
Enterprise Security:
Why Do We Make It So Difficult?

Bob Duncan
Computing Science

University of Aberdeen
Aberdeen, UK

Email: bobduncan@abdn.ac.uk

Mark Whittington
Business School

University of Aberdeen
Aberdeen, UK

Email: mark.whittington@abdn.ac.uk

Victor Chang
International Business School Suzhou

Xian Jiaotong Liverpool University
PR China

Email: ic.victor.chang@gmail.com

Abstract—Achieving information security and privacy is not
a trivial exercise. This becomes much more challenging in the
cloud, due to the multi-tenancy nature of cloud ecosystems. We
are concerned that the traditional legacy compatible approach to
software development is holding enterprises back from achieving
effective security and privacy, particularly in the cloud. In this
paper we discuss the implications of the traditional approach to
software development and question why we stick to this approach,
despite the fact that this approach makes the job of security and
privacy far more difficult.

Index Terms—Cloud security and privacy; legacy software

I. INTRODUCTION

In previous work [1], we questioned whether we should be
using a different approach to achieving information security in
the cloud, and concluded that there were two major conflicts
that needed to be addressed. The first concerns the ever
increasing technical complexity of software systems, and the
ever more technically complex solutions being developed to
address these problems. The second concerns the presence
of technically simple flaws, which continue to be exploited
year after year by attackers. We now take a slightly different
approach to this work in order to try to understand what may
be making life much more difficult than it need be for a step
change in security.

Before looking at the first issue, we need to consider the
evolution of software development, and in Section II, we run
through the traditional approach to software development, in
order to understand how this situation arose. Thus informed,
in Section III, we will start to address the first conflict, by
considering why software appears to be becoming more and
more complex. In Section IV, we ask why this complexity
presents such a problem for security and privacy, in Section V,
we identify some simple flaws which consistently fail to be
addressed, and in Section VI, we question why this should be.
The rest of the paper is laid out as follows: in Section VII, we
consider how we might approach resolving these issues, and
in Section VIII, we draw our conclusions.

II. THE TRADITIONAL APPROACH TO SOFTWARE
DEVELOPMENT

To consider how this approach evolved, we need to go back
in time to when computers first came on the scene. They had

far less memory than we are accustomed to have today. Hard
disk sizes were minuscule compared with today’s mega sized
drives. Consequently, operating systems and programmes were
necessarily compact. Early desktops, such as the first IBM PC
[2], introduced in 1981, were capable of being run without
a hard drive, with only one or two floppy drives of 360KB
capacity. One floppy disk for the operating system, and one for
both programmes and data. Why, with two drives, you could
have a floppy for each, swapping between operating system
and programme floppies, leaving a “vast” space for data alone.

Needless to say, this state of affairs did not last for long.
Thanks to the benefits of Moore’s Law [3], hardware grew in
both size and performance, relentlessly, year on year, and costs
kept falling. Operating systems very quickly grew in size and
complexity, as did programmes. Data files grew larger in size
and volume. Often, this rapid expansion in software capability
and size would even outpace Moore’s Law, leading to hard-
ware bottlenecks. When Microsoft had developed the Windows
XP operating system, it had an installed size of around 1.5GB.
Once Vista was released, the installed size increased to around
19.5GB — a massive jump. This additional “bloat” meant that
Vista would not run on some of the older hardware which had
happily run XP for years.

While the core operating system components of Vista were
only around 25% larger than XP, many of the other pro-
grammes were first loaded into memory, to ensure a more rapid
response if the user wished to use them. Unfortunately, there
simply was not enough RAM to make this a viable approach.
There were also security issues with XP, whereby all users
were created with administrator privileges, thus unwittingly
exposing them to hackers and malware. As Jerome Saltzer
said about security [4], “Every program and every privileged
user of the system should operate using the least amount of
privilege necessary to complete the job”. A point rather lost
with XP.

This endless quest to pack more and more features into both
operating systems and software resulted in monolithic systems
capable of delivering considerably more programmes than any
user actually wanted or needed. In the constant quest for user
“ease of use”, most systems needed to have root permission to
run, otherwise they were troublesome to install and operate.
Not such an issue in the days before the internet, but once



it arrived, soon criminals were having a field day, breaking
in to systems and stealing confidential data, or even cash.
For decades, ease of use had the upper hand, meaning that
default installation settings were geared to making the software
deploy effortlessly. Security and privacy were very much an
afterthought, due to the difficulties associated with configuring
such needs [4], and this only served to fuel the opportunity
for criminals.

Early software development was based on the “engineering”
approach, where the development was broken down into
phases such as analysis, planning, design, build and deploy-
ment. These were carried out in sequence, which became
known as the “waterfall” method, whereby each phase was
completed before moving on to the next, first presented by
Herbert D. Benington at a Symposium [5], on advanced
programming methods for digital computers on 29 June 1956.
Analysis would try to elicit what the requirements were, and
planning would attempt to schedule the workload properly.
The design phase was very rigorous, and took the lion’s share
of the effort. Once all the details were understood, the build
time was generally very rapid. Deployment, could be fairly
rapid, providing everything else had been properly specified
and carried out to standard. This system either would work
very well, particularly for large projects, or it would fail
spectacularly.

Incremental software development methods can be traced
back to 1957 [6]. However, it was not until around the turn
of the century [7], that the waterfall method really started
to give way to the “agile” process. Here, the process is
highly adaptive, involving less bureaucracy, whilst retaining
a high level of commitment. Client feedback is encouraged
throughout the project, leading to a faster overall solution.
This process is very well suited to dynamic projects.

The common factor to both these methodologies is that
the main focus of each is on properly designing the system
around system processes. The key driver here is information
flow control, where most of the emphasis is on capturing the
information flow, with far less interest paid to information
control. Legacy compatibility is another driver, arising from
the desire to re-use code wherever possible. The trouble
with this approach is that the code being re-used was in
all likelihood developed some considerable time previously,
meaning the code gets re-used “warts and all”, including all
the security and privacy deficiencies brought forward.

III. THE INCREASING COMPLEXITY OF SYSTEMS

The fundamental concepts of information security are con-
fidentiality, integrity, and availability (CIA), a concept devel-
oped when it was common practice for corporate management
to run an enterprise under agency theory. We have seen how
agency theory has failed to curb the excesses of corporate
greed. The same is true for cloud security, which would sug-
gest a different approach is needed [8]. The business environ-
ment is constantly changing [9], as are corporate governance
rules and this would clearly imply changing security measures
would be required to keep up to date. More emphasis is now

being placed on responsibility and accountability [10], social
conscience [11], sustainability [12][13], resilience [14][15]
and ethics [16]. Responsibility and accountability are, in effect,
mechanisms we can use to help achieve all the other security
goals. Since social conscience and ethics are very closely
related, we can expand the traditional CIA triad to include
sustainability, resilience and ethics.

Does this expansion of security needs account for the
increasing complexity of software alone? No, it does not.
There are many other reasons behind this increase. First, as
already stated in Section II, the long running benefits offered
by Moore’s Law [3], have continued to offer ever more capable
and powerful computing systems. Every step of the way,
evolving technology has brought more and more innovations,
with the capability and quality of software increasing apace to
take full advantage of this evolving technology. The evolution
of distributed systems removed the potential bottleneck of high
cost mainframe systems, which could only be afforded by
the largest enterprises, and opened up more opportunities for
smaller enterprises. This increase in hardware demand brought
with it the demand for better, and cheaper software. The evolu-
tion of corporate computing models such as Business Process
Management, Service Oriented Architecture, Grid Computing,
Utility Computing, Virtualization, Corporate Outsourcing, and
Cloud Computing have influenced the development of radical
change in how enterprises do business.

These changes, however, have not come without an in-
crease in complexity. Apart from the complexity of more
and more complex hardware, software systems, too, have
increased in complexity. More complex systems mean more
inter-connected relationships being developed between sys-
tems, enterprises, and third party organisations, such as agents,
facilitators and services providers. While this can lead to better
systems being available to enterprises, it can also increase the
risks they face in installing, configuring and maintaining such
systems, due to the additional configuration needed to ensure
the systems become secure. All too often, the default settings
are designed to ensure complete ease of installation, yet this
is usually at the expense of good security and/or privacy.
Successful configuration for security and privacy purposes is
usually a highly complex task, which generally proves very
difficult to achieve in practice. We therefore need to consider
why this should be so.

IV. WHY SHOULD THIS COMPLEXITY PRESENT SUCH A
PROBLEM FOR SECURITY AND PRIVACY?

Achieving effective information security is not a trivial
problem to address successfully, and this becomes much more
difficult in a cloud setting. The business architecture of an en-
terprise comprises a combination of people, process and tech-
nology [17], and we have long argued over the weaknesses pre-
sented by a purely technical approach [18][19][20][1][9][8],
where such approaches ignore the impact of people and
process on security. However, we equally should not lose sight
of possible issues presented by technology. While computing
hardware is generally robustly made these days, and has few



weaknesses, nonetheless, we still need to keep an eye out
for possible issues. However, of far greater concern is the
software used to run on the hardware we all use today. By
far the greatest number of security vulnerabilities arise from
the weaknesses present in software, and it is this aspect that
we shall focus on in this paper.

For example, if we wanted to build a house, one of the
fundamental requirements would be to build it upon solid
foundations. Yet, we happily persist in missing this point
entirely when it comes to modern software, building systems
on poor foundations time and time again. We refer, of course,
to the practice of building in legacy compatibility for software.
This has been common practice for decades, with banks
particularly keen on encouraging the practice to ensure legacy
hardware can continue to be used within their overall system.
Microsoft have been instrumental in using this practice for
their operating systems for decades. While, in theory, this is
a laudable goal, in practice, this can give rise to some serious
security issues, particularly in the case where early Microsoft
operating systems relied extensively on root access for all
programmes to ensure smooth running of the operating system
for even novice users. Unfortunately, this is not an approach
which is compatible with good security.

However, this approach is not confined to operating sys-
tems alone. Virtually all software systems in use today have
their origins in the dim and distant past, when security was
much less of an issue (think of pre-internet days). However,
security, and privacy, have become much more of an issue in
the corporate business world of today. But with the built-in
backward compatibility option being a fundamental part of
the sales pitch for many software products, there is no doubt
that this approach can help perpetuate bugs and vulnerabilities
year after year.

Antoine de Saint-Exupery [21], once said, “Perfection is
achieved, not when there is nothing more to add, but when
there is nothing left to take away.” He was an engineer, but his
statement could equally apply to the writing of software code.
Vulnerabilities exist in a very high proportion of all software
in use today. Most source lines of code reviews and estimates
suggest that a very conservative guess would place the number
of of bugs at the rate of 1 per 1,000 lines of extremely well
written source code with great attention to security detail. The
reality is far from this. Capers Jones [22], suggested that the
reality is more like 5 bugs per Java method, with a method
taking 50 - 55 lines of code, i.e. approximately a 10% error
rate. When you consider that the old Microsoft XP had 40
- 45 million lines of source code, that would suggest around
4.5 million bugs were in the first released version. Probably
not too far from the truth, since it took over 12 years to fix
the bugs before support was discontinued. And that is just an
operating system. Add some complex applications to this, and
the number of lines will increase radically.

A quick look at the annual security breach reports issued by
many security companies [23][24][25] will clearly demonstrate
the security and privacy problems still faced today, including
the fact that the same attacks continue to be successful year on

year, as demonstrated by the five year summary of the Verizon
reports shown in Table I below.

Threat 2010 2011 2012 2013 2014
Hacking 2 1 1 1 1
Malware 3 2 2 2 2
Misuse by company employees 1 4 5 5 5
Physical theft or unauth. access 5 3 4 3 4
Social Engineering 4 5 3 4 3

TABLE I: Verizon Top 5 Security Breaches — 2010-2014
(1=Highest)

[26][27][28][29][23]

This raises a number of obvious questions. Why should
we need this increasing complexity? Why does increasing
complexity make security and privacy more challenging? Why
is it that the same attacks are successful year on year?

V. THE SIMPLE FLAWS UNDER ATTACK YEAR ON YEAR

Before addressing the questions raised in Section IV above,
we will consider what these weaknesses might be in a little
more detail. An obvious place to start is the public face of an
enterprise — web services. These provide the main point of
entry for adversaries trying to breach the enterprise systems.
For this, we turn to the Open Web Application Security
Project (OWASP) Top Ten Vulnerabilities list. OWASP is an
international organisation which engages in the conception,
development, acquisition, operation, and maintenance of ap-
plications that can be trusted. Every three years, they produce
a Top Ten list of the most dangerous vulnerabilities.

2013 Code Threat
A1 Injection Attacks
A2 Broken Authentication and Session Management
A3 Cross Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities

A10 Unvalidated Redirects and Forwards

TABLE II: OWASP Top Ten Web Vulnerabilities — 2013
[30]

Looking at this list, it seems obvious that these flaws are
not particularly technically complex. Yet they are successful
year, after year, after year.

VI. WHY MIGHT THIS BE?

In this section, we will attempt to address the three questions
raised in Section IV, namely:

• Why should we need this increasing complexity?
• Why does increasing complexity make security and pri-

vacy more challenging?
• Why is it that the same attacks are successful year on

year?



A. Why should we need this increasing complexity?

Starting with this question, why? Granted, the hardware we
have today is infinitely more powerful than previous versions
were decades ago. Thus, this greater hardware capacity allows
us to run ever more complex software, capable of carrying
out more detailed and ever more difficult tasks for us. We can
perform every more detailed analysis on everything we collect
through these complex systems, allowing us to become more
efficient at management of the business as a consequence.

But the wonder of these enhanced capabilities comes at
a price. We need ever more capable staff to operate these
complex systems. We create more and more data than we
ever did decades ago, which needs to be stored securely. Staff
therefore need more and more training. Enterprises also are
now subject to greater legislation and regulation than ever
before. Large public enterprises in the UK, for example, also
have to comply with corporate governance guidance. This
means there is a much greater need to demonstrate compliance
to a range of interested parties.

This new ability to be able to “Micro-manage” an enterprise,
can also work against efficient management, as there is a
balance to be struck between the effort required in (and costs
associated with) maintaining these complex systems, which
can often far exceed the benefits to be obtained.

B. Why does increasing complexity make security and privacy
more challenging?

As software becomes more complex, so more and more
source code is required for this more complex system to
function. As we mentioned in Section IV, the more source
code we write, the more the possibility of introducing bugs
and errors expands. Of course, many enterprises do not write
their own code, but instead outsource this task to professional
organisations.

However, perhaps more importantly, since much of this
software has evolved from earlier versions, (or decades), it
may well be that security and privacy were less of a priority
in previous years, and thus this practice allows a poorer level
of security and privacy to be achieved.

There is also no doubt that the greater complexity of this
software means there is now a vastly increased range of
settings that can be configured to optimise the software for
each enterprise. Sadly, this often results in many of the default
settings being set up in such a way as to make installation,
especially by unfamiliar users, much more quick and simple
to execute. This is usually achieved at the expense of robust
security and privacy, as these requirements tend to be far
more complex to set up properly. Often, an enterprise fails
to make clear at the beginning of such a contract that security
and privacy are high priority for them, often resulting in the
message not getting through. This usually results in a far from
satisfactory security and privacy level being achieved.

Should the reader not wish to believe this state of affairs
could possibly exist in a modern enterprise, we refer the reader
to the results shown in TABLE I in Section IV, which clearly

demonstrate how these trivial breaches continue to be an issue,
year on year, conveniently leading us to the next question.

C. Why is it that the same attacks are successful year on year?

The simple reason for that is that they work. Often, an
enterprise that has been breached may not even know it has
happened, and the breaches in that case will keep on hap-
pening. Sometimes, having been breached, this is frequently
brought to the enterprise’s attention by an outside party, rather
than having discovered the breach themselves [26].

The attackers are often quite lazy in their approach. They
simply perpetrate the same attacks, time after time, and once
a victim enterprise closes the vulnerability, they simply move
on to the next potential victim. Generally all enterprises are
being attacked all the time, 24/7, for 365 days a year. Where
the enterprise has good defences in place, it is not long before
the attacker moves on to easier pickings.

As a general rule, the larger enterprises tend to be attacked
by the more serious attackers, while the SME sized enterprises
are considered fair game, as they generally are likely to
be less able to afford the right calibre of technical staff
to properly defend their systems. Often, sysadmins in these
smaller enterprises don’t install security patches regularly, thus
leaving vulnerabilities wide open to attack.

As far as the attackers are concerned, If it ain’t broke, don’t
fix it. If it works, keep doing it. And they do, with considerable
success, year, on year, on year.

VII. HOW DO WE TACKLE THESE CHALLENGES?

Recalling the long history, and therefore the greater lessons
learned, we can refer to some lessons from accounting. Sep-
aration (also known as segregation) of duties is a standard
factor considered in the design of accounting workflow and
checked by any internal audit. The central idea is that if tasks
within a workflow are given to different people (separating
responsibility for ordering from invoicing, for example) then
firstly the opportunity for fraud is much reduced and secondly
a second person may spot an unintentional error. In the
years immediately following the introduction of the Sarbanes-
Oxley Act (2002) [31], in the USA (which required a greater
examination of internal problems), Ge and McVay [32], found
that complex, smaller and profit-challenged companies were
more likely to report problems including inadequate separation
of duties.

The relevance of this to software development is also
obvious, with the Information Systems Audit and Control As-
sociation (ISACA) [33], including the following information in
their glossary: “A basic internal control that prevents or detects
errors and irregularities by assigning to separate individuals
the responsibility for initiating and recording transactions and
for the custody of assets”.

The appropriate separation of duties between individuals
clearly needs to be matched by a separation of processes
within information technology. So, for example, an audit trail
that records the person, time and nature of each sequential
transaction should be separate, i.e. on a different instance or



machine, depending on the architecture of the enterprise, so
that an attacker would not be able to cover their tracks by
cleansing the audit trail following an intrusion. This important
aspect of separation of duties is often overlooked in informa-
tion systems.

Of course, there are many other things that can, and need,
to be done to tackle these challenges. The first thing to do
is to recognise that something needs to be done. Until the
enterprise accepts that a problem exists, no real improvement
in the status quo is possible.

The UK government provide a passport to good security
on the website of the Centre for the Protection of National In-
frastructure [34], which provides advice to enterprises involved
in national infrastructure and encourages them to adopt good
practices. They also offer specific advice on cyber security.
Naturally, these enterprises are at higher risk than many other
enterprises, but it would do no harm to consider following their
recommendations. The UK government also provide specific
advice on implementing the cloud security principles [35].

Other major organisations also offer good advice in this
respect. On their website, OWASP [36], offers a full range
of recommendations to help mitigate the security vulnerabil-
ities they review. A good fist step would be to pay careful
attention to this advice, and set about implementing all the
recommended advice they provide. For every vulnerability
that they discuss, and this is not limited to just the top ten
vulnerabilities, they provide good practical advice on how to
mitigate all the problems they discuss. It is clear from looking
at the security reports that many enterprises are failing to
implement these, often simple, recommendations in order to
secure their systems.

In the EU, ENISA [37], provide a report on cloud computing
benefits, risks and recommendations for information security.
In the US, NIST [38], provide extensive advice on cloud
computing on their website. The Cloud Security Alliance
(CSA) [39], one of the main cloud standards organisations,
provide a report on security guidance for critical areas of
focus in cloud computing. One of the largest database software
providers, Oracle, provide a report [40], on their optimized
solution for secure enterprise cloud infrastructure. Cisco [41],
one of the largest communications manufacturers, provide a
report on their Cisco cloud enablement services.

All the major cloud service providers, such as Amazon,
Google, HP, IBM, Microsoft, and specialised providers such as
Salesforce, provide detailed suggestions and recommendations
on how to set up secure cloud systems on their resources.
Ramachandran and Chang [42], provide comprehensive rec-
ommendations and best practices for cloud security. Also
most governments throughout the globe now offer advice on
appropriate steps to take in order to set up secure cloud
applications.

It is certainly vital for enterprises to realise the dangers
of installing software while placing blind reliance on default
settings. Default settings are geared to ensure the installation
of their software is easy to carry out. Achieving good security
and privacy is not a trivial exercise, and the configuration effort

needed is challenging, and requires a great deal of effort. There
are no short cuts to a successful and secure implementation.

A great many software application systems were designed
for traditional distributed systems, and the systems architec-
tures involved were necessarily highly complex. Many of these
software applications have been moved to a cloud environment
without giving any consideration to the additional relationships
involved in a cloud setting, nor any consideration to the impact
of running parts of the systems out-with the secure firewall
surrounding a normal distributed system.

When it comes to any web based application featuring a
database back end, it is important to give consideration to
system logging for forensic examination purposes [8]. After
a successful injection attack, one of the first goals of the
attacker is to delete, or modify the audit trail and system
logs, in order to cover their tracks. A fairly obvious solution
to this possibility would be to ensure that all system logs
are logged to a completely separate database, not hosted on
the same cloud machine. Particular attention should be paid
to the logging instance, to ensure that it is not accessible
from the main web application. Further steps should be taken
to ensure that the database is properly configured, by first
ensuring no direct access is available to users of the web
application. Second, to configure the logging database to
specifically prevent modifications or deletions to be performed
by the web application. While this will not stop an attacker if
they can gain root access to the database application, if there
is no direct access available from the web application, this will
make their job far more difficult.

VIII. CONCLUSIONS

While these measures will help to provide a short term
solution for an enterprise, it is clearly far from satisfactory.
Most software systems can trace their ancestry back to the
times of pre-internet early enterprise systems. Here, the focus
was on usability, not on security nor privacy.

When it comes to software implementations, enterprises
would do well to learn the lessons of separation of duties,
both for staff, process and technology, particularly in the case
of audit trail logging.

As to the development of new software, there is a clear
need to develop secure software systems from the ground up,
rather than try to add security to an already complex piece of
software as an afterthought. There is no doubt that there is a
place for the development of an immutable database system,
which would be particularly suitable for system logging and
would be especially useful for deployment in accounting
systems.

REFERENCES

[1] B. Duncan and M. Whittington, “Information Security in the Cloud:
Should We be Using a Different Approach?” in 2015 IEEE 7th Int. Conf.
Cloud Comput. Technol. Sci., Vancouver, 2015, pp. 1–6.

[2] IBM, “IBM PC release,” 1981. [Online]. Available: https://www-03.ibm.
com/ibm/history/exhibits/pc25/pc25 intro.html

[3] G. Moore, “Cramming More Components Onto Integrated Circuits,”
Electronics, vol. 38, no. April 19, pp. 114–117, 1965.



[4] J. H. Saltzer, “Protection and the control of information sharing in
Multics,” Commun. ACM, vol. 17, no. 7, pp. 388–402, 1974.

[5] US Navy Mathematical Computing Advisory Panel, “Symposium on
advanced programming methods for digital computers.” Washington,
DC: Office of Naval Research, Dept. of the Navy, OCLC 10794738,
1956.

[6] R. Victor, “Iterative and incremental development: A brief history,” IEEE
Comput. Soc., pp. 47–56, 2003.

[7] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, and Others,
“Manifesto for agile software development,” 2001.

[8] B. Duncan and M. Whittington, “Enhancing Cloud Security and Privacy:
The Power and the Weakness of the Audit Trail,” in Cloud Comput-
ing 2016: The Seventh International Conference on Cloud Computing,
GRIDs, and Virtualization. Rome: IEEE, 2016, pp. 125–130.

[9] B. Duncan and M. Whittington, “Enhancing Cloud Security and Privacy:
The Cloud Audit Problem,” in Cloud Computing 2016: The Seventh In-
ternational Conference on Cloud Computing, GRIDs, and Virtualization.
Rome: IEEE, 2016, pp. 119–124.

[10] M. Huse, “Accountability and Creating Accountability: a Framework
for Exploring Behavioural Perspectives of Corporate Governance,” Br. J.
Manag., vol. 16, no. S1, pp. S65–S79, mar 2005.

[11] A. Gill, “Corporate Governance as Social Responsibility: A Research
Agenda,” Berkeley J. Int’l L., vol. 26, no. 2, pp. 452–478, 2008.

[12] C. Ioannidis, D. Pym, and J. Williams, “Sustainability in Information
Stewardship: Time Preferences, Externalities and Social Co-Ordination,”
in Weis 2013, 2013, pp. 1–24.

[13] A. Kolk, “Sustainability, accountability and corporate governance:
Exploring multinationals’ reporting practices.” Bus. Strateg. Environ.,
vol. 17, no. 1, pp. 1–15, 2008.

[14] F. S. Chapin, G. P. Kofinas, and C. Folke, Principles of Ecosystem Stew-
ardship: Resilience-Based Natural Resource Management in a Changing
World. Springer, 2009.

[15] V. Chang, M. Ramachandran, Y. Yao, Y. H. Kuo, and C. S. Li, “A
resiliency framework for an enterprise cloud,” Int. J. Inf. Manage., vol. 36,
no. 1, pp. 155–166, 2016.

[16] S. Arjoon, “Corporate Governance: An Ethical Perspective,” J. Bus.
Ethics, vol. 61, no. 4, pp. 343–352, nov 2012.

[17] PWC, “UK Information Security Breaches Survey - Technical Report
2012,” London, Tech. Rep. April, 2012. [Online]. Available: www.pwc.
comwww.bis.gov.uk

[18] B. Duncan, D. J. Pym, and M. Whittington, “Developing a Conceptual
Framework for Cloud Security Assurance,” in Cloud Comput. Technol.
Sci. (CloudCom), 2013 IEEE 5th Int. Conf. (Volume 2). Bristol: IEEE,
2013, pp. 120–125.

[19] B. Duncan and M. Whittington, “Compliance with Standards, Assurance
and Audit: Does this Equal Security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77–84.

[20] B. Duncan and M. Whittington, “The Importance of Proper Measure-
ment for a Cloud Security Assurance Model,” in 2015 IEEE 7th Int. Conf.
Cloud Comput. Technol. Sci., Vancouver, 2015, pp. 1–6.

[21] A. de Saint-Exupéry, Airman’s Odyssey. Houghton Mifflin Harcourt,
1943.

[22] C. Jones, “Software Engineering Best Practices: Lessons from Success-
ful Projects in the Top Companies,” 2010.

[23] Verizon, “2014 Data Breach Investigations Report,” Tech. Rep. 1, 2014.
[Online]. Available: http://www.verizonenterprise.com/resources/reports/
rp Verizon-DBIR-2014 en xg.pdf

[24] PWC, “2014 Information Security Breaches Survey: Technical Report,”
Tech. Rep., 2014.

[25] Trustwave, “Trustwave Global Security Report,” Tech. Rep., 2013.
[Online]. Available: https://www2.trustwave.com/2013GSR.html

[26] W. Baker, M. Goudie, A. Hutton, D. Hylender, J. Niemantsverdriet,
C. Novak, D. Ostertag, C. Porter, M. Rosen, B. Sartin, P. Tippett,
T. Bosschert, E. Brohm, C. Chang, M. Dahn, R. Dormido, B. Van Erck,
K. Evans, E. Gentry, J. Grim, C. Hill, A. Kunsemiller, K. Lee, W. Lee,
K. Long, R. Perelstein, E. Telemaque, D. Todd, Y. Uzawa, J. A. Valentine,
N. Villatte, M. Van Der Wel, P. Wright, T. Beeferman, C. Dismukes,
P. Goulding, and C. Neal, “2010 Data Breach Investigations Report,”
Tech. Rep., 2010.

[27] Verizon, “2011 Data Breach Investigation Repeort: A study conducted
by the Verizon RISK Team in cooperation with the United States Secret
Service and Others,” Verizon/USSS, Tech. Rep., 2011.

[28] Verizon, N. High, T. Crime, I. Reporting, and I. S. Service, “2012 Data
Breach Investigations Report,” Verizon, Tech. Rep., 2012.

[29] Verizon, “Verizon2013,” Tech. Rep.
[30] OWASP, “OWASP Top Ten Vulnerabilities 2013,” 2013.

[Online]. Available: https://www.owasp.org/index.php/Category:
OWASP Top Ten Project

[31] Sox, “Sarbanes-Oxley Act of 2002,” p. 66, 2002. [Online]. Available:
news.findlaw.com/hdocs/docs/gwbush/sarbanesoxley072302.pdf

[32] W. Ge and S. McVay, “The disclosure of material weaknesses in internal
control after the Sarbanes-Oxley Act,” Account. Horizons, vol. 19, no. 3,
pp. 137–158, 2005.

[33] ISACA, “Monitoring Internal Control Systems and IT.”
[Online]. Available: http://www.isaca.org/knowledge-center/research/
researchdeliverables/pages/monitoring-internal-control-systems-and-it.
aspx

[34] CPNI, “Passport to Good Security,” 2015. [Online]. Available: http://
www.cpni.gov.uk/advice/Passport-to-Good-Security/

[35] HMG, “Implementing the Cloud Security Principles,” 2016.
[Online]. Available: https://www.gov.uk/government/publications/
implementing-the-cloud-security-principles/implementing-the-cloud-
security-principles

[36] OWASP, “OWASP Top 10 Web Vulnerabilities - Details.” [Online].
Available: https://www.owasp.org/index.php/Top 10 2013-Top 10

[37] ENISA, “Cloud Computing: Benefits, Risks and Recommen-
dations for Information Security.” [Online]. Available: https:
//resilience.enisa.europa.eu/cloud-security-and-resilience/publications/
cloud-computing-benefits-risks-and-recommendations-for-information-
security

[38] NIST, “NIST Computer Security Resource Center (CSRC),” 2016.
[Online]. Available: http://csrc.nist.gov/

[39] CSA, “Security Guidance for Critical Areas of Focus
in Cloud Computing v3.0,” Tech. Rep., 2011. [Online].
Available: https://downloads.cloudsecurityalliance.org/assets/research/
security-guidance/csaguide.v3.0.pdf

[40] Oracle, “Oracle Optimized Solution for Secure Enterprise
Cloud Infrastructure,” Tech. Rep., 2015. [Online]. Available:
http://www.oracle.com/technetwork/server-storage/hardware-solutions/
o12-043-cloud-sparc-1659149.pdf

[41] Cisco, “Cisco 2011 Annual Security Report,” Cisco, Tech. Rep., 2011.
[42] M. Ramachandran and V. Chang, “Recommendations and Best Practices

for Cloud Enterprise Security,” 2014 IEEE 6th Int. Conf. Cloud Comput.
Technol. Sci., pp. 983–988, 2014.


