leap time τ based on the

current state vector and propensity function values.

The second condition allows us to approximate the Poisson random variable by a normal

random variable. Given that the expectation of P(aj(x)τ) is aj(x)τ , we require that each

reaction will occur ‘many times’ during τ . That is

aj(x)τ � 1, ∀j. (1.18)



20 Chapter 1 Introduction

If this is the case we can use the result that

P(µ) ≈ N (µ, µ), for µ� 1,

which, together with the identity

N (µ, σ2) = µ+ σN (0, 1),

allows us to further approximate Eq. (1.17) as follows:

x(t+ τ) ≈ x+

M∑
j=1

Nj(aj(x)τ, aj(x)τ)νj ,

≈ x+
M∑
j=1

[
aj(x)τ +

√
aj(x)τNj(0, 1)

]
νj ,

≈ x+

M∑
j=1

νjaj(x)τ +

M∑
j=1

νj

√
aj(x)

√
τN (0, 1), (1.19)

which is the Euler–Maruyama discretisation of the continuous time stochastic differential

equation (SDE)

dx

dt
=

M∑
j=1

νjaj(x) +

M∑
j=1

νj

√
aj(x)ξj(t), (1.20)

where ξ(t) ∼ N
(

0,
1

dt

)
=

1√
dt
N (0, 1), and the ξj(t) are statistically independent Gaussian

white-noise processes. In the limit τ → 0, the discrete time recurrence (1.19) converges

to the continuous time process described by (1.20). Thus Eq. (1.19) allows us to compute

approximate numerical solutions for Eq. (1.20).

Comparing this result with Eq. (1.15), we see that:

F (x) =
M∑
j=1

νjaj(x); σ(x) =
M∑
j=1

νj

√
aj(x). (1.21)

The discrete stochastic process x(t) has now been approximated by a continuous stochastic

process, but this is only valid if the system satisfies both conditions given by Eqs. (1.16)

and (1.18). It should also be noted that the CLE will not be accurate for describing rare

events, because the approximation P(µ) ≈ N (µ, µ), for µ� 1 is a very poor approximation

for values that are very far from their mean, µ (more than a few standard deviations
√
µ

away) [89]. This means that the CLE nearly always underestimates the likelihood of rarely
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occurring reactions, which in some circumstances may have a dramatic impact on the dy-

namics. Therefore the CLE is only valid over a limited period of time for systems that have

rare events. Observed over a long period of time, a simulation of the original CME would

generate the atypical behaviour resulting from rare events, but a simulation of the CLE will

not generate the rare events, and therefore will only accurately describe the typical behaviour

of the system.

1.2.5 Reaction Rate Equations

Reaction Rate Equations (RREs) consist of a set of N coupled ordinary differential equations

(ODEs), with one equation for each molecular component in a chemically reacting system.

To obtain the deterministic RREs, we could simply ignore the stochastic part of the CLE,

although we currently have no justification for doing so. The CLE is more commonly written

in terms of the species concentrations

yi(t) =
xi(t)

Ω
. (1.22)

We can use what is known as the thermodynamic limit to derive the RREs from the CLE.

The thermodynamic limit is a large-system limit in which the species populations, xi(t), and

the containing volume, Ω, all tend to infinity in such a way that the species concentrations,

yi(t), remain constant (with respect to the limit). In this limit, the deterministic coefficients

(aj), and therefore the deterministic drift terms, grow as the system size, but the stochastic

diffusion terms grow as the square root of the system size. In this limit the CLE reduces to

dx

dt
=

M∑
j=1

νjaj(x), (1.23)

and the continuous stochastic process x(t) has now been approximated by a continuous

deterministic process.

In fact, being close to the thermodynamic limit is also a necessary condition for the validity

of the CLE, which emphasises the fact that both the CLE and the RRE are only valid when

there are large numbers of molecules of each species. Moreover, it has been proven [84] that

both conditions (1.16) and (1.18) on τ are satisfied in the thermodynamic limit.



22 Chapter 1 Introduction

We note that the RRE provides us with an expression for the state of a chemically reacting

system in thermodynamic limit, and not necessarily an expression for the dynamics of the

mean abundance of each species. We can obtain the time evolution of the expected value of

x from the CME (1.2) by multiplying both sides of Eq. (1.2) by x, and then summing over

all x. Doing so, we get

∂〈x〉
∂t

=
M∑
j=1

νj〈aj(x)〉, (1.24)

where 〈x〉 is the expected state of the system, and we obtain the same expression by taking

the expectation of both sides of the CLE (1.20). Now, if all chemical reactions in the system

are unimolecular, the propensity functions are linear, and 〈aj(x)〉 = aj(〈x〉). In this case,

Eq. (1.24) is a set of closed ODEs for the means, 〈x〉, and is identical to the RRE (1.23).

However, if there are any bimolecular reactions, Eq. (1.24) contains at least one second

order moment, and the evolution of the moments depend on higher order moments, which

themselves depend on even higher order moments, and so on. Therefore, we would obtain an

infinite set of open ended equations for all the moments, which is not the same as the RRE

(1.23).
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1.2.6 Summary of Mathematical Models of Regulatory Networks
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Figure 1.4: Summary of the relationships between the four models of regulatory networks
described in Section 1.2.2. The equations for the evolution of the probability density (and
mass) functions are given in the rounded boxes in the left column, and those for the evolution
of the state in the right column. The relationships between each equation are summarised
on the corresponding arrows. The box in the bottom left hand corner (double line border)
contains the definitions of three abbreviations used throughout the figure.
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1.3 Noise in Gene Expression

Gene expression is a noisy process [90–92] since transcription and translation are inherently

stochastic molecular processes that are also affected by environmental noise caused by fluc-

tuations in the regulating TFs and other cellular components [93]. Consequently, the copy

number of gene products in an individual cell fluctuates continuously [94–96]. As this vari-

ation can affect cell behaviour, cells have developed a range of mechanisms (e.g. negative

feedback loops, see [97] and Section 2.2.1) to control this molecular noise [98]. However,

molecular noise can have a positive role in cell fate determination [99, 100] because it enables

an organism to adapt to changes in the environment without the need for genetic mutations

[100]. For example, stochastic effects have been used to explain cell-to-cell variability in

clonal populations [93, 96, 101, 102], and there is evidence to suggest that such variability in

mammalian progenitor cell populations primes the cells for different lineages choices [103].

The models of variability in gene expression presented in this thesis are based on positive

feedback and the intrinsic noise in transcription and translation. Although deterministic

analyses can be useful for understanding the main properties of a dynamical system, they

can fail to capture some behaviours. Deterministic models are a sufficient approximation

for well-stirred, chemically reacting systems comprising a large number of molecules such

that discreteness and stochasticity are not significant. However, if the copy number is small

(and many gene products are present in small copy numbers [95, 104]) or the system is

susceptible to noise amplification, for example, then stochasticity can have a major effect on

the behaviour of the system.

We now demonstrate the importance of stochastic methods for describing the dynamics of

regulatory networks by presenting two examples where deterministic models fail to capture

the qualitative behaviour of the system, and illustrate why it is ‘compulsory’ to account for

noise. Each example demonstrates that the presence of noise can lead to significant quali-

tative differences in the behaviour of a system, emphasising that the validity of macroscopic

approaches to describe averages cannot be taken for granted.

Intrinsic Noise in a Monostable System

Since intrinsic noise in a system can enhance a signal, the deterministic description of the

dynamics of a TRN does not necessarily correctly represent the evolution of the mean of the
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inherently stochastic system [104, 105]. Consider two proteins X and Y that are synthesised

at an equal rate k, and decay at rates dx and dy, respectively. They can also irreversibly bind

to form a heterodimer Z with a constant association rate a. This chemical reaction system

is described by the scheme

φ
k−→ X

dx−→ φ, φ
k−→ Y

dy−→ φ, X + Y
a−→ Z, Z

dz−→ φ (1.25)

In the deterministic setting, these reactions can be described by the RREs

dx

dt
= k − dxx− axy (1.26)

dy

dt
= k − dyy − axy (1.27)

dz

dt
= axy − dzz (1.28)

where x, y and z are the concentrations of X, Y and Z, respectively, and x(0), y(0), and

z(0) are the initial conditions. Eqs. (1.26) and (1.27) support one stable equilibrium point,

whose basin of attraction is the entire positive quadrant. To illustrate the importance of

stochasticity, sample trajectories of the system (Fig. 1.5, left) were simulated using Gillespie’s

stochastic simulation algorithm (SSA) (see Section 1.2.2) for two sets of parameter values:

k = 10−1, dx = 10−6, dy = 10−5, a = 10−5 (1.29)

k = 1000, dx = 10−4, dy = 10−3, a = 10−1 (1.30)

The steady state values for x and y are given by x∗ ≈
√

k
a = 100 and y∗ ≈

√
k
a = 1000 for

both sets of parameters, but there is a noticeable difference between the sample stochastic

trajectories. For the first set of parameters the time series for the copy number of Y (Fig.

1.5, left) remains close to the RRE steady state. However, the second set of parameters

leads to an increase in the inherent noise and the copy number reaches up to six-fold the

deterministic mean. In this case the noise has a severe effect on the system and demonstrates

that a deterministic model masks important microscopic behaviour.

Noise Induced Oscillations

Many organisms have developed molecular mechanisms that generate oscillating levels of

expression of proteins with a period roughly equal to 24 hours [105]. These oscillations,

known as the circadian rhythm, allow the organism to synchronise their biological processes
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Figure 1.5: Left: Stochastic simulation of the chemical system given by Eq. (1.25) using
Gillespie’s stochastic simulation algorithm (SSA). The first set of parameters (1.29) was used
to generate the plot in black, and the second set (1.30) yields the plot in blue. Right: Time
evolution of the repressor protein for the deterministic equation, whose solution was found
using a nonstiff differential equation solver (ode45 in Matlab) (top) and stochastic version
(bottom), simulated using the SSA using the same parameter values (1.32).

with environmental periodicity. An experimentally determined, minimal set of mechanisms

required for the circadian system is described by [106] with a model of two genes: an activator

A and a repressor R. The activator protein A binds to (unbinds from) its own promoter region

and that of R at rates γA (φA) and γR (φR) respectively, increasing the transcription rates

of A and R mRNA from αA and αR to α′A and α′R, respectively. The A and R mRNA are

translated into their respective proteins at rates βA and βR, and decay at rates δMA and

δMR, respectively. The proteins A and R decay at rates δA and δR. Thus A creates a positive

feedback loop with itself. Meanwhile, the repressor protein can bind to the activator protein,

creating dimer C, and preventing protein A from binding to its promoter region, thus creating

a negative feedback loop. The dimer C decays at rate δA, the product of which is protein R.

This chemical reaction system is described by the scheme

DA +A
γA−−→ D′A

φA−−→ DA +A, DR +A
γR−−→ D′R

φR−−→ DR +A,

DA
αA−−→ DA +MA, D′A

α′A−−→ D′A +MA, MA
δMA−−−→ φ,

DR
αR−−→ DR +MR, D′R

α′R−−→ D′R +MR, MR
δMR−−−→ φ,

MA
βA−−→MA +A, A

δA−→ φ, MR
βR−−→MR +R, R

δR−→ φ,

A+R
γc−→ C

δA−→ R. (1.31)
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In the deterministic setting, these reactions can be described by the RREs

dDA

dt
= φAD

′
A − γADAA

dD′A
dt

= γADAA− φAD′A
dDR

dt
= φRD

′
R − γRDRA

dD′R
dt

= γRDRA− φRD′R
dMA

dt
= α′AD

′
A + αADA − δMAMA

dMR

dt
= α′RD

′
R + αRDR − δMRMR

dA

dt
= βAMA + φAD

′
A + φRD

′
R −A (γADA + γRDR + γCR+ δA)

dR

dt
= βRMR − γCAR+ δAC − δRR

dC

dt
= γCAR− δAC

where D′A and DA denote the concentrations of activator genes with and without protein A

bound to its promoter, respectively; similarly, D′R and DR refer to the repressor promoter;

MA and MR denote the concentrations of A and R mRNA; A and R correspond to the

activator and repressor proteins; and C corresponds to the inactivated complex formed by A

and R; and DA(0), D′A(0), DR(0), D′R(0), MA(0), MR(0), A(0), R(0) and C(0) are the initial

conditions.

For the following set of parameter values

α′A = 500, αA = 50, α′R = 50, αR = 0.01, βA = 50, βR = 5, δA = 1, δR = 0.2,

δMA = 10, δMR = 0.5, γC = 2, γA = 1, γR = 1, φA = 50, φR = 100 (1.32)

the RRE model of the dynamics of the system exhibits oscillations in the repressor protein.

When the degradation rate, δR, of the repressor protein is reduced to 0.02, the increased

presence of protein R increases the number of opportunities for A to be sequestered, thus

reducing the number of activators in the system. Consequently, the number of repressor

molecules falls to, and remains at a low steady state (Fig. 1.5, top right). The value of the

degradation rate at which the system transitions from an oscillatory regime to a monostable

regime is known as a Hopf bifurcation. However, when molecular noise is incorporated in the

model, the oscillations reappear. This is illustrated by a sample trajectory of the system,

simulated using the SSA (Fig. 1.5, bottom right). The frequency of the noise-induced
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oscillations can be manipulated by changing the level of intrinsic noise in the system. This

can be done, for example, by changing the speed of the molecular reactions.

1.4 Summary

We have introduced the molecular biology relevant to the studies that follow in the next

two chapters. Central to this thesis are the TFs that interact with each other to regulate

gene expression in stem and progenitor cells, and therefore control cell fate. The effects of

these interactions can be represented in the form of a TRN, which can be converted into a

set of equations that describe how expression levels change over time. Following a review of

the historical understanding of cell fate determination, we described in detail three different

types of differential equation used to model TRNs.

The CME is a time evolution equation for the probability, p(x, t), that the system is in

state, x ∈ N0, with regard to a continuous time variable t. We explained how it can be can

be deduced from the laws of probability, and can be simulated using the SSA to obtain an

evolving probability distribution, by computing sample trajectories of the state vector. A

disadvantage of the SSA is that many trajectories are needed for the time-dependent solution

of the CME, and only long time-integrations yield accurate results for its steady state solution.

Alternatively, the CME can be approximated by the CFPE – a time dependent partial differ-

ential equation – in which the state vector x becomes a real-valued vector, x ∈ RN . Since the

CFPE represents continuous processes, it is significantly more analytically tractable than the

CME. As such, we were able to derive a simple expression for the one-dimensional steady-state

probability density function, p∞(x), from the one dimensional CFPE.

The CLE is a stochastic differential equation that describes the time evolution of the state

vector, x(t). It is mathematically equivalent to the CFPE, in that the probability density

function of x(t) obeys the CFPE. In the thermodynamic limit, the CLE reduces to the RREs,

a set of coupled ODEs, with one equation for each molecular species.

All three of these differential equation models will be useful for helping us understand the

mechanisms that control cell-to-cell variability in both adult and embryonic stem cell popu-

lations.
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Since the processes involved in gene expression are noisy, it is often important to account for

this stochasticity in models of regulatory networks. To illustrate this, we compared the CME

model and the equivalent RREs of two chemically reacting systems. In the first example,

sample trajectories of the system, simulated using the SSA, showed that an increase in the

intrinsic noise can lead to a significant increase in the mean level of expression in the stochastic

model, even when the deterministic mean remains unchanged. In the second example, the

incorporation of molecular noise in the model resulted in oscillations that were not present

in the solution of the RREs. In both cases, the deterministic model masked important

microscopic behaviour.





Chapter 2

Mathematical Modelling of

Pluripotency

2.1 Introduction

This chapter is comprised of two main parts, each of which aims to elucidate the underlying

mechanisms that govern the experimentally observed variability in the expression levels of

the protein Nanog – a TF in ESCs that is thought to be a key factor in maintaining pluripo-

tency. In the first part we explore the combined role that feedback loops and the inherent

stochasticity in transcription and translation have in controlling the variability of expression

levels at the population level, and cell fate decisions at the single cell level. In the second part

we consider the origins of the empirical bimodal distribution of Nanog expression. Although

many studies report such heterogeneity, new evidence suggests that it might be a result of the

measurement method interfering with the Nanog feedback mechanism – a mechanism that

we explore in more detail.

2.1.1 The ESC TRN

The regulatory networks that underpin the ESC state contain many protein-protein and

protein-DNA interactions forming a very complicated TRN with many positive feedback loops

(Fig. 2.1a). Central to this network are three TFs: Oct4, Sox2 and Nanog [107]. A plethora

of studies have revealed that these master regulators play a central role in the maintenance

of stem cell identity [36, 108–114]. Genome-wide experiments have shown that Nanog, Oct4,

31



32 Chapter 2 Mathematical Modelling of Pluripotency

Sox2

Oct4
Oct4

Sox2

Nanog
Nanog

Nanog

Nac1

Sox2

Nanog

Dax1

Zfp281

Myc

Klf4
Oct4

Rex1

a b

Figure 2.1: a) The extended embryonic stem cell transcriptional regulatory network, rich in
regulatory loops. The arrows indicate interactions but not their type. b) The core embryonic
stem cell regulatory network. The genes (blue rectangles) are expressed (dashed lines) and
their products (proteins) bind to form dimers (pink ovals). The dimers can bind to the
promoter region of the genes (solid lines) and positively affect their rate of expression.

and Sox2 bind cooperatively to promoter regions of several hundred genes involved in the

regulation of pluripotency and differentiation [58, 115, 116], indicating that Oct4, Sox2 and

Nanog directly affect their rate of transcription.

Experimental observations have shown that Oct4 and Sox2 are relatively homogeneously

expressed, whereas Nanog is heterogeneous and exhibits a bistable pattern of expression

[3, 107, 108, 117–119]. Studies on the function of Nanog reported that the level of Nanog

expression influences developmental potential; the absence of Nanog leads to cell differenti-

ation and the loss of pluripotency both in vivo and in vitro [3, 110, 114, 117], whereas high

levels of Nanog maintain pluripotency despite the presence of differentiation inducing stim-

uli [3, 36]. Nanog shows significant temporal expression fluctuations at the single-cell level

[117, 119–124], and it is these fluctuations that give rise to the heterogeneity within ESC

populations, ensuring robustness of the population and the long-term regenerative potency

of a single cell [124–126]. It has been shown that populations of ESCs that express Oct4

contain a subpopulation (10 - 20%) of cells that are Nanog-low, due to stochastic transitions

between Nanog-high and Nanog-low states within individual cells [108]. These fluctuations

transiently prime individual ESCs for differentiation without committing them to a particular

state [117]. Such findings support the hypothesis that Nanog acts as molecular “gate-keeper”
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for transient differentiation signals in fluctuating environments, while preparing the cell for

differentiation when the appropriate and persistent stimuli do occur [3, 127, 128].

Oct4, Sox2 and Nanog form the core ESC TRN with many positive feedback loops (Fig. 2.1b).

Each factor positively regulates the expression of itself and the other two either via an Oct4-

Sox2 heterodimer, or a Nanog homodimer [111, 112]. In fact, it has been shown that Nanog

dimerisation is necessary for the maintenance of ESC pluripotency and self-renewal [129].

Since positive feedback loops are self-sustaining (by perpetuating transient stimuli) the ex-

pression of the three master TFs can be maintained by this network structure. This was

demonstrated by Ying et al. [130], who reported that extrinsic stimuli (growth factors or

cytokines) were not required for the propagation and maintenance of pluripotency in cul-

ture of ESCs derived from mice, since the ESCs were able to self-renew when shielded from

differentiation-inducing stimuli. As such, they proposed that the pluripotent state is an

intrinsically self-maintaining state (termed “ground state”) that does not require extrinsic

input.

A study by MacArthur et al. [3] motivates the work that makes up the first part of this

chapter, in which we aim to elucidate the molecular basis for the fluctuations in expression

in the TRN. In order to reproduce the Nanog expression level fluctuations observed in wild-

type ESCs and assess the dynamic response of gene expression upon loss of Nanog, they

used a mouse ESC-line (NanogR) [114, 131] in which Nanog expression level can be precisely

controlled with a chemical called doxycycline (dox). This cell-line is created by infecting a

wild-type ESC with a type of retrovirus that delivers two genes to the nucleus. The expres-

sion of these genes is simultaneously driven by dox. The first gene is transcribed into a short

hairpin RNA (shRNA) that mark the endogenous Nanog mRNA for degradation and ensures

that it is never translated into Nanog proteins, and the second gene codes for a Nanog-GFP

protein complex that is immune to shRNA knockdown. Thus exogenous Nanog is not subject

to the same regulatory conditions as endogenous Nanog, since all Nanog feedback elements

are removed, and dox can be used to turn Nanog expression on (in the presence of dox) and

off (on the removal of dox) robustly and synchronously in the entire population, on demand.

This Nanog switch was used by MacArthur et al. [3] to restore Nanog expression at several

time points following Nanog depletion, and the ability of Nanog to restore the pluripotency

network at each time point was assessed, based on expression changes in the extended TRN.

When Nanog expression was switched off for 24 hours or less (mimicking a cell stochastically
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transitioning from the Nanog-high to the Nanog-low state), the cells adopted a reversible

primed state in which most elements of the extended TRN did not show significant changes

in expression, and some differentiation genes were co-expressed. However, in the continued

absence of Nanog (>24 hours), the pluripotency genes of the extended TRN were irrevocably

downregulated and associated differentiation genes upregulated, thus committing them to

their associated cell fates. In concordance with earlier studies, these results indicate that

Nanog is a potent, nonspecific negative regulator of early lineage decisions, and suggest that

early fate changes are reversible at the single cell level. Here, we explore the role of Nanog in

the global feedback structure in the extended ESC TRN. Feedback loops (which can be pos-

itive, negative or mixed) commonly regulate phenotypic variability in diverse organisms and

contexts by generating complex dynamics [132], such as multi-stability [133–138], excitability

[108] and oscillations [139–141], and by modulating molecular noise [97, 142]. Accordingly,

Nanog fluctuations may regulate early cell fate decisions and population variability by con-

trolling feedback mechanisms in the extended ESC TRN. To investigate this possibility we

explore how feedback in network structures relates to dynamics, and then analyse the feed-

back structure of the extended ESC TRN (Fig. 2.1a).

2.1.2 Faithfulness of Nanog Reporter Strategies

In the second part of this chapter, we question the faithfulness of a reporting method that

has been used to measure protein expression, including that of Nanog, in a large number

of experiments published in prominent journals. The basis of these studies are engineered

cell-lines which express a green fluorescent protein (GFP) (either with or without Nanog)

under the Nanog promoter. GFP, a protein originally isolated from the jellyfish aequorea

victoria, exhibits bright green fluorescence when exposed to light in the blue to ultraviolet

range [143]. There are two copies of Nanog on the autosomes [144], each of which has a

slightly different DNA sequence [145], and is called an allele. Heterozygous GFP knock-in

cell lines are created by replacing the coding region for Nanog with that for GFP on one allele

[118]. Since the promoter region is unchanged, GFP is transcribed at the same rate as Nanog.

GFP expression – as a proxy for Nanog – is then measured by passing the cells through a

flow cytometer. This machine directs beams of light at the cells as they pass through a

thin tube that is sufficiently narrow to only allow one cell through at a time, and detects

the level of intensity of the resulting fluorescent signals returned by the cell [146]. In the
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absence of other cellular material between the detector and the GFP molecules, the recorded

fluorescence intensity (FI) is approximately proportional to GFP abundance, subject to a

number of environmental variables that can affect the level of precision of the measurement

[147]. However, since the GFP molecules are produced inside the nucleus of the cell, the

fluorescent signal is attenuated, and the true relationship between FI and and copy number

is unknown [148]. GFPs are most commonly used but different colour fluorescent proteins

can be used simultaneously to report more than one gene at a time [144, 149].

The heterozygous knock-in strategy is one of an increasing number of reporter constructs that

are being used to obtain information about gene products in live cells, both in vivo and in

vitro, as well as over time. Such reporter strategies provide a vital tool for exploring spatial

and temporal heterogeneity in development, homeostasis and disease. However, for a reporter

to be of practical use and enable conclusions concerning gene expression at the single cell level

to be drawn, the reporter signal must be representative of the level of expression of the protein

of interest in that particular cell. For example, the faithfulness of reporter strategies at the

single-cell- and population-level is highly relevant to experiments where cellular populations

are sorted according to the strength of the reporter signal. A common sorting procedure

involves dividing bimodal populations into low- and high-expressing subpopulations by flow

cytometry. In this case, if a single cell reporter measurement does not reflect the actual

expression level of the gene of interest, then functional studies could be confounded by mixed

starting populations.

The majority of studies characterising heterogeneity in Nanog expression have used live-cell

gene reporter strategies [149]. However, recent evidence suggests that these reporters do not

give a faithful reflection of endogenous Nanog expression, because the strategies used appar-

ently perturbs the underlying regulatory network. The extent of the perturbation depends on

the reporter construct and the particular regulatory network. Here, we consider the faithful-

ness of the heterozygous GFP knock-in reporter for Nanog, since it is thought to be the most

disruptive reporter strategy currently available [149]. It is thought that heterozygous knock-

in reporters have the potential to significantly alter the population distribution of endogenous

Nanog expression, because the creation of a Nanog-null allele disturbs normal Nanog tran-

scriptional control [149] by interfering with its auto-regulation. This conclusion was drawn

from a study by Faddah et al. [149], where protein expression from both alleles was monitored

with a different colour fluorescent protein for each allele, using a reporter method that does
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not alter Nanog function. In this strategy, the coding region for the fluorescent protein is

inserted adjacent to the Nanog coding region, separated only by a short sequence that codes

for a peptide - a very small protein that causes the two proteins cleave after translation.

Contrary to previous reports, these results indicated that both Nanog alleles are expressed

in the vast majority of cells. Since Nanog-low cells were very rare, a unimodal distribution

of expression was observed, instead of a bimodal one. These results were obtained using two

standard culture conditions, known as 0i and 2i. 0i contains fetal bovine serum and Leukemia

inhibitory factor (LIF) - a cytokine that maintains self-renewal and prevents differentiation

by activating the transcription factor STAT3 [110, 117, 144], and 2i is 0i conditions with the

addition of mitogen-activated protein kinase and glycogen synthase kinase 3 inhibitors, which

maintain ‘ground state’ pluripotency [130]. Therefore, although both conditions maintain the

pluripotency state in vitro, the additional inhibitors in 2i culture conditions give the medium

a stronger hold on pluripotency than 0i.

As part of a larger study that includes our work in this chapter on the faithfulness of Nanog

reporter strategies, an experiment was carried out to investigate the relationship between

reporter (GFP) and Nanog protein levels in NHET cells (a reporter cell-line that uses the

heterozygous GFP knock-in strategy). Since the GFP reporter only monitors expression of

the knocked-in allele, expression of the unaltered Nanog allele was measured using a method

called immunostaining, where fluorescent proteins are attached to the target proteins via

an antibody. Immunostaining kills the cells so can not be used to monitor expression in

live cells. In this case a red fluorescent protein, called mCherry, was attached to Nanog

proteins, to distinguish them from GFP. Flow cytometry was then used to observe mCherry

and GFP fluorescence levels in each cell. The results show that although GFP expression

is clearly bimodal, Nanog expression was unimodal under 2i conditions, and the bimodality

under 0i conditions was of questionable significance (see Fig. 2.2). The difference between

the modality and spread of the observed distributions within culture conditions could be due

to, for example, differences in the translation and decay rates of Nanog and GFP, and the

reporter methods used (live-cell knock-in or immunostaining).

To date, only two theoretical models have been proposed to explain the (presumed true)

bimodality of Nanog expression [108, 139]. The first [108] involves only Nanog and Oct4

and models their dynamics as a noise-driven excitable system that gives rise to a small

subpopulation with low Nanog expression through occasional random transient excursions



Chapter 2 Mathematical Modelling of Pluripotency 37

log(Nanog)

3 3.5 4 4.5 5 5.5
lo

g(
G

FP
)

2.5
3
3.5
4
4.5
5
5.5
6

3.5 4 4.5 5 5.5

3

3.5

4

4.5

5

5.5

6

lo
g(

G
FP

)

log(Nanog)

0i 2i

Figure 2.2: The histograms show the experimentally observed marginal distributions of Nanog
(red bars) and GFP (green bars) expression in a GFP knock-in cell line, in 0i and 2i culture
conditions. The joint distribution of the paired data is indicated by the scatterplot (blue
dots). Data generated by Rosanna Smith, Centre for Human Development, Stem Cells and
Regeneration, University of Southampton.

from the high to the low expression state. Such systems use a combination of positive and

negative feedback loops to generate pulses of gene expression. In this case, the model is

based on mutual Oct4 and Nanog activation, Oct4 and Nanog auto-regulation, and Nanog

repression by high levels of Oct4, although the latter assumption has not been tested, and is

required to achieve an excitable system. The resulting system has a single stable steady state,

corresponding to high levels of both Nanog and Oct4. However, small noise-driven increases

in Oct4 expression, amplified through auto-regulation, can perturb the system away from

this state, and transiently lead to Nanog repression, enabling the cell to enter a low state of

Nanog expression. This in turn decreases the promotion of Oct4, thus terminating the Oct4

pulse and allowing Nanog expression levels to return to the original, steady state.

The excitable system model was favoured over bistability by Kalmar et al. [108] because the

observed proportion of Nanog-low in the parental, steady-state population is small (5%-20%),

which led the authors to suggest that this state might be a relatively short-lived event. If this

were the case, we would not expect to see the vast majority of the cells from the Nanog-low

isolated subpopulation remaining in the Nanog-low state after 11 days [108, 117]. However,

it appears that the cells do remain in the low state for a long time, suggesting the presence

of two attractors [139]. For this reason, Glauche et al. [139] question the justification for an

excitable system, stating that the time-scale of the transient escapes from the steady state

might not be long enough to explain the time spent in the Nanog-low state.
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Similarly, the second theoretical model proposed to explain the bimodality of Nanog expres-

sion [139] involves both positive regulation of Nanog by an Oct4-Sox2 dimer, and negative

feedback on Nanog by an additional unknown factor X. Since positive feedback loops alone

are sufficient to generate bistable distributions of expression, the model we present in Sec-

tion 2.3 eschews the unnecessary addition of negative feedback loops, and is able to explain

the experimental data without recourse to unknown mechanisms. Another notable source

of variability we exclude from our model is cell-cycle phenomena. Although the expression

level of some gene products can depend on the stage of the cell cycle [150–152], there is

evidence to suggest that we can eliminate cell-cycle phenomena as an explanation for the

observed variability in Nanog abundance. In one experiment, time-lapse microscopy of indi-

vidual ESCs visually captured the stochastic nature of transitions between Nanog-low and

Nanog-high states, revealing that there was no temporal (or spatial) pattern to the onset

of Nanog expression [108]. This suggests that the fluctuations of Nanog levels are cell cycle

independent. In addition, the lack of a spatial pattern supports the assumption that, with

respect to Nanog expression, ESCs are independent of their neighbours. Two further exper-

iments have demonstrated that the reconstitution of the steady-state distribution of Nanog

expression from isolated subpopulations takes place on a timescale that is of an order of

magnitude longer than the cell cycle time [108, 117]. Therefore, it seems that reconstitution

cannot be entirely a cell cycle phenomena, because if it were, we would expect it to happen

more quickly than actually it does.

Accordingly, we present a simple model of positive feedback for Nanog expression. We then

use this model to explain how the Nanog regulatory system might be perturbed by the

heterozygous knock-in strategy, and explore the possibility that the observed heterogeneity

is a reporter artefact, as opposed to a biologically significant phenomenon.

2.2 Network Structure

The first of our studies on the ESC network explores the role of feedback structure. We begin

by describing different types of small network structures and how they relate to dynamics,

and then we investigate the role of Nanog in the global feedback structure in the extended

ESC TRN.
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Figure 2.3: Examples of network motifs consisting of three genes: a) an undirected cycle; b) a
self-enhancing positive feedback loop; c) a negative feedback loop; d) a coherent feedforward
loop; e) an incoherent feedforward loop. Activation of gene expression is represented by an
arrow, and inhibition by a T-bar.

2.2.1 Network Motifs

Although complex in their overall structure [67, 153], molecular regulatory networks often

contain certain types of small subnetworks at frequencies higher than expected by chance

[59, 154], suggesting that these structural building blocks – or motifs as they are known –

may perform specific regulatory functions [59]. Here, we shall consider the dynamics of three

types of commonly occurring, and dynamically significant, motifs: positive feedback, negative

feedback and feedforward loops. Examples of these motifs are shown in Fig. 2.3.

Positive Feedback Loops

In general, a necessary condition for bistability (or multistability -a dynamical system that

supports more than one coexisting attractor is said to be multistable) is the presence of at

least one positive feedback loop somewhere in the underlying regulatory network [155–157].

A feedback loop is a closed path in a network from a node back to itself in which each

intermediary node is visited once. A positive feedback loop is one in which the net effect of

the entire loop is positive: using the convention that activating links are denoted by +1 and

inhibiting links by −1, a positive feedback loop is one in which the product of the link-signs

is +1. A gene that activates its own transcription directly is a positive feedback loop of

length 1. A positive feedback loop of length 3 is shown in Fig. 2.3b: in this case, all links are

positive and the sign of the loop is therefore (+1)× (+1)× (+1) = +1. Since all the links are

positive, this example feedback loop is self-enhancing. Once activated (perhaps in response

to a transient activating signal), a self-enhancing feedback loop maintains the expression of

all the genes in the loop. This kind of positive feedback often provides the molecular basis

for irreversible switches which, by initiating all-or-none cell fate decisions, are important in

cellular differentiation and development [132, 158, 159].
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A common motif observed in genetic regulatory networks is a pair of mutually repressing

genes, as depicted in Fig. 2.4(a) (this is a positive feedback loop of length 2 since its sign

is (−1) × (−1) = +1). This motif gives rise to a toggle switch [160], since it allows the cell

to switch (or toggle) between two different states in response to a transient signal. The key

property of this switch is that the mutual repression between the two genes does not allow

them both to be co-expressed at high levels. Consider two attractors: X (in which the first

gene is active and, due to the repression exerted by gene 1, the second is inactive), Y (in

which the second gene is active and, due to the repression exerted by gene 2, the first is

inactive), and a signal of magnitude S. Now suppose that if the system starts in the vicinity

of X it can be driven out of the basin of attraction of X and into the basin of attraction of Y

in response to a signal that exceeds a critical value SHIGH in magnitude. Similarly, suppose

that if the system starts in the vicinity of Y it can switch to X if the signal magnitude

falls below SLOW . For intermediate signal magnitudes (SLOW < S < SHIGH), the system

is bistable since it admits two coexisting attractors. Thus, varying S allows the system to

toggle between the two alternative attractor states.

A particularly elegant example was designed and experimentally implemented in Escherichia

coli by Gardner et al. [160], where the dynamics of the toggle switch are described by the

following dimensionless ODE model:

dx

dt
=

α1

1 + yβ1
− x (2.1)

dy

dt
=

α2

1 + xβ2
− y (2.2)

where x and y are the concentrations of the repressors, X and Y , α1 and α2 are the effective

rates of synthesis, and β1 and β2 are levels of cooperativity of repression. Bistability is possible

when β1, β2 > 1, and α1, α2 (the rates of synthesis) and β1, β2 (levels of cooperativity) are

sufficiently close. In this case, there are three fixed points, two of which are stable and

one of which is unstable. Since there are exactly two molecular species in this system, it

can be studied using phase plane analysis. The solution curves in phase plane are shown in

Fig. 2.4b. The first plot shows an example of where the conditions for bistability are met, so

the system is drawn to one of two stable steady states, depending on the initial conditions.

The separatrix (red line) divides the plane into two basins of attraction. In the second plot,

the rate of synthesis of Y is half that of X so it is overwhelmed by its repressor and there

is only one stable steady state. In the third plot the rates of synthesis are equal but the
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Figure 2.4: a) A toggle switch consisting of two mutually repressing transcription factors.
b) Phase plane (blue arrows) and solution curves (black lines) for the system described by
Eqs. (2.1) and (2.2) for parameter sets α1 = α2 = 4, β1 = β2 = 2 (bistable), α1 = 4, α2 = 3
and β1 = β2 = 2 (monostable), and α1 = α2 = 4, β1 = β2 = 1 (monostable). The stable states
are denoted by the filled, red circles and the red line in the first plot marks the separatrix
of the two basins of attraction. c) Transient induction of expression of a clonal population
initially in the low state causes it to switch to the high state over a period of 6 hours [160].

cooperativity of repression is equal to 1, so the nullclines (dx/dt = 0 and dy/dt = 0) do not

have a sigmoidal shape and therefore only intersect once, producing a single stable steady

state. Gardner et al. implemented the toggle switch by constructing a corresponding DNA

sequence (called a plasmid) and inserting it in Escherichia coli. It was engineered so that

production could be artificially induced, essentially increasing the effective rate of synthesis.

Fig 2.4c shows how the distribution of expression of one of the two genes in a clonal population

initially in the low state changed when the inducer was transiently applied - corresponding

to a temporary change in the parameter values. The plasmid started in the low state and

3 hours after induction the expression began switching to the high state (first panel). A

bimodal distribution then appeared at 4 hours after induction (2nd panel); by 5 hours the

switching was nearly complete (3rd panels), and by 6 hours it was complete (last panel).

In the theoretical setting, the parameters of the system were changed and the phase plane

changed accordingly, so that the system moves from one state to another. The toggle switch

requires only transient rather than sustained induction, as the rate of synthesis remains high

when the switch to the high state is complete. The agreement between the theoretical model

and experiment indicates that the theoretical design and implementation of genetic networks

is an achievable goal.
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Negative Feedback Loops

A negative feedback loop is a feedback loop in which the net effect of the entire loop is negative

(one in which the product of the link-signs is −1). An example of a negative feedback loop is

shown in Fig. 2.3c: in this case, the sign of the loop as a whole is (+1)× (+1)× (−1) = −1.

Homeostasis (the maintenance of a constant internal state despite environmental variations)

may be maintained by negative feedback, since negative feedback loops, in general, suppress

fluctuations [161]. Similarly, negative feedback loops can, by introducing time-delays [162]

and associated over- and under-compensation in gene expression, give rise to self-sustaining

oscillatory behaviour [132]. An example of a synthetic three-gene negative feedback loop

that generates self-sustained oscillations in protein levels in Escherichia coli was presented

by Elowitz and Leibler [141], who showed that this system can function as a biological clock

by inducing periodic bursts of protein synthesis.

Feedforward Loops: Persistence Detectors & Pulse Generators

Feedforward loops occur when a source gene regulates the expression of a target gene through

two different paths. Figures 2.3d & e show examples of three-node feedforward loops. In

both these cases, A regulates C both directly and indirectly via B. Feedforward loops are

common in molecular regulatory networks, including the transcriptional regulatory networks

of Escherichia coli, yeast [59, 63, 163] and other organisms [58, 164, 165]. Each of the

regulatory interactions in the feedforward loop can be either be activating or repressing:

if both paths in the feedforward loop have the same overall sign (both activating or both

inhibiting) then the feedforward loop is said to be coherent, otherwise it is incoherent. The

feedforward loop in Fig. 2.3d is coherent because the sign of the direct path from A to C has

the same sign (positive in this case) as the indirect path from A to C via B. The feedforward

loop in Fig. 2.3e is incoherent because the sign of the direct path from A to C is positive,

while the sign of the indirect path from A to C via B is negative.

Coherent and incoherent feedforward loops exhibit different dynamics. Coherent feedforward

loops can filter out transient environmental fluctuations and act as persistence detectors

[163, 166]. For instance, consider the 3 node feedforward loop in Fig. 2.3d. If expression of

both A and B is needed to activate C (if C is regulated by an AB-dimer, for example) then

an activating signal starting at A must persist long enough for the concentration of B to
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reach the activation threshold before C is activated. In contrast, when the activating signal

is removed, and A is down-regulated, the expression of C also down-regulates without delay.

If expression of C only requires expression of A or B (A and B regulate C independently),

then the opposite effect is observed: there is no delay in activation of C after activation of

A, but there is a delay in down-regulation of C when stimulation of A stops [166].

Incoherent feedforward loops can act as pulse generators. For example, consider the 3 node

feedforward loop in Fig. 2.3e. Node A both directly activates C and indirectly represses C

by activating the repressor B. Consequently, when a signal activates A, the production of C

is also rapidly activated. However, over time, levels of B also accumulate until they reach the

repression threshold. At this point production of C decreases and its concentration drops,

resulting in pulse-like expression of C.

Does Structure Determine Function?

Although certain network structures can be associated with defined dynamics, caution should

be exercised when determining the relationship between structure and function in more com-

plex regulatory networks. A study performed by Ingram et al. [167] showed that the function

of even very simple motifs cannot always be determined by their structure. The authors

investigated the behaviour of the bi-fan motif – in which the products of two source genes

directly co-regulate the expression of two target genes – and found that there is no character-

istic behaviour for this motif: the bi-fan can exhibit a range of possible responses. Given that

the bi-fan is only slightly more complex than a feedforward loop, the authors conclude that

“ ... it is difficult to gain significant insights into biological function simply by considering

the connection architecture of a gene network, or its decomposition into simple structural

motifs”. They add that additional information, such as the values of the kinetic parameters,

or experimental time series data is required to make inferences about network dynamics.

2.2.2 The Combined Effect of Positive Feedback and Stochasticity

Two important mathematical theorems have helped us to identify the source of cell-to-cell

variability in ESC populations. First, in 1949, the physicist Max Delbruck linked biological

systems with the knowledge that dynamical systems can move between coexisting equilibrium
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states under the influence of noise [73]. Second, in 1981 René Thomas presented a mathe-

matical theorem now known as Thomas’ Rule [155]. Informally, the rule asserts that for a

complex dynamical system to have multiple coexisting stable equilibrium states, a positive

feedback loop must be present in the interaction network. Formally, the interaction graph

of a dynamical system is defined using the matrix of signs of the Jacobian matrix of the

system. Consider the system dx
dt = f(x). In the interaction network of the system, there is

a positive link from node j to i (e.g. promotion of transcription represented by an arrow) if

there exists x ∈ Rn such that ∂fi
∂xj

(x) is positive, and a negative link from node j to i (e.g.

repression of transcription represented by a T-bar) if ∂fi
∂xj

(x) is negative, (i, j = 1, . . . , n) (the

network can thus have both a positive and a negative link from one node to another) [168].

In such directed networks, a feedback loop is a closed path from a node back to itself in which

each intermediary node is visited once. A positive (negative) feedback loop is one in which

contains an even (odd) number of negative links (see Section 2.2.1). Thomas’ rule states that

if the system dx
dt = f(x) has several stable states, then the interaction network of the system

has a positive feedback loop.

Combining the insights of Delbruck and Thomas, it can be seen that the combination of

positive feedback and random fluctuations can give rise to phenotypic heterogeneity in an

isogenic population [99, 169–171].

However, we should note that this rule applies to deterministic systems only; a stochastic

system does not require the presence of a positive feedback loop a to yield a bimodal stationary

state. Consider the following system which describes production of a species, M , from a gene

that can switch randomly between active (GA) and inactive (GI) states, where rA (rI) is the

rate of switching out of the active (inactive) state. The terms inactive or active are simply

used to label the two states since production can occur in either state. Specifically, when the

gene is active (inactive), M is produced at a rate kA (kI), where kI << kA, and decays at

rate d. In this case, slow switching between states – switching on a timescale that is slower

than the timescales involved in production and decay – can result in a bimodal distribution

of levels of M at the population levels. This chemical reaction system can be described by

the scheme

GA
rA−→ GI , GI

rI−→ GA, GA
kA−−→ GA +M, GI

kI−→ GI +M, M
d−→ φ. (2.3)

A simulation of the time series of the abundance of M , obtained using Gillespie’s SSA, is
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Figure 2.5: Dynamics of a chemical reaction system described by (2.3), and the corresponding
stationary PMF, for parameter values rA = 2.5 × 10−5, rI = 10−3 kA = 1.2, kI = 0.2, d =
0.04. The bistability arises from the slow switching between active and inactive states.

given in Fig. 2.5, together with the resulting bimodal equilibrium distribution. This simple

two-state model demonstrates how a bimodal distribution of expression can arise without

feedback if there is a strong separation of timescales.

2.2.3 The Importance of Nanog in the Global Feedback Structure

In this section, we investigate the role of Nanog in the global feedback structure in the

extended ESC TRN. This work makes up part of the study by MacArthur et al. [3], in which

we aim to elucidate the molecular basis for the observed fluctuations in expression in the

constituent genes (see Section 2.1.1 for details). Since feedback loops commonly regulate

cell-to-cell variability by generating complex dynamics, we analyse the feedback structure

of the extended ESC TRN to investigate the possibility that Nanog fluctuations regulate

population heterogeneity by controlling the feedback mechanisms. To do this, we compare

the feedback architecture of the ESC TRN in NanogR cells (Fig. 2.7b) and in wild-type ESCs

(Fig. 2.7a). The wild-type ESC TRN is self-perpetuating when shielded from differentiation-

inducing stimuli [130]. However, in the NanogR cell line endogenous regulation of the Nanog

gene does not contribute to Nanog protein levels. Consequently, all feedback loops that

involve Nanog in the wild-type TRN are absent in the NanogR cells. In these cells the ESC

TRN is therefore effectively held in a feedback-depleted state (Fig. 2.7b), and maintenance

of pluripotency is dependent on continued exogenous expression with dox of Nanog rather

than activation of self-perpetuating feedback loops.
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As such, we enumerate the feedback loops that each transcription factor participates in, for

both the wild-type ESC TRN and the NanogR TRN. In addition, we calculate a feedback

index, which takes into account both the total number and the lengths of all closed paths

present in the network, thus providing an adjusted measure of node involvement in the

feedback structure in the extended ESC TRN. We now describe the methods used to carry

out these analyses.

Enumeration of the Feedback Loops

A feedback loop (or cycle) of size L is a closed path of L links that starts and finishes at

the same node and visits each intermediate node exactly once, and each link exactly once.

First, we note that the longest feedback loop in the extended ESC TRN has a length of

5, because only 5 nodes in the network (Nanog, Oct4, Sox2, Dax1 and Rex1) have both

incoming and outgoing edges. As the network is small, specific feedback loops may easily be

found by exhaustive enumeration using a simple computational algorithm (see Appendix C

for details). The total number obtained was verified with the adjacency matrix method of

Harary and Manvel [172], which provides exact formulae for feedback loops of length 2 to 5.

Both methods require as an input the adjacency matrix A, which for an unsigned network D,

with p nodes, is defined as the p× p matrix with entry aij = 1 if there is a directed link from

node i to node j, and 0 otherwise. For example, for the wild-type ESC TRN, the adjacency

matrix A is given by

A =



1 0 1 1 1 0 0 1 0

1 0 0 0 1 0 0 1 0

1 0 1 1 1 0 0 1 0

0 0 0 0 1 0 0 0 0

1 0 0 1 1 0 0 1 0

1 0 1 1 1 0 0 1 0

1 0 0 1 1 0 1 1 1

1 0 0 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0


. (2.4)

A well-known result in graph theory is that the i, j entry, a
(L)
ij , of AL is the number of paths

of length L between two nodes i and j [173]. In particular, the diagonal entry, a
(L)
ii , is the

number of paths of length L that start and finish at node i (closed paths). Therefore, the

total number of closed paths of length L is given by 1
LTr(A

L). The division by L is necessary

because each node that participates in the loop contributes once to the sum. However, this

total includes closed paths that are not cycles. Thus, the number of cycles of length L in a
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Figure 2.6: a) A self loop is a closed walk of length 1. b) to k) All possible structures of
closed walks of lengths 2 to 5 in a directed network without self-loops.

directed network, denoted NL, is given by the total number of closed paths of length L minus

the number of closed paths of length L that

1. visit at least one intermediate node more than once;

2. visit the start node more than twice; or

3. traverse at least one link more than once.

Now, the trace of the adjacency matrix is the number of self loops (Fig. 2.6a), i.e.

N1 = Tr(A),

and for L ≥ 2 we can eliminate closed paths that are of type 1 and 2 due to the presence

of self loops by setting the diagonals of the adjacency matrix equal to zero i.e. aii = 0 ∀ i.

Having eliminated self loops, the only possible closed paths of length 2 or 3 are cycles of the

same length (Figs. 2.6b and c), and therefore

N2 =
1

2
Tr(A2),

N3 =
1

3
Tr(A3).
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Figs. 2.6d to f show all possible closed paths of length 4, the first of which is the only cycle.

Since Tr(A4) counts all closed walks in D, we must subtract the number of ways a closed

path of length 4 can be achieved on the second and third structures. Now, structure (e) is two

pairs of adjacent cycles of length 2, and structure (f) is one cycle of length 2, traversed twice.

To count the number of times each of these structures occurs in a directed network that does

not contain self loops, we first define Ā to be the adjacency matrix of the undirected network,

U , derived from the original directed network, D, by calling two nodes adjacent if and only if

they form a cycle of length 2. Therefore, the entries of Ā are defined by āij = aijaji, where,

ā
(L)
ij denotes the i, j entry of Ā

L
. For example, for the wild-type ESC TRN, Ā is given by

A =



1 0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

1 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

1 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0


. (2.5)

For structure (e), the number of pairs of adjacent cycles of length 2 in D is equal to the

number of pairs of adjacent links in U . There are 1
2

∑
i 6=j

ā
(2)
ij pairs of adjacent links in U , where

the 1
2 cancels the duplication from each of its two endpoints - the number of pairs of adjacent

links that start at node i and end at node j, aij , accounts for the same pairs of adjacent links

that start at node j and end at node i, aji. However, each pair of adjacent links is a closed

walk of length 4 in four different ways: once for starting at each end node (node A or C in

Fig 2.6e), and twice for starting the middle node (node B, from which the walk can then visit

either node A or C). Therefore, the number of closed walks of length 4 on structure (e) is

2
∑
i 6=j

ā
(2)
ij .

Structure (f) in D is a single link in U , traversed twice in each direction. There are 1
2

∑
i,j
āij

of these, where the 1
2 cancels the duplication from each of its two endpoints. This structure

is a closed walk of length 4 in two different ways - once for starting at each node - so the

number of closed walks of length 4 on structure (f) is
∑
i,j
āij .

After subtracting these from Tr(A4) we are left with only closed walks of length 4 that are

cycles, but each one is being counted at four different initial nodes, so we divide by four to
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obtain the number of distinct cycles of length 4 in D to obtain

N4 =
1

4

Tr(A4)−
∑
i,j

āij − 2
∑
i 6=j

ā
(2)
ij

 .

Figs 2.6g to k show all possible closed paths of length 5, the first of which is the only cycle.

Since Tr(A5) counts all closed walks in D, we must subtract the number of ways a closed

path of length 5 can be achieved on the second and third structures. Both structures h and

k are made up of a cycle of length 3 adjacent to a cycle of length 2. The number of cycles of

length 3 starting from node i is a
(3)
ii , and āij is the number of cycles of length 2 also starting at

node i. Summing over all nodes in D we obtain
∑
i

(
a

(3)
ii ·

∑
j āij

)
. However, since structure

k is symmetric, this term counts it twice (both nodes B and C in k are adjacent to a cycle of

length 3 and length 2), so we must subtract the number of structures of type k. These can be

counted by
∑

i 6=j

(
a

(2)
ij · āij

)
because a

(2)
ij counts the number of paths of length 2 starting at

node i and ending at node j (CA, AB in structure k), and āij counts the number of cycles of

length 2 that start at node i and visit node j (CB, BC in structure k). Since both structures

h and k are a closed walk of length 5 in five different ways, so we obtain:

N5 =
1

5

Tr(A5)− 5

∑
i

a(3)
ii ·

∑
j

āij

−∑
i 6=j

(
a

(2)
ij · āij

)


where the 1
5 accounts for the fact that each cycle of length 5 is being counted at five different

initial nodes.

Feedback Centrality

Feedback centrality given in [174, 175] is a measure of node involvement in both direct (non-

intersecting) and indirect (self-intersecting) feedback. It takes into account both the total

number and the lengths of all closed paths present in the network, such that shorter closed

paths have more influence on the centrality of the node than longer closed paths. This rule

is based on the following two observations:

• Consider a particle moving randomly along the paths of the network. It is more likely

to return to the starting node and complete a closed walk if the path is of shorter length

because it has fewer opportunities to exit the walk along the way. Thus shorter walks

are typically more likely to occur than longer walks.
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• Motifs in molecular regulatory networks (and other real-world networks) are typically

small subgraphs (see discussion in Section 2.2.1).

The greater importance of shorter paths is taken into account by weighting the closed paths

in decreasing order of their lengths. Thus the feedback centrality for the ith node, as given

in refs. [174, 175], is
∞∑
L=0

1

L!
a

(L)
ii − 1 = exp(aii)− 1

where exp(aij) is the matrix exponential of the network adjacency matrix. The −1 term is

included for convenience to ensure that nodes that do not participate in any closed paths

have an index of zero.

Results

We found that the extended ESC TRN is rich in feedback, containing a total of 28 distinct

feedback loops. Furthermore, these feedback loops are not evenly distributed (Fig. 2.7c).

Rather, the global feedback structure of this network is highly nested and is critically de-

pendent on Nanog, Oct4 and Sox2, which participate in 68% (19/28), 68% (19/28) and 64%

(18/28) of all feedback loops respectively.

The feedback centrality identified Nanog as the most central element in the global feedback

structure (Fig. 2.7d). Removal of Nanog feedback destroys many of these feedback structures,

leaving only 32% (9/28) of the feedback loops in tact (Fig. 2.7c, blue bars), and therefore

severely compromises the global feedback structure. Consequently, fluctuations in Nanog ex-

pression levels can transiently activate the subnetwork shown in Fig. 2.7b in the ESC TRN,

driving transitions between a (Nanog-expressing) feedback-rich, robust and self-perpetuating

pluripotent state and a (Nanog-diminished), feedback-sparse and differentiation-sensitive

state.

2.3 Stochastic Models of Transcriptional Regulation in a Per-

turbed Network

We now use mathematical models of the dynamics of the core ESC TRN to elucidate the effect

of the heterozygous knock-in reporter strategy on Nanog protein expression, and demonstrate
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Figure 2.7: a) The feedback-rich wild-type TRN. (b) The feedback-depleted NanogR TRN
(+dox, Nanog active). (c) The total number of feedback loops that each transcription factor
participates in for the wild-type ESC TRN (red) and NanogR TRN (blue). (d) Feedback
centrality for the wild-type ESC TRN (red) and NanogR TRN (blue).

that the experimentally observed bistable distribution (see Fig. 2.2) might be a reporter

artefact, as opposed to a biologically significant phenomenon.

We apply the theory introduced in Section 1.2 to develop continuous time Markov chain

models. This provides us with a basis for understanding the characteristics that control the

behaviour of the expression dynamics at a single cell level, and the resulting distribution

at the population level. Furthermore, the models enable us to explain how the knock-in

method perturbs the Nanog system, and predict the resulting change in the shape, location

and modality of the distributions of expression.

Throughout the remainder of this chapter, the wild-type ESC-line, in which there are two

Nanog alleles and no reporter, is referred to as ‘Scenario 1’, and ‘Scenario 2’ represents the
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GFP knock-in cell-line in which there is one Nanog allele, and the coding region of the second

Nanog allele is replaced with that for GFP.

2.3.1 Chemical Master Equation Model of the Core ESC Network

We begin by considering a CME model of the core ESC network (see Fig. 2.1b) in each

scenario. In Scenario 1, there are 32 molecular species and 43 chemical reactions involved

in the transcription and translation of Oct4, Sox2 and Nanog. In Scenario 2, there are

two additional species and three additional reactions. The full specification of the models,

including the stoichiometric matrix and propensity functions, can be found in Appendix A.1.

The processes involved both models are illustrated in Fig. 2.8, and the differences between the

two scenarios are labelled ‘Scenario 1’ and ‘Scenario 2’. In Scenario 1, there are two Nanog

alleles, labelled Nanog allele A and Nanog allele B. This represents the coding regions for

Nanog mRNA. In Scenario 2, the DNA sequences on the promoter regions remain the same,

but the coding region of Nanog allele B is replaced with that for GFP. This means that, given

the same promoter binding state, GFP is transcribed at the same rate as Nanog. The GFP

mRNA can either decay or be translated into GFP proteins, which in turn can decay. Since

it is a GFP protein, it solely acts as a visual label and does not bind to any other molecular

species, or influence any reactions they are involved in. We set the rates of GFP translation

and decay equal to those of Nanog, since different rates would have an arbitrary effect on the

distribution of GFP expression.

For simplicity, we let there be only one binding site for each of the two types of dimer on each

promoter region. Each of the genes can be transcribed by RNAP, and the resulting mRNA

can either decay or be translated into the corresponding protein. Nanog proteins (red-filled

squares, labelled ’N’) can form Nanog-Nanog homodimers (NN), and an Oct4 protein (yellow-

filled circles labelled ’O’) can bind to a Sox2 protein (blue-filled circles labelled ’S’) to form an

Oct4-Sox2 heterodimer (OS). The dimers can either disassociate, releasing their constituent

proteins, or they can bind to a corresponding unbound binding site on the promoter region

of any of the genes. Since a dimer is far more likely to disassociate than decay, we do not

include dimer decay in the model. When a binding site is occupied, the rate of transcription

of the corresponding gene is greater than when it is unoccupied, because the presence of the

dimers promotes the recruitment of RNAP II. The dimers can unbind from the promoter site,

which results in the reduction of the rate of transcription.
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Figure 2.8: An illustration of the transcription and translation processes involved in the core
embryonic stem cell network, which consists of the three master genes Nanog (red-filled boxes
labelled ‘N’), Sox2 (blue-filled circles labelled ‘S’) and Oct4 (yellow-filled circles labelled ‘O’).
There are two copies of each gene (two alleles), one on each chromosome. In Scenario 1 there
are two Nanog alleles, and in Scenario 2 there is one Nanog allele and the second is replaced
with the GFP coding region (the promoter region remains unchanged). Reactions (arrows)
are labelled with rounded rectangles, together with the propensity functions.
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Figure 2.9: Time series and distributions for Nanog, Sox2, Oct4 and GFP proteins generated by simulations of the master equations specified in
Appendix A.1, and illustrated in Fig. 2.8 for the parameter values given by (2.6). Scenario 1 refers to the wild-type cell-line and Scenario 2 to the
knock-in cell-line.
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The corresponding CME cannot be solved analytically. To obtain the marginal probability

mass function (PMF) for the copy number of Nanog, Sox2, Oct4 and GFP proteins we

simulate the CME using Gillespie’s algorithm. The following set of parameter values gives

rise to bistability in the knock-in cell line, and homogeneity in the wild-type cell:

gNM = 0.01, gSM = 0.5, gOM = 0.5, k
N/NN
2 = 10, k

N/OS
2 = 3, k

S/NN
2 = 2, k

S/OS
2 = 15,

k
O/NN
2 = 2, k

O/OS
2 , dNM = 2, dSM = 5, dOM = 5, gNP = 5, gSP = 20, gOP = 20, dNP = 3

dSP = 5, dOP = 5, uNN = 10, uOS = 10, aNN = 1, aOS = 1, k
N/NN
3 = 1, k

N/OS
3 = 5,

k
S/NN
3 = 1, k

S/OS
3 = 10, k

O/NN
3 = 1, k

O/OS
3 = 10, k

N/NN
1 = 1, k

N/OS
1 = 0.3,

k
S/NN
1 = 0.1, k

S/OS
1 = 5, k

O/NN
1 = 0.1, k

O/OS
1 = 5. (2.6)

These parameter values were chosen to demonstrate that it is possible to obtain bimodality in

Nanog in the knock-in cell-line, whilst Nanog is unimodal in the wild-type cell, under the same

parameter values. Very few of these parameter values have been experimentally determined,

and they are dependent on the culture conditions, which themselves vary between batches.

Therefore, guided by the available literature, we ensured that the orders of magnitude between

the parameter values were realistic. For example, the background rate of mRNA transcription

is typically at least an order of magnitude smaller than the enhanced rate of transcription

due to a bound promoter region, and dimer association is at least an order smaller than

disassociation.

The results of the simulations are shown in Fig. 2.9. A representative sample of the time

series for each protein is plotted together with the corresponding equilibrium distributions.

The simulations were initially run until all molecular species had reached their equilibrium

behaviour (determined by visually inspecting the time series plots), from which point data

for the Nanog, Oct4 and Sox2 proteins (and GFP for Scenario 2) was collected until the

probability distributions reached their equilibrium state (determined by visual inspection).

The time series are plotted for the first 103 units of time, although the simulations were run

for 105 units of time to achieve the corresponding equilibrium probability distributions.

In Scenario 1, the distributions for all three proteins are unimodal. In Scenario 2, the distribu-

tions exhibit features similar to those observed in 2i culture conditions: Nanog and GFP are

bimodal, where the low peaks are much smaller than the high peaks, and Oct4 and Sox2 are

homogeneously expressed. At the single cell level, a cell can be in a Nanog-/Oct4-/Sox2-high
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state and can switch into a Nanog-low state whilst Oct4 and Sox2 remain relatively constant.

Crucially, the heterogeneity in the Nanog expression arises due to strong positive feedback

via the Nanog homodimer, plus the intrinsic noise in the molecular reactions. Underlying

these dynamics is a bistable system and the intrinsic noise drives it between the two distinct

states.

We note that the probability distribution for GFP has slightly greater spread than that for

Nanog, the reason for which is as follows: consider a cell that occupies the state of highest

probability with respect to both GFP and Nanog. When the GFP level makes an excursion

away from this state, it does not affect Nanog expression, but when the Nanog level makes

such an excursion it does have an effect on GFP because it interacts with both the Nanog

and GFP promoter region. Therefore, GFP has more freedom to vary without affecting the

dynamics of Nanog, resulting in a probability distribution with greater spread for GFP than

for Nanog.

Although the model agrees with the experimental data quantitatively, it is too complicated

to enable us to identify the components that control stability. Since we are particularly

interested in elucidating the underlying mechanisms that control the heterogeneity in Nanog

expression, and how the substitution of one Nanog coding region with that of GFP might

affect it, we now focus on the Nanog autoregulatory loop alone.

2.3.2 Models of the Nanog Autoregulatory Loop

We now explore a subset of the processes of the core ESC network that includes only the

Nanog gene and its products. A simple model of the Nanog autoregulatory loop will capture

the bimodal expression in Nanog, and by replacing the coding region of one of the two alleles

with that of GFP we can see how the kinetics of the system can be disturbed by the knock-in

method.

It is known that the heterogeneity in Nanog expression arises due to strong positive feedback

via the Nanog homodimer, but is only weakly regulated by the Oct4-Sox2 dimer [129]. This

is reflected in the simulation results from the full model, as illustrated in Fig. 2.9, which

indicate that the dynamics of the Nanog protein are decoupled from those of Oct4 and

Sox2. We therefore assume that the extrinsic noise in Nanog expression is due to fluctuations

in Oct4 and Sox2 expression. In the reduced model for Scenario 1 there are 7 molecular
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Figure 2.10: The processes involved in the Nanog auto-regulatory loop. Reactions (arrows)
are labelled with rounded rectangles, together with the propensity functions. The variables
M,P , and C denote the number of Nanog mRNA, protein and homodimers; DA, D

′
A and

DB, D
′
B the number of bound and unbound promoter sites on alleles A and B, respectively;

and the variables MG and PG denote the number of GFP mRNA and proteins. The param-
eters gM , gP , a, u, k1, k2, k3, dM , dP denote the reaction rate constants.

species and 11 chemical reactions. We retain the Nanog mRNA, proteins, homodimer, and

the (un)bound Nanog dimer binding sites on the promoter region of each of the two alleles.

In Scenario 2 there are GFP mRNA and proteins in addition to the molecular species in

Scenario 1, bringing the total number of molecular species to 9 and chemical reactions to 14.

The processes involved in the Nanog autoregulatory loop are illustrated in Fig. 2.10. They

are a subset of those in the core ESC network, as illustrated in Fig. 2.8.

Full details of CME model of the Nanog autoregulatory loop, including the propensity func-

tions and stoichiometric matrix are given in Appendix A.2. Time series simulations of the

model for both scenarios are shown in Fig. 2.11, together with the equilibrium probability

distributions. As for the more complicated model, the simulations were initially run until all

molecular species had reached their equilibrium behaviour (determined by visually inspecting

the time series plots), from which point data for the Nanog protein (and GFP for Scenario 2)

were collected until the probability distributions reached equilibrium (determined by visual
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Figure 2.11: Time series simulations (top row) of the master equation for the Nanog feedback
loop using Gillespie’s algorithm, and the equilibrium probability distributions (bottom row).
The first two columns refer to Scenario 1 using parameter values (2.7) (left column), and
again except k3 → k3/2 and u → u/2 (second column). The former achieves bistability
and the latter homogeneity. The second parameter set is also used for Scenario 2, and the
translation and decay rates for GFP are identical to that for Nanog (last column).

inspection). The time series are plotted for the first 103 units of time, although the simu-

lations were run for 105 units of time to achieve the corresponding equilibrium probability

distributions.

Simulation results are shown for two parameter sets under Scenario 1, the first of which is:

gM = 10, k2 = 120, dM = 3.8, dP = 8.1, u = 105, k3 = 105, gP = 35, a = 1, k1 = 1 (2.7)

and demonstrates that the model can achieve bistability (first column). In the second sim-

ulation (second column) the same parameters were used except the values of both k3 and u

were halved, resulting in a unimodal distribution. The simulation of Scenario 2 (last column)

uses exactly the same parameter values as for the second simulation of Scenario 1, with the

addition of translation and decay rates for GFP, equal to those for Nanog. We see again -

as was the case for the model of the core ESC TRN under Scenario 2 - that the probability

distribution for GFP has greater spread than that for Nanog, and occurs for the same reasons

as previously discussed.
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Thus, we have demonstrated theoretically that the modelled GFP knockout strategy results

in a bimodal distribution of both GFP and Nanog expression, when the distribution was

unimodal in the wild-type system with the two Nanog alleles (middle column). However,

although these simulations suggest that the introduction of a GFP reporter can affect Nanog

dynamics, the mechanism by which this occurs is unclear. We can better understand how

this behaviour change occurs by studying the corresponding RREs for the system.

The Reaction Rate Equations

From Eq. (1.23), the corresponding RREs that approximate this stochastic system can be

obtained by multiplying the stoichiometric matrix, S, Eq. (A.1), by the propensity vector

a(x), Eq. (A.2). Doing so we obtain the following system of RREs for Scenario 1:

dM

dt
= 2gM + k2(DA +DB)− dMM (2.8)

dP

dt
= gPM − dPP − aP 2 + 2uC (2.9)

dC

dt
= aP 2/2− uC − k1C(D

′
A +D

′
B) + k3(DA +DB) (2.10)

dD
′
A

dt
= −k1CD

′
A + k3DA (2.11)

dD
′
B

dt
= −k1CD

′
B + k3DB (2.12)

dDA

dt
= k1CD

′
A − k3DA (2.13)

dDB

dt
= k1CD

′
B − k3DB (2.14)

where D
′
A+DA = 1, D

′
B+DB = 1, and M(0), P (0), C(0), D

′
A(0), D

′
B(0), DA(0), and DB(0)

are the initial conditions.

In Scenario 2, Eq. (2.8) in Scenario 1 is replaced by

dM

dt
= gM + k2DA − dMM (2.15)

The remaining RREs in Scenario 1 are unchanged and we gain the following two equations

for GFP mRNA and proteins:

dMG

dt
= gM + k2DB − dMMG (2.16)

dPG
dt

= gPMG − dPPG (2.17)
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with initial conditions MG(0) and PG(0).

We can reduce the number of dimensions of both systems of ODEs to reveal the difference

in the dynamics of Nanog expression between Scenarios 1 and 2. By assuming that dimer

(dis)association, and DNA (un)binding occurs at a much faster time scale than transcription

and translation, and using a quasi-equilibrium approximation, we obtain the following RRE

for the Nanog protein level under Scenario 1 (see Appendix A.3 for the full derivation):

dP

dt
= 2gM

gP
dP

+
2k2

gP
dP
P 2

2uk3
ak1

+ P 2
− dMP (2.18)

and for Nanog and GFP protein levels in Scenario 2:

dP

dt
= gM

gP
dP

+
k2

gP
dP
P 2

2uk3
ak1

+ P 2
− dMP (2.19)

dPG
dt

= gM
gP
dP

+
k2

gP
dP
P 2

2uk3
ak1

+ P 2
− dMPG (2.20)

The first term on the right-hand side of Eqs. (2.18) to (2.20) accounts for protein production

at a constant baseline rate. This term for Nanog in Scenario 2 is half that in Scenario 1 (as

highlighted by the 2 in red font in Eq. (2.18)) because there are two Nanog alleles in Scenario

1 and only one in Scenario 2, thus halving the output of Nanog mRNA. The second term on

the right-hand side of the RREs is a Hill function that accounts for increased production due

to a nonlinear positive feedback loop. Its value ranges from 0 to 2k2
gP
dP

in Scenario 1, and to

k2
gP
dP

in Scenario 2, and increases in a continuous manner with expression level. Thus, 2k2
gP
dP

is the maximum rate of production of Nanog in Scenario 1, which again is halved in Scenario

2, since the opportunities for mRNA production are shared equally with that for GFP. The

aggregate parameter 2uk3
ak1

is the protein concentration at which the half-maximum rate of

production occurs. The third term on the RHS of the equations says that both P and PG

decay linearly (with identical constant half-life). In conclusion, it has become clear that, on

the level of the RREs, replacing one of the Nanog genes with GFP has the effect of halving

the rate of production. Since Eq. (2.19) decouples from the rest of the system, we can now

carry out a stability analysis on Eqs. (2.18) and (2.19) to determine how the reduced rate of

production influences the behaviour of Nanog expression at the population level.

There are nine free parameters in each of the scenarios, so we begin the stability analysis by

rescaling the systems in order to aggregate these parameters and simplify calculations. Eqs.

(2.18) and (2.19) may then be expressed in nondimensional form (see Appendix A.4 for a full
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derivation):

dX

dt
= α+

X2

γ2 +X2
−X (2.21)

where the dimensionless parameters are defined as

α =
gM
k2
, γ =


dMdP
2k2gP

√
2uk3

ak1
= γ1 (Scenario 1)

dMdP
k2gP

√
2uk3

ak1
= γ2 = 2γ1 (Scenario 2)

Thus α is the same for both scenarios, but the GFP knockout has the effect of doubling γ.

By writing the system in a dimensionless form it becomes clear that the dynamics are gov-

erned by two dimensionless parameters, α ≥ 0 and γ ≥ 0. The latter may be thought of,

phenomenologically, as governing the strength of the auto-activatory feedback loop: at γ = 0

the feedback loop is fully active and production of Nanog occurs at its maximal rate, while

as γ → ∞ feedback is inhibited and production tends to zero. The size of γ, and thus the

strength of the feedback loop, may vary depending on internal or external signals and the

dynamics of the system change as γ is varied.

In the absence of time-delays and noise, sustained oscillations (or more exotic stable dynamic

behaviour) can only occur when there is more than one species present. Since this model is

one-dimensional (the RRE for GFP is decoupled) we do not need to look for these here, so

we look for fixed-point equilibrium solutions. Fixed points are solutions to the cubic

X3 − (1 + α)X2 + γ2X − αγ2 = 0 (2.22)

We can ascertain the stability of the fixed points by plotting the curve
X2

γ2 +X2
and the

straight line X − α on the same plot, for varying values of γ, as shown in Fig. 2.12. We

summarise the direction of flow from the sign of f(x), as indicated by the arrows marked on

the X-axes (this is the phase portrait). Fig. 2.12 shows that the system may be monostable

or bistable depending on the values of α and γ.

To summarise the behaviour of the system (2.21) we divide the α − γ parameter plane into

distinct behavioural regimes, by calculating the values of α and γ at which the bifurcations

take place. When γ(α) is equal to either of the critical values, γ− = γ−(α), and γ+ = γ+(α),

there are three real fixed points, two of which are repeated roots. We can find these critical

values by using the fact that the discriminant, D, of a cubic is equal to zero if and only if
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Figure 2.12: The Hill function X2

γ2+X2 (solid line), and the function X − α for α = 0.05
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and 0.5385 < γ+ < 0.7071. The filled circles mark the fixed-points. The arrows on the
horizontal axes indicate the direction of flow between the fixed-points. When α = 0.05, this
system exhibits bistability for γ− < γ < γ+.

there are two repeated real roots and one other distinct real root. Given a cubic of the form

ax3 + bx2 + cx+ d = 0, the corresponding discriminant is

D = b2c2 − 4b3d− 4ac3 + 18abcd− 27a2d2 (2.23)

For Equation (2.22), this gives:

γ2 + (2α2 − 5α− 1

4
)γ + α(1 + α)3 = 0 (2.24)

which is a quadratic in γ with solutions

γ±(α) = −
(
α2 − 5

2
α− 1

8

)
±
(
−2

(
α− 1

8

)) 3
2

. (2.25)

This function may be used to divide the α-γ parameter plane into three regions, for 0 < α < 1
8 ,

0 < γ < 27
64 , as shown in Fig. 2.13, left. The values of the scaled fixed points over the parameter

plane (computed numerically) are plotted as three surfaces in Fig. 2.13 (right).
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2). Right: Positions of the scaled fixed points points on the α-γ parameter plane.

The bifurcation point, (x±, α±, γ±) is a saddle node bifurcation for f(x), since for f(x±, α±, γ±)

= 0 the following conditions are satisfied [176]:

∂f

∂x
(x±, α±, γ±) = 0,

∂2f

∂x2
(x±, α±, γ±) 6= 0,

∂f

∂α
(x±, α±, γ±) 6= 0,

∂f

∂γ
(x±, α±, γ±) 6= 0

(2.26)

The monostable Nanog high region can be further divided into three regions: The values of

γ for which the insertion of the GFP knock-in (Scenario 2) in the wild-type cell (Scenario 1)

will result in a transition of the system from the Nanog high region (yellow area) to:

1. the bistable region; these are the values of γ that satisfy
γ−(α)

2
< γ(α) <

γ+(α)

2
, as

indicated by the unpatterned area in the monostable-high regime (plain yellow) in

Fig. 2.13, left;

2. within the Nanog-high region; these are the values of γ that satisfy γ(α) <
γ−(α)

2
, as

indicated by the vertical hatched area;

3. the monostable Nanog-low region; these are the values of γ that satisfy γ(α) >
γ+(α)

2
,

as indicated by the dotted region.
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Wild-type cells that reside in the unpatterned area of the Nanog high region are at risk of a

qualitative change in population behaviour, and those in either of the patterned areas are at

risk of quantitative change. In contrast, wild-type cells that reside anywhere in the bistable

region are at risk of a qualitative change in population behaviour, as doubling the value of γ

would result in either a shift into the monostable low region, or a significant change in the

proportion of cells in each state.

These analyses demonstrate that the introduction of the GFP knock-in reporter can induce a

qualitative change in Nanog concentration that alters the behaviour and therefore the function

of the cell. In conclusion, we have proposed a model that, on the RRE level, reveals a basis

for which the experimentally observed bimodal distributions of Nanog expression can arise

and how the introduction of heterozygous knock-in reporters can affect Nanog dynamics.

A Stochastic Differential Equation Model

In Section 2.1.2, we provided an example of an experimentally observed bimodal distribution

of Nanog protein expression in 2i culture conditions, as reported by the GFP knock-in cell

line (Fig. 2.2). We now fit a model to this empirical distribution that will allow us to infer

the shape of the distribution of Nanog protein expression in the wild-type cell, given the

assumption that the translation and decay rates of GFP mRNA and proteins are the same

as those of Nanog. Instead of deriving a complicated bivariate SDE from the CME, we fit

the simplest possible model that takes into account the presence of positive feedback loop(s)

in the underlying regulatory network. Since we have demonstrated that positive feedback

can give rise to a Hill function, we use the form of Eq. (2.20) to develop an SDE to describe

the dynamics of Nanog protein expression. Since experimental data suggests that protein

expression fluctuations often scale linearly with expression level [177], a natural choice for

the noise term is
√

2σX2, where σ is a constant. Therefore, we use the following SDE to

describe the dynamics of Nanog protein expression, x(t):

dx

dt
= α0 +

α1x
2

K2 + x2
− βx+

√
2σx2ξ(t) (2.27)

Thus, from Eq. (1.12), the stationary distribution, p∞(x), is

p∞(x) = A exp

[
−α
∗
0

x
+
α∗1
K

arctan

(
x

K

)
− (2 + β∗) ln(x)

]
(2.28)
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where A is a normalising constant which ensures that p∞(x) is a proper probability distribu-

tion, and α∗0,1 =
α0,1

σ
, β∗ =

β

σ
.

Had we used an additive noise term, the fixed points of the deterministic part of the SDE

would correspond to the positions of the maxima and minima of the stationary distribution.

This means that we could estimate the location of the empirical distribution on the α-γ

plane in Fig. 2.13 using its fitted values of α and γ. However, the maxima and minima of the

stationary distribution corresponding to the SDE obtained by the addition of a multiplicative

noise term do not correspond to the fixed points of the deterministic part of the SDE. Thus,

we now determine how the parameters of our chosen SDE are related to the behavioural

regimes by finding the maxima and minima of Eq. (2.28) as a function of its parameters.

Differentiating Eq. (2.28) with respect to x and setting the result equal to zero, we obtain

x3 − α∗0 + α∗1
2 + β∗

x2 +K2x− α∗0K
2

2 + β∗
= 0.

Applying the scaling x =
α∗1

2 + β∗
X, we obtain the familiar cubic, Eq. (2.22),:

x3 − (1 + α)x2 + γ2x− αγ2 = 0

where α =
α∗0
α∗1

, γ = K(β∗+2)
α∗1

. Since this is the cubic that was used to divide the αγ plane

in Fig. 2.13, we can use this plane to estimate the location of the empirical distribution, and

predict that of Nanog in the wild-type cell.

We now consider how to fit the model to the empirical distribution. Since noise scales with

abundance, expression levels are heavily skewed on a linear scale, and the low population

is dominated by the high population. This is why experimentally observed histograms of

expression levels are conventionally viewed on a log10-scale. We perform the model fitting

procedure on the log10-scale to enable a good fit to the small Nanog low population. Thus we

apply the change-of-variable technique to obtain the following expression for the probability

density for the log Nanog protein expression, y(t):

p∞(y) = A′ exp

[
−α∗010−y +

α∗1
K

arctan

(
10y

K

)
− ln 10(1 + β∗)y

]
(2.29)

Maximum likelihood estimation was used to fit this model to the experimentally observed

distribution under 2i culture conditions. The observed and fitted distributions are shown in

Fig. 2.14, and the parameter estimates are α̂∗0 = 2412, α̂∗1 = 279370, K̂ = 13889, β̂∗ = 5.085.



66 Chapter 2 Mathematical Modelling of Pluripotency

log(Nanog expression)
2 3 4 5 6

pr
ob

ab
ilit

y 
de

ns
ity

0

0.5

1

1.5

2

2.5

fitted (knock-in)
empirical (knock-in)

inferred (wild-type)

γ=0.352

γ=0.176

Figure 2.14: Emprical distribution of Nanog expression in the knock-in cell line (thin black,
solid line), fitted stationary distribution given by (2.29) (thick green line), and the inferred
distribution of Nanog expression in the wild-type cell (red dotted line), obtained by multi-
plying the fitted production parameters by 2 as per Eq. (2.18).

The fitted model places the empirical distribution at (0.0086, 0.3522) on the α-γ plane, and

the predicted value of γ in the wild-type cell, in 2i conditions, is γ̂/2 = 0.1761, placing it in

the monostable high region. Multiplying the production parameter estimates by 2 as per Eq.

(2.18), i.e. α̂∗0,1 → 2α̂∗0,1, we can obtain an estimate of the distribution of Nanog expression in

the wild-type cell, under the assumption that Nanog and GFP translation, mRNA and protein

decay rates are the same (Fig. 2.14, red dotted line). This means that, theoretically, the

empirical bimodal distribution of Nanog expression as reported by GFP in the heterozygous

knock-in cell-line does not reflect the distribution of Nanog in the wild-type cell. Rather, the

model predicts that the distribution of endogenous Nanog expression is homogeneous, and

expression levels are a half order of magnitude greater than the reported high state.

2.4 Conclusions

In the first part of this chapter, our analysis of the extended ESC TRN revealed that the

global feedback-rich structure is highly nested and critically dependent on Nanog, Oct4 and

Sox2, all of which participate in two thirds of all feedback loops. The feedback centrality

identified Nanog as the most central element in the global feedback structure, and the removal

of Nanog leaves only a third of the feedback loops in tact. Taken together with other findings

in [3], our results indicate that Nanog fluctuations regulate population heterogeneity by
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transiently activating different subnetworks in the extended ESC TRN, driving transitions

between a Nanog-expressing, feedback-rich, robust and self-perpetuating pluripotent state

and a Nanog-diminished, feedback-sparse and differentiation-sensitive state.

We note that although the feedback structure of the extended TRN is severely compromised

on removal of Nanog, it is not entirely destroyed: a small number of key feedback loops

still remain, most notably those involving Oct4, Sox2, Dax1 and Rex1. MacArthur et al. [3]

suggest that this may explain why, although they are prone to differentiate, ESCs can be

maintained in a self-renewing state in the absence of Nanog [117]. In this case self-renewing

ESCs may adapt to depend on a depleted feedback structure, which highlights the remarkable

robustness of the pluripotency TRN [3].

The results of our analyses complement those of the experiments carried out by MacArthur

et al. [3], which showed that pluripotency decayed over time following the removal of Nanog,

and the efficiency of the rescue of Nanog levels progressively diminished as the core network

disintegrated. They found that when Nanog was reintroduced after three days, the system

had crossed a critical point and it was no longer possible to return to the pluripotent state.

The authors proposed a simple RRE model of Nanog regulation of pluripotency, the analysis

of which suggests that the observed irreversibility is due to the Nanog-dependent positive

feedback loops in the TRN, which give rise to a one-way switch.

In the second part of this chapter, we presented mathematical models of positive feedback that

explain how the experimentally observed bimodal distribution of Nanog protein expression

could be a reporter artefact, as opposed to a significant biological phenomenon. We began

by considering a CME model of the core ESC network for both the wild-type cell and the

heterozygous knock-in cell-line. We demonstrated that while the network was able to give

rise to a bimodal distribution of expression for Nanog and GFP in the model knock-in cell-

line, these distributions exhibited homogeneity in the model wild-type cell under the same

parameter values.

Although the model of the core ESC network agreed quantitatively with the experimental

data, it was too complicated to enable the identification of the components that control

stability. Therefore we simplified the model to the Nanog autoregulatory loop alone, and

by observing from the time series simulations that the dynamics of the Nanog protein are

decoupled from those of Oct4 and Sox2, we reasoned that the extrinsic noise in Nanog ex-

pression is due to fluctuations in Oct4 and Sox2 expression. We obtained the same results for
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this reduced model as for the core ESC network model, in that the modelled GFP knock-in

cell-line can achieve a bimodal distribution of both GFP and Nanog expression, while under

the same parameter values, the Nanog distribution is unimodal in the wild-type system.

In order to determine the mechanism by which the creation of a Nanog null allele affects Nanog

dynamics, we studied the corresponding RREs for the system. By reducing the dimensions of

the systems of ODEs we found that the baseline and feedback production rates in the knock-

in cell line are half that of those in the wild-type cell, and the stability analysis revealed this

reduction weakens the strength of the auto-activatory feedback loop.

The dynamics of Nanog expression are governed by two parameters α and γ, whose values

determine if the system is monostable or bistable. By dividing the α-γ plane into behavioural

regimes, we were able to see the regions to which a wild-type cell in the Nanog high region

would transition as a result of the insertion of the GFP knock-in; depending on the values of

α and γ in the wild-type cell, the introduction of the reporter construct will result in either

a bistable, or a lower monostable, distribution of Nanog and GFP expression. Wild-type

cells that reside anywhere in the bistable region are at risk of a shift into the monostable

low region, or a significant change in the proportion of cells in each state. In summary,

our analyses demonstrated that the introduction of the GFP knock-in reporter can induce

a qualitative change in Nanog concentration that alters the behaviour and therefore the

function of the cell.

In the last section of this chapter we fitted a model to the experimentally observed bimodal

distribution of Nanog protein expression in 2i culture conditions, as reported by the GFP

knock-in cell line, and this enabled us to infer the distribution of Nanog expression in the wild-

type cell. We found that, in theory, the observed bimodal distribution does not reflect that of

Nanog in the wild-type cell. Instead, the model predicts that the distribution of endogenous

Nanog expression is homogeneous, and expression levels are a half order of magnitude greater

than the reported high state. However, the inference was based on the assumption that the

translation and decay rates of GFP mRNA and proteins are the same as those of Nanog.

Since this is unlikely to be true, the observed GFP distribution may not even reflect the

distribution of Nanog expression in the reporter cell-line, and the differences in reaction rates

must be taken into account to obtain a more accurate estimate of the distribution of Nanog

expression in the wild-type cell.



Chapter 3

Mathematical Modelling of

Multipotency

3.1 Introduction

In this chapter, we consider the role of cell-to-cell variability within multipotent (as opposed

pluripotent) stem cell populations. In regard to our findings in Chapter 2 on reporter strate-

gies, we note that the studies discussed hereafter did not use a heterozygous knock-in reporter

cell line, and therefore normal regulation of the gene of interest was not disturbed by the

removal one of the alleles. Moreover, the experimentally observed distributions of expression

to which we fit a mathematical model were obtained by immunostaining. This method is

thought to have no direct effect on the transcription, translation or decay processes, because

GFP proteins are attached to the target proteins (via an antibody) after these processes have

occurred, and therefore the distributions of interest have already been established.

3.1.1 Functional Diversity in Cellular Populations

Clonal populations of unicellular organisms often exhibit phenotypic diversity – in which

qualitatively different subpopulations of cells coexist – which confers selective advantage

under adverse environmental conditions. Well-known examples include antibiotic bacterial

persistence, the lysis-lysogeny switch of λ phage, competence development and sporulation

of B. subtilis, and lactose uptake by E. coli [178, 179]. The ubiquity of this phenomenon

indicates that it is a generic, evolvable mechanism that facilitates collective cellular dynamics

69
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by enabling robust, rapid responses to diverse environmental changes. Recently, stochas-

tic fluctuations in the expression of important marker proteins have been seen to generate

functional diversity within multipotent mammalian stem cell populations, suggesting a sim-

ilar role for cell-to-cell variability in higher organisms [108, 180–182]. These observations

have motivated speculation that functional multipotency (the ability to differentiate along

a number of distinct cellular lineages) is a collective property of stem and progenitor cell

populations, reflective of fitness constraints imposed at the population – rather than the in-

dividual cell – level [183–185]. This perspective is appealing since such regulated cell–to–cell

variability, in principle, allows a cellular population to remain primed to respond quickly to a

range of different differentiation cues while remaining robust to cell loss. However, convincing

demonstrations of the potency of individual stem cells appear to argue strongly against such a

collective view. For example, single long-term repopulating hematopoietic stem cells are able

to fully reconstitute the blood system of lethally irradiated adult mice, and small numbers of

pluripotent stem cells are able to rescue the development of genetically compromised embryos

[186, 187]. Thus, it is still unclear how population-level and cell-intrinsic regulatory programs

interact to control mammalian stem and progenitor cell dynamics. In this chapter, we use

tools from statistical mechanics and information theory to propose a theoretical framework

for the functional role of this variability. In order to illustrate our perspective, we model the

concentration of a single protein in blood forming stem cells, in vitro, as a continuous Markov

process, which we describe by a stochastic differential equation. Our theoretical framework

is based on three important mathematical concepts that we now define.

3.1.2 Ergodicity and Entropy

A continuous time Markov chain {X(t) : t ≥ 0} with state space S is ergodic if for any real

valued function, f : S → R, the time average of the values of f(X(t)) converge to the spatial

average over the entire space, with respect to the stationary probability density function, p∞.

That is

lim
T→∞

1

T

∫ T

0
f (X(t)) dt =

∫
f(x) dp∞.

The notion of ergodicity is strongly related to the thermodynamic concept of entropy. In

this thesis we will not be concerned with entropy in its thermodynamic context but rather

as a general measure of “information”. The first major application of entropy in fields out-

side of thermodynamics was introduced by Claude Shannon in his pioneering paper of 1948
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[188], in which he simultaneously created the field of information theory and solved most

of its fundamental problems. Information theory is the mathematical study of the accurate

communication of information or data over a communication channel - the medium used to

transmit the signal from transmitter to receiver, which could be a band of radio frequencies,

or a beam of light, for example. In this context, “information” is thought of as a set of

messages, where the goal is to send these messages over a noisy channel, and then to have

the receiver reconstruct the message with low probability of error, in spite of the channel

noise. Information theory is concerned with the theoretical limitations and potential perfor-

mance of systems that can turn noisy channels into reliable communication channels using

computational encoding and decoding methods.

Shannon began his paper [188] by defining a measure of how much information is produced

by an ergodic discrete Markov process. Given a set of possible events whose probabilities of

occurrence are p1, p2, . . . , pn, Shannon stated that the measure, S, of how much “choice” is

involved in the selection of the event or of how uncertain we are of the outcome must satisfy

the following three properties:

1. S should be continuous with the pi.

2. If all the pi are equal then S should be a monotonic increasing function of the number

of states. This is because there is more uncertainty, or more choice when there are more

possible events.

3. Any succession of choices is the weighted sum of the individual values of S.

He deduced that the only S that satisfies these conditions is of the form S = −K
n∑
i=1

pi logb pi,

where K is a positive constant. In information theory K = 1, and the logarithm is usually

to the base 2 (in which case, entropy is measured in bits), while in thermodynamics K is the

Boltzmann constant and the logarithm is natural. Informally, entropy is a measure of how

flat a probability distribution is. For a probability distribution that is not subject to any

constraints, its entropy is at its maximum value when all probabilities are equal, in which

case it is equal to the log of the total number of states.

The second law of thermodynamics states that during any spontaneous process, the total

entropy change for an isolated system is positive. This means that the entropy of an iso-

lated system out of equilibrium increases over time toward the maximum entropy uniform
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distribution (in which all states are equally likely). However, for systems that interact with

their environment and are likely to be subject to constraints, the second law is not directly

applicable. In this case, the equilibrium distribution is not expected to be uniform, and the

entropy may not always increase. Rather, subject to certain reasonable assumptions, a related

quantity known as the relative entropy or Kullback-Leibler divergence (with respect to the

equilibrium distribution) decreases with time [189, 190]. More formally, if p∞ is the unique

stationary distribution (i.e. the process is ergodic), D(p || p∞) =
∫
p log

p

p∞
dx decreases

with time.

The Principle of Maximum Entropy

The principle of maximum entropy as a method for estimating a probability distribution was

first proposed by Edwin Jaynes in 1957 [191]. It states that, given a set of known constraints

on the target distribution, then, among all distributions satisfying these constraints, we should

choose the one that is “maximally non-committal with regard to missing information” [191],

i.e., the one with the largest Shannon entropy.

More precisely, consider a random variable X that takes known values x1, . . . , xn, with un-

known probabilities p1, . . . , pn, and with m constraint functions fk(x) with 1 ≤ k ≤ m < n,

where

〈fk(X)〉 = Fk,

and the Fk are fixed. Then the maximum entropy principle assigns probabilities in such a

way that maximises the information entropy, S(p1, . . . , pn), of X under the above constraints,

along with the constraint that the probabilities must sum to one, i.e.,

n∑
i=1

pi = 1.

The usual approach is to solve this optimisation problem using Lagrange Multipliers. Thus,

we introduce m + 1 Lagrange multipliers λk, k = 1, . . . ,m, µ (one for each constraint), and

the function

L(p1, . . . , pn;λ1, . . . , λm, µ) = −
n∑
i=1

pi log pi −
m∑
k=1

λk

(
n∑
i=1

fk(xi)pi − Fk

)
− µ

(
n∑
i=1

pi − 1

)
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which we would like to maximise with respect to p1, p2 . . . , pn;λ1, λ2, . . . , λm;µ. Thus we

solve

∇p1,...,pn;λ1,...,λm,µL = 0.

Differentiating with respect to pi, we obtain

− log pi − 1−
m∑
k=1

λkfk(xi)− (λ0 − 1) = 0,

using the notation λ0 = µ+ 1. Hence

pi = exp

(
−λ0 −

m∑
k=1

λkfk(xi)

)
. (3.1)

The Lagrange multipliers, (λ0, λ1, . . . , λm), are then found from the relevant constraints. The

constraint on the sum of probabilities gives

1 =
n∑
i=1

pi = e−λ0Z,

where

Z = Z (λ1, . . . , λm) =

n∑
i=1

exp

(
−

m∑
k=1

λkfk(xi)

)

is the partition function, and therefore

e−λ0 =
1

Z
, λ0 = logZ. (3.2)

The remaining constraints give

Fk =
n∑
i=1

fk(xi) pi = e−λ0

n∑
i=1

fk(xi) exp

(
−

m∑
r=1

λrfr(xi)

)
= − 1

Z

∂Z

∂λk
,

= −∂ logZ

∂λk
, (3.3)

which are m simultaneous, implicit equations, sufficient to determine the m unknowns λk,

and are usually solved by numerical methods. Using Eq. (3.2) the probabilities (3.1) are fully

determined:

pi =
1

Z
exp

(
−

m∑
k=1

λkfk(xi)

)
.
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and the maximum-entropy distribution has the generic form

p∗(x) =
1

Z
exp

(∑
k

λkfk(x)

)
.

It can be proved [192, 193] that the maximum entropy distribution and the maximum like-

lihood distribution are equal when the family of distributions is the exponential family, i.e.,

when the family is defined by

p(x|λ) =
1

Z(λ)
exp

(∑
k

λkfk(x)

)
,

where Z is the normalising constant, the functions fk(x) are given, and the parameters

λ = {λk} are not known. By differentiating the log-likelihood, it can be shown [192, 193]

that the maximum likelihood parameters {λML} satisfy

∑
x

p(x|λML)fk(x) =
1

N

N∑
n=1

fk(x
(n))

where the left-hand sum is over the entire state space x, and the right-hand sum is over the

set of N data points, {x(n)}. However, the maximum-likelihood setting in classical statistics

(see, for example, [194], Chapter 6) differs from the principle of maximum entropy setting.

In maximum likelihood, the true distribution is assumed to be from the same family as

the distributions over which the likelihood is maximised, whereas the principle of maximum

entropy poses no parametric assumptions on the truth.

3.2 A Theoretical Framework for Multipotency

In application to dynamic variation in gene expression, ergodic theory says that if there exists

a unique equilibrium distribution p∞(x), toward which every initial condition (subpopulation

of cells) converges, then the underlying stochastic processes that regulate expression are

ergodic, and each cell in the population will independently explore the same state space in

accordance with p∞(x). In this case the population is intrinsically robust to targeted removal

of any particular subpopulation because the remaining cells in the population will eventually

“recolonize” (in state space) the removed subpopulation and reconstitute the equilibrium

distribution p∞(x). Similar reconstitution has been experimentally observed with respect to

a number of proteins that are associated with stem and progenitor cells, including Nanog [108,
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117], Rex1 [121], and Stella [122], as well as between distinct phenotypic states within cancer

cell populations [195], and with respect to the stem cell surface marker Sca1 in hematopoietic

progenitor cells [196]. These studies strongly suggest that the underlying stochastic processes

that regulate expression variation are “ergodic-like”.

With this in mind we propose a theoretical framework that views cellular multipotency as an

instance of maximum entropy statistical inference. In this view, individual cells satisfy any

minimal regulatory constraints imposed upon them (such as basic metabolic requirements,

etc.), yet, in the absence of defined instructions, are maximally noncommittal with respect

to their remaining molecular identity, thereby generating a diverse population that is able

to respond optimally to a range of unforeseen future environmental changes. Thus, rather

than viewing the multipotent cell state as an attractor of the underlying molecular regulatory

dynamics (i.e., associating cellular identities with well-defined, stable patterns of gene expres-

sion – a common modelling assumption that has received some experimental validation for

differentiated cell types [77]) individual multipotent cells are characterised by fundamental

uncertainty in their molecular state, and their populations exhibit variability in accordance

with this intrinsic uncertainty. However, since this model exchanges the attractor hypothesis

at the single cell level for an ergodicity assumption for the underlying stochastic processes,

each individual cell has the latent potential to assume every identity within the population,

and it thereby retains the regenerative capacity of the entire population. As this view is

fundamentally stochastic, its corollary is that regulation of multipotency occurs at the level

of probabilities (i.e., at the population level), rather than at the individual cell level. In order

to illustrate this perspective we will consider here the expression dynamics of Sca1, a key

protein expressed in mouse hematopoietic progenitor cells, and known to have an important

role in regulating cell fate [196–199].

3.2.1 Hematopoietic Stem Cells

Formation and maintenance of the blood system depends on hematopoietic stem cells (HSCs),

which reside in small numbers in the bone marrow of adult mammals [200]. Since mature

blood cells are predominantly short lived, HSCs are critically important for replenishing them

and therefore sustaining the life of the individual [201]. In a human adult, 1011–1012 blood

cells are produced daily to maintain steady state levels [202]. As with all other stem cells,

HSCs are capable of self-renewal, i.e., they possess the ability to divide into identical copies
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of themselves without forming any newly differentiated features, enabling them to maintain

their population size. HSCs can also differentiate to all blood cell lineages [203]. They sit

at the top of a hierarchy of progenitors that become progressively restricted to several or

single lineages (see Fig. 3.1) [204]. These progenitors yield blood precursors committed to

differentiate down a single lineage and produce mature blood cells. While progenitor cells do

not have the same self renewal capacity as the parent stem cells, they retain some capacity

for further divisions.

HSCs differentiate in the bone marrow to lymphoid or myeloid stem cells [205]. Lymphoid

stem cells give rise to B-cells and T-cells, which are the major cellular components of the

adaptive immune system [206, 207]. Myeloid stem cells give rise to a second level of lineage-

specific cells that go on to produce the following mature cells [208]:

• Granulocytes (basophils, neutrophils, and eosinophils) are types of white blood cell that

help the body fight bacterial infections [209].

• Megakaryocytes and platelets help wounds heal and stop bleeding by forming blood

clots [210].

• Macrophages reside in every tissue of the body and engulf dead cells and pathogens

[211].

• Mast cells release histamine and are part of the immune system [212].

• Erythrocytes and reticulocytes are the oxygen carrying red blood cells [213].

• Dendritic cells act as messengers between the innate and the adaptive immune systems

by processing antigen material and presenting it to the T-cells of the immune system

[214].

To maintain hematopoietic homeostasis, HSC numbers need to be precisely regulated [216].

The cell fate decisions (life and death, and self renewal and differentiation) of HSCs are

important processes that regulate the size and lifespan of the HSC pool. Defects in these

processes can contribute to hematopoietic insufficiencies and the development of hematopoi-

etic malignancies [216]. While human HSCs are frequently transplanted (obtained from the

same or a different individual), to treat a range of diseases and cancers of the blood malignan-

cies and congenital immunological defects [217], there is chronic shortage of suitably matched
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Figure 3.1: The lineages of the hematopoietic system. Adapted from [215].

HSCs for transplantation, which has generated a great deal of interest in proliferating HSC

colonies in vitro [218]. One major challenge in expanding HSC colonies is preventing them

from differentiating and eventually dying [219]. Recent protocols use cultures with defined

media (in which all of the chemical components are known) and specially engineered growth

factors because of their simplicity and efficacy [220].

3.2.2 The Experimental Data

To investigate the origins of the cell-to-cell variability within clonal populations of HSCs,

Chang et al. [196] analysed the dispersion of expression levels of stem cell surface marker

Sca1 in populations of a multipotent erythroid, myeloid, and lymphocytic (EML) mouse

hematopoietic progenitor cell line. Immunostaining and flow cytometry (see Section 2.1.2

for details) was used to generate experimental data that revealed a heterogeneous, bimodal

distribution of Sca1 expression (see Fig. 3.3, bottom panel and [196]). Sca1 is functionally

important since it has a role in HSC and progenitor lineage fate. Specifically, low Sca1 levels
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predispose HSC and progenitor cells to myeloid and T-cell differentiation [196, 221, 222],

whereas high Sca1 levels are required for erythroid, megakaryocyte, platelet and B-cell dif-

ferentiation [196, 221–223]. In order to characterise the dynamics by which the population

heterogeneity arises, Chang et al. [196] observed the evolution of the distributions of selected

subpopulations. Cells from the lowest, highest and middle 15% of the distribution of Sca1

expression were isolated, and the evolution of the distributions of these three subpopulations

was observed as they equilibrated in culture over a period of 18 days. All three initial condi-

tions eventually reconstituted the parental distribution (see Fig. 3.3), and this convergence

took approximately an order of magnitude longer than the cell cycle time.

With the aim of ascertaining the phenomenon that drives the regeneration of the parental

distribution from the three sorted population fractions, [196] took a phenomenological ap-

proach to determine which general class of models of stochastic processes best describes the

observed behaviour. The first model described Sca1 expression as a simple mean reverting

(Ornstein-Uhlenbeck) process that includes both noise-driven diffusion (capturing the genera-

tion of cell-to-cell variability) and a drift towards the deterministic equilibrium (representing

relaxation to the parental distribution mean), but this process described the data poorly,

because it failed to recapitulate the regeneration of the low state (subpopulation) from the

Sca1 high fraction.

Thus, the simple Ornstein-Uhlenbeck model was extended to include transitions between

distinct states using a Gaussian mixture model (GMM) as a first approximation to a mul-

timodal system. To corroborate the notion of multiple subpopulations with respect to Sca1

steady-state expression, it was shown that the observed histogram evolution can be better

described by a two-component GMM than a single Gaussian distribution. The cells in every

measured histogram (time point) were then partitioned into two subpopulations according to

the fitted GMMs and the expression values of the individual cells, thus providing the time

evolution of the relative abundance (weight) for each subpopulation. For the Sca1-mid and

Sca1-high fractions, the weights exhibited a steep change after 96 hours, before eventually

reaching a plateau, suggesting that the stochastic transitions between the subpopulations had

a dominant role in the eventual relaxation to equilibrium.

A further experiment was carried out to determine whether clonal heterogeneity in Sca1

protein expression correlates with heterogeneity of the differentiation potential of these cells.

On the application of a stimulus (a protein signaling molecule called erythropoietin), cells
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with low Sca1 expression showed an increased propensity to differentiate to the erythroid

lineage, and those with high Sca-1 expression showed an increased propensity to differentiate

to the myeloid lineage.

Taken together, these results indicate that the universal reconstitution of the parental dis-

tribution is a result of noise-driven transitions between co-existing Sca1 high and low states,

which transiently prime individual cells for erythroid and myeloid differentiation, respectively,

and generate a characteristically bimodal Sca1 expression distribution within the population.

Since the two-component GMM does not explain the observed sigmoidal evolution of the

relative weights of the two subpopulations, Chang et al. [196] proposed a non-linear ODE

model for the size of each subpopulation. The model is based on cell-to-cell communication

mediated by signalling molecules secreted by the cells, the abundance of which alters the rate

of switching between states. Although the model captures the observed sigmoidal kinetics,

different parameter estimates were required for each of the three initial fractions, thus render-

ing the model not useful for predicting weight dynamics for new initial conditions. We have

chosen to model the observed Sca1 expression dynamics, not only to illustrate the theoretical

framework proposed in Section 3.2, but also to demonstrate that cell-to-cell communication

is not required to obtain sigmoidal weight relaxation dynamics. Furthermore, our simple

SDE model can predict the evolution of the distribution of Sca1 expression for any initial

condition, not just that of the weights.

3.2.3 A Stochastic Differential Equation Model

Since the underlying mechanisms by which the stochastic fluctuations of Sca1 levels are reg-

ulated are not known, we assume here that the intracellular dynamics of the Sca1 expression

level z(t) are described by a generic stochastic differential equation:

dz

dt
= a(z) +

√
2d(z)ξ(t), (3.4)

where ξ(t) is a standard one-dimensional white noise process, a(z) describes the deterministic

dynamics, and d(z) accounts for fluctuations in Sca1 levels due to both intrinsic sources (i.e.,

noise in the molecular processes involved in Sca1 production or decay, such as transcription,

translation, translocation, and degradation, etc.) and extrinsic sources (i.e., fluctuations in

upstream regulators and uncontrolled environmental noise). Rather than model Sca1 levels
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directly, it is convenient to introduce a reaction coordinate x(z) such that the Fokker-Planck

Equation (FPE) for the probability density p(x, t) has the form

∂p

∂t
= L(p), L(p) =

∂

∂x

(
dψ

dx
p

)
+ σ

∂2p

∂x2
, (3.5)

with scalar potential ψ(x) and diffusion coefficient σ. Such a transformation, which maps the

original dynamics to those of a Brownian particle in a one-dimensional potential field, may

be achieved by application of Itō’s lemma, which reads:

dx

dt
= a(z)

dx

dz
+ d(z)

d2x

dz2
+
√

2d(z)
dx

dz
ξ(t).

The reaction coordinate x(z) can be chosen such that the noise term in this equation is

constant, say
√

2σ, which gives the transformation

x =

∫ √
σ

d(z)
dz. (3.6)

Since the dynamics are one-dimensional we may also introduce a potential ψ(x) such that

− dψ

dx
= a(z)

dx

dz
+ d(z)

d2x

dz2
,

to obtain

dx

dt
= −dψ

dx
+
√

2σξ(t),

which is the stochastic differential equation corresponding to the FPE given by Eq. (3.5).

Experimental data suggest that protein expression fluctuations often scale linearly with ex-

pression level [177]. Thus, a natural choice for the noise term is d(z) = σz2. Substituting

this into Eq. (3.6) gives x = log(z). This approach is similar to that taken in [224].

The stationary solution of Eq. (3.5) is the Boltzmann-Gibbs distribution

p∞(x) = Z−1 exp(−ψ/σ), Z =

∫
exp(−ψ/σ) dx. (3.7)
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Figure 3.2: Smoothed probability density estimate of the empirical equilibrium Sca1 distri-
bution, calculated from the aggregate of all three observations at (t = 432) (left), and the
corresponding potential function ψ(x), (right). Experimental data, obtained from Chang
et al. [196], are shown in dark red and the fitted model is shown in black.

This solution exists so long as ψ(x) grows sufficiently rapidly as |x| → ∞ that the partition

function Z remains finite. In this case, the dynamics are ergodic and the free energy is

F (p) =

∫
ψpdx+ σ

∫
p log p dx, (3.8)

= E(p)− σS(p),

where E(p) and S(p) are the energy and entropy functionals, respectively. We use free energy

later in Section 3.2.5 to assess the convergence of the probability density to the equilibrium

state.

3.2.4 Model Fitting Based on a Data-Driven Potential

In the absence of detailed information on how Sca1 fluctuations are regulated, the poten-

tial ψ(x) may be estimated numerically from the empirical Sca1 distribution by inverting

Eq. (3.7). The model then has a single free parameter, the diffusion coefficient σ, which sets

the time scale for the dynamics.

Estimates of σ and ψ(x) were obtained by model fitting using maximum likelihood estimation

to the experimentally observed evolving Sca1 expression distributions starting from the three

preselected populations. This was done numerically by fitting Eq. (3.5) using the partial

differential equation solver ‘pdepe’, in Matlab. The equilibrium probability density and

fitted potential is shown in Fig. 3.2.

Despite the simplicity of this model, excellent agreement with the experimental time-series

data was observed from all three initial conditions, using the same numerically estimated

potential and the same estimate of σ (Figs. 3.3–3.5).
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Figure 3.3: Model fit to experimental data. Model simulations using the same estimates of
ψ(x) and σ are shown against the three independent experimental time-series; simulations
differ only in the experimentally prescribed initial conditions. Data, obtained from Chang
et al. [196], are in dark red and the fitted model is in black. The potential ψ(x) was estimated
numerically via Eq. (3.7) using aggregated data from the final time point.

3.2.5 Quantification of Convergence to Equilibrium

In their original publication, Chang et al. [196] argued, based upon analysis of changing pro-

portions of cells in the Sca1 high and low states, that the observed dynamics are characterised

by slow “sigmoidal” relaxation towards the stationary state. Since a constant probability flux

across a barrier naturally leads to exponential relaxation, they suggested that these dynamics
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Figure 3.4: Convergence to equilibrium with respect to the free energy. Exponential con-
vergence was observed from all three initial conditions for large time, in accordance with
Eq. (3.5).

indicate deviation from expected first-order kinetics, possibly due to regulation of Sca1 fluc-

tuations by cell-to-cell communication or autocrine signalling, and proposed a simple model

of cell-to-cell communication to explain this data. However, it is apparent that such recourse

is not needed since in all three cases the experimental system is initially far from equilibrium,

and therefore far from the regime in which first-order kinetics apply. Rather, in accordance

with standard reaction-rate theory, the dynamics are characterised by an initial transient

period during which local equilibrium is first established within each potential well, before

transitions between wells occur [225].

The natural way to examine convergence to equilibrium for Eq. (3.5) is via the free energy,

which is a Lyapunov functional for the dynamics [226, 227]. Examination of the free energy

shows that this separation of time scales generates the observed convergence dynamics with-

out the need to include additional regulatory mechanisms in the model (see Fig. 3.4). Taken

together, these results indicate that the observed Sca1 expression dynamics are well described

by a simple ergodic process in which individual cells behave independently with respect to

Sca1 fluctuations.

3.2.6 First Passage Time Distributions

The ergodicity is useful since it allows inference of the behaviour of individual cells from the

population dynamics. While stochastic excursions into the Sca1 high and low states have been

seen to transiently confer different lineage biases to individual progenitor cells in culture, the

time scales upon which these excursions occur at the single cell level are not known. Thus,

the distribution of first passage times (FPTs) out of the Sca1 low and high states are of

particular interest. Defining the ranges of Sca1 low and high expression as L = (−∞, x0) and

H = (x0,∞), respectively, where x0 is the intermediate maxima in ψ(x), the FPT T (x) out
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Figure 3.5: First passage time (FPT) distributions in the Sca1 low (left panel) and high (right
panel) states. The FPT distributions FX(xX , t) starting at the local minima of the potential
ψ(x) are shown in black; the expected FPT distributions 〈FX〉(t) averaging over all initial
conditions in X ∈ {L,H} are shown in blue.

of X for a cell initially at x ∈ X (where X ∈ {L,H}) may be obtained from the backward

FPE associated with Eq. (3.5). Denoting G(x, t) = P (T (x) ≥ t), we solve

∂G

∂t
= −dψ

dx

∂G

∂x
+ σ

∂2G

∂x2
, (3.9)

with initial conditions G(x, 0) = 1 for x ∈ X and boundary conditions G(x0, t) =

∂G/∂x(±∞, t) = 0, from which the FPT distributions FX(x, t) = P (T (x) = t) = −∂G/∂t,

for X ∈ {L,H}, may be obtained. Conventionally, the FPT distribution FX(x, t) is evalu-

ated from the local minima xX of ψ(x) in X since this is the state of highest probability.

Alternatively, we can weight each initial position within X according to the probability that

the cell is at this position at equilibrium. We thus define the expected FPT distribution with

respect to the Gibbs measure,

〈FX〉(t) =

∫
x∈X

p∞(x)

wX
FX(x, t) dx,

where wX =
∫
x∈X p∞(x)dx ∈ [0, 1] is the weight of the population in X. Numerical approxi-

mations to FX(xX , t) and 〈FX〉(t) are shown in Fig. 3.5. These distributions yield mean FPTs

of 60 (56) hours for the low state and 1573 (1487) hours for the high state using FX(xX , t)

(〈FX〉(t)). These time scales are substantially longer than the EML cell population doubling

time (approximately 18–20 h [198]), and they therefore suggest that Sca1 fluctuations are not

simply a consequence of the cell cycle. Rather, by setting the expected length of time that

a pair of cells initially at the same position (e.g., daughter cells from the same cell division)

will forget their common origin – and therefore the expected length of time that their iden-

tities will be coupled – Sca1 switching appears to encode an elementary form of epigenetic

memory that endows individual cells with a transient functional identity. Since the rate of
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switching is slower than the rate of cell division, this allows the formation of communities of

cells that maintain the same characteristics though divisions, and are therefore able to adopt

a temporarily stable functional phenotype. Yet, by allowing mixing between the communi-

ties on a feasible time scale, Sca1 fluctuations also safeguard long-term cell-to-cell variability

and ensure that a robustly heterogeneous population, able to rapidly respond to a range of

environmental challenges and resilient to the removal of cellular subtypes, is maintained.

3.2.7 Parameterised Model of the Potential

These results indicate that regulated fluctuations in Sca1 levels may be an intrinsic feature of

EML cells in culture since they provide a mechanism by which the population hedges against

unforeseen future environmental challenges and thereby retains the capacity to differentiate

along both erythroid and/or myeloid lineages as required. If this is the case, then it is

natural to ask if the experimentally observed stationary Sca1 distribution is optimal for

this purpose; that is, if it is maximally variable in some appropriately defined way. To

investigate this, it is convenient to introduce a parameterisation of the potential ψ(x), in

order to compare distributions. A parsimonious model, which allows for observed bimodality

without introducing large numbers of parameters, is:

dψ

dx
= βx− α0 −

α1x
n

Kn + xn
, (3.10)

where n is a positive even integer. This restriction ensures that ψ(x) is continuous and real

for all x ∈ R. Although in principle x may be negative, Sca1 levels are sufficiently high

that we did not observe negative values in practice. Intuitively, this is a simple model of a

positive-feedback based bistable switch of the kind that commonly regulates cell fate changes

[134, 135, 156]. We saw such a model for Nanog in ESCs in Chapter 2, where we demonstrated

that positive feedback can give rise to a Hill function.

Eq. (3.10) may be integrated to obtain the following expression for ψ(x) (see Appendix B.1

for the full derivation):

ψ(x) = 1
2βx

2 − (α0 + α1)x+
α1K

n

n/2∑
k=1

2Sk arctan

 x

K
− Ck
Sk

− Ck log

(( x
K

)2
− 2Ck

x

K
+ 1

)
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Figure 3.6: Fit of the parameterised model for the stationary distribution to the experimental
data (left) and the corresponding potential function ψ(x). In both panels, experimental data
are shown in dark red and the fitted model is shown in black. The maximum likelihood
estimates of the parameters are α̂0 = 0.118, α̂1 = 0.0868, K̂ = 3.5308, β̂ = 0.0436, σ̂ = 0.0047,
and n̂ = 12.

where Sk = sin ((2k − 1)π/n) , Ck = cos ((2k − 1)π/n). Substituting this equation into

Eq. (3.7) it can be seen that the stationary distribution p∞(x) is characterised by five non-

negative parameters: n, α0/σ, α1/σ, β/σ, K. Estimates of these parameters were calculated

by model fitting to the aggregated data from the final time point using maximum likelihood

estimation. The fitted stationary distribution is shown in Fig. 3.6 (left). An estimate of

σ was obtained by model fitting to the observed evolving Sca1 expression distributions, us-

ing maximum likelihood estimation. This was done numerically by fitting the Fokker-Planck

equation, (3.5), using the partial differential equation solver ‘pdepe’, in Matlab. As expected,

the estimate is similar to that for the numerical potential (0.004746 vs 0.004546). Since the

plot of the model fit to the experimental time series data is indistinguishable from Fig. 3.3,

it is not shown here. Again, all three experimentally observed time series are well described

by the one dimensional FPE with the same parameter values, indicating that it is a suitable

model of the dynamics of Sca1 expression.

Stability Analysis

To characterise the different aspects of the dynamics of the observed Sca1 system relative to

the family of distributions given by Eq. (3.10), we begin by carrying out a stability analysis.

Since the form of the SDE for Sca1 (as implied by Eq. (3.10)) is identical to that for Nanog
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expression (2.19) in Chapter 2, except for the Hill coefficient, n (where n = 2 for Nanog),

the stability analysis here is similar to that for Nanog. Therefore, we avoid repetition of the

previous stability analysis by only including the details that differ for general n.

Rescaling the system to aggregate the model parameters (see Appendix B.2 for the deriva-

tion), we obtain the nondimensional SDE

dx

dt
= α+

xn

γn + xn
− x+

√
2σd ξ(t), (3.11)

where α =
α0

α1
, γ =

Kβ

α1
, and σd =

β

α2
1

σ. Thus the stationary distribution p∞(x) is charac-

terised by four nonnegative dimensionless parameters: θ = [n, α, γ, σd].

To find the parameter values for which the system is bistable, we look for the fixed points,

and therefore the solutions to the polynomial

xn+1 − (1 + α)xn + γnx− αγn = 0. (3.12)

In general there are n + 1 solutions. Using Descartes’ rule of signs, when n is positive and

even, either one or three solutions are positive and real, and none are negative and real, i.e.,

the remaining solutions are complex.

We can ascertain the stability of the fixed points by plotting the curve
xn

γn + xn
and the

straight line x−α on the same plot, for varying values of γ, as shown in Fig. 3.7. We surmise

the direction of flow from the sign of F (x) = α +
xn

γn + xn
− x, as indicated by the arrows

marked on the x−axes. Since n reflects the steepness of the sigmoid, for values of n ≥ 1 the

line will intersect the curve in the same way as was described for Nanog in Section 2.3.2, as

γ varies from small to large. To find the values of α and γ at which the bifurcations take

place, we use the discriminant of Eq. (3.12). By expressing the discriminant of a polynomial

in terms of its roots we can see that the discriminant is equal to zero if and only if there is a

repeated real root

(−1)m(m−1)/2a2m−2
m

∏
i 6=j

(ri − rj),

where am is the leading coefficient and r1, . . . , rm are the roots of the polynomial. The

discriminant D of a polynomial, p is given by the formula

D(p) = (−1)m(m−1)/2 1

am
R(p, p′).
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Figure 3.7: (Top row) The Hill function xn

γn+xn for n = 12 (solid line), and the function
x − α (dashed line) for α = 0.2 (dashed line), with γ = 0.05, γ−, 0.45, 0.75, γ+, 1.2, where
0.05 < γ− < 0.45 and 0.75 < γ+ < 1.2. The filled circles mark the fixed-points, and the
arrows on the horizontal axes indicate the direction of flow between the fixed-points. When
α = 0.2, this system exhibits bistability for γ− < γ < γ+.

where p′ is the derivative of p, and R(p, p′), is the resultant of p and p′, which is equal to

the determinant of the Sylvester matrix, a (2m − 1) × (2m − 1) matrix, whose m − 1 first

rows contain the coefficients of the polynomial and the m last rows contain the coefficients of

its derivative. The resultant, R(p, p′), of Eq. (3.12), is given in Appendix B.3. Substituting

m = n+ 1, we obtain

(−1)n(n+1)/2R = 0

which we can now solve for γ to obtain an expression for the critical values as function of α.

In this case, we found in data fitting that n = 12, and the positive, real solutions for γ±(α)

consist of a pair of complicated polynomials of degree 12, as given by Eq. (B.5) in Appendix

B.3.

These two solutions divide the αγ parameter plane into three distinct behavioural regimes

as illustrated in Fig. 3.8 (left). Since the conditions (2.26) for each bifurcation point,

(x±, α±, γ±), are met, they are saddle node bifurcations for F (x) = α+
xn

γn + xn
− x.
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Figure 3.8: The αγ parameter plane is divided into three regime regions as determined by
the discriminant of the polynomial given by Eq. (3.12). Right: Hysteresis plot for α = 0.7.

It is clear from Fig. 3.8 (left panel) that the Sca1 system exhibits hysteresis. The hysteresis

plot, Fig. 3.8 (right panel), illustrates the following example. Consider a cell that occupies the

monostable high region at the point α = 0.7, γ = 0.1. As γ increases the cell moves through

the bistable region, and Sca1 expression remains high until it crosses the upper bifurcation

curve and moves into the monostable low region. In order for the cell to return to a state

of high expression, the value of γ must now decrease such that the cell moves back through

the bistable region and crosses both bifurcation curves. Thus the value of γ at which the

cell switches back to the original state of high expression is lower than the value at which it

switches to the low expression state, resulting in a delay as it traverses the bistable region.

3.2.8 Maximum Entropy and Self-Organised Criticality

For fixed θ, the conditional probability p∞(x |θ) is the minimiser of the free energy F (p),

and may therefore be viewed as the most noncommittal way to assign probabilities subject

to the particular constraints imposed upon the dynamics by ψ(x;θ) (i.e., an instance of

maximum entropy statistical inference) [191]. As each set of model parameters defines a

different potential, which places different constraints upon the dynamics, we may therefore

determine the extent to which Sca1 fluctuations optimize population diversity by assessing the

proximity of the empirical stationary Sca1 distribution to the maximum entropy distribution
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pmax
∞ (x) = p∞(x |θ∗), where S(p∞(x |θ∗)) = maxθ S(p∞(x |θ)). The relative entropy,

D(p∞ || pmax
∞ ) =

∫
p∞ log

(
p∞
pmax
∞

)
dx,

is a natural way to measure this proximity. Since the Hill coefficient n is, informally, a

measure of the sensitivity of the underlying switch to the input stimulus, it primarily affects

the curvature of the potential around the local minima x0 (where present) and does not

have a strong effect on the entropy. However, by governing a bifurcation that determines

whether the underlying switch is in a monostable or bistable state, α and γ can affect the

entropy of the stationary distribution considerably. Fig. 3.9 shows how the relative entropy of

p∞(x) varies over the biologically relevant bistable region of the αγ plane. Note that p∞(x)

also depends upon σd, the relative strength of stochastic fluctuations. However, since this

parameter includes the effects of unregulated extrinsic noise, we assume that it is not within

the cell’s capacity to regulate and fix it at the experimentally determined value. It can be

seen that the point estimate for the experimentally observed Sca1 distribution is remarkably

close to the maximum entropy distribution pmax
∞ (x). However, while the maximum entropy

distribution is in the centre of the bistable regime, the empirical distribution is close to

one of the critical lines that separate the bistable and monostable regimes (shown in blue

in Fig. 3.9, right panel). Self-organized criticality (SOC) is the spontaneous evolution of a

dynamical system to a critical state. The concept was put forward by Per Bak, Chao Tang

and Kurt Wiesenfeld in 1987 [228], and is considered to be one of the mechanisms by which

complexity arises in biological systems [229]. A dynamical system that is close to criticality

will typically remain in one state under the vast majority of small, transient perturbations, but

some perturbations can help generate large fluctuations that lead to a transition to a different

state. Such systems are especially well suited for adaptation and information processing in

the sense that adaptability is associated with the possibility of finding adequate new states in

changing environments at very fast rates. Here, proximity to criticality specifically regulates

the rate of mixing between the Sca1 high and low subpopulations, and therefore the response

time of the population to environmental changes. To illustrate this, we consider how the

mean first passage time (MFPTs) in each state varies in the vicinity of the maximum entropy

state in the αγ plane. The MFPTs in the low and high states, denoted τ− and τ+ respectively,

can be found by solving the ordinary differential equation [190]

F (x)
dτ±
∂x

+ σ
dτ2
±

dx2
= −1 (3.13)
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Figure 3.9: (Left panel) Entropy of the stationary distribution relative to the maximum
entropy distribution over the αγ plane. The empirical distribution is marked with a magenta
cross, and the maximum entropy distribution pmax

∞ (x) is marked with a green circle. Colour
shows the percentiles. (Right panel) Minimum MFPT τ in the vicinity of the maximum
entropy distribution (the dashed box in the left panel). The critical lines separating the
bistable and monostable regimes are shown in blue. The empirical distribution lies in the
small region of the αγ plane that is both close to critical and of high entropy. Colour shows
dimensionless time.

with the same boundary conditions as for Eq. (3.9), i.e., τ±(x0) = dτ±/dx(±∞) = 0, where

x0 is the intermediate maxima in ψ(x). Integrating once we obtain

dτ±
dx

=
− 1

σ

∫
e−Φ(x)/σdx

e−Φ(x)/σ
(3.14)

Applying the boundary conditions for the low state and integrating again we find:

τ− =
1

σ

∫ x0

x

∫ u

−∞
e

Φ(u)−Φ(s)
σ ds du (3.15)

and similarly for the high state:

τ+ =
1

σ

∫ x

x0

∫ ∞
u

e
Φ(u)−Φ(s)

σ ds du (3.16)

The MFPT is conventionally evaluated from the local minima xX of ψ(x) in X, since this is

the state of highest probability. Fig. 3.9 (right panel) shows how τ = min [τ−, τ+], varies in

the vicinity of the maximum entropy state in the αγ plane. It can be seen that the minimum

MFPT in the maximum entropy state is approximately an order of magnitude greater than

that of the empirical distribution. Thus, while a population distributed according to the
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maximum entropy distribution would ultimately be able to adapt better to environmental

changes than the empirical population, it could not do so as rapidly. In this regard, close

proximity to criticality is vital since it ensures that a diverse population is produced, yet mix-

ing between subpopulations occurs on a physically relevant time scale. These results suggest

that Sca1 levels are regulated by fitness constraints that involve a trade-off between max-

imising cell-to-cell variability and maintaining the ability to respond rapidly to environmental

changes.

3.3 Conclusions

In summary, we have proposed an information-theoretic interpretation of stem cell dynamics

that views cellular multipotency as an instance of maximum entropy statistical inference. We

illustrated this view by analysing expression fluctuations of Sca1 using a simple stochastic

model. The Langevin equation is a powerful tool for understanding the process of gene

expression, since it allows us to obtain statistical information about the expression dynamics

at the single cell level, and the resulting distribution at the population level. The choice of

appropriate reaction coordinate provided a constant diffusion coefficient that allowed us to

use a simple Langevin equation. Both the diffusion coefficient and the shape of a potential

were inferred without knowing the underlying regulatory network. Moreover, the model

accurately predicts the complex kinetics with which the sorted fractions relaxed back to the

steady-state distribution of Sca1 expression.

These results indicate that the observed Sca1 expression dynamics are well described by a

simple ergodic process in which individual cells behave independently with respect to Sca1

fluctuations. This ergodicity is useful since it allows inference of the behaviour of individual

cells from the population dynamics. The predictive value of our modelling approach may

have important practical implications for applications in stem cell biology. For example, the

model implies that switching from a low to high state is a diffusive process, and therefore cells

with concentrations near the state barrier are closer to switching than cells away from the

barrier. In contrast, the two-state model described in Section 2.2.2, and given by Eq. (2.3),

implies the rate of switching is uniform over the range of expression within each state. The

two-state model was rejected in favour of the Langevin approach, since the gradual spreading

of the shape of the distributions that are observed during relaxation suggests a process that
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is driven by small step fluctuations (i.e., diffusion), and therefore an SDE model more accu-

rately describes the dynamics of Sca1 expression [196]. The non-uniformity of the switching

probabilities over the state space is reflected by the dependence of the FPT distributions,

FX(x, t), predicted from our diffusive model, on the initial position, x. These FPT distri-

butions quantify how the cells explore the state space differently depending on where they

reside in the potential. A practical implication of this finding is that, for cell sorting experi-

ments, the details of the window size and location used to select subpopulations can have a

measurable influence on the apparent stability of the selected subpopulations.

In order to assess the proximity of the empirical stationary Sca1 distribution to the maximum

entropy distribution, we had to introduce extra model parameters. However, the simple model

of a positive-feedback based bistable switch described all three experimentally observed time

series well, with the same parameter values, indicating that it was a suitable model of the

dynamics of Sca1 expression. This model allowed us to see that the point estimate for the

experimentally observed Sca1 distribution is both remarkably close to the maximum entropy

distribution, and to one of the critical lines that separate the bistable and monostable regimes.

We showed that the minimum MFPT in the maximum entropy state is approximately an

order of magnitude greater than that of the empirical distribution, thus demonstrating how

proximity to criticality specifically regulates the rate of mixing between the Sca1 high and

low subpopulations. Therefore, our Langevin equation model has enabled us to use the

tools of statistical mechanics to provide evidence to suggest that Sca1 levels are regulated

by fitness constraints that involve a trade-off between maximising cell-to-cell variability and

maintaining the ability to respond rapidly to environmental changes.

Since the biological mechanisms of gene transcription are extraordinarily complex and not

completely understood, our model relies on a number of simplifying assumptions, both biolog-

ical and physical in nature. One of the most explicit is the assumption that the reaction rates

are constant. In reality, the rates are affected by many other processes including chromatin

remodelling, translational regulation, and protein folding [142, 230]. In addition, the param-

eterised SDE describes the auto-activating influence at a high-level of abstraction, where the

rate of Sca1 expression depends exclusively on itself. This means that the influence of other

molecules and cellular processes is not taken into account directly. Although our models are

phenomenological, these trade-offs are necessary since we do not know the structure of the
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underlying regulatory network. Even with these limitations, SDE models of this kind can be

useful in deciphering basic aspects of gene expression dynamics.

It has been shown [231–233] that culture conditions can have a significant effect on the

width and shape of a distribution of gene expression in clonal populations of stem cells (see

also Fig. 2.2 in Section 2.1.2). For example, a recent study by [233] demonstrated that

the expression distribution of key regulators suggested a more-homogenous transcriptional

network in mouse ESCs cultured with 2i than with two commonly used serum-based cultures

– a result that is consistent with what we see in Fig. 2.2. Rather than viewing such disparity in

the resulting distribution of expression as a problem that must be overcome, [233] conclude

their findings show that, with proper targeting of the molecules that regulate the gene of

interest, variability among ESCs is largely controllable without hampering pluripotency and

self-renewal. Thus, since we are yet to see how the complex and evolving conditions in vivo

affect the distribution of Sca1 expression, we cannot generalise our conclusions from the

analyses in this chapter to the in vivo situation.

Although we have focused on Sca1 dynamics, comparable expression fluctuations are known to

generate functional diversity in other mammalian stem cell systems [108, 117, 120–124, 234].

Thus, the generation of ergodic expression fluctuations may be a generic way in which cell

populations maintain robust multilineage differentiation potential under environmental un-

certainty. If so, then molecular noise processing could be particularly important in regulating

stem cell function in a range of contexts. A better understanding of the relationship between

molecular noise and stem cell identity should help to distinguish variability due to interchange-

able subpopulations of cells from that due to the presence of distinct, noninterconvertible,

cell types (i.e., to determine which underlying stochastic processes are ergodic) [235, 236].

We anticipate that advances in single cell profiling techniques will help to address these issues

in the near future.
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Discussion

In this thesis, we have proposed and applied mathematical models of the regulation of gene

expression to investigate the source of the experimentally observed cell-to-cell variability in

both adult and embryonic stem cell populations.

In Chapter 2, we investigated the possibility that Nanog fluctuations regulate population

variability by controlling feedback mechanisms in the extended ESC TRN, first by exploring

how feedback in network structures relates to dynamics, and then by investigating the role of

Nanog in the global feedback structure in the extended ESC TRN. To do this, we examined

the effect of removing the Nanog feedback elements, by enumerating the feedback loops that

each transcription factor participates in, for both the wild-type ESC TRN and the NanogR

TRN. We found that this network is rich in feedback, and that the global feedback structure

of this network is critically dependent on Nanog, Oct4 and Sox2, each of which participate

in over two thirds of all feedback loops in the network. Thus, removal of Nanog destroys

many of the feedback structures of the ESC TRN, leaving only a third of the feedback loops

intact, and therefore severely compromises the global feedback structure. Furthermore, the

feedback centrality, an adjusted measure of node involvement in the feedback structure in the

network, identified Nanog as the most central element in the global feedback structure. These

analyses indicate that Nanog fluctuations regulate population heterogeneity by transiently

activating different subnetworks in the extended ESC TRN, driving transitions between a

Nanog-expressing, feedback-rich, robust and self-perpetuating pluripotent state and a Nanog-

diminished, feedback-sparse and differentiation-sensitive state.

95
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We note that the single-gene perturbation we have studied here does not reflect the full

complexity of transcriptional regulation in ESCs, and it remains to be determined whether

feedback-controlled population heterogeneity has a role in vivo. A better understanding

of the role of feedback in controlling ESCs will facilitate the maintenance of more defined

pluripotent populations and the development of more robust differentiation protocols.

In the second study in Chapter 2, we presented mathematical models of positive feedback

that explain why heterozygous knock-in reporters might not give a faithful reflection of the

endogenous expression of autoregulating genes such as Nanog. We applied a combination of

CME, CLE and RREs models to demonstrate that the creation of a Nanog-null allele disturbs

normal Nanog transcriptional control by interfering with the Nanog feedback mechanism; our

analyses indicated that the dynamics of Nanog are perturbed by the heterozygous knock-in

strategy because the GFP proteins that are produced instead of Nanog cannot feedback on

the Nanog allele, or that of GFP, thus ultimately reducing the rates of production of Nanog.

In our simulations we used the same parameter values for GFP translation and mRNA and

protein decay as for those for Nanog in order to illustrate the effect of the knock-in reporter

strategy alone. However, the rates of GFP reactions are almost certainly not identical, which

would result in further differences between the true distribution of Nanog protein expression

and that reported by GFP. Once the reaction rates for both genes have been experimentally

determined, we could potentially then use our model to infer the true distribution of Nanog

protein expression from the observed GFP distribution. Since GFP is currently seen as a

direct proxy for Nanog, we could use our model to more accurately assess Nanog from GFP.

The heterozygous knock-in reporter method has commonly been used to measure gene ex-

pression, including that of Nanog, in a large number of experiments published in prominent

journals [118, 144, 149]. Since the conclusions drawn are based on the assumption that the

shape of the reporter distribution represents that of the true distribution, and that there is

a linear relationship between the reporter and the protein of interest, and further studies

are in turn based on these conclusions, our work demonstrates why it is important to use

mathematical models to provide evidence that a reporter gives a faithful reflection of the

endogenous expression of the target gene, or at least a method for inferring it.

Although many Nanog reporter constructs involve single-allele, knock-in strategies, there is

an increasing number of more sophisticated methods aimed at reducing perturbation to the

wild-type system. Illustrations of a range of Nanog reporter constructs are given in Fig. 4.1.
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The first reporter construct, NHET, is the heterozygous knock-in reporter strategy analysed

in Chapter 2, and TNGA is another single-allele construct used by [117]. The improved con-

structs NGR and NGNC used by [144, 149], are examples of double fluorescence transcription

reporters, which have one or more copies of the coding region for a fluorescent protein in-

serted after that for Nanog (the coding region for Nanog remains). In these constructs, both

Nanog alleles undergo this treatment – one allele reports GFP and the other an alternative

fluorescent protein, such as mCherry. The coding region for the fluorescent protein(s) is

separated from that for Nanog by a short sequence that codes for a peptide that causes the

two proteins cleave after translation - and therefore the function of the Nanog protein is in

principle not disturbed. The construct NVNK – a type of fluorophore-fused reporter – used

by [237], is similar to NGR and NGNC, except the fluorescent protein remains fused to the

Nanog protein, and therefore may interfere with its normal function. Nd [238] is a type of

bacterial artificial chromosome (BAC) reporter that leaves the endogenous Nanog alleles in-

tact, and carries the reporter in an additional DNA sequence with the same promoter region

as that of Nanog.

Every reporter strategy has its own technological limitations, but further issues may occur

depending on the underlying network of the protein on which it is reporting. We are hopeful

that we could apply our model to these improved reporter strategies to determine how the

dynamics of Nanog and other proteins could be perturbed by their implementation. For

example, we could account for the increased coding length of the Nanog alleles in the double

fluorescence transcription reporters by reducing the baseline and feedback production rates

according to the number of inserted copies of the fluorescent protein. Since the fluorophore-

fused reporter might alter the function of the Nanog protein, we could model the impaired

function by reducing the effective concentration for feedback production.

In summary, researchers should be aware of the limitations of live-cell reporters, and under-

stand how the system under observation can impact the faithfulness of the reporter.

In Chapter 3, we proposed an information-theoretic interpretation of stem cell dynamics

that views cellular multipotency as an instance of maximum entropy statistical inference.

Motivated by the goal of understanding of the functional role of the considerable cell-cell

variability commonly exhibited by adult stem cells, we used a simple stochastic model to

analyse the dynamics of the Sca1 protein in murine hematopoietic stem cells in vitro.
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Figure 4.1: Illustrations of the Nanog gene in wild-type cells, and six types of Nanog reporter
construct, used by [117, 118, 144, 149, 237, 238], respectively.

In future work, we would like to determine the effect of experimental measurement error on

the estimates of the model parameters and the potential. The flow cytometer calibration

histograms (Fig. 1b [196]) show the flow cytometer records a range of fluorescence intensities

for any known numbers of fluorescent proteins. This is due to machine measurement error,
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which can stem from uncontrollable factors such as acidity, temperature, and variation in the

intensity of the beam of light directed at the cells. The spread of the signal obtained from

the calibration histograms can provide an approximation of the error in the measurement

of fluorescence intensity. Initial investigations suggest that taking account of the measure-

ment error will make the model fitting very difficult. This is because it creates an inverse

problem, whose numerical solution involves approximations that ultimately introduce more

error in the parameter estimates than the procedure is designed to eliminate. It is therefore

understandable that researchers chose to exclude this technical variability in their modelling

efforts, although Chang et al. [196] did so because the heterogeneity in the distribution of FI

was significantly larger than the measurement error [196].

Our results showed that observed dynamics naturally self-organise close to a critical state

with near-optimal information-processing capacity. Although we have focused on Sca1 dy-

namics, comparable expression fluctuations are known to generate functional diversity in

other mammalian stem cell systems [108, 117, 120–124, 234]. Thus, the generation of er-

godic expression fluctuations may be a generic way in which cell populations maintain robust

multilineage differentiation potential under environmental uncertainty. If so, then molecular

noise processing could be particularly important in regulating stem cell function in a range of

contexts. A better understanding of the relationship between molecular noise and stem cell

identity should help to distinguish variability due to interchangeable subpopulations of cells

from that due to the presence of distinct, noninterconvertible, cell types (i.e., to determine

which underlying stochastic processes are ergodic) [235, 236]. We anticipate that advances

in single cell profiling techniques will help to address these issues in the near future.





Appendix A

Details of the Models of the Core

ES TRN

A.1 The CME Model of the Core ES TRN

For Scenario 1 (2), the CME model of the core ES Network consists of 32 (34) molecular

species and 43 (46) chemical reactions. The molecular species and the corresponding labels

for their copy number are given in Table A.1. The state vector, x, whose ith element is the

copy number of molecular species i, is:

x = (MN ,MS ,MO, PN , PS , PO, CNN,COS,D
NN ′
NA , DOS′

NA , D
NN ′
NB , DOS′

NB , D
NN ′
O , DOS′

O ,

DNN ′
S , DOS′

S , DNN
NA , D

OS
NA, D

NN
NB , D

OS
NB, D

NN
O , DOS

O , DNN
S , DOS

S ,MG, PG)′

where the elements in black are those for Scenario 1, and the additional two species for

Scenario 2 are in red.

Similarly, the chemical reactions in Scenario 1 are in black and cyan (reaction 2 does not

occur in Scenario 2), and the additional reactions in Scenario 2 are in red. The chemical

reactions are described in Table A.2. The corresponding propensity functions, aj(x), and the

non-zero values of the stoichiometric vectors, νj , are given in Table A.3.
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Table A.1: The molecular species in the CME model of the core ES network, and the notation
for their corresponding copy numbers. Those in Scenario 1 are in black and the additional
species in Scenario 2 are in red.

Species Copy number notation

Nanog mRNA MN

Sox2 mRNA MS

Oct4 mRNA MO

Nanog proteins PN

Sox2 proteins PS

Oct4 proteins PO

Nanog-Nanog dimers CNN

Oct4-Sox2 dimers COS

unbound NN dimer binding sites on N allele A (0 or 1) DNN ′
NA

unbound OS dimer binding sites on N allele A (0 or 1) DOS′
NA

unbound NN dimer binding sites on N allele B (0 or 1) DNN ′
NB

unbound OS dimer binding sites on N allele B (0 or 1) DOS′
NB

unbound NN dimer binding sites on S allele A (0 or 1) DNN ′
SA

unbound OS dimer binding sites on S allele A (0 or 1) DOS′
SA

unbound NN dimer binding sites on S allele B (0 or 1) DNN ′
SB

unbound OS dimer binding sites on S allele B (0 or 1) DOS′
SB

unbound NN dimer binding sites on O allele A (0 or 1) DNN ′
OA

unbound OS dimer binding sites on O allele A (0 or 1) DOS′
OA

unbound NN dimer binding sites on O allele B (0 or 1) DNN ′
OB

unbound OS dimer binding sites on O allele B (0 or 1) DOS′
OB

bound NN dimer binding sites on N allele A (0 or 1) DNN
NA

bound OS dimer binding sites on N allele A (0 or 1) DOS
NA

bound NN dimer binding sites on N allele B (0 or 1) DNN
NB

bound OS dimer binding sites on N allele B (0 or 1) DOS
NB

bound NN dimer binding sites on S allele A (0 or 1) DNN
SA

bound OS dimer binding sites on S allele A (0 or 1) DOS
SA

bound NN dimer binding sites on S allele B (0 or 1) DNN
SB

bound OS dimer binding sites on S allele B (0 or 1) DOS
SB

bound NN dimer binding sites on O allele A (0 or 1) DNN
OA
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Table A.1: The molecular species in the CME model of the core ES network, and the notation
for their corresponding copy numbers. Those in Scenario 1 are in black and the additional
species in Scenario 2 are in red.

Species Copy number notation

bound OS dimer binding sites on O allele A (0 or 1) DOS
OA

bound NN dimer binding sites on O allele B (0 or 1) DNN
OB

bound OS dimer binding sites on O allele B (0 or 1) DOS
OB

GFP mRNA MG

GFP proteins PG

Table A.2: The chemical reactions of the CME model of the core ES network. Those in
Scenario 1 are in black and cyan, and those in Scenario 2 are in black and red.

Reaction Description

1 Nanog mRNA transcription from Nanog allele A

2 Nanog mRNA transcription from Nanog allele B

3 Sox2 mRNA transcription from Sox2 allele A

4 Sox2 mRNA transcription from Sox2 allele B

5 Oct4 mRNA transcription from Oct4 allele A

6 Oct4 mRNA transcription from Oct4 allele B

7 Nanog mRNA decay

8 Sox2 mRNA decay

9 Oct4 mRNA decay

10 Nanog protein translation

11 Sox2 protein translation

12 Oct4 protein translation

13 Nanog protein decay

14 Sox2 protein decay

15 Oct4 protein decay

16 Nanog proteins dimerise

17 Sox2 and Oct4 proteins dimerise

18 Nanog dimer disassociates

19 Sox2-Oct4 dimer disassociates

20 Nanog-Nanog dimer binds to unbound binding site on Nanog allele A

21 Oct4-Sox2 dimer binds to unbound binding site on Nanog allele A
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Table A.2: The chemical reactions of the CME model of the core ES network. Those in
Scenario 1 are in black and cyan, and those in Scenario 2 are in black and red.

Reaction Description

22 Nanog-Nanog dimer binds to unbound binding site on Nanog allele B

23 Oct4-Sox2 dimer binds to unbound binding site on Nanog allele B

24 Nanog-Nanog dimer binds to unbound binding site on Sox2 allele A

25 Oct4-Sox2 dimer binds to unbound binding site on Sox2 allele A

26 Nanog-Nanog dimer binds to unbound binding site on Sox2 allele B

27 Oct4-Sox2 dimer binds to unbound binding site on Sox2 allele B

28 Nanog-Nanog dimer binds to unbound binding site on Oct4 allele A

29 Oct4-Sox2 dimer binds to unbound binding site on Oct4 allele A

30 Nanog-Nanog dimer binds to unbound binding site on Oct4 allele B

31 Oct4-Sox2 dimer binds to unbound binding site on Oct4 allele B

32 Nanog-Nanog dimer unbinds from binding site on Nanog allele A

33 Oct4-Sox2 dimer unbinds from binding site on Nanog allele A

34 Nanog-Nanog dimer unbinds from binding site on Nanog allele B

35 Oct4-Sox2 dimer unbinds from binding site on Nanog allele B

36 Nanog-Nanog dimer unbinds from binding site on Sox2 allele A

37 Oct4-Sox2 dimer unbinds from binding site on Sox2 allele A

38 Nanog-Nanog dimer unbinds from binding site on Sox2 allele B

39 Oct4-Sox2 dimer unbinds from binding site on Sox2 allele B

40 Nanog-Nanog dimer unbinds from binding site on Oct4 allele A

41 Oct4-Sox2 dimer unbinds from binding site on Oct4 allele A

42 Nanog-Nanog dimer unbinds from binding site on Oct4 allele B

43 Oct4-Sox2 dimer unbinds from binding site on Oct4 allele B

44 GFP mRNA transcription from Nanog allele B

45 GFP mRNA decay

46 GFP protein translation

47 GFP protein decay
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Table A.3: The propensity functions and the non-zero entries of the 43 (46) Stoichiometric
vectors of the CME model of the core ES network for Scenario 1 (2). Those that apply to
Scenario 1 (2) are in black and cyan (black and red).

Reaction j Propensity Function aj(x) stoichiometric vector νj

1 gNM + k
N/NN
2 DNN

NA + k
N/OS
2 DOS

NA ν1,1 = 1

2 gNM + k
N/NN
2 DNN

NB + k
N/OS
2 DOS

NB ν2,1 = 1

3 gSM + k
S/NN
2 DNN

SA + k
S/OS
2 DOS

SA ν3,2 = 1

4 gSM + k
S/NN
2 DNN

SB + k
S/OS
2 DOS

SB ν4,2 = 1

5 gOM + k
O/NN
2 DNN

OA + k
O/OS
2 DOS

OA ν5,3 = 1

6 gOM + k
O/NN
2 DNN

OB + k
O/OS
2 DOS

OB ν6,3 = 1

7 dNMMN ν7,1 = −1

8 dSMMS ν8,2 = −1

9 dOMMO ν9,3 = −1

10 gNPMN ν10,14 = 1

11 gSPMS ν11,5 = 1

12 gOPMO ν12,6 = 1

13 dNP PN ν13,4 = −1

14 dSPPS ν14,5 = −1

15 dOPPO ν15,6 = −1

16 aNN

2 PN (PN − 1) ν16,4 = −2, ν16,7 = 1

17 aOSPSPO ν17,5 = −1, ν17,6 = −1, ν17,8 = 1

18 uNNCNN ν18,4 = 2, ν18,7 = −1

19 uOSCOS ν19,5 = 1, ν19,6 = 1, ν19,8 = −1

20 k
N/NN
1 CNND

NN ′
NA ν20,7 = −1, ν20,9 = −1, ν20,21 = 1

21 k
N/OS
1 COSD

OS′
NA ν21,8 = −1, ν21,10 = −1, ν21,22 = 1

22 k
N/NN
1 CNND

NN ′
NB ν22,7 = −1, ν22,11 = −1, ν22,23 = 1

23 k
N/OS
1 COSD

OS′
NB ν23,8 = −1, ν23,12 = −1, ν23,24 = 1

24 k
S/NN
1 CNND

NN ′
SA ν24,7 = −1, ν24,13 = −1, ν24,25 = 1

25 k
S/OS
1 COSD

OS′
SA ν25,8 = −1, ν25,14 = −1, ν25,26 = 1

26 k
S/NN
1 CNND

NN ′
SB ν26,7 = −1, ν26,15 = −1, ν26,27 = 1

27 k
S/OS
1 COSD

OS′
SB ν27,8 = −1, ν27,16 = −1, ν27,28 = 1

28 k
O/NN
1 CNND

NN ′
OA ν28,7 = −1, ν28,17 = −1, ν28,29 = 1

29 k
O/OS
1 COSD

OS′
OA ν29,8 = −1, ν29,18 = −1, ν29,30 = 1
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Table A.3: The propensity functions and the non-zero entries of the 43 (46) Stoichiometric
vectors of the CME model of the core ES network for Scenario 1 (2). Those that apply to
Scenario 1 (2) are in black and cyan (black and red).

Reaction j Propensity Function aj(x) stoichiometric vector νj

30 k
O/NN
1 CNND

NN ′
OB ν30,7 = −1, ν30,19 = −1, ν30,31 = 1

31 k
O/OS
1 COSD

OS′
OB ν31,8 = −1, ν31,20 = −1, ν31,32 = 1

32 k
N/NN
3 DNN

NA ν32,7 = 1, ν32,9 = 1, ν32,21 = −1

33 k
N/OS
3 DOS

NA ν33,8 = 1, ν33,10 = 1, ν33,22 = −1

34 k
N/NN
3 DNN

NB ν34,7 = 1, ν34,11 = 1, ν34,23 = −1

35 k
N/OS
3 DOS

NB ν35,8 = 1, ν35,12 = 1, ν35,24 = −1

36 k
S/NN
3 DNN

SA ν36,7 = 1, ν36,13 = 1, ν36,25 = −1

37 k
S/OS
3 DOS

SA ν37,8 = 1, ν37,14 = 1, ν37,26 = −1

38 k
S/NN
3 DNN

SB ν38,7 = 1, ν38,15 = 1, ν38,27 = −1

39 k
S/OS
3 DOS

SB ν39,8 = 1, ν39,16 = 1, ν39,28 = −1

40 k
O/NN
3 DNN

OA ν40,7 = 1, ν40,17 = 1, ν40,29 = −1

41 k
O/OS
3 DOS

OA ν41,8 = 1, ν41,18 = 1, ν41,30 = −1

42 k
O/NN
3 DNN

OB ν42,7 = 1, ν42,19 = 1, ν42,31 = −1

43 k
O/OS
3 DOS

OB ν43,8 = 1, ν43,20 = 1, ν43,32 = −1

44 gNM + k
N/NN
2 DNN

NB + k
N/OS
2 DOS

NB ν44,33 = 1

45 dNMMG ν45,33 = −1

46 gNPMG ν46,34 = 1

47 dNMMG ν47,34 = −1

A.2 The CME Model of the Nanog Autoregulatory Loop

For Scenario 1 (2), the CME model of the Nanog autoregulatory loop consists of 7 (9)

molecular species and 11 (14) chemical reactions. The state vector, x, whose ith element is

the copy number of molecular species i, is:

x = (M,P,C,D
′
A, D

′
B, DA, DB,MG, PG),

where the elements in black are those for Scenario 1, and the additional two species for

Scenario 2 are in red. The chemical reactions are described in Table A.4, where the chemical

reactions in Scenario 1 are in black and cyan (reaction 2 does not occur in Scenario 2), and

the additional reactions in Scenario 2 are in red.
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Table A.4: Descriptions of the chemical reactions involved in the Nanog autoregulatory loop.
Reactions in black occur in both Scenarios 1 and 2, that in cyan occurs in Scenario 1 only,
and those in red occur in Scenario 2 only. Reaction 12 replaces 2 in Scenario 2.

Reaction Description

1 N mRNA transcription from N allele A

2 N mRNA transcription from N allele B

3 N mRNA decay

4 N protein translation

5 N protein decay

6 N proteins dimerise

7 N dimer disassociates

8 NN dimer binds to unbound binding site on N allele A

9 NN dimer binds to unbound binding site on N allele B

10 NN dimer unbinds from binding site on N allele A

11 NN dimer unbinds from binding site on N allele B

12 GFP mRNA transcription from allele B

13 GFP mRNA decay

14 GFP protein translation

15 GFP protein decay

The state-change vectors νj and propensity functions aj(x) for all the reactions can be written

in the form of a stoichiometric matrix S, whose jth column is the state-change vector νj , and

a propensity vector a(x), whose jth entry is the propensity function aj(x). For this model

we have:
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S =



1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −2 2 0 0 0 0 0 0 0 0

0 0 0 0 0 1 −1 −1 −1 1 1 0 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



(A.1)

a(x) = (gM + k2DA, gM + k2DB, dMM, gPM, dPP, aP (P − 1)/2, uC, (A.2)

k1CD
′
A, k1CD

′
B, k3DA, k3DB gM + k2DB, dMMG, gPMG, dPPG)′

where the elements in black and cyan are for Scenario 1, and those in red and black are those

for Scenario 2 (those in cyan are zero for Scenario 2).

A.3 RRE Dimension Reduction

To reduce the number of dimensions of the RREs in Section 2.3.2, we begin by assuming

that dimer (dis)association, and DNA (un)binding occurs at a much faster time scale than

transcription and translation. Since our goal is to describe the effective dynamics of the

system over long times, we use the quasi-equilibrium approximation. Setting Eqs. (2.13) and

(2.14) equal to zero, we obtain

DA = DB =
C

k3/k1 + C
, (A.3)

C =
a

2u
P 2, (A.4)

and substituting Eq. (A.4) in (A.3), we find

DA = DB =
P 2

2uk3
ak1

+ P 2
. (A.5)



Appendix A Details of the Models of the Core ES TRN 109

Now substituting Eq. (A.5) in Eq. (2.8), and Eq. (A.4) in (2.9), we obtain the following

effective dynamics for M and P in Scenario 1:

dM

dt
= 2gM +

2k2P
2

2uk3
ak1

+ P 2
− dMM (A.6)

dP

dt
= gPM − dPP, (A.7)

and similarly for Scenario 2, the effective dynamics for M, P,MG and PG become

dM

dt
= gM +

k2P
2

2uk3
ak1

+ P 2
− dMM (A.8)

dP

dt
= gPM − dPP (A.9)

dMG

dt
= gM +

k2P
2

2uk3
ak1

+ P 2
− dMMG (A.10)

dPG
dt

= gPMG − dPPG. (A.11)

Since we are interested in protein concentration, we eliminate the RREs for M and MG using

Eqs. (A.7) and (A.11) to see that the nullclines of P and PG satisfy

P =
gP
dP
M, PG =

gP
dP
MG,

together with the chain rule

dM

dt
=
dM

dP

dP

dt
=
dP
gP
,
dP

dt

to obtain, for Scenario 1:

dP

dt
= 2gM

gP
dP

+
2k2

gP
dP
P 2

2uk3
ak1

+ P 2
− dMP, (A.12)

and for Scenario 2:

dP

dt
= gM

gP
dP

+
k2

gP
dP
P 2

2uk3
ak1

+ P 2
− dMP (A.13)

dPG
dt

= gM
gP
dP

+
k2

gP
dP
P 2

2uk3
ak1

+ P 2
− dMPG. (A.14)
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A.4 Non-dimensionalisation of the RREs

The following RRE for Nanog concentration was derived in Section 2.3.2:

dP

dt
= 2gM

gP
dP

+
2k2

gP
dP
P 2

2uk3
ak1

+ P 2
− dMP. (A.15)

To nondimensionalise the system we introduce the scalings P = aX and t = bτ , where X

and τ are dimensionless variables. Thus

dP

dt
=
dP

dX

dX

dτ

dτ

dt
=
a

b

dX

dτ
.

So Equation (A.15) becomes:

a

b

dX

dτ
= 2gM

gP
dP

+
a22k2

gP
dP
X2

2uk3
ak1

+ a2X2
− adMX

⇒ dX

dτ
=
b

a
2gM

gP
dP

+
ab2k2

gP
dP
X2

2uk3
ak1

+ a2X2
− bdMX

⇒ dX

dτ
=
b

a
2gM

gP
dP

+
X2

1
ab

2uk3dP
2k2ak1gP

+ a
b

dP
2k2gP

X2
− bdMX.

To eliminate the coefficients of X and X2, we set

b =
1

dM
, a =

2k2gP
dPdM

.

Therefore the ODE becomes:

dX

dt
= α+

X2

γ2 +X2
−X, (A.16)

where

α =
gM
k2
, γ2 =

2uk3

ak1

(
dMdP
2k2gP

)2

are dimensionless.
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Derivations

B.1 Derivation of the Parameterised Potential Function

The ordinary differential equation for the deterministic dynamics of Sca-1 expression is:

dψ

dx
= βx− α0 −

α1x
n

Kn + xn
.

Integrating both sides we obtain:

ψ(x) =

∫ (
−α0 −

α1x
n + α1K

n − α1K
n

Kn + xn
+ βx

)
dx =

∫ (
−(α0 + α1) +

α1K
n

kn + xn
+ βx

)
dx

=
1

2
βx2 − (α0 + α1)x+ α1K

nIn,

where In =
∫

1
Kn+xn dx. Now we derive an expression for In for n positive and even.

Let F (x, n,K) = Kn + xn, so that In =
∫

1/F dx. The aim is to express 1/F as a sum of

easily integrable terms. We begin by expressing F as a product of linear factors; specifically,

F (x, n,K) = (x− r1)(x− r2) . . . (x− rn),

where r1, r2, . . . , rn are the roots of F . Now the roots of Kn+xn are equal to the nth roots of

−Kn, which can be found using Euler’s identity exp(iπ) = −1 together with Euler’s formula,

which gives exp((2k − 1)iπ) = −1, for k = 1, . . . n, and then multiplying both sides by Kn
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we obtain:

−Kn = Kn exp((2k − 1)iπ)⇒ (−Kn)
1
n = K exp((2k − 1)iπ/n).

Thus the roots of F are:

rk = K exp((2k − 1)iπ/n), (B.1)

for k = 1, . . . n. Now we use partial fraction decomposition to express 1/F as the sum of

terms of the form Ak
(x−rk) , for suitable coefficients Ak. Therefore, we wish to solve

1

F
=

n∑
k=1

Ak
(x− rk)

for Ak. Cross-multiplication leads to

n∑
k=1

Ak(x− r1)(x− r2) . . . (x− rk−1)(x− rk+1) . . . (x− rn) = 1,

and substituting x = rk gives

Ak = (rk − r1)(rk − r2) . . . (rk − rk−1)(rk − rk+1) . . . (rk − rn).

This product can be simplified as follows: Since

Kn + xn = (x− r1)(x− r2) . . . (x− rn),

dividing by both sides by (x− rk) gives:

Kn + xn

(x− rk)
= (x− r1)(x− r2) . . . (x− rk−1)(x− rk+1) . . . (x− rn).

Now using polynomial division on the left-hand-side, we obtain:

xn−1 + rkx
n−2 + r3

kx
n−3 + . . . rn−1

k = (x− r1)(x− r2) . . . (x− rk−1)(x− rk+1) . . . (x− rn),

and substituting x = rk gives

(rk − r1)(rk − r2) . . . (rk − rk−1)(rk − rk+1) . . . (rk − rn) = rnk r
−1
k = −n Kn r−1

k ,
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and therefore

Ak = −rk/nKn,

and

1/F =

n∑
k=1

−rk/nKn

x− rk
.

Since the complex roots of F come in conjugate pairs, say rk and r̄k,

2/F =
n∑
k=1

(
−rk/nKn

x− rk
+
−r̄k/nKn

x− r̄k

)

= − 1

nKn

n∑
k=1

rk(x− r̄k) + r̄k(x− rk)
(x− rk)(x− r̄k)

. (B.2)

Now using Euler’s formula rk and r̄k can be written as

rk = K cos((2k − 1)π/n) + iK sin((2k − 1)π/n)

r̄k = K cos((2k − 1)π/n)− iK sin((2k − 1)π/n),

so

rk + r̄k = 2K cos((2k − 1)π/n); rkr̄k = K2.

Substituting this result into Eq. (B.2) we obtain:

1/F =
1

nKn

n∑
k=1

1− Ck(x/K)

(x/K)2 − 2Ck(x/K) + 1
, (B.3)

where Sk = sin ((2k − 1)π/n) and Ck = cos ((2k − 1)π/n). Next, when we substitute the

identity S2
k + C2

k = 1 in the numerator, the kth summand becomes:

S2
k

(x/K)2 − 2Ck(x/K) + 1
− Ck ((x/K)− Ck)

(x/K)2 − 2Ck(x/K) + 1
.

Substituting the same identity in the denominator of the first term and then completing the

square, we obtain:

S2
k

((x/K)− Ck)2 + S2
k

− Ck ((x/K)− Ck)
(x/K)2 − 2Ck(x/K) + 1

,

which easily integrates to

SkK arctan

(
(x/K)− Ck

Sk

)
− CkK

2
log
(
(x/K)2 − 2Ck(x/K) + 1

)
.
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For n even C1 = Cn, C2 = Cn−1, . . . , Cn/2 = Cn+2/2, and S1 = −Sn, S2 = −Sn−1, . . . , Cn/2 =

Cn+2/2, and thus the integral, In becomes:

In =
1

nKn−1

n/2∑
k=1

2Sk arctan

 x

K
− Ck
Sk

− Ck log

(( x
K

)2
− 2Ck

x

K
+ 1

) ,

and

ψ(x) =
1

2
βx2 − (α0 + α1)x+

α1K

n

n/2∑
k=1

2Sk arctan

 x

K
− Ck
Sk

− Ck log

(( x
K

)2
− 2Ck

x

K
+ 1

) ,
where Sk = sin ((2k − 1)π/n) , Ck = cos ((2k − 1)π/n).

So for example for n = 2, S1 = sin (π/2) = 1, C1 = cos (π/2) = 0, therefore

ψ(x) =
1

2
βx2 − (α0 + α1)x+ α1K arctan

(
x

K

)
.
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B.2 Non-Dimensionalisation of the SDE Model for Sca1 Ex-

pression

In order to rescale the parameterised stochastic differential equation for Sca1

dx

dt
= βx− α0 −

α1x
n

Kn + xn
+
√

2σξ(t), (B.4)

we begin by introducing the scalings x = aX and t = bτ , where X and τ are dimensionless

variables:

adx

bdt
= α0 +

α1(ax)n

Kn + (ax)n
− βax+

√
2σ√
b
ξ(t)

⇒dx

dt
=
b

a
α0 +

b

a

α1(ax)n

Kn + (ax)n
− bβx+

√
b

a

√
2σξ(t).

First, let b = 1/β:

dx

dt
=
α0

aβ
+

1

aβ

α1(ax)n

Kn + (ax)n
− x+

1

a

√
2σ

β
ξ(t),

since
dWt

dt
∼ 1√

dt
N (0, 1). Now let a =

α1

β
:

dx

dt
=
α0

α1
+

xn(
Kβ
α1

)n
+ xn

− x+
β

α1

√
2σ

β
ξ(t)

=
α0

α1
+

xn(
Kβ
α1

)n
+ xn

− x+

√
2
β

α2
1

σξ(t)

= α+
xn

γn + xn
− x+

√
2σdξ(t),

where α = α0
α1

, γ = Kβ
α1

, and σd = β
α2

1
σ. Therefore Eq. (B.4) may then be expressed in

nondimensional form:

dX

dt
= α+

xn

γn + xn
− x+

√
2σdξ(t).
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B.3 The Resultant Matrix

The resultant, R, of the polynomial

Xn+1 − (1 + α)Xn + γnX − αγn = 0,

is R =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −(1 + a) 0 . . . 0 γn −αγn 0 . . . 0 0

0 1 −(1 + a) 0 . . . 0 γn −αγn 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...

0 0 . . . 0 1 −(1 + a) 0 . . . 0 γn −αγn

n+ 1 −(1 + a)n 0 . . . 0 γn 0 0 . . . 0 0

0 n+ 1 −(1 + a)n 0 . . . 0 γn 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...

0 0 . . . 0 n+ 1 −(1 + a)n 0 . . . 0 γn 0

0 0 0 . . . 0 n+ 1 −(1 + a)n 0 . . . 0 γn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Solving

(−1)n(n+1)/2R = 0

for γ to we can obtain an expression for the critical values as function of α. In this case,

n = 12, and the positive, real solutions are: γ±(α) =

[
1111

225312
+

2× 1110

222310
α+

2× 118 61

22039
α2 +

116 6833

21739
α3 +

114 19× 2039

21636
α4 +

2 112 267667

21236
α5

+
2× 13× 613× 1381

21036
α6 +

11× 13× 179× 72

2934
α7 +

11× 13× 757

2932
α8 +

2× 11× 13× 83

2635
α9

+
2× 11× 13

24 3
α10 +

5× 7

2
α11 − α12

±(121− 48α)3/2

(
118

225312
+

23× 116

222310
α+

3× 114 × 17× 29

22039
α2 +

2× 3× 112 × 47× 313

21739
α3

+
52 29× 373

21536
α4 +

19× 3581

21236
α5 +

11× 2377

21036
α6 +

3× 11× 53

2934
α7 +

11× 17

2932
α8 +

32 × 5× 11

2635
α9

+
1

24 3
α10

)]1/12

, α ≤ 121

48
, (B.5)

where the large coefficients have been decomposed into their prime factors to demonstrate

that it is not possible to simplify the equations.
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Enumerating Feedback Loops

The following computational algorithm generates a list of all the cycles of length L ≤ 5

in a directed network, from which the number of cycles each node participates in can be

computed.

1. Calculate the adjacency matrix A.

2. Identify and record the nodes that participate in self–loops (aii = 1). These are cycles

of length 1.

3. Remove self–loops from the adjacency matrix by setting the diagonal entries equal to

zero.

4. Create a vector, v, containing the node labels, denoted by the integers 1:9.

5. Remove from v the nodes that do not have both an incoming link and an outgoing link

(these nodes cannot participate in a cycle). In this case, only 5 nodes remain in v as

there are no cycles greater than length 5.

6. List all possible combinations of nodes of length 2 to 5, in vector form, and store in a

list variable, B.

7. Sort all combinations in B in ascending order.

8. Keeping the first element (the minimum) fixed, list all possible permutations of each

combination in B. Fixing the first element ensures that there are no duplicated cycles.

Store these permutations (vectors) in a list variable, C.
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9. For each permutation in C, repeat the first element at the end of the vector, e.g.

(2, 4, 5) → (2, 4, 5, 2). This represents a complete cycle. C is now a list of all possible

cycles.

10. Use the adjacency matrix to test if each cycle in C is a true cycle, as follows: A cycle

c with entries ci is a valid cycle if all acici+1 = 1. Thus, if
∏
i=1

acici+1 = 1, keep c in C,

and if
∏
i=1

acici+1 = 0, remove c from C.

11. Use list of valid cycles, C, to count the number of cycles of each length.

12. For each node, count the number of cycles of each length that it participates in.
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