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Abstract

Direct numerical simulations (DNS) of turbulent pipe flows are carried out
to investigate the suppression of previously-identified internal noise sources
with an acoustic liner using a time-domain acoustic liner model developed
by Tam and Auriault (ATAA Journal, 34(5), 917-923, 1996). The liner
model is implemented and tested in an in-house DNS code. Validation
tests are conducted to show its correct implementation in the DINS solver.
In order to study the liner model capability a number of tests are carried
out with different liner parameters and flow Mach Numbers. To understand
the effect of the liner on the acoustic and turbulent components of the un-
steady wall pressure, an azimuthal/axial Fourier transform is applied and
the acoustic and turbulent wavenumber regimes are clearly identified. It
is found that the spectral component occupying the turbulent wavenumber
range is unaffected by the liner, whereas the acoustic wavenumber com-
ponents are strongly attenuated, with individual radial modes evident as
each cuts on with increasing Strouhal number. The acoustic wavenumber
analysis shows that the acoustic component of the wall pressure prevails
over the hydrodynamic wall pressure. This allows the acoustic liner model
to dissipate the acoustic field only, leaving the hydrodynamic component
statistically unchanged. Furthermore, a DNS of a pipe/jet configuration is
computed to study the effects of the acoustic liner model on the far-field

noise. Noise prediction is performed using the Ffowcs Williams—Hawkings



(FWH) method. The FWH method has also been tested to identify the
best configuration of the FWH surface. A conical-shaped surface proved

to be a better surface. Furthermore, results show far-field noise reduction

when the liner model is present.
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Chapter 1

Introduction

The noise generated by internal flows has recently received attention in the aeronautical
field as well as in the industrial field. Noise generated by turbulent pipe flows represents
a significant problem for industrial applications such as ventilation and piping systems.
Furthermore, in the aeronautical field an aircraft’s engine is an important source of
noise. More specifically turbofan engines are characterized by internal turbulent flows
such as by-pass duct flow and nozzle flow, through which noise internally generated by
the fan, turbine or combustion propagates out to the external observer. Aircraft landing
and take off are the chief sources of aviation noise. Individual aircraft have become
quieter over the past 30 years, but flight frequencies have increased. As a result, aircraft
noise is giving rise to increasing community concern. In particular, landing noise is
increasing in importance, and has become the dominant reason for complaints in areas
close to airports. In addition, those living close to very large airports may experience
ground noise from sources on the airport such as taxiing aircraft, aircraft engine tests,

generators or air-side vehicular traffic. Transport links to an airport, particularly
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private vehicles and trains, can also make a significant contribution to noise around
airports [1]. Aircraft noise can be defined as one of the most objectionable impacts
of airport development. Aircraft noise can affect concentration or sleep and result in
feelings of anger, frustration and powerlessness to control the noise. These factors can
thus adversely affect people’s quality of life. However, while many express concerns over
aircraft noise, considerable uncertainties remain over the precise nature of its impacts.

Aircraft noise arises from engines and from the movement of turbulent air over
the physical structure (airframe) of an aircraft. To date, noise reduction has focused
mainly on reducing engine noise. In an aeronautical engine the significant noise sources
originate in the fan or compressor, the turbine, and the exhaust jet [2]. In Figure 1.1
we can see that jet exhaust noise is important, especially during take-off.

110 —
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Figure 1.1:  Noise source distribution [3].



1.Introduction

The primary sources of jet noise for a high-speed subsonic air jet (meaning when the
exhaust velocity exceeds about 100 m/s) are jet mixing noise and, for supersonic flow,
shock associated noise. Also, acoustic sources within the jet pipe also contribute to
the noise, mainly at lower speeds, which include combustion noise and sound produced
by interactions of a turbulent stream with fans, compressors, and turbine systems [3].
Stricter noise requirements are being implemented by international noise regulatory
authorities and governments.

Forty years ago, the engines were of the turbojet type where jet noise dominated.
Recently, turbofans, having large bypass ratios, are commonly used in modern aircraft.
Figure 1.2 shows the sources of noise and the share of each source in the total radiated
noise. The engine is wrapped in a nacelle and fan noise has two paths to propagate,
namely the inlet and bypass ducts. The ducts have acoustic treatment to damp and
absorb noise generated by the fan. Sound that is not absorbed propagates out of the
front and back of the nacelle and can be heard on the ground. In addition, liners
are used inside the exhaust duct to minimize turbine and combustor noise. These
tools play a fundamental role to develop a technology for jet noise reduction. Aircraft
manufacturers are interested in using porous ceramic materials or metallic foams in
liners to obtain better performance. This will be the main trend for future liner research
[4].

Acoustic liners are a common solution to reduce the noise propagating through
internal flows. Acoustic liners are passive control devices that convert sound energy
into heat through viscous and thermal diffusion processes. In a turbo fan engine they
are typically installed in the inlet and duct fan walls, see Figure 1.3. Liners are typically

designed as porous surfaces and installed on pipe walls and internal engine ducting
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walls.

Noise of a typical 1960s engine Noise of a typical 1990s engine '

| Turbine & Combustor Compressor | | Turbine & Combustor ||

(a) Turbojet (low bypass ratio engine). (b) Turbotan (high bypass ratio engine).

Figure 1.2:  The percentage of each noise source in different type of engines [4].

Figure 1.3:  Liners are typically installed in the inlet and duct fan walls, see red

pointers.
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Acoustic liners are usually modelled as a mass-spring-damper system and are therefore
characterized by a resonance frequency. Previously, researchers had developed mathe-
matical models in order to simulate the performance of acoustic liners, see Lansing and
Zorumski [6]. In classical acoustics, where typically no flow is present in the acoustic
domain, liner modelling is quite simple in terms of development and numerical im-
plementation. In contrast, when a viscous flow grazes the acoustic liner surfaces, the
mathematical modelling and numerical implementation becomes far more complex, see
Myers [7]. A grazing flow over an acoustic liner represents a more realistic situation
in applications such as ventilation, piping and aero-engines. A number of models have
been developed to approximate the steady fluid flow as being uniform, for example,
Koch and Mohring [11]; Brazier-Smith and Scott [12]; or Crighton and Oswell [13];
Peake [14]; Abrahams and Wickham [15]; Lucey, Sen and Carpenter [16]. In this case,
the boundary condition applied at the fluid-solid interface has to match the fluid and
solid displacements. This was justified by Eversman and Beckemeyer [17] and Tester
[18] by considering the limit of a vanishingly thin inviscid boundary layer at the fluid-
solid interface. In this kind of modelling the boundary layer of a grazing flow over an
acoustic liner is treated as an infinitely thin shear layer on the impedance surface, which
is now almost universally applied under the name of the Myers boundary condition (so
named because of the work of Myers [7]).

There has been considerable debate over the mathematical and numerical stabil-
ity of the Myers boundary condition when applied to acoustics over reacting surfaces
with slipping flow (e.g., Tam and Auriault [19]; Rienstra [20]; Richter and Thiele [21]).
Recently there has been growing interest in modelling a finite thickness shear layer

such that a no-slip boundary condition can be applied (e.g. Aurgan, Starobinski and
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Pagneux [22]; Vilenski and Rienstra [23]; Brambley [24]). The difficulty in develop-
ing a liner model including a viscous grazing flow might be due to lack of knowledge
regarding the physical interaction between the flow field and liner cavities. In order
to provide such insight, Tam et al. [25], performed a computational and experimental
investigation of the acoustic properties of a three-dimensional acoustic liner with rect-
angular apertures. It was observed that shed vortices appear on the apertures of the
cavities and tend to evolve into rings and align themselves into two regularly spaced
vortex trains moving away from the resonator opening in opposite directions. More
recently, Zhang and Bodony [26], demonstrated that direct numerical simulation has
the potential to provide validated numerical results for acoustic liners with complex
geometries. They simulated a locally-reacting honeycomb liner with circular apertures
at a variety of sound pressure levels and frequencies. Although computational resources
are available to accurately simulate the flow interaction with a single resonating cavity,
it is still not possible to extend this analysis to a fully lined wall. Therefore, in order to
investigate the effect of acoustic liners on turbulent flows, a CFD solver combined with
a time-dependent impedance condition is a possible alternative. Thus, one of the main
objectives of the current work is to implement the Tam & Auriault [19] liner model
into an in-house viscous flow solver.

The Tam & Auriault [19] liner model incorporates a frequency independent acous-
tic resistance and a cavity reactance inversely proportional to frequency. Acoustic
impedance conditions have previously been applied to CFD solvers, see for example
Zheng & Zhuang [38] and Baelmans & Desmet [41]. However, they used artificial pro-
files for the boundary layer generating an artificially thickened boundary layer. As a

consequence, the modelling error due to the large boundary layer thickness leads to an
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incorrect prediction of the NASA flow tube experiment (Watson, Parrot & Jones [40]).
Realistic boundary layers from a CFD simulation were used by Eriksson & Baralon
[42]. They showed that a correct prediction of the NASA grazing flow tube experiment
could be obtained by using a high-order accurate CFD code.

The aim of this study is to investigate the internal noise reduction potential of
the liner model and to assess its effect on the turbulent flow. In the literature, other
researchers such as Scalo et al. [67] have performed computational simulations for
compressible turbulent channel flows with an impedance boundary condition model.
They tuned the resonant frequency to the characteristic time scale of the outer layer
eddies. Their studies were focused mostly on the turbulent structure alteration induced
by the presence of the acoustic liner. In the present study the analysis focuses on the
noise-attenuation potential of the acoustic liner model. Furthermore, in contrast to
Scalo et al. [67] the present study also aims at identifying the liner parameters (e.g.
resistance, reactance) such that the turbulent flow statistics remains unaltered.

In the present work one of the main objectives is to use an in-house DNS code to
carry out an investigation on internally generated noise and its attenuation. The DNS
solver has already been used by Sandberg, Sandham & Suponitsky [27] for simulations
on jet noise where internally generated noise was identified. In order to study the liner
model capability a number of tests are carried out with different liner parameters and
flow Mach Numbers. To investigate the effect of the liner on the acoustic and turbulent
components of the unsteady wall pressure, an azimuthal /axial Fourier transform is used
and the acoustic and turbulent wavenumber regimes clearly identified. It was found
that the Tam & Auriault formulation provide a well-posed boundary condition for

the Navier-Stokes equations. The acoustic components are strongly attenuated while
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the turbulent component remains statistically unchanged. These results encourage a
further far field noise analysis based on jet flow simulations to evaluate the effect of the
acoustic liner model on the far field noise. The relevant results related to the acoustic
liner model study have been published in Journal of Sound and Vibration, Olivetti,
Sandberg & Tester [5].

Another aim of the present work is to compute jet noise predictions with and with-
out the presence of the acoustic liner model. The acoustic field is then analysed to
identify the possible effect of the acoustic liner model. Jet flow simulations are com-
puted using the above mentioned DNS code. The Ffowcs Williams-Hawkings (FWH)
method [69] is implemented and tested to compute the jet noise prediction. The FWH
method has been chosen because it allows us to reduce the computational costs for
noise prediction, since it is based on a hybrid approach [82]. The FWH method has
also been chosen for its capability to decompose the noise sources in terms of monopoles,
dipoles and quadrupole. This could in principle provide a better understanding of the
noise generation mechanisms in turbulent jet flows. However, this assumption has
been proved to be wrong as the noise source decomposition in the FWH method has
a physical meaning only in airframe noise analysis (e.g. rotor noise, gear noise). One
of the objectives is to investigate the FWH noise prediction accuracy. The position
and design of the FWH data surface extracted from the flow field can affect the results
dramatically [82]. A number of tests are carried out to better understand the effect of
FWH surface design on the noise prediction accuracy. Another objective is to compute
the power spectral density (PSD) of acoustic signals in the far field using the FWH
method to quantify the liner attenuation capability. Results show broadband noise

reduction for certain azimuthal modes.
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The summary of the main objectives is given by the followings:

Implement the Tam & Auriault model in an in-house DNS code.

e Investigate the internally generated noise and its attenuation using an in-house

DNS code.

e Use Fourier analysis to quantify the attenuation performance of acoustic liner

varying crucial parameters such as Mach Number, liner resistance and reactance.
e Verify whether the presence of the liner affects the turbulent structures or not.

e Discriminate acoustic components from turbulent components of pressure in the

pipe flow.
e Implement and test the Ffowcs Williams-Hawkings (FWH) method.

e Run jet flow simulations using an in-house DNS code to identify the possible

effect of the acoustic liner on the far field.

e Use the Ffowcs Williams-Hawkings (FWH) method to analyse the acoustic far
field.

In Chapter 2 fundamental aspects on duct acoustics and liner modelling are pre-
sented. In Chapter 3 numerical implementation and verification of the Tam & Auriault
[19] are shown for different test cases. In Chapter 4 the noise reduction capability of
the liner model is studied for fully turbulent pipe flow test cases. Furthermore, in
Chapter 5 the FWH method is implemented and tested for jet noise prediction with

and without the presence of the acoustic liner model.



Chapter 2

Computational aeroacoustics: noise

reduction

In this chapter an introduction to computational fluid dynamics will be presented.
Furthermore, the classical sound propagation formulations in cylindrical ducts will
be outlined. In particular, acoustic wave propagation theory will be outlined for hard-
wall and lined-wall ducts since it provides fundamental tools to validate the liner model
implementation in the DNS solver. Furthermore, acoustic liner modelling will be intro-
duced with particular emphasis on the Tam and Auriault model [19] which has been

implemented in the DNS solver as shown in Chapter 3.

2.1 An overview

Computational fluid dynamics (CFD) has made impressive progress during the last 20

years. An obvious question may be why not use CFD methods to solve aeroacous-
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tic problems?, unfortunately, acroacoustic problems are, by nature, very different from
standard aerodynamics and fluid mechanics problems. Firstly, most numerical schemes
have dispersion and dissipation errors that depend on the spatial and temporal resolu-
tion and these errors are usually too large for computational aeroacoustics. Secondly,
a much larger computational domain is needed for an acoustic problem than for an
aerodynamic problem. This increased domain size increases computational resource
requirements dramatically. For these reasons, there is a need for an independent devel-
opment of computational aeroacoustics (CAA) [76][79]. The principal characteristics

of aeroacoustic problems should be highlighted before developing a method; they are:

e Aeroacoustic problems typically involve a frequency range that spreads over a
wide bandwidth. Numerical resolution of the high frequency waves becomes a

formidable obstacle to accurate numerical simulation.

e Acoustic waves usually have small amplitudes. They are very small compared to
the mean flow. To compute sound waves accurately, a numerical scheme must

have extremely low numerical noise.

e In most aeroacoustic problems, interest is in the sound waves radiating to the
far field. This requires a solution that is uniformly valid from the source region
all the way to the measurement point many acoustic wavelengths away. Because
of the long propagation distance, computational aeroacoustic schemes must have
minimal numerical dispersion and dissipation. Also, it should propagate the
waves at the correct wave speeds and be isotropic irrespective of the orientation

of the computation mesh.

11
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e In general, flow disturbances in aerodynamics or fluid mechanics problems tend to
decay exponentially fast away from a body or their source of generation. Acoustic
waves, on the other hand, decay very slowly and actually reach the boundaries of a
finite computation domain. To avoid the reflection of outgoing sound waves back
into the computation domain, radiation boundary conditions must be imposed
at the artificial exterior boundaries to assist the waves to exit smoothly [81]. For
standard computation fluid dynamics (CFD) problems, such boundary conditions

are usually not required.

e Aeroacoustic problems are examples of multiple-scale problems. The length scale
of the acoustic source is usually very different from the acoustic wavelength. That
is, the length scale of the source region and that of the acoustic far field region
can be vastly different. Computational aeroacoustics methods must be designed
to deal with problems with greatly different length scales in different parts of the

computational domain.

To simulate an aeroacoustic phenomenon or problem numerically, the computational

algorithm must consist of three basic elements such as
e A time marching computation scheme.
e An artificial selective damping algorithm or filtering procedure.

o A set of radiation/outflow numerical treatments for use at the boundaries of the

computational domain.

e A high-order discretization schemes for space and especially time due to the low

acoustic amplitudes compared to the fluid flow.

12



2.Computational aeroacoustics: noise reduction

A good quality time marching scheme is essential to any computation effort. Artificial
selective damping or a filtering procedure is essential to eliminating spurious numerical
waves that could contaminate the computed solution. Also such damping terms can
often help to suppress numerical instabilities at the boundaries of the computational
domain or at surfaces with discontinuities such as mesh-size-change interfaces. Numer-
ical boundary treatments serve two basic purposes. First, they allow outgoing waves
to leave the computation domain with little reflection. Second, they reproduce all the
effects of the outside world on the computation domain [78][72]. For instance, if there
are incoming acoustic and vorticity waves or there is an inflow, they are to be generated

by the numerical boundary conditions.

2.2 Sound propagation in an infinite hard-wall duct

In this section an outline of the fundamental formulation for sound propagation in an
infinite hard-wall duct is presented. For convenience only the most relevant equations
are explained, for more details references are given through the text. Reference pa-
rameters such as density pg, speed of sound ¢y and duct radius Ry, are used to make
the equations non-dimensional. Considering a uniform duct with axial uniform mean
flow, the internal acoustic field can be defined with a convective non-dimensional wave
equation in terms of pressure p,

) 0\°
<§ +M&) p—’p=0, (2.1)

where M = U/cy, U is the flow speed. The present formulation is defined for a uniform

circular duct, therefore cylindrical coordinates are used (z,r,6), see Figure 2.1. Since
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the wall normal velocity component of the acoustic field is zero for a rigid wall [9] the
boundary condition of Eq. 2.1 at r =1 is

dp

E_O'

(

R

Duct

Figure 2.1:  Chirclurar duct.

Assuming that an unspecified acoustic source introduces harmonic pressure distur-
bances with time dependence exp(iwt), where w is the excitation frequency. Thus, the

pressure field in the duct can be written as
p(z,r,0,t) = P(z,r,0) exp(iwt),

where P(z,r,0) satisfies the Helmholtz equation

0°P
(1- MZ)W +v:

P
P— QiWMa— +w?P =0, (2.2)
0z
with boundary condition at r = 1 of

or

W—O.
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V. is the gradient operator in cylindrical coordinates. Solution to Eq. 2.2 can be

defined in terms of travelling waves
Pon(z,1,0) = P(r) exp(£imb) exp(—ik,,,, 2),

where

k

Tmn __ 1

w 1= M2

_Mi\/l—(l—M2)<aZ”>2] . (2.3)

The term P(r) is then governed by the Bessel equation [9]

d*P 1dP N m?
—_—+ —— —— | P 2.4
dt2+rdr+(am" 7"2) ’ (2:4)
with boundary condition at » =1 of
dP
— =0.
dr

The solutions to Eq. 2.2 are the Bessel functions [9] of the first kind of order m. The

eigenvalues «,,, are defined by

’

Thus, a solution to Eq. 2.2 is
Pmn(2,7,0,1) = Pondm(qmnr) expli(wt £ ml — k,, 2)]. (2.6)

Corresponding to values of m and «,,, an infinite number of solutions exist. The
values of a,,, are defined by the eigenvalue equation, Eq. 2.5. Two type of modes are
identified in this formulation: modes which are attenuated with distance and carry no
energy defined as “cut off 7 while modes which propagate are defined as “cut on” [10].
A useful parameter named “cut off ratio” determines whether a mode is cut on or cut

off

w

/(1 — M2)/(m M)
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When f,,, > 1 the frequency is high enough that the mode corresponding to .,
is cut on. In contrast, when (,,, < 1 modes are cut off. Since no dissipative source
is present the attenuation of the cut off modes is due to the reactive nature of the

acoustic field when the cut off ratio is less than unity [10].

2.3 Sound propagation on lined-wall ducts

The acoustic impedance of a surface is originally defined as the complex ratio of acoustic
pressure and acoustic velocity at the surface for acoustic waves impinging perpendicular
to the surface. This definition is extended to arbitrary angles of incidence by replacing
the acoustic velocity with its component v normal to the surface. In the current work,
locally reacting surfaces are considered. By using the complex amplitudes of pressure
p and wall-normal velocity perturbation o, the complex impedance of the surface is
defined as

Zalics) =

S i

: (2.7)

where © = 1 - 7 is the normal component of the complex amplitude of the velocity
perturbation. Z, is a complex function of the angular frequency.

When a duct is lined with sound absorbing material, the boundary condition and
the corresponding eigenvalues change from those given for a hard-walled duct. It
will be assumed that the lining is locally reacting and the behaviour of the material
is completely determined by its normal impedance. In order to define specialized

boundary condition for a lined-wall it is assumed that the particle displacement & on
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the reacting wall is directed into the wall in the inward normal direction 7

0
o= (z’w + M£> 3 (2.8)

Considering the wall normal velocity can be defined in relation to the particle

displacement © = iw¢ and the acoustic impedance definition 2.7 Eq. 2.8 becomes [9]

p iw M o>

O _ _iw (1 . Z-_—) , (2.9
which is the boundary condition for a lined-wall case at » = 1. Eq. 2.9 explicitly
includes the acoustic impedance Z, that characterizes the reacting surface. Solution to

Eq. 2.2 together with its boundary conditions consist of an eigenvalue problem which

is well known in the literature [9] [10].

2.3.1 Sound absorbing materials

The attenuation of sound propagating in fluids contained in ducts can be due to a
variety of causes. The most significant, normally, is the volume absorption due to
irreversible conversion of acoustic energy into heat in the fluid itself, through viscous
and thermal diffusion processes. More prominent is the absorption at the wall. This can
be due either to motion of the wall and the resulting transmission of sound through it, or
to viscous and thermal diffusion processes at the wall. For relatively rigid walls of fairly
high thermal conductivity, diffusion processes are more effective at the wall in producing
acoustic attenuation than in the fluid itself. In general, the attenuation is dependent

on frequency and on the degree of complexity of the individual amplitude patterns of
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the duct modes by which the sound is being transmitted. The presence of a mean flow
modifies the attenuation by convection effects and by shear layer effects. It can also
change the acoustic properties of the wall. A sound absorbing material is placed along
a flow passage to attenuate noise generated by some upstream device, i.e. a method
for passive noise control. It is usually attached to a hard surface to attenuate noise
by converting sound energy into heat through viscous and thermal diffusion processes.
Such a device is called liner. Liner effectiveness is a function of several parameters; some
have to do with the configuration of the liner itself and others with the environment
in which it has to operate. The key design parameter is the acoustic impedance of
acoustic liners. The efficiency of typical sound absorbing materials varies for different
frequencies. For example one inch of glass fibre is quite effective at absorbing sound
at high frequencies (above 2,000 Hz) but very inefficient at absorbing low frequency
sound. The issue is that the absorbing material takes up a large amount of space. In
many noise control applications, the noise occurs only in a narrow range of frequencies
or even a single frequency. Noise generated by industrial machines/equipment mostly
fall in this category. For such situations, it is possible to design a sound absorption
system that is “tuned” to those targeted frequencies. By employing such a system,
one can avoid the overuse of sound absorbing material and reduce the space needed
to accommodate it. A typical liner structure consists of a perforated facing-sheet
covering a honeycomb or porous material and has a solid back-plate. Acoustic liners
are of two types, namely locally and non-locally reacting. Locally reacting liners do
not allow sound propagation inside the liner, parallel to the liner surface. The facing-
sheet is backed by a regular partitioned single-layer cellular structure such as metal

honeycomb, as shown in Figure 2.2, with solid walls perpendicular to the face-sheet
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plate. Such a design is called a single degree-of-freedom liner (SDOF). The locally
reacting liner can be considered as an array of Helmholtz resonators, whose theory of
operation is analogous to that of the mechanical mass-spring system. The mass of the
gas oscillating in the aperture corresponds to a mechanical mass sliding over a resistive
surface and the compressibility of the gas in the resonator cavity acts as the spring in

the mechanical system [9].

Porous facing

sheet \ e

Resonating cavity

Hard backing sheet

Figure 2.2: Metal honeycomb.

Non-locally reacting liners allow the sound waves to propagate within the liner
material. They are often called bulk absorbers, with an example shown in Figure 2.3.
They usually have a single-layer construction in which fibrous material fills the panel
between the porous face-sheet and the back-plate. A typical example of this material
is glass wool that is used, for instance, inside anechoic rooms. The SDOF liner is
effective over the narrowest range of frequencies (one octave) and must be tuned to the
frequency band containing the single tone of greatest concern [39]. A multiple degree-
of-freedom (MDOF) liner has a wider bandwidth that can cover the main tone and
its next two harmonics (about two octaves), using various internal depths and several

layers with different resistance, but it is more difficult to manufacture [39].
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Figure 2.3: Bulk absorber.

Bulk absorbers have the widest bandwidth, extending over three octaves if the panel
is made sufficiently deep to be effective at the lowest frequency. However bulk absorber
are less efficient at absorbing a single tone compared to MDOF or SDOF liners. The
present work focuses on SDOF liners since they are commonly used in aeronautical

applications such as engine noise reduction.

2.4 The Helmholtz resonator in frequency domain

There are many methods to realize a locally reacting surface. In the following sections,
the example by a perforated face over closed cavities is considered in more detail. This
concept is frequently used as basic element of the acoustic lining in duct flows. When
the acoustic wave length is much longer than the size of each resonator element, a
lined surface can be approximated as locally reacting. A low-frequency limit of such
a resonator is found in the single degree of freedom mass-spring-damper system and
is used to describe a locally-reacting surface at each wall point, see Figure 2.4. The

mass-spring-damper element shown in Figure 2.4 is forced by the acoustic pressure on
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its surface. The equation of motion reads
Myi = Sp' — Ko — Di, (2.10)

where S denotes the area of the surface element. To obtain the impedance, the velocity
of the mass element is identified with the acoustic velocity component normal to the
surface. Let us multiply Eq. 2.10 by S — 1; the mass My, spring rate K,, and damping
rate D are replaced by the corresponding specific values my, k,, and d, which are

related to the unit area.

Km D
Mp,

Figure 2.4: Mass-spring-damper system.

A complex formulation is introduced for 4, = u,e”" and p = pe~** . Finally the

impedance of the mass-spring-damper element shown in Figure 2.4 yields

) k
Zo(iw) = L = iwmg +d + (2.11)
Uy, W

The Helmholtz resonator shown in Figure 2.5 is used as a template to identify the
mechanical model parameters with the constructive details of the resonator. These are
the cavity volume V', the neck length L and the open area of the neck Sy, as shown in

Figure 2.5.
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\Y%

A

SO Y L

Figure 2.5: Helmholtz resonator.

The damping rate per unit area d is only imprecisely described by theoretical pre-
dictions and needs exact measurements. Thus, the undamped Helmholtz resonator is
considered first. A one-dimensional theory of the Helmholtz resonator identifies the
model parameters of the mechanical system as follows

Sopc?
V )

mq = pL and k,, = (2.12)

where my follows from an identification of the mass element as the air in the neck of
the resonator and k,, is obtained by considering a quasi-static, adiabatic compression
of the fluid in the cavity, due to the air pressed in from the neck. A detailed derivation
can be found in Hubbard [9]. By inserting the expressions Eq. 2.12 into Eq. 2.11,
one obtains the impedance of the Helmholtz resonator for low frequencies via the
mechanical analogue

Sopc?

The resonance angular frequency of the undamped Helmholtz resonator is obtained by

the mechanical analogue. It reads

km S()C2
=1/— =1/ . 2.14
w mq VL ( )
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At the resonance frequency the imaginary part of the impedance, the reactance,
becomes zero. By fitting the damping parameter of the mechanical analogue, the
resistance can be tuned. The imaginary part of the impedance outside the resonance
does not contribute to the dissipation of acoustic waves. Rather it introduces a phase

shift which leads to reflections at the transition between a hard wall and the liner.

2.5 The Ingard/Myers boundary condition

The impedance definition of Eq. 2.7 can only find application if a layer of fluid adjacent
to the impedance surface is present, which on average is not moving relative to the sur-
face. In reality, the grazing flow along the surface is connected to this thin layer at rest
by a boundary layer of finite thickness. Theoretical considerations of the duct acoustics
in hard-walled ducts commonly neglect this shear layer. Assuming the continuity of
the particle displacement over the infinite thin shear layer, Myers [7] formulated a new

impedance boundary condition as

-~ _ Pliw) o B(iw) piw)

" Zy(w) O ViwZ,(iw) | iwZy(iw) n-(n- ) (2.15)
convec?g/e term curvata:e term

The surface quantities at rest, p and u,, are related to the perturbations on the
lined surface. The wall normal n is defined positive when pointing into the impedance
surface. The additional terms in Eq. 2.15 in comparison to Eq. 2.7 describe the
convection with the mean flow and the curvature of the impedance surface. Ingard [§]
formulated a similar boundary condition, which applies to plane impedance surfaces.

The boundary condition of Myers [7] adds the curvature effects with respect to this
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boundary condition. The two additional terms in Eq. 2.15 become zero without a mean
flow (Uy = 0). In this case Eq. 2.15 returns to Eq. 2.7 as the assumed thin shear layer
vanishes and the field variables on both sides are equal. The boundary condition is
valid only if the boundary layer thickness of the mean flow and the acoustic boundary

layers are small compared to the acoustic wavelength [7].

2.6 Impedance boundary condition in the presence
of a subsonic mean flow

In the presence of a non-zero mean-flow velocity, the impedance surface is separated
from the fluid in motion by a boundary layer attached to the impedance surface. The
acoustic waves pass this boundary layer twice as incoming and reflected waves. Due to
the boundary layer, the angle of incidence to the impedance surface is changed. For
analytical models of hard walled ducts, the boundary layer is usually neglected and
the base flow is abstracted as uniform flow. However, with a finite impedance of the
surface, the boundary layer becomes important, due to the modification of the angle
of incidence on the impedance surface. The effective impedance of a surface under
these so called grazing flow conditions is defined as the modified impedance under flow
conditions 2’ = p/u,, where p and u, are the complex amplitudes of pressure and
velocity perturbations in the moving medium directly at the surface. In contrast, the
impedance has been defined with the corresponding perturbation quantities in a fluid
layer at rest with respect to the surface.

The practical application of the effective impedance is rejected due to this lack of
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generality. Ingard [8] formulated an impedance boundary condition for grazing flow
conditions, which makes use of the impedance, which can be measured without flow.
The model for the infinitely thin shear layer on the impedance surface is obtained
by considering a fluid particle, which moves from the moving fluid into the resting
impedance surface. The displacement of such a physical particle should be continuous
over the boundary layer, while the particle velocity may jump due to the infinitely thin
shear layer. This consideration finally leads to a model which makes use of the standard
impedance definition without flow, and includes a convective term to model the flow
effects. Myers [7] extended the consideration of Ingard by including the effect of wall
curvature under flow conditions in a generalized derivation of the impedance boundary
condition with flow. With the availability of sufficient computer resources it has become
possible to consider a resolved boundary layer at the impedance surface using a no-slip
condition for the base flow. Due to the zero flow speed at the impedance surface, the
original impedance definition without flow is recovered. The Myers boundary condition
becomes obsolete. It is replaced by the numerical simulation of the wave propagation

through the boundary layer.

2.7 Boundary layer at the impedance wall

The obvious method to include the flow effect on the impedance, is a resolved boundary
layer with no slip condition at the impedance surface. This method has been applied
for instance by Zheng and Zhuang [38] and Reymen et al. [41]. Both use artificial
profiles for the boundary layer. While Zheng and Zhuang [38] observe a convergence of

the solution towards the solution using the Ingard/Myers boundary condition with a
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decreasing boundary layer thickness at the wall, Reymen et al. [41] use a finite-element
approach with only two elements of quadratic order in the channel height to model the
base flow. This leads to an artificially thickened boundary layer. As a consequence,
the modelling error due to the large boundary layer thickness probably leads to an
incorrect prediction of the NASA flow tube experiment [40].

However, both groups [41, 38] use artificial boundary layer profiles. Realistic bound-
ary layers from a CFD simulation are considered by Burak et al. [42]. They show that
a correct prediction of the NASA grazing-flow-tube experiment can be obtained by a
high-order CFD code. Burak et al. [42] consider different CFD methods in combination
with impedance boundary conditions. The results of Burak et al. [42], obtained by
using a linearized Navier-Stokes solver together with a RANS model of the boundary-
layer profile are the most promising. The publications of Zheng and Zhuang [38] and
Reymen et al. [41] emphasize the importance of the correct boundary layer thickness
for the acoustic solution with lined walls. The attenuation of acoustic waves by the
liner as well as the presence of flow instabilities depends on it. However, the length
scales of the boundary layer are much smaller than the acoustic scales. The resolved
modelling requires an adequate grid resolution for both the acoustic scales and the

boundary layer.

2.8 On the instability

The implementation of an impedance boundary condition which makes use of the
Ingard /Myers boundary condition, seems to face a serious instability problem. Several

authors, who compute an impedance boundary condition under non-zero mean flow
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conditions, observe an instability in their simulations. The instability is found in both
the time-domain [43, 44] and in frequency-domain [45] formulations. Other authors,
including Tester [45] who first reported the problem, suggest it to be a model-inherent
instability of a Kelvin—Helmholtz type. The free shear layer, which is necessary to
support the Kelvin—-Helmholtz instability, is found in the modelled shear layer of the
Ingard /Myers boundary condition, which was described in the preceding section. The
shear layer model describes a dissipative effect, which adds rotation and non-isentropic
phenomena to the base flow. This is the energy source for the instability, which may
grow spatially or temporally without bounds in the linear model. To further isolate
the problem, it is necessary to look at the conditions under which the instability was

observed:

e A non-zero mean flow is necessary for the instability to be present [20].

Resolving the shear layer removes the instability in most cases 20, 15].

Some of the authors report the instability only for refined meshes [22].

If the discretization of the convective term is dissipative or implicit or a filter is

applied, the instability is likely to be removed [63].

Rienstra [20] first classified the solutions in a cylindrical duct with impedance walls.
Among the modes he found solutions with a large imaginary part of the radial wavenum-
ber. These modes are described as surface waves, as there is a large decay of the mode
amplitude with increasing distance from the wall. The decay is associated with the

large imaginary part of the radial wavenumber found by Rienstra [20]. One of these
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modes is found to be potentially unstable, depending on the impedance and flow ve-
locity at the surface, according to Brambley and Peake [24, 14]. Without a base flow,
there are only two surface waves which are considered to be of acoustic nature. The
other two surface waves are classified as hydrodynamic surface waves. These waves
only appear in the presence of a non-zero base flow; they vanish when the base flow
velocity in the near wall region approaches to zero. One of these waves can describe a
spatially growing convective instability or even a temporally growing absolute instabil-
ity of Kelvin-Helmholtz type. The analysis of Rienstra [20] considers the limit for large
angular frequencies in combination with an infinitely thin shear layer at the surface.
For this limit, the instability is always present, independent of the actual impedance
and flow conditions [20]. A refined analysis of the surface waves and the connected
instability is provided in the work of Brambley [24]. They found that some of these
surface waves may not be present for higher azimuthal modes m and a Helmholtz num-
ber built with the outer radius of the duct in the range of m. Rienstra and Vilenski
[23] recently also provide an extended analysis which uses a tanh-profile as template
for the boundary layer. They show that the instability may be removed in the presence
of a boundary layer of finite thickness.

The presence of the instability is found to depend on the momentum thickness
of the boundary layer, the flow Mach number, the impedance and the excitation fre-
quency according to the analysis of Rienstra and Vilenski [23]. The result provides an
insight under which conditions for the instability become present. However, it does
not remove the instability of the Myers boundary condition. Brambley [24] suggests
a method to remove the instability, which is based on the idea of a finite membrane

stiffness. This clearly contradicts the idea of a locally reacting surface. This leads to
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an additional term, scaling with a fourth power of the wavenumber k, in the impedance
model. However, this term becomes important for large k for which a finite difference
approximation of the fourth derivative becomes most inaccurate. Altogether, the latest
analysis shows that the instability is present under realistic flow conditions for specific
choices of impedance and flow parameters.

There are only a few experiments in which an instability is found to dominate the
observed sound field [46, 47]. The instability mechanism is obtained by a feedback
loop through the cavity or the trailing edge of the cavity with the Kelvin—-Helmholtz
instability. The results of the NASA flow tube experiment indicate a strong near field
around the trailing edge of the liner for 1 kHz. The Kelvin—Helmholtz instability can be
regarded as a rare observation as also found by Rienstra and Vilenski [23], which has to
be avoided for any production aircraft liner according to Bauer and Chapkis [57]. One
possible explanation for the missing wide experimental evidence of this phenomenon is

the connection of the instability to the shear layer thickness [23].

2.9 Acoustic impedance in the time domain

In general, a time-domain representation for a wall-impedance model in the frequency
domain is obtained by an inverse Fourier transform. The inverse Fourier transform of

the impedance definition in Eq. 2.7 leads to a convolution as

+oo

p(t) = / Z(T)qun(t — 7)dT = Z,(t) * up (). (2.16)

—0o0
To obtain the pressure perturbation at the wall, an integration over the time history

of the normal velocity is required. A numerical integration of Eq. 2.16 is possible
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according to the following formulation

p(t) = Za(t) # un(t) = ALY un[mAL Zy[(m — n)At]. (2.17)

m=0

This equation requires significant computational resources, especially for aeroacoustic
problems where a long time period is needed. Therefore, this method seems to be
very limited due to the storage demands and the computational time needed [63]. In
order to overcome this inconvenience, a time-domain impedance boundary condition
based on a mass-spring-damper analogy was first considered by Ozyérﬁk and Long
[44]. In this section only an outline of the Ozyériik and Long formulation for a 2D
case is presented. The reader is encouraged to consult the paper by Ozyériik and Long
[44] for more details. Ozyéritk and Long [44] propose to avoid the computation of
the convolution integral in Eq. 2.16 involving the z-transform by expressing the Z,

impedance as a fraction of two finite polynomials in the complex variable z,

M
ap Y a2t
Zo(z) = ———. (2.18)
1-— Z bkz—k

=1

The acoustic impedance Z, is assumed to be independent of the location on the surface.

After the inverse z-transform the resulting formulation is

il i
A

D A u%—‘rl o
At

£ g n i 2.1
+uoo 8x Qo At +R7 ( 9)

where
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LM
R = N Z ay(u =t —

=1

N
1 i1 i
+ AL Zbk(%ﬂ F— )
k=1
N .
Quitl=k
+oo ) e —
U 18 the mean flow and the coefficients a;, b, are available in the literature according to
the liner model used. The normal momentum equation is used to estimate the normal

component u,. The discretized form is

ubtt — i N ou’, N 1 op' 0
L Y2+ ——— = 0.
At 0r  poo Oy

As Ozyoriik and Long [44] reported, Eq. 2.19 provides an accurate prediction of
liner performance also with the presence of a uniform mean flow. However the numerical
implementation of this formulation appears to be laborious. A simpler impedance
model in the time domain is provided by Tam and Auriault [19]. Tam and Auriault

define the acoustic impedance with a formula containing three parameters
Zy(w) = R+ iX(w), (2.20)
where the acoustic reactance X is defined as

X(w) = Xjw + Xo/w. (2.21)

X; and X, have arbitrary values where X; > 0 and X5 < 0 and R is the acoustic re-

sistance. Typically, both the resistance and reactance of an acoustic treatment panel of
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the Helmholtz resonator type are frequency dependent. However, over a low frequency
range, say 1kHz — 3kH z, the variation of the resistance is small [64]. Therefore in the
Tam and Auriault formulation the acoustic resistance is frequency independent. Fig-
ure 2.6 shows an example of resistance and reactance defined in the Tam and Auriault

impedance model.

—Reactance, X/pc

| —Resistance, Ripc

St

Figure 2.6:  Fzxzample of resistance and reactance in the Tam and Auriault model.
Resistance is frequency independent; reactance is frequency dependent and characterized

by one resonance frequency.

The reactance is obviously frequency dependent and characterized by a resonance

frequency. The resonance condition is
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X(wR) = Xiwg + Xg/wR =0, (222)

where wr = 275t csonance- L herefore the resonance frequency is

1 /—-X,
Stresonance = o . 2.23
2 X1 ( )

It is clear that a single St csonance Can be given by an undefined number of X; and

X5 as long as they satisfy Eq. 2.22 and the conditions X; > 0, X5 < 0. Now let us

reformulate the impedance definition in Eq. 2.7 using Eq. 2.21

X(w)=Xw+ Xs/w="=. (2.24)

@>|’§>

Applying the inverse Fourier transform to Eq. 2.24 it is possible to obtain the
time-domain impedance boundary condition proposed by Tam and Auriault
ap o 0?0

It is clear that Eq. 2.25 is equivalent to a simple mass-spring-damper system,
where R represents the resistance, Xy the spring constant and X; is the mass. Tam
and Auriault [19] prove that the boundary condition 2.25 provides a well posed math-
ematical problem since the solution is stable and dependent continuously on the initial
and boundary data. It is convenient to obtain Eq. 2.25 in terms of the wall-normal
velocity component, ©. In order to do so the linearized energy equation in cylindrical

coordinates at the wall is involved assuming no-flow in the background, hence

op (00
(2, o
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where r is the radial coordinate. Substituting Eq. 2.26 into 2.25 we find

26 1 [ (00 96
IO _ L) R4 el 22
I Xl[ (87’)w R+ 2“] (227)

Eq. 2.27 consists of a second order derivative of wall-normal velocity © with respect
to time on the left-hand side which represents the inertial term. The first term on the
right-hand side is the wall-normal derivative (00/0r),, which is related to the pressure
time derivative according to Eq. 2.26. The second and third terms represent the damp-
ing and elastic term respectively. With © being explicit makes Eq. 2.27 particularly
suitable for computational fluid dynamics solvers since the boundary conditions on the
pipe wall are usually defined in terms of velocity components.

It is worth noting that Eq. 2.27 was originally defined for inviscid 1D models while
in the present work Eq. 2.27 will be applied to a fully viscous 3D flow. In the original
formulation by Tam and Auriault [19] the pressure time derivative was replaced by the
normal gradient of the normal velocity component using the linearized energy equation.
This is also possible in the current case because in viscous flow simulations a no-slip
condition on the wall is applied. Therefore, only the wall-normal component, v, is
allowed to vary, unlike the other components u and w which are set to zero. More
details about the implementation of Tam and Auriault in a DNS code will be given in

Chapter 3.
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Chapter 3

Acoustic Liner model
implementation in a direct

numerical simulation code

In this chapter an outline of the DNS solver will be shown. The implementation of the
Tam and Auriault model [19] in the DNS solver will be explained. A validation of the
liner implementation will be conducted for a basic 1D test case, a 2D test case with and
without mean flow and subsequently a 3D fully turbulent pipe test case. Furthermore,

a study on the liner attenuation capability will be presented.

3.1 Governing Equations

The flow under consideration is governed by the full compressible Navier-Stokes equa-

tions. The fluid is assumed to be an ideal gas with constant specific heat coefficients.
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All quantities are made dimensionless using the nozzle radius and the bulk velocity
within the nozzle. For simplicity, all equations in this section are presented in tensor

notation. The non-dimensional continuity, momentum and the energy equations are:

dp 0

E+6_x,€(puk):0’ (3.1)
2(u-)+i[u»u—|—5-— k] =0 (3.2)
ot 1T g, WU T PO T Tik] = 1 '

0 0 D _
a(pE)—i_a_xk{pUk (E—l—;)—l—qk—umk} —O, (33)

where the total energy is defined as £ = T/ [y(y — 1)M?] + 0.5u;u;. The stress tensor

and the heat-flux vector are computed as respectively,

(3.4)

1 (8ui Jup 2 0u; —I oT
Tik

" Re \ Oz * dr; 30z, Zk) k= (v — 1)M?PrRe dxy,
where the Prandtl number is assumed to be constant at Pr = 0.72, and v = 1.4.
The molecular viscosity p is computed using Sutherland’s law [28] setting the ratio of
the Sutherland constant over freestream temperature to 0.36867, implying a reference
temperature of 300K. To close the system of equations, the pressure is obtained from
the non-dimensional equation of state p = (pT')/(yM?).

It is important to note that the DNS solver is made non-dimensional defining the
speed of sound as ¢ = U/M, where U is the bulk velocity at the pipe outlet and M

the Mach number. Furthermore, length and time is made non-dimensional using 2.
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and R,;,./U, respectively. This ensures the non-dimensional consistency of the DNS

solver with the acoustic equations presented in Paragraph 3.3.

3.2 Numerical method

The compressible Navier-Stokes equations for the conservative variables are solved in
cylindrical coordinates using a finite-difference/spectral DNS code. For the simulations
presented here, a 4""-order standard-difference scheme with Carpenter boundary sten-
cils [52] is applied for the spatial discretization in the radial and streamwise directions.
A structured multiblock formulation is implemented in the code since the flow domain
for the jet cases is divided in five blocks connected through interfaces. More details
regarding the numerical set up for the jet cases will be given in Chapter 5. The pipe
test cases can be considered as a subdomain case of the jet low domain where only the
pipe block is used. Details on the pipe case are given in Paragraph 3.4. The Carpenter
boundary stencils [52] define the discrete spatial derivative operators with the following

properties:

First derivative properties: Defining f as a generic flow variable (e.g. density,
velocity or temperature). The first derivative operator defining the numerical derivative
of af, 1.
= (=)o, ..., (= is
J {( ox Jos - { ox I

Pfe —Qf =0

Pfex - Qfe = PTem (35)

where f = [fO(t)afl(t)7"'7fN(t)]T7 f€ = [fe(xo,t),...,fe(xN,t)]T and

fe. = [(%)0, - (%)N] The quantity fe is the exact solution. The truncation
T T
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error T, satisfies |T,.| = O(Az), where Az is the maximum distance between any two
neighbouring grid points. The appropriate elements of the matrices P and @ for a
multiblock stable formulation are provided by Carpenter [52]. The second derivative
is calculated by taking the first derivative of the first derivative.

Since the test cases treated in the present work are axisymmetric flows such as
pipe flows and round jets, the use of cylindrical coordinates system (z,r,#) is partic-
ularly convenient. A cylindrical coordinates system allows an easy implementation of
the Fourier spectral method for spatial discretization in the azimuthal direction. A
spectral method using the FFTW3 library [49] is used in the azimuthal direction en-
abling an axis treatment that exploits parity conditions of individual Fourier modes
[54]. The (z,r,0) coordinate system can be mapped to curvilinear cylindrical coordi-
nates, where only four two-dimensional metric terms are necessary rather than nine
three-dimensional metric terms when performing a mapping in all coordinate directions
[53]. This obviously reduces the computational costs dramatically. Spectral methods
approximate the flow variables as linear combinations of global basis functions [48].
Defining f = f(z,r,0,t) as a generic flow variable and using a Fourier-series represen-

tation as global basis functions each flow variable can be defined as

+N/2

flzm0,t)= > fulz,rt)exp(ik0), (3.6)

n=—N/2
where fn(z, r,t) are the N, expansion coefficients, k, = 27n /O, with © the azimuthal
resolution over which f(z,7,0,t) is assumed to vary periodically. The most attractive
advantage of the spectral methods is the high accuracy while one of the main disadvan-
tages is the capability to handle simple geometry only [51]. However, since the current

test case geometry is axisymmetric Fourier-series representation is suitable.
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Time marching is achieved by an ultra low-storage five-step fourth-order Runge-
Kutta scheme [55]. The compressible Navier-Stokes equations constitute a coupled set
of partial differential equations that may be spatially discretized into a set of coupled
ODEs with finite-difference techniques, including Carpenter boundary stencils [52].

This set of coupled ODEs can be written in the following form

dG
dt
where G = G(p, pu, pE) is a function of the fluid density p, velocity vector u and the

F(t,G(t)), G(to) = Go, t € [to, tn],

total energy E. F contains the convective, inviscid, viscous and reactive terms of the
compressible Navier-Stokes equations. Using the Van der Houwen and Wray scheme

[55] it is possible to define two registers in order to write the following system

First Register G/ = X+ (aj41,;) ALFY, (3.7)
Second Register X =G 4 (b — ajyr,) ALFY, (3.8)
Second Register GO = XIH 4+ (a42,j41) ALFTT, (3.9)

First Register X7F? = G2 4 (bj1 — ajpaj1 ) ALFTH (3.10)

By overwriting, the G, F, and X,, vectors never fully coexist. The symbols a;; and
b; are the ordinary Butcher coefficients of the scheme [50]. The vector X,, may be
thought of as a vehicle to bring information from previous stages into the current
stage. The stability of the code is enhanced by a skew-symmetric splitting of the
nonlinear terms [58]. A sixth-order accurate high-wavenumber cut-off filter [59] with a

weighting of 0.2 is employed after every full Runge-Kutta cycle.
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3.3 Tam and Auriault model implementation

In this section an outline on the Tam and Auriault model [19] implementation will be
presented. The Tam and Auriault model [19] is represented by a second order partial
differential equation in terms of the wall normal velocity component 0, = 0, (2,7, 1).
The hat symbol “*” implies that the wall normal velocity component is related to the
N azimuthal mode. Therefore, the Tam and Auriault model [19] reads as

P26, 1 [ [0 00,
— | (D) _ % Xy 11
e X { (8r )w Rgy T Xabul (3:11)

where the subscript “w” refers to the wall position (r = 1). It should be emphasized
that Eq. 3.11 is applied to the pipe wall only. In other words Eq. 3.11 replaces
the hard-wall condition (v, = 0,Vt) when the liner is applied. The time integration
is computed by a fourth-order Runge-Kutta scheme [55] in the same way as for the
Navier-Stokes equations, see Paragraph 3.2. Therefore, Eq. 3.11 needs to be reduced to
a 1st order differential system to be compatible with the existing Ruge-Kutta scheme.

In order to do so let us define the following system

0y,
¢w - Eu
where ¢,, is a dummy function, thus
9 | Pw
2™ = g . (3.12)
ot S U s’ - R Xob
d)w Xl |: < a,r )Wall ¢w + 2Uy
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The wall normal derivative is computed by the Carpenter boundary stencils method

[52]. Furthermore, if we define

(= : (3.13)
We can reduce the system to the form

%C = f(tag)a C(to) =0, te [to,tN],

which allows us to use the Ruge-Kutta scheme for time integration in the same way as
for Navier-Stokes equations, see Paragraph 3.2. Therefore, using Van der Houwen and

Wray scheme [55] it is possible to define the following numerical scheme

First Register (' =17 4 (ajy1) At fhg, (3.14)
Second Register = T 4 (b — aj1) At fhge, (3.15)
Second Register G2 =T 4 (a0 01) AL (3.16)
First Register Wt = 2 4 (b — Ao i1 AL (3.17)

In this case f}% ;. contains the wall normal derivative and the liner parameters R, X;, X,
j is the time step index and At is the time step. The vector 7 is an auxiliary vector
that brings information from previous stages into the current stage. The Tam and

Auriault model integrated in a DNS solver can be interpreted as a coupling of two

A

00
dynamic systems linked by <8_> which is the time derivative of pressure distribution
r w

on the pipe wall, see Eq. 2.26. A schematic explanation of the Tam and Auriault

model implementation is shown in the Figure 3.1. The DNS solver generates the flow
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field parameters such as p, u, v, w and temperature T at the generic time step tj.
Furthermore, the DNS solver produces the coupling term (%) using the Carpenter
boundary stencils method [52]. The coupling term is then elabo;uated by the Tam and
Auriault model to provide the wall normal component v,, which is fed back to the DNS

solver as a boundary condition on the pipe wall. The same process is then repeated at

the time step t;;1. The pressure field is computed using the state equation of an ideal

Flow Field Parameters

Vizr, 6, t)
w(zr6t)
Tzr6t)

! |
! |
! |
! |
| Parot) |
' plzr0t) Carpenter boundary | 1
: ~ / stencils method |
| u(zrnbt) !
! |
! |
! |
! |
! |
! |
! |
! |

______________________________________________

W (zr6t)
or

Liner Model

Figure 3.1: Schematic flow chart of the Tam and Auriault model implementation; at

A

0
each time step the DNS solver produces the wall normal derivative (a_v) to Tam and
r w

Auriault model which provides the DNS solver with 0,,.

The other velocity components @ and w are set to zero for every time step since
the no-slip condition is applied as explained in Chapter 2. The Tam and Auriault

model works as an acoustic energy dissipater which converts acoustic energy into heat
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causing a temperature increment. However, since the acoustic energy is just a very
small part of the total energy contained in the flow field the temperature increment
due to the acoustic energy dissipation is negligible. Therefore, the wall temperature
is set to be constant at every time step. It is important to notice that the Tam and
Auriault model dissipates the acoustic energy only, leaving the turbulent kinetic energy

practically untouched. This will be proved in the next sections.

3.4 Liner model verification

In this section results are presented for three different cases together with verification
results obtained from eigenvalue solutions from the linear wave equation introduced in
Paragraph 2.2. The three cases are: a) A one-dimensional (1D) model: a propagating
Gaussian pulse is incident to a lined wall. The lined wall response is analysed in the
time and frequency domain. b) A two-dimensional (2D) pipe model, with and without
mean flow, azimuthal mode m=0, no turbulence. One or more sinusoidal signals at
discrete frequencies are introduced at the in-flow, which propagate along the pipe and
are attenuated by the liner. The attenuation rates are compared with the eigenvalue
solutions. Note that for the verification of the liner model the acoustic pressure and

the wall-normal component v are made non-dimensional by pocg and ¢, respectively.

3.5 Numerical set up and grid design

The computational domain comprises one block. For all cases conducted the pipe with

length Lpi,e = 501, is discretized using 624 and 68 points in the axial and radial
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directions, respectively. The grid spacing in the streamwise direction was equidistant
with Az = 0.084R,;,. up to z = 41.5R;,. (3.5 radii upstream of the pipe exit) and
then was refined using polynomial stretching towards the exit where Az = 0.009. In
the radial direction a polynomial stretching was used with maximum and minimum
grid spacings Ar = 0.026 R, and Ar = 0.0026R,;,. at the axis (r = 0) and wall
(r = Rypipe), respectively. Grid points are concentrated near the wall in an attempt
to solve the turbulent structures in the vicinity of the wall. The wall-normal spacing
is less than 0.6 wall units, with 14 radial points within the first (1 — )™ = 10. In
the axial direction the grid was stretched, so that in the fully developed pipe region
upstream of the nozzle exit, Az~ 16, while at the nozzle exit AzT=~9. For the three-
dimensional simulations, 64 Fourier modes were used in the azimuthal direction with
100% de-aliasing, resulting in 130 collocation points in physical space. In the azimuthal
direction, rAf ~ 10 at upstream positions with rAf ~ 9 at the pipe exit. The design
of the pipe grid is based on Wu and Moin (2008) [66] where high Reynolds number
turbulent pipe flows have been solved and validated using a finite different numerical
scheme. In Paragraph 3.6.4 it will be shown that the resolution of this grid is fine
enough to reproduce the reference data of Wu and Moin (2008) [66], therefore the pipe
grid design can be considered satisfactory. Turbulent fluctuations, calculated using a
digital filter technique [60] with parameters specified from periodic pipe simulations,
were superposed onto the mean flow values. For the current simulations the time
step is set at At = 0.01. Details concerning the length of the pipe needed to achieve
fully developed flow and the variation of pressure, density and temperature within the
pipe for various nozzle Mach numbers can be found in Sandberg et al. [27], where

it was shown that this approach produces a fully developed turbulent pipe flow from
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approximately 25-30 radii downstream of the inflow boundary. At the pipe outlet
a zonal non-reflecting characteristic boundary condition is applied in order to avoid
spurious acoustic reflections (Sandberg & Sandham, 2006). All the test cases have
been computed using the UK National Supercomputing Service ARCHER. Table 3.1

shows the details of the parallelization of the flow domain for all the test cases.

Direction N. processors N. grid points

Axial, z 24 624
Radial,r 4 68
Azimuthal, 0 1 130

Table 3.1: Parallelization of the 3D test cases.

3.5.1 One-dimensional case

The source of sound is a Gaussian pulse normally incident on a lined wall, as shown in
Figure 3.2a. The Gaussian pulse has been chosen because of its broadband frequency
contents and is defined as initial condition in the DNS solver, G(z) = Aexp(—2%/20),
where A = 3.7 x 1072 and ¢ = 1073. The liner impedance is shown in Figure 3.2b,
where the liner parameters, Eq. 2.22, resistance R = 1, X; = 0.0475 and X, = —30
have been chosen such that the liner resonates at St = 4. In Figure 3.3a the time-
history of the lined wall response is displayed. The hard-wall reflects the Gaussian
pulse perfectly, while the lined-wall reflects a wave with a different amplitude and

different shape. As expected the normal velocity at the wall is no longer zero when a
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liner is present. Furthermore, according to Eq. 3.12 the liner behaves as a mass-spring-
damp system since the velocity returns to zero after a transient as shown in Figure
3.3a. In order to verify the liner response, the resistance and reactance of the liner are
calculated using Eq. 2.7 where p and v are computed by the DNS solver. Figure 3.3b
shows good agreement between the resistance and reactance from the DNS solution
and the expected values. The Gaussian pulse chosen provides a frequency resolution
ASt = 2. Figure 3.3b shows the same verification for a different value of R and also
a reactance X such that the liner resonates at St = 6 (X1 = 0.035, X2 = —30). In
these cases the agreement between the results from DNS solution and expected values

of resistance and reactance is also reasonably good.

1.5 -
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0.5 -
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/. -0.5 +
. } \ Liner 1 L
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— == >
74 -1.5 + |
X
; —/R
Z 1 2 3 4 5 6 7

Figure 3.2: a) 1D model; the Gaussian pulse is normally incident on a lined wall. b)

Resistance R and reactance X, St esonance = 4.
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Figure 3.3: a) Signal time-history obtained from simulations. b) Left- hand side re-
sistance R = 1 and 4. Right-hand side reactance St,csonance = 4,4 and 6. Red lines:

expected value, blue squares: DNS results.
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3.5.2 Two-dimensional cases

In this section two-dimensional cases are validated using the model shown in Figure
3.4. The first case to be considered is a pipe with no flow (M = 0). The geometric
computational setup is defined in Paragraph 3.2. The liner parameters are defined such
that the resonance frequency is St = 0.5, using X1 = 1.013 and X2 = —10. Three

different values for the resistance are considered, R = 0.25, 1 and 4.

A

r Liner
Z 27 7 27 72 7 7 7 7 7 7 7 7 A
Outflow
Inflow Acoustic signal CBC
e | % % ] ] ] ———
z

V 7 7 7 7 7 72 7 7 27 7 7 Z 7
Liner

Figure 3.4: 2D model. CBC denotes a characteristic boundary condition at the outflow.

In order to evaluate the wall attenuation along the pipe, a multi frequency sinusoidal
signal is introduced at the inflow boundary of the pipe. The tone frequencies are
St = 0.5, 1. The non-dimensional amplitude of the signal is 10~%. In Figure 3.5a the
pressure spectrum is displayed at two different axial locations, z = 2 and z = 15 along
the pipe wall. As expected the attenuation of the tone at St = 0.5 is greater than
the attenuation of the tone at St = 1. In Figure 3.5a the multi-frequency sinusoidal
tones are clearly visible. In Figure 3.5b the wall attenuation at St = 1 is shown and
compared with the least attenuated mode predicted from a standard eigenvalue solver

showing an excellent agreement for every resistance value considered.
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Figure 3.5: a) Left-hand side: DNS pressure spectrum at z = 2. Right-hand side: DNS
pressure spectrum at z = 15. Pressure spectrum for hard-wall case (green), pressure
spectrum for lined wall case (blue), R = 1, frequency resolution ASt = 0.01. b) Wall

attenuations in DNS compared to eigenvalue solutions.
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Figure 3.6: Wall attenuations in DNS compared to eigenvalue solutions. Background

flow, M = 0.5.

The second 2D case is the same pipe but with a subsonic flow, M = 0.5. The
same multi-frequency sinusoidal signal is injected into the pipe as for the zero flow
case and the resistance values are also the same. The Figure 3.6 shows the DNS wall
attenuation along the pipe and again these are in good agreement with the results
obtained from a classic eigenvalue solution. The impedance values are predicted for
three different positions along the wall, z = 25,2z = 30,z = 40. Figure 3.7a shows
the impedance prediction for R = 1 and St,esonance = 0.5. Figure 3.7b shows the
impedance prediction for R = 4 and St,csonance = 0.5. Both cases are in agreement
with the expected values. The case for R = 0.25 is not shown here, but it still gives a

good agreement with the same accuracy.
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Figure 3.7: Impedance parameter prediction for three different wall positions, Z =

25,7 =30,Z =40. a) R=1 and St,esonance = 0.5. b) R =4 and St esonance = 0.5.

3.5.3 Liner model testing; Turbulent pipe flow

In the 3D cases a fully turbulent pipe flow is computed using the DNS solver including
a liner along the pipe wall with M = 0.5 and Re = 3500, Re based on diameter.
One or more sinusoidal signals at discrete frequencies are excited at the in-flow, which
propagate along the pipe and are attenuated by the liner. The attenuation rates
are compared with the eigenvalue solutions. Figure 3.8 shows a snapshot of the axial
velocity component while Figure 3.9 shows a snapshot of the normal velocity component
on the wall. As expected, with the liner present the normal velocity component is no
longer zero. Figure 3.9 also shows a plane wave pattern along the pipe. This is
interpreted as a plane waves generated at the inlet by a source of sound. More details

about these plane waves and the effect of the liner on them will be provided later on
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in this section.
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Figure 3.9: Wall-normal velocity;, v component on the wall surface.

For the liner attenuation studies, the reactance parameters are set so that St,csonance =
1 and a sinusoidal input with a frequency of St = 1 is injected into the pipe.

Figure 3.10 shows the pressure spectrum at two different locations along the pipe
wall. As expected the peak at St = 1 is significantly attenuated. Another tone

appears at St = 2, which is a higher harmonic of the forcing frequency. The amplitude
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of this tone is also considerably decreased. A reduction of the broad band signal of
the turbulent flow is also observed around St = 1, and the bandwidth attenuation
increases downstream. It should be noted that in the post-processing the mean value
of the pressure has been removed from the pressure field. As in the previous cases the
wall attenuation along the pipe is computed for different resistance values. The DNS
acoustic resistance also shows a good agreement with the expected resistance values,

see Figure 3.11b. Figure 3.11a shows a good agreement between the DNS results and

the eigenvalue solution predictions.
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Figure 3.10: Left-hand side: DNS pressure spectrum at z = 2. Right-hand side: DNS

pressure spectrum at z = 12, hard-wall case (blue), lined wall case (red), R = 1.
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Figure 3.11: a) Wall attenuations in DNS compared to eigenvalue solutions. Background

flow, M = 0.5, Re = 3500. b) Resistance prediction; red expected values, squares DNS results.

In order to assess the effect of a liner on the acoustic pressure field generated by

the turbulence within the pipe, contours of the pressure magnitude on the pipe wall

o4
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are shown for three different Strouhal numbers, St = 0.5, 1 and 1.5, in Figures 3.12-
3.14. In this case no sinusoidal signal is injected into the pipe and the liner is set to
resonate at St = 1. Figure 3.12 (top) shows the contours of the pressure magnitude of
wall pressure at St = 0.5, which is interpreted as a plane wave caused by a reflection
from the end of the pipe, which is generated by the characteristic boundary condition
at the pipe outlet. Figure 3.12 (bottom) displays the same contours of the pressure
magnitude of wall pressure when a liner with resistance R = 1 is present. Figures
3.13 and 3.14 show a comparison between the hard wall case and the lined case at
St = 1 and St = 1.5 respectively. As expected the attenuation at St = 1 is more
remarkable than for the other conditions since the liner resonates at Stgresonance = 1.
It is worth noticing that the attenuation at St = 1.5 is greater than the attenuation
at St = 0.5. This is due to the fact that the reactance is not symmetric around the

resonance frequency causing a non-symmetric attenuation.

5

Figure 3.12: Top: Contours of pressure magnitude for hard-wall case. Bottom: Con-

tours of pressure magnitude for lined-wall case, R =1, St = 0.5.
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Figure 3.13: Top: Contours of pressure magnitude for hard-wall case. Bottom: Con-

tours of the pressure magnitude for lined-wall case, R =1, St = 1.

Figure 3.14: Top: Contours of pressure magnitude for hard-wall case. Bottom: Con-
tours of the pressure magnitude for lined-wall case, R =1, St = 1.5. At this frequency

the spiral mode 1s clearly visible.
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3.6 Liner testing

3.6.1 Axisymmetric mode

In this section a number of liners will be tested, and a PSD pressure analysis will be
carried out for the 3D turbulent pipe case. Only PSD related to azimuthal mode zero
will be shown in this section, higher azimuthal mode analysis will be carried out later
in this chapter. Figure 3.15 shows two different liners with the same resistance R = 4
and different resonance frequency, St,.; = 0.41 and St,., = 0.7. Figure 3.16 shows
the PSD of the pressure for four different locations on the wall along the pipe, z =
2,12,28,45. The black line represents the hard-wall case, the blue and red lines are the
lined cases with St,., = 0.41 and St,.s = 0.7 respectively. In the lined cases the PSD
has the maximum attenuation at the resonance frequency, as expected. Furthermore,
the attenuation broadens around the resonance frequency as we move downstream,
see as in Figure 3.16. It is interesting to study the wall attenuation at the resonance
frequencies along the pipe for the liners considered, see Figure 3.17. Both liners create a
strong attenuation in the first part of the pipe reducing the internal noise by 10 —12dB.
Furthermore, the attenuation tends to be linear up to z = 15 ~ 20 after which no

further attenuation is achieved.
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Figure 3.15: Impedance parameters; two liners with different resonance frequency.
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Figure 3.16: PSD (dB) of pressure from four different location on the wall. The at-
tenuation peak occurs at the resonance frequency. Black line hard wall case; blue line

lined case with St..; = 0.41; red line lined case with St.., = 0.7.
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Figure 3.17: Wall attenuation (dB) at the resonance frequencies. The attenuation

saturates after 20 ~ 25R.

In Figure 3.18 the attenuation over the frequency domain for the same monitor
points is shown. In this picture it is clear how the liner that resonates at St,., = 0.7
offers a broader attenuation at each axial position. This is due to the fact that the
liner with St,.s = 0.7 has a reactance with a lower slope over the frequency domain, see
Figure 3.15. This aspect is even more evident if we consider two liners with the same
resonance frequency as in the following case. In Figure 3.19 the impedance parameters
for two different liners are shown. They both resonate at St,.; = 1, but the second liner
(red line; Xy = —22.6080, X; = 0.5732) has a reactance with a smaller slope compared
with the first liner (green line; Xy, = —15.072, X; = 0.3822).
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Figure 3.18: Attenuation over the frequency domain from four locations on the wall.
The amplitude is comparable for both cases, but the second liner offers a broader atten-

uation.
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Figure 3.19: Impedance parameters; Two liners with different reactance slope.
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Figure 3.20: PSD (dB) of pressure from four different locations on the wall. Black line

hard wall case; blue line lined case with liner 1; red line lined case with liner 2.

The PSD of the wall pressure for four axial positions is shown in Figure 3.20.
As expected both liners resonate at the resonance frequency but the liner with a lower
slope (red line) offers a broader attenuation. Figure 3.21 shows the attenuation over the
frequency domain, the second liner creates a broader attenuation. In Figure 3.22 wall
attenuation at the resonance frequency is shown. Both liners give the same attenuation
which saturates at z = 20. Therefore, the slope of the reactance does not affect the

attenuation at the resonance frequency.
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Figure 3.21: Attenuation over the frequency domain from four locations on the wall.
Both liners resonate at the same frequency, but the second liner offers a broader atten-

uation.
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Figure 3.22: Wall attenuation (dB) at the resonance frequency. The attenuation satu-

rates after 20 ~ 25R.
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3.6.2 Higher azimuthal modes

So far only the axisymmetric mode in the pipe was investigated. In the following the
wall attenuation for higher modes, m > 0, will be analysed. In this case the attenuation
is studied for a liner with Stgr.; = 0.7. Figure 3.23a shows the wall attenuation for mode
zero along the pipe. As expected the attenuation starts peaking at Stg.; = 0.7. In the
first part of the pipe, say from z = 0 upto z = 20 the attenuation has a linear-like trend
as already shown previously in the Figures 3.17 and 3.22. Furthermore, the attenuation
tends to broaden in the downstream direction. At the pipe outlet, say z = 45 ~ 50 the
attenuation seems to disappear. This is due to the interaction with the Characteristic
Boundary Condition (CBC) set at the outlet. Therefore, no physical consideration
is made in this region. As for the higher modes, shown in Figures 3.23b, 3.23c and

3.23d, the attenuation occurs above the cut on frequencies as expected. In this case

the cut on frequencies are defined as St uton = ozmn\/ (1 —M?)/(mM), where ,,, are
the zeros of the Bessel function. The magnitude of the attenuation reaches 10dB for
mode zero while in the higher modes the attenuation reaches 15dB. The attenuation
of higher modes, m= 1, 2, 3, reaches a maximum and then reduces at a fixed St. The
liner attenuation is increasingly more effective with distance downstream, although for
higher modes m = 1,2,3 at a fixed St the attenuation reaches a maximum and then
reduces. This may be due to additional noise being generated by the turbulent pipe

flow.
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3.6.3 Parametric study of the liner attenuation.

A more general parametric study can be carried out to evaluate the effect of reactance
characteristics on the attenuation. Figure 3.24 shows a number of liners with different
slopes at the same resonance frequency, (dX/dSt)s:,.... The resonance frequency is
St = 0.7 for all the liners. Figure 3.25 shows the attenuation over (dX/dSt)s:,..
calculated close to the pipe outlet , z = 45. As (dX/dSt)st,,, increases the attenuation
decreases converging towards a certain value, say, 4.5 in this case. Therefore, the
smaller (dX/dSt)g,.., the higher the attenuation. From a computational point of
view, (dX/dSt)s:,., can not be smaller than a certain value as otherwise the DNS
simulation might face numerical instabilities. This becomes evident if we consider the
coefficient X in the Eq. 3.11, As (dX/dSt)s,., decreases X, decreases as well as

causing a division by zero.

I

X,=1.1316
X',=2.26324
—X=3.2692
X ,=45263
—X_=5.6579
—_X,=6.7895
X =7.9210
—X,=9.0526

— X4=10.1842

_X'm=11.3158

Figure 3.24: A number of liners with different reactance slope at the resonance fre-

quency, X' = (dX/dSt)s,..,-
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Figure 3.25:  Over all sound pressure attenuation over X' = (dX/dSt)ss,.,.-

3.6.4 Validation of turbulent statistics.

In order to verify that the flow field maintains its characteristics from a statistical
point of view when a liner is present, the Reynolds stress components are computed
and compared to the results by Wu & Moin [66] who provide statistical characteristics
for a similar hard-walled turbulent pipe flow. Figure 3.26 shows the root mean squared
of the stress components < v'u' >, < v'v' >, < w'w’ > and < u/v" > for a lined wall
case with B = 4 and St,esonance = 0.41. The dashed line are the benchmark results
from Wu & Moin [66], the squared symbols are the lined case and the solid line is the
hard wall case obtained with the current code. Three zones are highlighted: zone 1 is
included in the subviscous layer, whereas zone 2 and zone 3 are included in the buffer
layer and logarithmic layers respectively. As we can see from Figure 3.26 there is a
good match between the lined (squares) and wall (solid) cases from DNS simulation.

The agreement between the DNS results and the reference case (dashed line) is also
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Figure 3.26: Reynolds stress components in wall units, St..s = 0.41. Dashed lines

denote reference solution from Wu & Moin [66]; solid lines hard-wall case; dots lined

wall case.
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If we look carefully at the comparison between the DNS results and the reference
results in Figure 3.26, both the lined and hard wall case show lower values for < u'u’ >
in the range Y* > 10. This is due to a small increase in u, at the wall. Since the
DNS hard-wall and lined-wall cases show the same discrepancy in comparison to the
reference data, we can assume that the discrepancy does not depend on the presence
of the liner model but rather on the overall setup of the simulations, in particular the
inflow turbulence generation. Furthermore, the uv Reynolds stress component from
the lined-case around Y™ = 30 is reduced by 10 % in comparison to the hard-wall case.
Figure 3.27 shows the turbulent kinetic energy (TKE) and the mean velocity profile
(U, for the lined and hard-wall case in wall coordinates. The comparison shows a good
agreement. Other researchers such as Scalo et al. [67] performed computational simu-
lations for compressible turbulent channel flows with impedance boundary conditions,
and they observed alterations in the turbulent flow structure near the wall. However, it
is worth mentioning that they tuned the resonant frequency to the characteristic time
scale of the outer layer eddies, taken as the ratio of the bulk velocity over the boundary
layer thickness. As a result the Reynolds stress component < u'v’ > increased by 70 %
[67]. Scalo et al. [67] also suggest that the turbulent flow structure alteration cannot
only be attributed to inviscid Kelvin-Helmhotz instability mechanisms, and further
stability analysis should be carried out in future work. In the present work no such
great alterations of the turbulent structures are observed as different liner parame-
ters were chosen. Although differences are observed between the lined and hard-wall
cases, they are considered to be sufficiently small to claim that the flow field itself is
not affected substantially by the presence of the liner. Figures 3.28 and 3.29 show

the same comparison as previously but this time with a different liner setting, namely

68



3.Acoustic Liner model implementation in a direct numerical simulation code

R =1 and X,esonance = 0.7. Again the comparison shows good agreement. This is
an important result since it means that the turbulent flow is statistically independent
of acoustic liner parameters if these are not consciously tuned to affect the flow [67].
More comparisons with different liner setting have been computed confirming the in-
dependence of the turbulent statistics from the presence of the liner. These results are
not shown here for brevity. It is important to notice that the turbulent statistics are
not affected substantially by the presence of the liner model only when no real cavities
are present on the wall. In the present work the liner model implemented simulates
only the acoustic effect on the flow field as the lined wall is still a smooth surface.
When real cavities are present on the wall, such as in the case with honeycomb liners,
vorticity is injected into the cavities. Therefore a hydrodynamic interaction between
the flow field and the cavities exists. Tam et al. [25] observed that the shed vortices
generated on a resonating cavity tend to evolve into rings and align themselves into
two regularly spaced vortex trains moving away from the resonator opening in opposite
directions. These results show that the presence of the liner affects the flow on the wall.
Therefore, statistically the turbulent field might have different values in the presence
of a real acoustic liner. The purpose of the present work is to study only the acoustic

effect of the Tam and Aurialt model [19] on a turbulent pipe flow.
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Figure 3.28: Reynolds stress components in wall units, St..s = 0.7. Dashed lines denote

reference solution from Wu € Moin [66]; solid lines hard-wall case; dots lined wall case.
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3.7 Conclusions

In this chapter the implementation of the Tam and Auriault model into a DNS code
and its validation has been described. The validation has shown good agreement
with expected results. The acoustic attenuation capability has also been tested using
different liner parameters. The results meet the expectations in terms of bandwidth
attenuation. Furthermore, the presence of the liner model has shown no significant
effect on the statistics of the flow. This encourages us to continue our investigation

into the acoustic capabilities of the liner model implemented.
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Chapter 4

Liner model attenuation capability

In this chapter the acoustic attenuation of 3D pipe test cases with different Mach
numbers will be studied. Furthermore, a manipulation of the pipe inlet conditions
will be attempted to reduce the noise internally generated. In the second part of
this chapter a wavenumber-frequency analysis will be carried out to obtain a better
understanding of the liner attenuation mechanisms and how the liner model interacts

with the pipe flow.

4.1 Effect of Mach number on the liner performance

In this section two fully turbulent pipe flows with different Mach number are compared.
The first case is characterized with M = 0.46 denoted by M046, and the second case
with M = 0.84, M084. The numerical set up is the same as the previous pipe test cases,
see Section 3.5. The target of this application is to achieve the highest attenuation

possible. A number of liners have been tested to obtain the highest attenuation possible
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for the current test cases at the resonance frequency St,csonance = 1. The reactance
of the best liner configuration is shown Figure 4.1. The reactance coefficients are

X1 =0.16 with Xy = —6.28 for M = 0.46 and X; = 0.85, Xy = —33.49 for M = 0.84.

The resistance is R = 4 for both cases.

—MO046
6/ M084

Figure 4.1: Reactance of liner impedance configuration for the test case MO046 and

MO084; Resonance frequency Stresonance = 1.

Figure 4.2 shows the PSD of pressure attenuation for the M046 test case. The
attenuation of the first four modes is displayed for four different axial positions. The
attenuation for mode zero, Figure 4.2a, shows a peak at St = 1 which corresponds to
the resonance frequency at which the liner has been set. The attenuation appears to
increase up to 10dB over the axial positions. As for the higher modes the attenuation
reaches 10dB as well above the cut-on frequency. Figure 4.3 shows the PSD of pressure
attenuation for the MO084 test case. Figure 4.3a shows a correct peak position at
Stresonance = 1. In this case the attenuation reaches 15dB. The higher modes show the

same attenuation magnitude above the cut-on frequency. The difference in attenuation
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performance between the test cases might be due to the different acoustic content. In
other words, in the M084 case the flow is more noisy than the flow in the M 046 case,

therefore, the liner model is capable of attenuating a higher noise level.
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Figure 4.2: PSD of pressure attenuation for M 046 test case. a) Azimuthal mode zero.
b) Azimuthal mode 1. ¢) Azimuthal mode 2. d) Azimuthal mode 3.
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4.2 Noise reduction by manipulating turbulent in-
let condition

Observing Figures 3.17 and 3.22 it is clear that a possible source of sound is located
at the pipe inlet since the highest attenuation rate is in the first half of the pipe.
Figures 3.17 and 3.22 show a linear attenuation from the inlet up to 25-30 radii after
which the attenuation saturates. In the DNS code the turbulence is generated using
a digital filter technique [60]. This suggests that the artificial turbulent conditions
applied at the inlet in terms of velocity are characterized by an acoustic component.
As a result, acoustic energy is injected into the pipe flow. In order to reduce the
magnitude of the sound source at the pipe inlet a manipulation of the inlet condition
is attempted. The fluctuating part of the velocity components, u’, v and w’, are set to
zero for the azimuthal mode zero. The components «/,v" and w’ are left untouched for
higher azimuthal modes. New turbulent pipe cases are computed with the new inlet
conditions and compared to the previous test case with the original inflow conditions.
The first test case to be analysed is for M = 0.46 (M046). The pressure energy
reduction caused by the inlet flow manipulation is studied in terms of PSD. Figure
4.4 shows the attenuation between the old and new pipe case for different modes,
APSD = PSDgiq - PSDpyey. Figure 4.4a shows APSD for mode zero at different
wall locations (z=10, z=20, z=30, z=40).
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pipe case where the fluctuating part of the velocity components at the inlet boundary are

set to zero for the azimuthal mode zero, APSD. a) Azimuthal mode zero. b) Azimuthal

mode 1. ¢) Azimuthal mode 2. d) Azimuthal mode 3.
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Figure 4.5: M046 test case. Frequency domain over azial position. Comparison between
the previous pipe case and the new pipe case where the fluctuating part of the velocity

components are set to zero for the azimuthal mode zero at the inlet, APSD(dB).
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As expected the APSD at azimuthal mode zero is remarkably high, it reaches peak
of about 20d B at the outlet, z=40. As for the higher modes, shown in Figures 4.4b, 4.4c
and 4.4d, APSD is close to zero since no manipulation is applied. Figure 4.5 shows
the difference between the old case and new test case for different modes along the
pipe wall. This gives a wider view on the difference between the two cases compared
to Figure 4.4, which shows a cut through Figure 4.5 at certain z location. Figure 4.5a
shows a relevant difference for the low frequencies, say St = 0.1 ~ 1. The flow in the
first part of the pipe (2 = 0 ~ 20) should not be considered physical since the new
inlet conditions cause a slightly longer transient before fully developed turbulence is
obtained. Figures 4.5b, 4.5¢ and 4.5d show no variation in the PSD. Therefore, an
acoustic liner would still play an important role in the internal noise attenuation for

higher modes as shown in the next paragraph.

Figure 4.6: MO084 test case. Pressure attenuation of mode zero, PSD dB.
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The same manipulation is applied to the second test case with M = 0.84 (M084).
Figure 4.6 shows the PSD of pressure attenuation of mode zero for four different axial
positions. The attenuation reaches 13dB in the frequency range 0.2 < St < 0.8 and
is therefore well below the attenuation level for the M046 case, see Figure 4.4a. As in

the previous test case (M046) the higher modes remain unchanged.

4.2.1 Acoustic liner applied to new test cases

It is now useful to study the liner attenuation capability with the new inflow conditions
for the test cases M046 and M084. The liner parameters are the same as those used
in the previous Paragraph 4.1. The first test case to be studied is M046. Figure 4.7
shows the pressure PSD attenuation at the wall for the axisymmetric and the first
azimuthal Fourier mode in the frequency domain. The axisymmetric mode shows a
modest attenuation at high frequencies, St > 2.5, while higher modes show a broader
attenuation above the cut on frequency. In Figure 4.7b, an attenuation up to 30dB
can be observed. The liner attenuation is increasingly more effective with distance
downstream. Figure 4.7a shows no attenuation around St = 1, from which we deduce
that here the acoustic field is dominated by the turbulent pressure field. This is due
to the absence of noise in the low frequency range for mode zero. In contrast mode
1, Figure 4.7b, shows a modest attenuation around St,csonance = 1 where the cut-on
broad band noise is more significant. Figures 4.7c and 4.7d show a similar trend. In
the higher modes, m = 1,2, 3, the peak of the attenuation appears to shift towards
high frequencies as we move downstream. This may be due to additional noise being

generated by the turbulent pipe flow. As expected the attenuation occurs above the
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cut on frequency. Towards the outlet, z > 45, the attenuation seems to disappear
altogether. This is due to the effect of the characteristic boundary condition (CBC)

applied in this region, which is characterized by non-physical flow.
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Figure 4.7: MO046 test case with new inflow boundary conditions. Wall attenuation
(dB) for four azimuthal modes; white line denotes cut on frequency. a) Azimuthal

mode 0. b) Azimuthal mode 1. ¢) Azimuthal mode 2. b) Azimuthal mode 3.
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() (d)

Figure 4.8: M08/ a) Azimuthal mode zero. b) Azimuthal mode 1. ¢) Azimuthal mode
2. d) Azimuthal mode 3.

Figure 4.8 shows the pressure attenuation of the first fours modes for the M084

case. Figure 4.8a shows an attenuation about St = 1.5 which reaches 12dB for mode
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zero. As in the previous case, M 046, there is hardly any attenuation performed by the
liner around the resonance frequency, St,esonance = 1 when the inlet flow conditions
are modified. Once again this may be due to the absence of noise at low frequencies.
In Figure 4.8b shows the attenuation for the first mode. In this case the attenuation
clearly peaks around St,csonance = 1 above the cut-on frequency, reaching 15 dB. As for
the higher modes Figures 4.8c and 4.8d, the attenuation reaches 15 dB. As observed in
the previous case, M 046, the peak of the attenuation shifts towards high frequencies as
we move downstream. This may be due to additional noise generated by the turbulent
pipe flow. The attenuation in the M 084 occurs at lower frequencies than in the M 046
case, see Figures 4.8 and 4.7. This is due to the fact that increasing the Mach number

lowers the cut on frequency, therefore the attenuation peak lowers as well.

4.3 Wavenumber analysis

One way to separate acoustic and aerodynamic pressure in the wall pressure fluctu-
ations is to represent them in the wavenumber domain. Indeed, in the aeronautical
case, typically the acoustic and turbulent wavenumbers are different from each other
by a factor between 1.25 and 2.5 , since the Mach number of interest for aerodynamic
noise can be between 0.4 and 0.8. In other applications such as ventilation systems or
automotive this factor could be 10 since the Mach number is about 0.1. Previously
researchers proposed different method for wavenumber-frequency analysis. Bull [29]
recently wrote a review of the different wavenumber spectra measurement methods. A
possible approach consists of a direct measurement of the wavenumber spectral den-

sity, by spatial discrete Fourier transform of the cross-power spectral densities. This
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requires a low-pass wavenumber filtering and a great number of microphones according
to Shannon’s sampling theorem. That is why very few publications using this method
are available (Ibars in 1990 [30], Manoha in 1993 [31], or Abraham in 1998 [32]). An-
other possible way is to use arrays of pressure. Maidanik [33] describes the wave-vector
filtering action of pressure arrays. Maidanik and Jorgensen [34] propose also enhance-
ments to such arrays. The principle consists in obtaining, through linear combinations
of signals, a wavenumber spectrum for discrete values of the wavenumber, depending
on the spacing between microphones. Many authors [35] [36] have put this method into
practice. Using Corcos’ [37] hypothesis that longitudinal and transversal fluctuations
are independent, they only measured one-dimensional spectra in both directions. This
kind of approach is often called the Beam Former Method (BFM). The BFM response
is formulated by applying the complex pressure at each monitor point by a complex
weighting coefficient w;(k;), and summing such that the signals at each microphone
due to a wave propagating at the beam-steer angle, ¢, add in phase

N-1

(9) = > Pl w)ui(9) (4.1)

=0

where z; = IAz//3?, 3 is the Doppler factor. The weighting coefficient is given by

wi(p) = expli (=M + cos(0)) kz] . (4.2)

In what follows the beam steer angle is now referred to the directivity angle and

denoted by 6 so Eq. 4.3 now reads
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wy(0) = exp i (—M + cos(0)) kz], (4.3)

and the BF pressure response is denoted as ]5(6) so Eq. 4.3 now reads

N-1

P(k:) = + > p(E,w)wi(k). (4.4)

=0

The directivity angle varies from zero to 90° for waves propagating in the down-
stream direction and from 90° to 180° wave propagating in the upstream direction.

The weighting coefficient can also be written in terms of the axial wavenumber
wy (k) = exp (ik.z), (4.5)

where

k./k = (=M £ cos(9)/(1 — M?)). (4.6)

Thus the BF algorithm is identical to a simple axial wavenumber weighting or trans-
form. Corresponding to the directivity angle limits of (180°, 0°) the axial wavenumber
varies between the plane wave limits —k/(1 — M), k/(1 + M). Wavenumbers outside
these limits have no associated physical angle.

In order to evaluate the liner attenuation along the pipe, we need to calculate the
PSD of the acoustic pressure excluding non-acoustic pressure due to hydrodynamic
sources. In order to do so the following formulation was developed. The average mean

square of Eq. 4.3 can be written as

1

< DO (O) >= S5 w0 (6) < plet )plem @) > w(6), (4.7)
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—-1N-1

<p(0)p*(0) >= — N Z Z w*(0)CSD(z, zm)w(H), (4.8)

=0 m=0
where PSD(0) is the spectral density of the BF pressure response and C'SD(z, z,)

is the cross-spectral density between each pair of monitor points at the axial position
(215 2m)-

In the previous chapter the inflow conditions have been manipulated in order to
reduce the noise for mode zero, see Paragraph 4.2. Therefore it is useful to study
the pressure field for higher azimuthal modes since their acoustic content is greater
than for mode zero. An axial wavenumber analysis of pipe pressure is performed for
different radial position in order to investigate acoustic liner performance along the
radial direction. First of all it is necessary to define a longitudinal array to sample the
pressure field. The pipe length is 50 radii but as explained in Paragraph 4.2 the first
20 ~ 25 radii are necessary to develop a fully turbulent pipe statistically consistent
with the benchmark results from Wu and Moin [66]. Furthermore, the region within
45-50 radii is affected by the presence of boundary conditions (CBC) at the outlet.
Therefore, the array can be placed in the second half of the pipe to sample data
physically reliable excluding the last 5 radii. Figure 4.9 shows the pipe bulk velocity
profile for three different axial positions. It is clear that the flow statistically converges

after 25 radii.
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Figure 4.9: Azial mean velocity profile for three different azial positions.

The axial array consists of 130 grid points from the axial position z = 25 radii.
Furthermore, 8 axial arrays are placed along the radial direction equally spaced, say,
Ar = 0.125. Figure 4.10 shows a sketch of the array set up. In order to compute the
PSD of the pressure field 30,000 time samples are considered.
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Figure 4.10: Sketch of array distribution in the radial direction.
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Figure 4.11 shows the PSD of the pressure field for the hard-wall case (left side)
and lined case (right case) of the azimuthal mode zero. Four radial positions are
displayed; Y™ = 0,Y*T = 15,Y" = 66,Y " = 156. The other four arrays are omitted
on this occasion. The radial position is defined in terms of Y™ according to the classical
definition, Yt = %, where r is the radial coordinate, U is the bulk velocity and v is
the local kinematic viscosity. In Figure 4.11 the axial wavenumber range —1 < k, < 1
represents the acoustic field while k£, = 1/M ~ 2 is the axial wavenumber at which
the PSD related to the turbulent peaks according to Corcos’ hypothesis [37]. As for
the hard wall case in Figure 4.11a (left side), the acoustic range, —1 < k, < 1, is
characterized by the first three radial modes for each radial position, Yt above the
second cut on frequency (white line). The presence of acoustic energy at k, = 1 shows
the presence of acoustic waves travelling downstream. Most of the acoustic energy
carried by the acoustic waves travelling downstream is assumed to be produced by the
inflow condition. Figure 4.11a (left side) also shows the presence of acoustic waves
travelling upstream, k, = —1. It is assumed that these waves are produced at the pipe
outlet. Although a zonal non-reflecting characteristic boundary condition (CBC) is
applied at the outlet to avoid reflections, the CBC seems not to be efficient in dissipating
outgoing acoustic waves for this test case. As expected the whole attenuation takes

place above the cut-on frequency, and it seems to be very effective over a wide rage of

frequency, say, amny/(1 — M2)/(2rM) < St < 4. Figure 4.11b (right side) shows the
PSD wavenumber spectrum when the liner is applied. The acoustic field in the range
—1 < k, < 1 is significantly attenuated while the turbulent part, k, = 1/M, remains

practically unchanged.
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Figure 4.11:  Wavenumber-frequency domain, M046, mode 0. a) Hard-wall case. b)

Lined-wall case.
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Figure 4.12:  Attenuation of mode 0 at four different radial positions, Y+ = 156,
YT =66, YT =15, Yt =0. Test case M046.

Apparently a part of the acoustic energy travelling upstream, k, = —1 and 1.2 <
St < 3, does not disappear despite the presence of the liner. However, it seems to

attenuate along the radial direction as we approach the wall. It is important to notice

90



4.Liner model attenuation capability

that the BFM applied here has resolution limitations due to the finite array length.
In principle the BFM requires an array with an infinite length in order to have a
full resolution. In this application, since the domain size is finite, the array length is
about 25 radii and the resolution in the wavenumber domain is limited. Figure 4.12
shows the acoustic attenuation for the four radial positions. As previously observed the
acoustic waves travelling down stream are strongly attenuated. Figure 4.13a (left side)
shows the PSD of azimuthal mode 1 for the hard-wall case for four radial positions,
YT =0,Y"=15Y" =66,Y" = 156. In the acoustic range —1 < k, < 1 the contour
related to radial modes is visible as well as the peak related to the hydrodynamic
energy at 1/M. Figure 4.13b (right side) shows the PSD when a liner is applied.
Similarly to mode zero, the liner model attenuates the acoustic field effectively.
However, acoustic energy contained in upstream travelling waves remains, say, k, = —1
and 1.5 < St < 2.5 for every radial position in Figure 4.13b. Figure 4.14 shows the
acoustic attenuation related to the mode 1 for each radial position. As expected,
the radial modes are clearly attenuated. Waves travelling downstream are strongly
attenuated in a wide range of frequency above the cut-on frequencies. As for the

upward travelling wave attenuation, Figure 4.14 shows a modest attenuation in the

wavenumber range —1 < k, < 1 and ay,/(1 — M2)/(27M) < St < 2.
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Figure 4.13:  Wavenumber-frequency domain, M046, azimuthal mode, m= 1. a) Hard-

wall case. b) Lined-wall case.
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Figure 4.14:  Attenuation for mode 1 at four radial positions, Y+ = 156, YT = 66,
YT =15, YT =0. Test case M046.

As for higher azimuthal modes, Figure 4.15 shows the PSD of azimuthal mode
2 at the wall position, Y = 0. Figure 4.15a shows the azimuthal mode m = 1 for
the hard-wall case. Acoustic waves travelling upstream are still present. The acoustic
field is attenuated effectively above the cut on frequency when the liner is applied as

shown in Figures 4.15b and 4.15c. Similar considerations can be carried out for the
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wavenumber analysis of azimuthal mode 3 shown in the Figures 4.16.
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Figure 4.15: Mode 2, test case M046. a) Hard-wall case. b) Lined case. c¢) Attenua-

tion.
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Figure 4.16: Mode 3, test case M046. a) Hard-wall case. b) Lined case. c¢) Attenua-

tion.

It is now possible to integrate the PSD of the pressure field in order to discrim-

inate the acoustic field from the turbulent one for a certain frequency. In this case
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Stresonance = 1 1s chosen for the integration. Therefore, performing the integration of
the PSD axial wavenumber spectrum over —1 < k, < 1 and k, > 1/M it is possible to
plot the trend of the acoustic and turbulent pressure spectrum over the wall distance
Y ", as shown in Figure 4.17. In Figure 4.17 the dashed and solid green lines represent
the hydrodynamic components of the pressure field with and without the presence of
the liner respectively. As expected, both hydrodynamic components match along the
radial direction, Y. The dashed and solid blue lines represent the acoustic components
of the pressure field with and without the presence of the liner respectively. When the
liner is applied (dashed blue line) the acoustic field is reduced by 24dB along the radial

direction. As observed previously the acoustic attenuation appears to be homogeneous.
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Figure 4.17:  PSD of hydrodynamic pressure versus PSD of acoustic pressure over

radial coordinate, Y. Dashed lines lined case, solid lines hard-wall case.
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Figure 4.18: M084 a) Azimuthal mode zero. b) Azimuthal mode 1. ¢) Azimuthal mode
2. d) Azimuthal mode 3.
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Figure 4.19: Attenuation for modes m=0, 1, 2, 3 at the wall position, Y = 0. Test
case MO84.

A similar wavenumber analysis was carried out for the pipe case M084. Figure
4.18 shows the PSD for the hard wall case (left side) and lined case (right side)
for the modes m=0, 1, 2, 3 at the wall position, YY" = 0. In this test case only
the downstream travelling waves appear in the acoustic range —1 < k, < 1. The

peak related to the hydrodynamic energy, 1/M, tends to overlap with the downstream
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travelling waves k, = 1 due to the convection speed of M = 0.84 being close to the
acoustic propagation speed. However, the liner attenuates the acoustic energy only.
The contours that appear in the upper corners of Figure 4.19 are due to aliasing. As
explained for the M046 test case, the BFM method has a limited resolution due to
the finite length of the array used. The aliasing effect is more evident as the Mach
number increases. Figure 4.19 shows the relative attenuation of each azimuthal mode.
As expected the attenuation takes place above the cut on frequency. As explained
previously, since the array with which the PSD is calculated has a finite length and
finite number of probes aliasing appears in the wavenumber-frequency plot. In the test
case M084 aliasing is more evident because the Mach number is greater than in the
MO046 pipe case. Nevertheless, the attenuation of the acoustic component can still be

reliably demonstrated.

4.4 Velocity field decomposition

As explained in Paragraph 2.9 the liner model interacts with the acoustic field through
the normal-wall velocity component v. By applying the BFM to the v-velocity com-
ponent field rather than pressure it is possible to decompose the acoustic part from
the hydrodynamic part as previously computed for the pressure field. This will give
us a better understanding on how the liner model interacts with the velocity field.
Figure 4.20 shows the PSD of the v component field over the frequency-wavenumber
domain for the hard-wall case (left-side) and lined case (right side) for four different
radial positions. In the hard-wall case we can clearly see how the acoustic component,

—1 < k, < 1, tends to emerge as we approach the wall. Approaching the wall the
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first three radial modes appear above the cut on frequency (white line) maintaining
almost the same magnitude while the hydrodynamic energy magnitude tends to de-
crease. Integrating the PSD of the acoustic and hydrodynamic component separately
over Styesonane = 1 it is possible to compare the trend between the two components
over Y. Figure 4.21 shows the PSD of the hydrodynamic component for the lined
case (dashed green line) and the hard-wall case (solid green line). They both coincide
over a wide range of Y. Approaching the wall the hydrodynamic component of the
hard-wall case tends to —oo (zero in a linear case) while in the lined case the hydrody-
namic component tends to a finite value. This is because of the liner model presence
which allows the variation of v component on the wall.

As we can see from Figure 4.21 in the lined case the acoustic component prevails
over the hydrodynamic one in the vicinity of the wall Y* < 11. In theory also the
hydrodynamic component in the lined case should tend to infinity when close to the
wall. However, due to the fact that the array has a finite length the resolution over
the wave domain is limited. This might cause a lack of accuracy in the results.

In conclusion, from the latest results we can learn that the acoustic component of
the velocity field prevails over the hydrodynamic one in the vicinity of the wall when a
liner is present. Therefore, the Tam and Auriault model affects the acoustic component

only, leaving the hydrodynamic component unchanged.
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Figure 4.20: PSD of v component for different radial positions. Left side hard-wall

case. Right side lined wall case.
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Figure 4.21: PSD of v component over wall distance Y. Solid line: Hard-wall case. Dashed

lined case. Blue colour: Hydrodynamic component. Green colour: acoustic component. The

acoustic component prevails on the hydrodynamic component.
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Chapter 5

Jet noise prediction using the

Ftfowcs Williams-Hawkings method

In this chapter the Ffowes Williams-Hawkings (FWH) method is presented. The FWH
formulation will be studied as well as its numerical implementation for jet noise pre-
diction. Furthermore, FWH method will be used to evaluate the effect of the acoustic

liner model on the acoustic far field.

5.1 Acoustic analogies and hybrid approaches

The most popular methods to solve aeroacoustic problem are Direct Numerical Sim-
ulation (DNS) and hybrid approaches. In a DNS the Navier-Stokes equations are
numerically solved without any turbulence model. This requires very high numerical
resolution due to the large differences in the length scale present between the acoustic

variables and the flow variables. It is computationally very demanding and unsuitable
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for any commercial use. In the hybrid approach the computational domain is split
into different regions, such that the governing acoustic or flow field can be solved with
different equations and numerical techniques. This would involve using two different
numerical solvers, first a dedicated Computational Fluid Dynamics (CFD) tool and
secondly an acoustic solver. Typical CFD tools are DNS, explained above, and Large
Eddy Simulation (LES)[82][88]. In an LES the smallest scales of the flow are removed
through a filtering operation, and their effect modelled using subgrid scale models.
This allows the largest and most important scales of the turbulence to be resolved,
while greatly reducing the computational cost incurred by the smallest scales. This
method is far cheaper than DNS. The flow field is then used to calculate the acoustic
sources. These acoustic sources are provided to the second solver which calculates the
acoustic propagation. Acoustic propagation can be calculated using integral methods
which are multiple methods based on a known solution of the acoustic wave equation
to compute the acoustic far field of a sound source. Because a general solution for
wave propagation in free space can be written as an integral over all sources, these
solutions are summarized as integral methods. The most common integral methods

are the following
e Lighthill’s analogy [70][71]
e Kirchhoff integral [74][75]
e Ffowces Williams-Hawkings (FWH) [80]

When applying Lighthill’s theory to the Navier-Stokes equations one obtains volumetric

sources, whereas the other two analogies provide the far field information based on a
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surface integral. The acoustic sources have to be known from some different source (e.g.
a CFD simulation of the sources in a moving medium). The integral is taken over all
sources at the retarded time (source time), which is the time at which the source sent
out the signal, which arrives now at a given observer position. Common to all integral
methods is that they cannot account for changes in the speed of sound or the average
flow speed between source and observer position as they use a theoretical solution of the
wave equation. Acoustic analogies can be very efficient and fast, as the known solution
of the wave equation is used. The prediction of noise at a position far away from the
source can be made as quickly as that for a position near the source. Common for
the application of all analogies is the integration over a large number of contributions,
which can lead to additional numerical problems (addition/subtraction of many large
numbers with a result close to zero). Furthermore, when applying an integral method,
usually the source domain is limited somehow. While in theory the sources outside have
to be zero, the application can not always fulfil this condition. For some applications
these errors even dominate the solution [89][90]. In the following sections more details
concerning the integral methods mentioned above will be given. Particular emphasis

will be given to Lighthill’s analogy and the Ffowcs Williams-Hawkings method.

5.2 Lighthill’s analogy

Lighthill [70][71] developed the acoustic analogy approach to calculate acoustic radi-
ation from a relatively small region of turbulent flow embedded in an infinite homo-
geneous fluid in which the speed of sound ¢y, the pressure py and the density py are

constant. In the Lighthill formulation, the Navier-Stokes and continuity equations are

105



5.Jet noise prediction using the Ffowcs Williams-Hawkings method

transformed to form an exact inhomogeneous wave equation whose source terms are
important only within the turbulent region. Sound is imagined to be generated by
a finite region of rotational flow in an unbounded fluid, see Figure 5.1. This avoids
complications caused by the presence of the nozzle. Far away from the turbulent flow

the formulation reduces to the homogeneous acoustic wave equation.

1 0%

Because the sound is a very small component of the whole motion its back-reaction on

the mean flow can be usually ignored.

Acoustic
analogy

Turbulent

Isolated region
nozzle flow of turbulence

Figure 5.1: The real flow field is modelled as a compact source region embedded in an

infinite homogeneous fluid.

In order to develop Lighthill’s formulation we assume that the body forces are
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negligible, therefore the momentum and continuity equations are

p at + pu’] 83:] axj (p(S’L] 01])7 (5 )
Ip  Opu;) _
TR 0, (5.3)

where wu; is the ith component of the velocity field, p is the density, p the pressure,
d;; is the Kronecker delta and o;; is the viscous stress tensor for a Stokesian fluid.

Multiplying Eq. 5.3 by u;, adding the results to Eq. 5.2 and combining terms yields

opu; 0
5 = _8xj (pwiv; + pdi; — 0i5).

Adding and subtracting the term cy?dp/dz; results in

opu; , Op 0Ty
= 4
375 + 0 8xj (9xj ’ (5 )

where

Ty = puit; + 65[(p — po) — co*(p — po)] — 04 (5.5)
is the Lighthill turbulence stress tensor. We can now differentiate Eq. 5.3 with respect
to t, take the divergence of Eq. 5.4 and subtract the results to obtain Lighthill’s
equation

10%p 2 Ty

= ) 5.6
2 Ot? P 0,0z, (5:6)
The quadrupole term Tj; must be known in order to solve Eq. 5.6. In general Tj;
is defined using data from numerical simulation such as DNS. A knowledge of T; is

equivalent to solving the complete non-linear equations governing the flow, which is

impossible for most flows.
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Since no solid boundary is present in the flow, Eq. 5.6 can be solved in terms of the

free-space Green’s function, thus

82
£) — pp = Ty, N)C(x, t;y, T)dydT, 5.7
pt) == [ [ 55 Tty )Gty )y 1)
where ey
ot — 17— =2)
Gty ) = S 58)

Thus Eq. 5.7 becomes

[x—v]|
1o h\yt- T
p(%,1) = po / ( ) dy, (5.9)

B 47T002 8:[]8331 ’X — yl

where x is the position of the observer and y is the position of the source. If the
distance between the observer point and any source point is large compared to the
dimensions of the source region, a good approximation [70][73] of Eq. 5.7 is
1 wux; [ O Ix —y]
X, 1) — J T |y, t— dy. 5.10
p5.1) = po [ st (v =P 4y (5.10)

~
de? |x|?
v

The advantage of this approximation is that the double spatial derivative is avoided.
However, since a double time derivative appears in this formulation, the time resolution

is important in order to obtain accurate results.

5.3 Kirchhoff integral

Kirchhoff [74][75] showed, that the radiation of sound from a limited source region
can be described by enclosing this source region by a control surface called a Kirchhoff

surface. The sound field inside or outside the surface, where no sources are allowed and
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the wave operator on the left hand side applies, can be produced as a superposition of
monopoles and dipoles on the surface. The theory follows directly from the wave equa-
tion. The source strength of monopoles and dipoles on the surface can be calculated if
the normal velocity (for monopoles) and the pressure (for dipoles) on the surface are
known. A modification of the method even allows calculation of the pressure on the
surface based on the normal velocity only. The Kirchhoff integral method finds ap-
plication in boundary element methods (BEM). A non-zero flow velocity is accounted
for by considering a moving frame of reference with the outer flow speed, in which the

acoustic wave propagation takes place.

5.4 Ffowcs Williams-Hawkings Method

Let f(x) = 0 be a surface enclosing the turbulent region which is the noise generating
region of the flow in this case. f(x) = 0 will be called the control surface. We assume

that the control surface has the following properties:

f(x) > 0,in the exterior of the control surface

f(x) < 0,in the interior of the control surface

Furthermore, we assume that f(x) = 0 is defined such that Vf = n, where n is the
outward unit normal vector. Since the control surface is just a mathematical surface
where data relative to the turbulent region are stored, we assume that the surface

is permeable. This assumption allows us to obtain a convective wave equation in
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unbounded space. In this way the solution of the wave equation is the simple Green’s
function in unbounded space.

An artificial discontinuity in all flow parameters across the control surface has now
been introduced. Therefore, all parameters are considered as generalized functions and
the conservation laws are defined in terms of generalized derivatives. The continuity

and conservation of momentum equations are:

dp
ot

8p 0
+ UOl@ o —(pu;) =0, (5.11)

0

(pul) + UOla

0
s & P — 192
ot (pu;) + o (puiu; + Pij) =0, (5.12)

where p is the fluid density, pu; is the component of fluid momentum and F;; is the
compressive stress tensor as defined by Lighthill [70], and U, is a generic velocity
component of the coflow. Eq. 5.11 and 5.12 are written in the conservative form to
avoid the problem of multiplication of generalized functions. The vector components
pu; and pu;u; are defined as unique generalized functions. Let us now apply the rules
of generalized differentiation to the equations Eq. 5.11 and Eq. 5.12 to see how the
artificial discontinuity across f(x) = 0 changes the conservation laws. A bar over the
symbol of derivative is use to indicate a generalized derivative. In the case of the
continuity equation:

O + Uy aal (pui) + %(Puz) gt + Uozaa— + Uni(p — /90)351 (f)

ot
0 0
+ () + (b + ) — ool S26() (519

= [p(Uon + un) — poUon)d(f),
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where w,, = wu;n; is the local fluid velocity in the direction normal to the control
surface, n; = % is the component of the unit outward normal to f(x) = 0, poUso is

the momentum of the fluid outside the control surface. Note, that the first, the second
and the fourth term on the right hand side are zero because of Eq. 5.11. Similarly, we

can derive the momentum equation in terms of generalized derivatives as

0 0 0 0
at(ﬂuz)-i-Uota (pui) + %@Uiuj + Py) = T — (pui) + Uoza (pui)+
j
0
Unil[(poUio + pu;) — pui]a—f5(f)+
5 L of (5.14)
%(uzu] + Py;) + [AP; + (pousuj + poUsoUjo) — PoUionO]%CS(f)
J J

= [Puz(UOn + Up) + APZ’J’”]’]'

The next step follows exactly Lighthill’s derivation of the jet noise equation, except

that all new derivatives taken are generalized derivatives. First, take 8—; of both side

of Eq. 5.11, then ; of both sides of Eq. 5.12. The last step is to subtract Eq. 5.14

from Eq. 5.13 and then V?[c?(p — po)] from both sides of the resulting equations. In
this way we obtain the Ffowcs Williams-Hawkings equation for a permeable control

surface. Using p for ¢*(p — po), the equation is

%p(x, t) = i ((Uon + un) — poUon)0(f)}
- ai[puiwoﬂ +un) + APy ]3(f) (5.15)
82
8@8:6] oz.00, L (D),

where T}; = pu;(u, + Up,) + AP;; — ¢?pdy; is the Lighthill stress tensor. Since T;; = 0
outside the control surface, the Heaviside function H(f) in the last term on the right

hand side is used. In general, the viscous term in AP;; is a negligible source of sound
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and we can assume that AP, = (p — po)d;;. In Eq. 5.15, the source terms on the

right-hand side are defined respectively as monopole, dipole and quadrupole.

5.4.1 Observations

In Eq. 5.15, we can see that the artificial discontinuity at f(x) = 0 has introduced
a source term on the right-hand side of the continuity equation that is proportional
to the local rate of mass injection into the exterior domain. The quadrupole term
%{;gjj[ﬂj[{ (f)] in Eq. 5.15 models the non-linearities in the turbulent field enclosed
inside the control surface.

The FWH equation we have obtained is the governing equation for computation
of noise outside the control surface. The parameters such as p, pu; and p on the
control surface and 7;; must be known. These parameters are obtained from a CFD
computation.

The Ffowces Williams-Hawkings method was originally developed considering a solid
surface embedded in a turbulent flow. When both the solid surface and the turbulence
are compact relative to the radiated length scales, the turbulence is acoustically equiv-
alent to a volume distribution of quadrupoles and a surface distribution of dipoles
and monopoles. In air frame noise applications, the above mentioned distributions
are known as turbulence noise source, loading noise source and thickness noise source
respectively; however this interpretation is meaningful only when the FWH surface
corresponds to a solid surface which represents a discontinuity in the flow field.

In order to simplify the integration of the Ffowcs Williams-Hawkings equation, the

surface is considered permeable. In this way the FWH equation is valid in the entire
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three-dimensional space so that the simple Green’s function of the wave equation in
unbounded space can be used. The assumption that the surface is permeable, makes
the FWH method applicable to a jet case because it is possible to define a permeable
surface embedding the turbulent field. Unlike the case of airframe noise, in a jet case
the FWH surface does not correspond to a surface of discontinuity because the entire
flow field is considered continuous. Therefore the dipole and monopole distributions
cannot be considered as physical sources of sound. These distributions have the form
of a monopole and dipole only from a mathematical point of view but they do not have

a physical meaning.

5.5 Integral formulation

The FWH equation we have obtained is an inhomogeneous wave equation in a three-
dimensional unbounded space. Hence, an integral representation can be found using

the free-space Green’s function defined as

ot — 7 — =y
Gx ty,7) = x| (5.16)

where x is the position of the observer, y is the position of a general source inside and
on the control surface, and ¢ is the speed of sound away from the control surface. In
order to make the formulation more compact, let us define g = §(t — 7 — @) and
r = |x —y|. As for the source terms, we define Q(x,t) = p(un — Uon) — poUon+]9(f)
and L;(x,t) = [AP;n; + pu;(u, + Upy)]0(f). The integral representation of the FWH

equation is
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wmpxt) = [ [ 5100730 Gty r)dyds

- / / o Ly 73] Gy, )y (5.17)

//ay](()yZ iy, TV H(f)] G(x,t;y, 7)dydT.

Applying the integration by part rule to the three terms on the right-hand side and con-
sidering that 0G(x,t;y,7)/0T = —0G(x,t;y,7)/0t and 0G(x,t;y,T)/0y; = —0G(x,t;y,T)/0x;
Eq. 5.17 becomes

wmpxt) = - [ [ Qvr)s)Gx by, e
- / / Lily, 7)O())G(x, Ly, 7)dydr (5.18)

ax . // iy, T )G(x,t;y, T)dydr
i i

As shown previously in other research works on cold turbulent jets [40] [77], the

quadrupole term in Eq. 5.18 can be omitted in the computation when all the tur-
bulent field is located inside the control surface. In other words, when the control
surface is located where the acoustic equations are satisfied the omission of the vol-
ume term in Eq. 5.18 does not alter substantially the accuracy of the noise prediction
[77]. This assumption results in a significant reduction of computational costs. In
the present work the FWH formulation is implemented without the quadrupole term.

It should be clarified here that neglecting the quadrupole term in Eq. 5.18 does not
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imply that the (most significant) quadrupole term of jet noise mixing is not accounted
for. If the FWH surface is placed outside of the hydrodynamic source region, then
all contribution of the jet noise source terms inside the volume are represented by the
dipole and monopole terms on the surface.

In Eq. 5.18 a spatial derivative appears in the second term, but we can manipulate
the terms on the right-hand side in order to obtain an equation without the spatial
derivative. In this way we can have a formulation less computationally demanding. If

we consider the following relationships

i(M)_ 8'(g),  d(g).

or; \ r ) e T2
d (5(g)> ~d(g) .

— == ) = —=7,

ot r r

we obtain the relationship

Applying Eq.5.18 to Eq. 5.19 we have

wmpt) = 2 [ [ Qtv.matn ™ Layar

+ [ [rwmn |5 (M2) + 22 sayar

// [ ( ) ) Z( ) )AZ] ( ) ( ) ( )

¢ Dt

+//Li(y’T)y;ij(f)é(g)dydT.

Now we have to consider the sampling property of the delta function on the variable

f and the scaling property of the delta function on the variable g. The last property,
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given any function h(t) and g¢(t), is defined as follows

+oo

/ h(r)8(g(r))dr = La};(/gr\]fﬂn* ’

n

where 7,* is the nth root of g, i.e. ¢g(7,*) = 0. This relationship may be proved in a

+00
straightforward way by changing the integration variable in [ h(7)d(g(7))dr. In our

—00

case g = 0(t — 1 — @), hence

dg _ (e w)dy
dr  |x—yl|edr

where j—ﬁ is the velocity at which the source travels through the source field, and

%j—f is the component of this source velocity in the direction of the observer divided

by the speed of sound c. We will name it relative Mach number, M,.. Hence,

dg VI
— =11~ Tl
dr | |

where |1 — M,| is defined as Doppler factor. This factor will appear in the formula-
tion because sources move with a relative velocity c¢M, with respect to the observer.

Applying the properties of the delta function mentioned above to Eq. 5.20 we obtain

1D O+ Lif, .
cDt Ji_g |71 —=M|] _.

+/ L7 J
f=0 T2‘1_MT| T=T7% v

where the subscript 7% implies that the integral is evaluated at the retarded time

Arp(x,t) ~
(5.21)

(time when the sound is emitted) that can be found as the root of the equation ¢ —
T —|x—y|/c = 0. In our case y is a function of the retarded time, y = y(7),
because the sources are moving with respect to the position of the observer. Thus,

t —7—|x—y(7)| /e = 0. The integration is performed over the control surface f = 0.
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5.6 On the advanced time approach

Unlike the retarded time approach, in an advanced time approach the computational
time is considered as the emission time [69]. Therefore, at a given time the contributions
from the integration domain are computed. At each computational time and for each
element of the control surface, the time at which the corresponding acoustic signal will
reach the observer is considered as advanced time. In other words, the advanced time
is the time at which the observer begins to “record” the signal from the sources on the
control surface. The total acoustic signal is finally built up in the observer time domain
through a summation over all the computed contributions. The observer location at
the advanced time is used to calculate the relative position between the observer and
an element of the control surface. We can define the general advanced time equation

as
tado = 7+ x(7) = y(7)| /c, (5.22)
where, .4, is the advanced time, 7 is the source time and c is the speed of sound. In a

general case we can assume that the observer moves at the constant velocity cM,,. In

this case Eq. (5.22) can be solved in t,4, as

riMop £/ (riMoy;)? + r2(1 — M32)

ladv = T

(1 = M3)
(5.23)
. r(t) [ Mowr £ /Mg, +1 — Mg,
-7 c 1— M2 ’

where r; = x;(t) — y;(7) is the distance between the observer and the source location
and My, = 7; My, is the observer Mach number in the radiation direction. According
to the magnitude of My, Eq. 5.23 can have different forms as explained in detail by
Casalino [83].
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In our case the observer is fixed with respect to the control surface, My, = 0, thus

the advanced time equation is
tady =T +|x—y|[/c=T7+r|/c. (5.24)

The distance between the observer and the source location r does not depend on
the time, therefore, no Doppler effects appear in the formulation. This means that
an equally spaced discretization of the source time domain corresponds to an equally
spaced discretization of the observer time domain. This yields obvious simplifications in
the advanced time approach [85]. The implementation of the advanced time approach
dose not required a modification of the integrals in Eq. 5.21.

The advantage of using the advanced time approach is that only the pressure from
the integration domain is shifted forward in time, while in the retarded time approach
every variable such as density, velocity, and pressure is shifted backward in time. There-

fore, the advanced time approach reduces the computational coasts.

5.7 Non-dimensional formulation

In order to generalize the FWH formulation Eq. 5.21 is made non-dimensional. The

non-dimensional variables of Eq. 5.21 are defined as follows

U, P r T
t/ — 22 S r_ r_
R7 p poU(?’ r Rv T R’
I (5.25)
y/ = 2 Q/ ey i L/ =
R’ /OOUO7 poUo

In our case, we define U, and py as the bulk velocity and density, respectively, at the

outlet of the nozzle and R as the radius of the outlet section of the nozzle. Substituting
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the relationships Eq. 5.25 into Eq. 5.21 we have

D QO + Li7;
47Tp/<X, t) ~ Mjﬁ . [m} dS/

- 5.26
Y P 520
—_ s
f=0 T/z |1 — MT| J— ’
where
Ql _ LI Mon . 'U/ . Mon
M\ My 0] M (5.27)
L= pu Mon u. | +AP.n |
7 1Y 7 M] n 1377

M; is the jet Mach number and M, is the ratio between the normal component of
the coflow U,, to the speed of sound c in the exterior of the control surface. Now the
retarded time is found from the non-dimensional equation t —7 —|x — y(7)| = 0. From
1 I n

now on every equation is shown non-dimensional, but for simplicity the symbo

will be omitted.

5.8 Numerical scheme: Mid-panel quadrature

If we apply the mid-panel quadrature to 5.27 we have

n

D Q(yj,t —1y) + Lily;, t —ry)7s
drp(a,t) ~ M= AL AL As;
’/Tp(x7 ) ]Dt Z [ Tj |1 o Mr’j ) S]
= (5.28)

yj7 T])TA.Z
r;? |1 — M, |

Z

=1

AS]',

—T*

with the surface S divided into NV panels. The argument of the sum is evaluated at the
center of each panel (y;). In this numerical scheme we assume that the integrands of

Eq. 5.28 are constant in the center of the jth panel where the integrals are evaluated.
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Note that the subscript j used in this section is an index that refers to the jth panel.
The subscript 7 implies that integral is evaluated at the retarded time which is found
as the root of the equation ¢t — 7 — |x — y(7)| = 0. Because the strength of the sources
L; and (@ is evaluated at the retarded time, temporal interpolation of the input data

is required.

5.9 Control surface geometry assessment

Since the input data is available in cylindrical coordinates, the control surface of our
analysis is cylindrical as well. A conical surface may be chosen but it would require
a spatial interpolation of the data. More aspects concerning the choice of the control
surface will be explained later. The control surface is shown in Figure 5.2 and Figure

5.3.
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Figure 5.2: Control surface for FWH integration.
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In the numerical scheme the control surface is not exactly a circular cylinder because
its surface is divided into a number of flat panels. Therefore, the resulting geometric
object is a cylinder with a polygonal base. Increasing the number of panels the surface

of the cylinder with a polygonal base converges to the surface of a circular cylinder.

o o o o o o HE
R o o o o o o b HE
B s i T L o
o o o o o o b
R o o o o oo o o e HE

b ommw s,
N

.......H
MW RO MW s,

0 10 20 30 40 50 60 70 80
Figure 5.3: Lateral surface; it is diwided into a number of rectangular elements in the

azial direction. The blue crosses are the control points.

This is the problem of squaring the circle, therefore, the convergence is affected by
the number of elements in the azimuthal direction only. If we define the percentage

error related to the area of the surface of the cylinder with a polygonal base as

E’I"?“O’I"% =100 - (Scircular base — Spolygonal base)/Scircular base) (529)

we can study its convergence as the number of elements in the azimuthal direction

increases, see Figure 5.4. In other words we can study geometric errors related to the
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control surface.

Error %; cylindrical surface

0 10 20 30 40 50 60 70
nelem azimuthal direction

Figure 5.4: Percentage error convergence; the geometric percentage error tends to zero

as the number of elements (nelem) in the azimuthal direction increases.

In Figure 5.4 the percentage error tends to zero quickly; after 35 elements we can
assume that it is converged, whereas 66 elements in the azimuthal direction is the
maximum amount available from DNS data. If we plot the convergence of the same
function keeping the number of azimuthal elements fixed and increasing the number of
elements in the longitudinal and radial direction we can see that it does not vary as
the number of elements increases, see Figure 5.5. In Figure 5.5 the oscillations are due
to numerical approximations. If we consider the percentage error convergence related

to the volume of the cylinder we have a similar behaviour.
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Error %; cylindrical surface

—_— e~

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
[nelem longitudinal direction]xnelem radial direction]

Figure 5.5: Percentage error convergence; the geometric percentage error does not

change as the number of elements in the longitudinal and radial direction increases.

5.10 Verification of FWH code

In order to validate the FWH code a simple surface with four panels is used. Fur-
thermore, the input variables are defined in term of trigonometric functions such that
p = Ajsin(wt), u = Aysin(wt), v = Azsin(wt),w = Agsin(wt). The acoustic pressure

is calculated analytically using

D Q;
A7p(t) Z 3o, |X’ s; +Z D] A (5.30)

where (); and L; are defined from Eq. 5.27. Settmg w =02 ry =3, 04 =90° and

the coflow M, = 0.2 we can compare the analytical results with the results from the
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FWH code as sketched in Figure 5.6. In Figure 5.7 another comparison is displayed.
In this case 0,, = 40° and a random component has been added in the input variable.
The agreement between the FWH implementation and the analytical solution is very

good.

1.035 —f— FWH Solver
Analytical

1.03

1.025

1.02

Pressure

1.015

1.01
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Figure 5.6: Comparison between the analytical and numerical solution solution.
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Figure 5.7: Comparison between the analytical and numerical solution solution with a

random component.
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5.11 Numerical implementation of the advanced time
approach

In this section more details concerning the numerical implementation are presented. Let
us consider a distribution of three point sources and an observation point as sketched in
Figure 5.8. Each source emits an acoustic signal at the same time (source time) with
the same wave length. The observer will record the acoustic signals from the point
sources at the time t; = r1/c, to = 1r9/c, t3 = r3/c respectively, where c¢ is the speed of
sound, 71, ro and r3 are the distances between the observer and each source. In order
to obtain the total signal at the observer point each signal is shifted forward on the
observer time scale by the advanced time t;, t5 and t3 respectively. After this, each
signal is linearly interpolated on the observer time scale and then summed, see Figure
5.9. Obviously as the observer location changes the advanced times ¢, t; and t3 change
as well, see Figure 5.10. This aspect is considered when Eq. 5.24 is implemented to

make the numerical scheme as flexible as possible.

Ob
Y
r_ob
r1
r2 3
| | | |
1 T v T -
s1 $2 $3 X

Figure 5.8: Sketch of 3 point sources. The observation point (Ob) is in the far field.
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Figure 5.9: Three signals recorded by the observer.
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Figure 5.10: Three signals recorded by the observer in a different position.

5.12 Far field approximation applied to the advanced
time approach

When the observation point is far way from the control surface, approximations in
the numerical scheme might be applied. Let us consider just two point sources. If we

move away the observation point extending the position vector r.,, we can see that
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the distances between the sources and the observation point rq, ro converge to 7.

Formally we can write

lim r = lim ry = ry,
Tob—>00 Tob—>00
thus
lim r; —ry=0. (5.31)
Tob—>00

It is important to notice that r,;, is made non dimensional using a characteristic dimen-
sion of the control surface. The acoustic signals from each source tend to be shifted
by the same advanced time as we extend the position vector r.,. In other words, the
acoustic signals align on the observer time scale as the observer point is moved away;,

as we can see in Figures 5.11 and 5.12.

03 - Signal 1
0l S %lgnal 2
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Figure 5.11:  Signals for ro, = 3.
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Figure 5.12: Signals for ro, > 10; The signals tend to align.

From Eq. 5.31 we can define the function r — ry = f(r,) with which we can
quantify the tendency of the acoustic signals to align on the observer time scale. In
the Figure 5.13 the function defined above is plotted. We can see that r1 — 19 = f(7)
tends to zero sharply. Therefore, when r,;, is 10 times the length of the control surface,
r1 —79 has an order of magnitude of O(10~2), which can be considered very small in this
case. This is an important result because it allows us to avoid the linear interpolation
when the observation point is sufficiently far away from the source field with a relevant
reduction in the computational costs. In the following sections this approximation will
be applied to the FWH method using DNS data to analyse its effect on the acoustic

spectrum prediction.
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Figure 5.13: 1 — 1o = f(rep). This function is plotted over the observer position .
As the observer moves away from the control surface the difference r1 — ro tends to

ZET0.

5.13 Jet test case; numerical set up and grid design

The computational domain comprises five blocks, as shown in Figure 5.14, which can be
defined as: flow inside the pipe (block 1), jet development downstream of the pipe exit
(blocks 2, 3 and 4), and co-flow and acoustic field upstream of the pipe exit (block 5).
The sizes of each block, with the corresponding number of grid points and number of
subdomains in the streamwise (z) and radial (r) directions, are given in Table 5.1. The
numerical method for time and spatial discretization used to solve the compressible

Navier-Stokes equations are the same as for the pipe test case, see Paragraph 3.2.
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Downstream of the pipe exit, the physically useful part of the computational domain
extended to z = T9R,;,. followed by an outflow zone [56] with 180 grid points which
extended up to 2 = 110R,;,.. In the streamwise direction the grid spacing is stretched
from the minimum of Az = 0.009R,;,. at the pipe exit to Az = 0.01475R,;,. at
2 = 10Rppe, and then further to Az = 0.0248R,;pe at z = 20R,;pe; the maximum grid
spacing at 2 = T9R,ipe is Az = 0.029Rp;p.. In the radial direction the grid spacing is
kept equidistant across block 3 (thickness of the wall) with Ar = 0.0026R,;,. and then
was stretched to Ar = 0.1421R ;e at 7 = 12.5Rpe; from r = 12.5R,;pe to 1 = 80.5Ripe
the grid spacing is again kept uniform. Finally in the upstream direction (block 5) the
grid spacing is refined from Az = 0.1 at the inflow boundary z = 0 to Az = 0.009 R
at the pipe exit (z = 0). In the azimuthal direction 64 Fourier modes are used resulting

in 408 x 10 grid points.

Far field Far field
Block 5 Block 4
r/R
wall Block 3
4
Block 1 (Pipe) Flow === Jet = Block 2
Z/R

Figure 5.14: Sketch of the computational flow domain.
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Block No. Block 1 Block 2 Block 3 Block 4 Block 5

L,x L, 500x1.0 110.0x 1.0 110.0x 0.0416 110.0x 79.5 50.5 x 79.5
N, x N, 624 x 68 2808 x 68 2808 x 17 2808 x 833 624 x 833
Np, X Np, 48 x 4 216 x 4 216 x 1 216 x 49 48 x 49

Table 5.1:  Size (L), number of grid points (N) and the number of processors (Np) )

in the axial (z) and radial (r) directions. All dimensions are normalized with Rppe.

The design of the grid for the blocks 2, 3, 4, 5 is based on jet flow simulations by
Sandberg et al. [27]. In order to confirm that all time scales of turbulence were fully
resolved, the pressure power spectral density (PSD) was computed for locations within
the hydrodynamic field. Sandberg et al. [27] showed that the PSD of pressure decays
correctly over high frequencies. This suggests that the grid design is appropriate for
the jet flows under examination. The maximum grid spacing away from the jet exit
(in both streamwise and radial directions) is chosen to resolve acoustic waves up to
Strouhal number Stp = 2 (based on the jet centreline velocity and diameter) with at
least 10 grid points. The grid design for the pipe (block 1) has been already described

in Section 3.5.

5.14 Monopole and dipole field assessment

In this section we will see how the input data are stored on the control surface. The jet
flow is characterized by a jet Mach number, based on nozzle bulk velocity, M; = 0.84

and a co-flow M., = 0.2, with R, = 3500. The R, is based on the bulk velocity at the
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pipe exit and the pipe diameter. The simulation is run up to 1000 time units to achieve
fully converged flow [27] with At = 0.01. In Figure 5.15, an example of the pressure
field at the first available time-step is shown. Time is made non-dimensional using the
bulk velocity and pipe radius. The FHW method requires the three components of the

velocity u, v, w, the density and the pressure field to be known on the control surface.

Pressure field

e e o
VEEUOEOYY DOO0
WEUH 00—

— 351 — 52 Pressure field

T ey )
LUVOOLY OaQQ
WEUO-DO —RW

r{R

) 10 20 30 40 50 &0 70
z/R

Figure 5.15: Snapshot of the pressure field at the first time-step, ¢ = 0,180°. Two

control surface, S1 with radius=3, S2 with radius= 4.5 (bottom,).
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Dipole field
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Figure 5.16: Snapshot of the dipole field computed from Eq. 5.27 at the first time-step

on the lateral surface; Radius=4.5.

Monopole field
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Figure 5.17: Snapshot of the monopole field computed from Eq. 5.27 at the first time-

step on the lateral surface; Radius=4.5.
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Once the radius and the length of the control surface is defined the data from the
DNS simulation are stored at every time-step. In the following pictures, input data
at the first time step are shown. With this data it is possible to calculate the dipole
and monopole distribution using Eq. 5.27. If we divide the control surface into 8000

elements we obtain the monopole and dipole fields as shown in Figure 5.16 and 5.17.

5.15 Numerical scheme assessment

The main focus of this section is to show the behaviour of the convergence of the
numerical scheme over parameters such as control surface dimensions and number of
elements. In particular, the convergence of the first and second integrals in Eq. 5.28
will be studied.

Before proceeding further, it is important to make sure that the numerical scheme
converges as the number of elements on the control surface increases. Once the length
and the radius of the cylinder are fixed at the first time-step, the convergence of the
first and second integrals in Eq. 5.28 is shown in Figures 5.18 and 5.19. Both integrals
can be considered converged at 8000 elements. This is the number of elements that will
be used on the control surface for far field noise prediction presented in the following

paragraphs.
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Convergence of the first integral over number of elements
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Figure 5.18: Convergence of the first integral; Radius=4.5, length="75.

Convergence of the second integral over number of elements
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Figure 5.19: Convergence of the second integral; Radius=4.5, length="75.
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5.16 New grid development

A new grid with a reduced number of points is developed for a new jet case in order
to reduce computational costs. Since the acoustic pressure prediction is carried out
by the FWH method the number of grid points is reduced in the blocks 4 and 5, see
Figure 5.14. The number of grid points is reduced in the radial (r) direction in the
block 4 and 5 and in the axial (z) direction in blocks 2 | 3, 4 and 5 respectively, see
Figure 5.14. In the r direction the original grid remains untouched up to r = 12, see
Figure 5.20. From this point on a new grid is generated using polynomial functions
such as r(z) = az® + bz where a and b are coefficients determined by a joint condition
between the new and old grids. The exponents e; and e, determine the stretching of
the grid, and in this case they are defined as e; = 10 and e; = 1. In this simulation the
acoustic field will be computed by the FWH solver, therefore there is no need to keep
the slope of the grid constant in the far field. In Figure 5.21 a comparison between the
old and the new grids is shown. The slope of the new grid increases from the joint point
onwards in order to have a coarser grid in the far field. In a similar way the grid in
the z direction has been modified. The original grid remains unchanged up to z = 60,
see Figure 5.22. From this point onwards a new grid is generated using the same
polynomial function as in the r direction. In the block 5 the number of grid points
in the z direction is reduced since also in this sector the acoustic field is computed
by FWH solver, see Figure 5.23. The resulting grid contains 149 x 10° points while
the old grid contained 408 x 10% points using 130 collocation points in the azimuthal
direction. This reduction in the number of grid points implies obvious advantages in

the computational costs.
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r direction, polynomial with two terms, f(})=ax™el + bx~e2
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Figure 5.20: Grid in r direction over the number of grid points.
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Figure 5.21:  Comparison between the new and old grid in r direction. The dr/r of the

old grid is constant in the acoustic field while the new grid is stretched.
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Figure 5.22: Comparison between the new and old grid in the z direction.
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Figure 5.23: Block 5: Comparison between the new and old grid in the z direction over

the number of points.

5.17 New jet simulation

In this section a new DNS simulation for a jet case is presented, with 64 azimuthal

modes. Tables 5.2 and 5.3 summarize the numerical set up for this case. In Figure
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5.24 the dilatation field V - @ is shown. Reflected waves from the upper boundary
are clearly visible. Apparently the characteristic boundary conditions, that are set on
the boundaries, reflect the outgoing waves. In order to overcome this inconvenience
a dissipative sponge [93] is set on the axial-radial plane with ¢ = 0°,180° and tested
in a 2D case, see Figure 5.25. Apparently the sponge dissipates the incoming waves.
In order to verify that the flow field has not been altered, the flow parameters are
compared with the flow parameters of the case without sponge. Two sections are
selected in the flow field and the time-averaged u component is displayed in Figure
5.26. It is evident that the flow field statistically is no longer the same. Therefore, the

sponge is excluded as a solution to eliminate the reflected waves.

Block Dz x Dr Nz x Nr

1 50 x 1 624 x 68

2 70 x 1 2398 x 68
3 70 x 0.0416 2398 x 16
4 70 x 30 2398 x 415
5 75 x 30 250 x 415

Table 5.2: Size, number of grid points.

Case M; M,

1 0.84 0.2

Table 5.3:  Simulation parameters.
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Figure 5.24:  Dilatation field: the contour plot level is [-0.001,0.001]; the reflective

waves are well visible.
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Figure 5.25:  Density field; upper picture: incoming wave, time=20; lower pictures:
imcoming wave partially absorbed by the sponge, time=30. The contour plot level is

[0.9999.1].
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Figure 5.26: Left picture: u components at z=20; right picture: u component at z=40.
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Since the grid is coarse away from the flow field, see Figure 5.21 a possible solution
to eliminate the reflective waves is to extend the grid in the r direction. In this way the
waves near the upper and lower boundary would be damped “naturally”. Therefore,
34 grid points are added in r direction and a new DNS simulation is computed 290400
time steps. The flow parameters are the same as in Table 5.3. The result is successful

since no reflected waves appear to be present, as Figure 5.27 shows.

Figure 5.27: Dilatation field; contour level [-0.001,0.001].

5.17.1 New spectrum prediction using FWH solver

In this section the spectrum prediction using the FWH solver is presented. The DNS
data are available from the previous simulation, see Section 5.17. In this case the time
step has been reduced to At = 0.0125, the number of time samples is 4000. In Table
5.4 the dimensions of the FWH surfaces are displayed.

Figure 5.28 shows the spectrum prediction at 6 = 45°. As the radius of the con-
trol surface increases only the spectrum at the high frequencies decreases. This is a
behaviour we expected increasing the grid resolution. In Figure 5.28 the spectrum

prediction at 8 = 90° shows a lower accuracy in the agreement between the DNS data
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FWH surface Radius Length

S1 2 50
S2 3 50

Table 5.4: FWH surface dimensions.

and the FWH prediction. The reason for this disagreement is not clear. Figure 5.30

shows a good agreement of the spectrum prediction at 6 = 140°.

120

115¢ é

I\

—oC

\Y
A
1\

1101

\\

S

P
g s VA

[a]
9 100

95
—DNS
90/| —FW-H S1
—FW-H 82
85 -1 0
10 10

St

Figure 5.28: New jet case M084.,. Observer position ry, = 60,60 = 45°.
The acoustic spectrum shows small sensitivity to the FWH surface position. In

order to make the acoustic spectrum less sensitive to the FWH surface position the

grid resolution in the r direction should be improved.
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Figure 5.29: New jet case MO084.,. Observer position ry, = 60,60 = 90°.
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Figure 5.30: New jet case M084.,. Observer position r,, = 60,0 = 145°.
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5.17.2 Observation on the FWH surface

The position of the FWH surface should slightly affect the accuracy of the sound
prediction in the far field, but in general the sound should not be strongly dependent
on the position of the surface. In the acoustic spectrum, only the values at the high
frequencies should drop as the surface is moved away from the flow field. This is due
to the fact that the grid spacing increases. As for the shape of the control surface,
a cylindrical surface forces the upstream part of the sleeve further from the strongest
sound production, especially at high frequencies. In other words, the first part of the
cylinder is in a region were the grid tends to enlarge sharply. For this reason the shape of
the FWH surface is usually conical, and in this way it is possible to embed the flow field
tightly. Since the grid for the jet cases has been developed in cylindrical coordinates,
extracting a conical FWH surface would require a grid-point interpolation. Therefore,
a conical FWH surface is not convenient in this case due to the extra computational

effort required.

5.18 Investigation on the acoustic liner effect on
the acoustic far-field

In this section the FWH method is used to calculate the PSD of acoustic signals in
the far-field with and without the presence of the acoustic liner in the pipe. The FWH
surfaces are obtained from DNS of compressible isothermal jet/pipe simulations. The
jet/pipe simulations are characterized by a subsonic jet flow and a laminar co-flow.

Table 5.5 shows the general characteristics of the current test cases. Further details
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regarding the numerical set-up can be found in Sandberg & Tester [94].

Case Liner Mje M. Rejeq

M84c2L  yes 0.84 0.2 8.522
M84c2nL  no  0.84 0.2 8.529

Table 5.5:  Simulation parameters; Mje:, M.,, based on bulk velocity in pipe at pipe

exit. Rejer based on bulk velocity at the pipe exit and pipe diameter.

In order to avoid mass flow fluctuations in the pipe that cause strong acoustic
radiation, the inflow perturbation velocities for the axisymmetric mode m = 0 are
set to zero, as explained in Paragraph 4.2. This inflow condition treatment has been
applied to both cases M84c2L and M84c2nL. Impedance parameters are set to obtain
a resonance frequency at St..s =1, R =4, X; = 1.177 and Xy, = —33.49. The FWH

surface is characterized by the parameters shown in Table 5.6

Length Radius Grid points z direction Grid points 6 directions

50 Rpipe  2Rpipe 2050 130

Table 5.6: FWH surface parameters.

The record length of the FWH surface data is 4000 samples, with a sampling interval

At = 0.02. The acoustic PSDs are calculated at two monitor points in polar coordi-

nates 6 = 45°, r,, = 60 and 6 = 90°, ry, = 60 with 7o, = \/(2/Rpipe)? + (r/Rpipe)*. In
order to evaluate the contribution of individual azimuthal modes to the overall noise

the FWH surface data are Fourier transformed to extract the single azimuthal modes.
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Figure 5.31: PSD of azimithal modes m at 6 = 45°, ro, = 60. Solid line with circle
M8Ac2L, solid line M84c2nL.
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Figure 5.32:  PSD of azimithal modes m at 6 = 90°, rp = 60. Solid line with circle
M8Ac2L, solid line M84c2nL.
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Figure 5.31 shows the PSD of azimuthal modes at § = 45°, rp = 60 with and
without the presence of the liner. The comparison shows no relevant difference between
the M84c2nL and M84c2L cases for every azimuthal mode. This suggests that at
6 = 45° the liner has no effect on the far field and all the noise is related to the jet-
mixing. Figure 5.32 shows the same comparison at § = 90°. In this case a relevant
discrepancy is observed for m = 1 between St = 1 and St = 2. This reduction is caused
by the presence of the liner which is set for St,.; = 1. This implies that the internally
generated noise affects the far field noise at # = 90° and the acoustic liner is capable
of attenuating it. Therefore, the noise detected in the far field is not contaminated by

the internally generated noise when the liner is present.

5.18.1 Acoustic prediction using far field approximation

As introduced in Section 5.12, we can also compute the noise applying a far field
approximation. The sound pressure level (SPL) is computed varying the position of
the observer r,, in the direction # = 40°. The SPL is computed for two cases, one
with the advanced time scheme and the other without the advanced time scheme. The
percentage difference, dSPL%, between the two SPL is plotted in Figure 5.33 as a
function of the observer position r.,. In this case the observer position is made non-
dimensional using the length of the FWH surface. In the previous noise predictions the
observer was located at r,, = 60 which is 1.2 times the length of the FWH surface. If
we look at Figure 5.33, for r,, = 1.2 dSPL is more than 2.8 %. In the case of jet noise
mapping for the landing and take off, where r,, can be more than 10 times the length

of the FWH surface, this field approximation can be applied since the dSPL is smaller
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than 0.5 %.

Figure 5.33:

This would bring a great advantage in terms of computational costs.
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dSPL tends to zero as the observer move away from the control surface.

5.19 Conclusion

In this section a Ffowcs Williams-Hawkings formulation has been implemented and

tested for noise prediction using DNS data available from the previous simulations.

The noise spectrum has been computed and the results show satisfactory accuracy.

Furthermore, when the far field approximation is applied the error in the noise predic-

tion in term of sound pressure level is less than 2.8% for observer locations more than

1.2 times the FWH surface length. This approximation is particularly useful when

noise prediction needs to be computed in many points in the far field, e.g. jet noise

mapping.
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Chapter 6

Conclusions and future work

In the present work DNS solutions for a pipe configuration have been computed to
investigate suppression of previously identified internal noise sources with an acoustic
liner, using a time domain acoustic liner model developed by Tam and Auriault. The
Tam and Auriault model has been implemented in an existing DNS code. The Tam and
Auriault model was originally defined for inviscid 1D models, while in the present work
it has been applied to a fully viscous 3D flow. In the original formulation the pressure
time derivative was replaced by the normal gradient of the normal velocity using the
linearized energy equation. This has also been possible in the current case because in
the viscous flow simulations a no-slip condition on the wall has been applied. Therefore,
only the wall-normal component, v, is allowed to vary unlike the other components u
and w, which are set to zero. This encouraged us to implement the liner model using
the same numerical scheme as employed in the DNS code available in our research
group. The boundary layer on the acoustic liner was then solved by the DNS solver

itself. It has been shown that applying the no-slip condition to the impedance model
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does not results in any numerical instability. Therefore, the Tam and Auriault model
provides a well-posed boundary condition for Navier-Stokes equations. Furthermore, it
has been shown that a fully resolved boundary layer removes the instability previously
observed by other researchers [23, 20, 15].

The model implementation has been validated for several basic pipe test cases to-
gether with verification results obtained from eigenvalue solutions of the linear wave
equation. The results from the DNS code were in good agreement with the theoretical
results. Furthermore, the liner model has been tested using different sets of parameters
to study the attenuation capability for fully turbulent pipe flows. The liner has been
shown to provide a strong attenuation in the first half of the pipe, while the attenu-
ation saturates in the second half of the pipe. The liner attenuation has also shown
great sensitivity to the reactance slope. Acoustic attenuation has been analysed for
higher azimuthal modes, showing the capability of the liner to generate a broad band
attenuation for azimuthal modes 1, 2, 3.

Inlet flow conditions have been modified to improve the noise attenuation. As a
result the acoustic liner, combined with the new inflow condition, provided a high level
of attenuation. In order to understand the effect of the liner on the acoustic and turbu-
lent components of the unsteady wall pressure, an azimuthal/axial Fourier transform
has been applied and the acoustic and turbulent wavenumber regimes clearly identified.
It has been found that the spectral component occupying the turbulent wavenumber
range is unaffected by the liner, whereas the acoustic wavenumber components are
strongly attenuated, with individual radial modes evident as each cuts on with in-
creasing Strouhal number. By separating the acoustic pressure component from the

turbulent pressure component, it has been shown that the acoustic component prevails
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over the turbulent one. This explains why the acoustic liner attenuates the acoustic
energy only, leaving the turbulent component statistically unchanged. Since in the
literature there is no previous attempt to study the effects of an acoustic liner model
on fully turbulent flows, the present work provides a new reference for noise reduction
analysis. Relevant results related to the acoustic liner model study have been published
in the Journal of Sound and Vibration (Olivetti, Sandberg & Tester [5]).

Furthermore, the FWH method has been implemented and tested in order to com-
pute far field noise based on jet flow simulations. A number of tests have been carried
out with different FWH surfaces to achieve the best accuracy. Jet flow simulations have
been computed using the above-mentioned DNS code, with and without the presence
of the acoustic liner. Noise predictions based on the FWH method have shown that
the acoustic liner model is capable of reducing the noise in the far field. This allows
us to remove the internally generated noise and study the far field noise due to the
jet-mixing without contaminations from other sources.

As for future work, the Tam and Auriault model can be used for further investiga-
tions on jet noise analysis and internally generated noise. Following the results in the
present work an open question may arise in relation to the attenuation contour shown
in Figure 3.23. The attenuation contour seems to shift towards higher frequencies as
the azimuthal mode number increases. This has been justified considering additional
noise being generated by the turbulent pipe flow. However, further investigations are
required to better understand this attenuation trend.

The attenuation capabilities of the acoustic liner model could be investigated by
carrying out more parametric studies. In the present work the acoustic attenuation has

been investigated for two different Mach numbers and one Reynolds number, however
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more turbulent pipe flows with different conditions can be analysed.

In Paragraph 3.6.4 it has been shown that the presence of the acoustic liner model
does not alter the turbulent structure substantially. However, other studies [67] showed
that, when the resonance frequency of the liner is tuned to the characteristic time scale
of the outer layer eddies, instability and alterations of the turbulent structures near
the wall are observed. Future work could investigate how the liner can affect the
hydrodynamic field under specific conditions.

Another possible application for the future could involve more complex geometries.
The liner model has been implemented in generalized curvilinear coordinates, therefore
test cases with a more complex surface can be computed using the Tam and Auriault
model. This allows the study of the acoustic attenuation in turbulent flows with more

realistic configurations.
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