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ABSTRACT 

In this work, the nonlinear kinematic hardening combined with Voce isotropic hardening was 

selected to characterize the material behavior of advanced high strength steel sheet samples 

subjected to a few reverse loading cycles. Multi-components of backstress were considered for 

the combined nonlinear kinematical hardening model, namely, one, two, and three backstress 

components. To calibrate the model, an inverse problem solution tool, so-called virtual fields 

method, which takes full advantage of full-field deformation measurement, was applied to 

identify the material constitutive parameters. First, finite element simulations of forward-reverse 

simple shear were performed to validate the proposed identification method. The influence of 

strain noise on the identification accuracy was also evaluated. Then, the proposed method was 

applied to three kinds of sheet metals (DP600, TRIP780 and TWIP980) tested under two cycles 

of forward-reverse simple shear for parameter identification. The identification results obtained 

with different number of backstress components were critically discussed. 

 

Keywords: Nonlinear kinematic hardening; The virtual fields method; Parameter identification; 

Bauschinger effect; Advanced high strength steels 
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1. Introduction 

In the automotive industry, the material selection for automotive parts is driven by key 

factors such as safety and fuel efficiency. To meet these requirements, automotive parts need to 

be superior in strength and lightweighting. Advanced high strength steels (AHSS) exhibit 

improved strength and maintain high ductility compared to conventional steels or other 

lightweight materials. This allows a reduction in the use of materials while the performance 

requirements are still met, namely a high strength-to-weight ratio. Currently, AHSS are widely 

utilized for automotive applications. As is well known, springback is a short-coming for 

materials that have low strength-to-modulus ratio, which results in undesired shape after the 

release of load (Lee et al., 2005a; Lee et al., 2005b; Narasimhan and Lovell, 1999), commonly 

seen for AHSS (Chongthairungruang et al., 2012; Oliveira et al., 2007; Zang et al., 2014). In 

order to predict the springback behavior, an effective way is to develop finite element (FE) 

simulation with proper material constitutive model. 

Springback is closely related to the Bauschinger effect, which describes the decrease in yield 

stress and associated transient hardening phenomena after reloading in the reverse direction. 

Various models have been developed over the years to describe the Bauschinger effect since the 

isotropic hardening rule is not able to capture it. Among these models, kinematic hardening has 

been most exclusively employed. The early form that was specifically proposed to represent the 

Bauschinger effect presumes the yield surface translates in stress space while its shape is 

maintained (Prager, 1949; Ziegler, 1959). Later on, more comprehensive non-linear kinematic 

hardening models that combine both translation and expansion of the yield surface were 

developed and found to be suitable for the prediction of material behavior under cyclic loading 

conditions (Chaboche, 1986; Dafalias and Popov, 1975; Frederick and Armstrong, 2007; Ohno 

and Wang, 1993; Yoshida and Uemori, 2002). More recently, further improvements have been 

made to account for material anisotropy (Chung et al., 2005; Geng and Wagoner, 2002; Lee et 

al., 2007; Yoshida et al., 2015). A general review for the kinematic hardening rules can be found 

in (Chaboche, 2008). As an alternative, another type of hardening rule based on distortional 

plasticity, so called homogeneous anisotropic hardening (HAH) (Barlat et al., 2011; Barlat et al., 

2013; Barlat et al., 2014; Manopulo et al., 2015), assumes that the yield surface flattens on the 

opposite side of the active stress while expanding isotropically. This model was proposed to 

comprehensively describe the material anisotropy, Bauschinger and latent effects.  
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The identification of constitutive parameters for a given model is a key issue for the 

prediction of material behavior, e.g., in FE simulations. In practice, a direct determination of 

material parameters is difficult for a complex model since it requires a large number of simple 

determinate tests, added the fact that some parameters may not have a physical meaning. In this 

case, an inverse solution tool becomes highly desirable. There have been various inverse solution 

tools suitable for parameter identification as reviewed by Avril et al. (2008), for instance, finite 

element model updating (FEMU) (Farhat and Hemez, 1993; Güner et al., 2012; Roux and 

Bouchard, 2015; Zhang et al., 2014) and the virtual fields method (VFM) (Chalal et al., 2006; 

Grédiac and Pierron, 2006; Notta-Cuvier et al., 2013; Pierron and Grediac, 2012; Pierron et al., 

2010b). These methods take advantage of the full-field deformation measurement techniques 

such as digital image correlation (DIC) (Sutton et al., 2009), the grid method (Grédiac et al., 

2016), moiré and speckle interferometry (Creath, 1985; Post and Baracat, 1981), from which 

more comprehensive information of material behavior can be extracted from a greater number of 

measurement points on the specimen surface.  

FEMU is based on updating a FE model with respect to the unknown parameters through 

minimizing the difference between the FE predictions and the experimental measurements in 

form of displacements, strains and/or forces. It has received attention for many years and, 

currently, is the primary approach for parameter identification of kinematic hardening models 

such as in  (Broggiato et al., 2008; Collin et al., 2009; Eggertsen and Mattiasson, 2010; 

Omerspahic et al., 2006; Yin et al., 2012; Yoshida et al., 2003; Zang et al., 2014; Zhao and Lee, 

2002). In (Rezaiee-Pajand and Sinaie, 2009), a systematic mathematic approach was developed 

to calibrate the nonlinear kinematic hardening (NLKH) parameters by deriving the relation 

between the evolution of backstress and the plastic strain. A multi-set of nonlinear equations was 

established and then, the obtained equations were solved to determine the required parameters 

using an iterative technique such as Newton-Raphson approach. In other studies (Chaparro et al., 

2008; Mahmoudi et al., 2011), genetic algorithm (GA) was used to minimize the difference 

between the numerical predictions and the experimental results when calibrating the NLKH 

models. However, FEMU has a drawback that it is time-consuming due to the iterative nature of 

the FE model updating process. The VFM, which is based on the principle of virtual work, on the 

other hand, takes full advantage of the strain maps measured with, e.g., DIC. A cost function that 

measures the gap between the total internal virtual work and the external virtual work is built up 
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and minimized with respect to the unknown parameters. Only a simple MATLAB®  program 

needs to be run for the identification. Since there is no need to compute statically admissible 

stress fields at each time step, but the strains are used to obtain stresses using some initial 

material parameters and then equilibrium checked directly on these. This method is 

computationally efficient. In a previous study, the VFM was extended to characterize the 

material behavior under tension-compression (Pierron et al., 2010a), with reasonable NLKH 

parameters identified. This however, was limited to only one reverse loading path since the 

specimens buckled at an early stage during compression.  

The present work is aimed at developing a method to characterize the material behavior of 

AHSS subjected to a few reverse loading cycles. To study this, the NLKH models combined 

with Voce type isotropic hardening are selected to describe the material behavior. The cases of 

multi-backstress components are considered. The VFM is applied to identify the material 

constitutive parameters. First, in Section 2, the formulations of the NLKH and the identification 

procedure are introduced. Then, in Section 3, the proposed identification method is validated on 

FE simulations of forward-reverse simple shear. In section 4, the validated method is applied to 

the selected AHSS, namely, dual-phase (DP600), transformation-induced plasticity (TRIP780) 

and twinning-induced plasticity (TWIP980) steels, subjected to two cycles of forward-reverse 

simple shear, to identify their constitutive parameters. 

2. Methodology 

2.1.Nonlinear kinematic hardening 

The NLKH models considered in this study are based on the von Mises yield criterion and a 

kinematic hardening rule. For a yield condition:  

 ࣠ ൌ ݂ሺ࣌ െ ሻࢻ െ ௣൯ߝ௦൫ߪ ൌ 0  (1) 

	݂ሺ࣌ െ  ,ࢻ ሻ is the equivalent stress with respect to the stress tensor ࣌ and the backstress tensorࢻ

while ߪ௦ is the current yield stress under the equivalent plastic strain ߝ௣. The equivalent stress is 

defined as: 

  ݂ሺ࣌ െ ሻࢻ ൌ ටଷ

ଶ
ሺ࢙ െ :ௗ௘௩ሻࢻ ሺ࢙ െ  ௗ௘௩ሻ (2)ࢻ
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where  ࢙ is the deviatoric stress tensor and ࢻௗ௘௩ the deviatoric backstress tensor. “:” stands for 

the tensor inner product. For NLKH, the yield surface not only translates in stress space through 

the backstress tensor હ but also expands istropically following the evolution of the current yield 

stress σୱ. The NLKH term was initially proposed by (Armstrong and Frederick, 1966; Frederick 

and Armstrong, 2007) (denoted A-F model) in the form: 

 dહ ൌ ஼

஢౩
ሺ࣌ െ ሻ݀ε୮ࢻ െ  ε୮ (3)݀ࢻߛ

where C is the kinematic hardening modulus, and ߛ is the parameter that determines the decrease 

of kinematic hardening. Later, the range of validity of this model was widened by Chaboche 

(1986) (denoted CNLKH model) after superimposing several models of the same type in the 

following form:  

 dહ௜ ൌ
஼೔
஢౩
ሺ࣌ െ ሻ݀ε୮ࢻ െ  ε୮ (4)݀࢏ࢻ௜ߛ

and the overall backstress tensor 

ࢻ  ൌ ∑ ࢏ࢻ
ே
௜ୀଵ   (5) 

where N is the number of components of the backstress tensor. It should be mentioned that the 

above CNLKH model (Eq. (4)) is expressed in a different form than the equation in (Chaboche, 

1986) in order to be consistent with the commercial finite element code, ABAQUS.   

For the evolution of the yield surface size, Voce hardening is considered in this study, and 

thus, 

 σ௦൫ε୮൯ ൌ ଴ܻ ൅ ܴ௦௔௧ሺ1 െ ݁ି௡க౦ሻ (6) 

where ଴ܻ stands for the initial yield stress, ܴ௦௔௧ the saturation stress, and ݊ the material constant 

that defines the change rate of the yield surface size. In order to predict the Bauschinger effect of 

a material subjected to cyclic loads using FE simulation, the material constitutive parameters (Y0, 

Rsat, n, Ci and ߛ௜)  must be determined first. In the present study, this inverse problem is solved 

using the VFM.   

2.2.The virtual fields method 
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The VFM utilizes the equilibrium equations deduced from the principle of virtual work. For a 

given solid object of volume V, which is subjected to a quasi-static loading vector T acting on the 

object boundary ߲ܸ, if the body force is negligible, this principle can be written as:  

 െ׬ ࣌: ௏∗ࢿ ܸ݀ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ூ௡௧௘௥௡௔௟	௩௜௥௧௨௔௟	௪௢௥௞

൅ ׬ .ࢀ ࢛∗݀ܵడ௏ᇣᇧᇧᇤᇧᇧᇥ
ா௫௧௘௥௡௔௟	௩௜௥௧௨௔௟	௪௢௥௞

ൌ 0  (7) 

where ࢛∗ is the virtual displacement vector and ࢿ∗ the corresponding virtual strain tensor derived 

from ࢛∗. In Eq. (7), the first term in the left hand side is denoted as internal virtual work (IVW) 

while the second term as external virtual work (EVW). Essentially, a selected virtual 

displacement field ࢛∗ is a test function that produces a particular integral equilibrium equation. 

The virtual displacement field must be continuous and differentiable across the whole volume. 

There are infinite choices for virtual fields. However, in practice, the selected virtual fields 

should have null values over the fixed boundaries where the reaction forces are difficult to 

measure. This is to cancel out the EVW contributed by the unknown reaction forces. For the 

moving boundaries, the selected virtual fields should be constant in the loading direction, but 

zero in the transverse one so that the equilibrium equation (7) contains the measured resulting 

load. In the case of elasto-plasticity, the equilibrium equation is written as:  

 െ׬ ׬ ሶ࣌
௧
଴ :ݐ݀ ௏∗ࢿ ܸ݀ ൅ ׬ .ࢀ ࢛∗݀ܵడ௏ ൌ 0 (8) 

where ሶ࣌ ൌ ௗ࣌

ௗ௧
 is the stress rate tensor, and the stress tensor at time t is calculated from ׬ ሶ࣌

௧
଴  It .ݐ݀

is worth noting that stress is not directly measurable in practice whereas strain can be measured 

by various deformation measurement techniques. It is hence necessary to determine the 

relationship between the stress and strain increments so that the stress values can be calculated. 

Here, the radial return stress calculation algorithm developed by Sutton et al. (1996) is adopted, 

which is based on the decomposition of elastic and plastic strain increments, the associated flow 

rule, and the consistency condition, as detailed in Appendix A. Based on this algorithm, the 

stress increment vector ݀࣌ can be expressed by the total strain increment vector ݀ࢿ through the 

relation: 

 ݀࣌ ൌ ൭ࡽ െ
ങ࣠:ࡽ

ങ࣌
ങ࣠:ࡽ⨂

ങ࣌
ങ࣠
ങ࣌
ങ࣠:ࡽ:

ങ࣌
ି ങ࣠
ങ಍౦

൱ :  (9)  ࢿ݀
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where Q stands for the elastic stiffness matrix, and ࣠ is the yield condition denoted in Eq. (1). 

Since ݀࣌ is a nonlinear function of ݀ࢿ with respect to the actual stress ࣌, the equivalent plastic 

strain ߝ௣, and the unknown constitutive parameters, the identification procedure thus is iterative 

in nature. This is implemented by establishing a cost function that measures the gap between the 

IVW and the EVW and minimizing it with respect to the unknown parameters (denoted X). For 

the sheet specimen with thickness b considered in the present study, this cost function writes: 

 ࣝሺࢄሻ ൌ ∑ ቀെܾ ׬ ቀ׬ ሶ࣌
௧
଴ ቁݐ݀ : ஺∗ࢿ ݀ܵ ൅ ׬ .ࢀ ࢛∗݀ܵడ௏ ቁ

ଶேೕ
௝ୀଵ  (10) 

where Nj is the total number of loading increments, and A is the area of interest (AOI). The 

above inverse scheme has been implemented by the authors in MATLAB®  programming 

environment, which follows the procedure illustrated in the flow chart in Fig. 1. When 

performing identification, the measured full-field strain data and the load data are imported into 

the MATLAB®  program. Based on the selected constitutive model and the virtual fields, the 

strain data are utilized to compute the IVW and the load data for the EVW using Eqs. (9) and 

(10). An initial estimate of the material parameters needs to be selected to start the minimization 

process, which is updated iteratively until the convergence is reached. The nonlinear least-square 

algorithm (‘lsqnonlin’ algorithm in MATLAB®) is used to minimize the cost function ࣝሺࢄሻ, 

which calculates the quadratic gap between the IVW and the EVW.  Finally, the identified 

material parameters can be obtained. 
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Fig. 1 Flow chart of the inverse scheme for parameter identification. 

3. Numerical verification 

3.1. FE simulations 

In order to examine the effectiveness of the proposed identification method, FE models that 

simulate the forward-reverse simple shear were developed using ABAQUS® as shown in Fig. 2. 

The advantage of this deformation configuration is that it allows the specimen to experience high 

strain level without buckling, which, however, is a limitation for sheet tension-compression as 

buckling usually occurs at an early stage of compression. The simulated strain and load data 

were exported from ABAQUS®  and utilized in the proposed VFM scheme for parameter 
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identification. The idea is to check if the identified parameters match with the reference values 

that are input in the FE simulations so that the identification accuracy can be evaluated. Fig. 2 

shows the schematic of the forward-reverse simple shear, for both of the FE simulations and the 

experiments considered in the present study. The left boundary of the rectangular specimen is 

fixed while the right boundary is driven in a forward-reverse manner. For the FE simulations, a 

2D shell model was selected with the shell thickness of 1 mm. The element type is triangular, 

and with a global mesh size of 0.5 mm. Two cases have been studied for the FE simulations 

based on the NLKH. In the first case, only one backstress component was considered (A-F 

model) while in the second case, two backstress components were considered (CNLKH model). 

The input constitutive parameters were somehow arbitrarily chosen for the two cases and are 

given in Fig. 2, which are reasonable values for this type of parameters (Broggiato et al., 2008; 

Rezaiee-Pajand and Sinaie, 2009). Displacements along the y-direction were applied to the right 

boundary in a cyclic manner. One forward loading path together with the subsequent reverse one 

is counted as one loading cycle (i.e. LP1+LP2). At least one loading cycle is necessary for 

parameter identification since the kinematic hardening behavior cannot be separated from the 

isotropic hardening behavior until a load reversal occurs. Here, different numbers of loading 

cycles, as listed in Table 1, have been studied to investigate their influence on the identification 

results. A displacement of 0.2 mm was applied for each loading path, and each loading path was 

comprised of 100 loading increments. For each loading increment, the logarithmic strain at the 

centroid of each element and the load at each node of the right boundary were exported from 

ABAQUS® for parameter identification.  

For the VFM, several virtual fields have been attempted, which have zero value on the fixed 

boundary and constant value on the moving boundary, as explained in Section 2.2. Since no 

significant difference was observed in the identification results, the simplest virtual field, 

denoted as VF1, is kept in the present work. 

∗௫ݑ			:1ܨܸ  ൌ 0, ∗௬ݑ ൌ ݔ ⇒ ∗௫௫ߝ ൌ 0, ∗௬௬ߝ ൌ 0, ∗௫௬ߝ ൌ 0.5  (11) 

where ݑ௫∗  and ݑ௬∗  are the virtual displacements along x- and y-direction, respectively, ߝ௫௫∗ ∗௬௬ߝ , , 

and ߝ௫௬∗  are the deduced virtual strains, and x is the horizontal coordinate of each element center. 
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Fig. 2 FE model of the forward-reverse simple shear. 

Table 1 Three loading histories of the simulated forward-reverse simple shear (unit: mm, LP: 

loading path, LH: loading history).  

 LP1  LP2  LP3 LP4 

LH 1 0.2 -0.2 / / 

LH 2 0.2 -0.2 0.2 / 

LH 3 0.2 -0.2 0.2 -0.2 

 

3.2. Identification results for the FE simulations 

3.2.1. One backstress component 

The identification results obtained with different loading histories are reported in Table 2. In 

order to investigate the robustness of the VFM algorithm in providing a globally optimized 

solution, two different initial estimates were arbitrarily chosen to start the minimization process. 

As can be seen in Table 2, for the two sets of initial values, the identification results are identical 

for the same loading histories, indicating that this minimization algorithm is not hampered by 

local minima when starting from different initial estimates having reasonable orders of 

magnitude. For loading history 1 (LP1-LP2), which is the case of only one loading cycle, the 

identified parameters are in good agreement with the reference values. The relative errors of 
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identified parameters are plotted in Fig. 3a, which shows that the error level is just a few percent. 

For loading histories 2 (LP1-LP3) and 3 (LP1-LP4), when more loading cycles are included, the 

identification accuracy is slightly improved, as can be observed in Table 2 and Fig. 3a. In Fig. 

3b, the IVW and the EVW are plotted for each loading increment of the whole deformation 

process (loading history 3) when the minimization algorithm (started from initial estimate 1) 

reached the convergence. Evidently, the two curves exhibit very close agreement, and thus verify 

the reliability of the identification results. Overall, for the NLKH model with one backstress 

component, one loading cycle is sufficient to provide a stable parameter identification. However, 

involving more loading cycles is expected to provide a more comprehensive characterization of 

material behavior. An advantage of this identification method is the efficiency of convergence, 

which only takes around three minutes for all cases.      

Table 2 Identification results obtained with simulation data for the case of one backstress 

component (LH: loading history). 

 C (MPa) γ Y0 (MPa) Rsat (MPa) n 

Reference values 10000 150 350 50 30 

Initial estimate 1 5000 50 200 20 20 

        LH 1 9735 146 350 49.9 30.8 

        LH 2      Identified 9765 147 350 50.3 29.9 

        LH 3 9783 147 350 50.0 30.3 

Initial estimate 2 20000 500 500 50 50 

        LH 1 9735 146 350 49.9 30.8 

        LH 2      Identified 9765 147 350 50.3 29.9 

        LH 3 9783 147 350 50.0 30.3 
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Fig. 3 (a) Relative errors of identified constitutive parameters, and (b) Plot of internal virtual 

work and external virtual work (Initial estimate 1, LH 3) for the case of one backstress 

component. 

3.2.2. Two backstress components 

The identification results for the case of two backstress components are given in Table 3, and 

the relative errors of the seven identified parameters are plotted in Fig. 4a. Similar to the 

previous case, identical identification results were obtained from the different initial estimates, 

indicating that local minimization is not an issue here. It can be noted that, for all loading 

histories, the identified Voce hardening parameters are in good agreement with their reference 

counterparts. However, the NLKH parameters are determined accurately only when the loading 

cycles are no less than two, particularly for C2 and γ2. The explanation for this is that a certain 

number of load reversals are needed to separate the contribution of each backstress component to 

the kinematic hardening behavior. As for the case of one backstress component, the IVW and the 

EVW are plotted in Fig. 4b for the initial estimate 1 and loading history 3. Again, good 

agreement can be found between the two curves so that the reliability of the identification results 

is verified. Based on the above observations, loading history 3 provides the best identification 

results at a minimum cost and is kept for the experimental applications in this study.  
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Table 3 Identification results obtained with simulation data for the case of two backstress 

components. 

 C1 (MPa) γ1 C2 (MPa) γ2 Y0 (MPa) Rsat (MPa) n 

Reference values 15000 150 1500 50 350 50 30 

Initial estimate 1 10000 100 1000 10 200 20 20 

       LH 1 14275 151 1951 55.5 350 50.3 30.7 

       LH 2    Identified 14756 145 1349 47.5 350 50.2 30.2 

       LH 3 14618 148 1563 50.7 350 50.1 30.4 

Initial estimate 2 20000 200 2000 100 500 100 50 

       LH 1 14276 151 1951 55.5 350 50.3 30.7 

       LH 2    Identified 14756 145 1349 47.5 350 50.2 30.2 

       LH 3 14618 148 1563 50.7 350 50.1 30.4 

 

 

Fig. 4 (a) Relative errors of identified constitutive parameters, and (b) Plot of internal virtual 

work and external virtual work (Initial estimate 1, LH 3) for the case of two backstress 

components. 

3.3. Influence of noise 
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To have a general idea of the influence of noise in strain measurement on the identification 

accuracy, random Gaussian white noise was added to the simulated strain data for the whole 

deformation process (LP1-LP4). The noise amplitudes of 1.92×10-4, 1.72×10-4, and 1.42×10-4 for 

௫௫ߝ ௬௬ߝ , , and ߝ௫௬ , respectively, were selected according to the noise level of the strain 

measurements obtained experimentally in the present work. The experimental procedure of strain 

measurement will be introduced in the next section. The noise-polluted strain data were then 

input into the VFM program for parameter identification, and the results are given in Table 4 and 

Table 5 for the cases of one and two backstress components, respectively. As expected, for both 

cases, compared to the identification results without noise in Table 2 and Table 3, the global 

error level is a bit increased after adding noise. The shear stress-strain curves calculated using the 

identified parameters with and without noise effect are compared with the reference curves in 

Fig. 5. It can be observed that, for both cases, when noise is not added, the identified curves 

precisely match with the reference curves. After adding noise, the identified curves are still in 

good overall agreement with the reference curves, although slight deviations can be observed, 

corresponding to the increased identification errors in Table 4 and Table 5. An approach based 

on the choice of optimal virtual fields as introduced by Pierron et al. (2010a) can reduce the 

effect of noise and thus may improve the identification accuracy. However, at this stage, these 

results are satisfactory and suggest that this identification method is suitable for identifying 

material parameters from real experiments.    

 

Table 4 Identification results obtained with noise-polluted strain data for the case of one 

backstress component (LH 3: LP1-LP4). 

 C (MPa) γ Y0 (MPa) Rsat (MPa) n 

Reference values 10000 150 350 50 30 

Initial estimate 1 5000 50 200 20 20 

Identified 1 10552 155 357 49.4 33.6 

Relative error (%) 5.52 3.33 2.08 -1.12 11.9 

Initial estimate 2 20000 500 500 50 50 

Identified 2 10552 155 357 49.4 33.6 

Relative error (%) 5.52 3.33 2.08 -1.12 11.9 
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Table 5 Identification results obtained with noise-polluted strain data for the case of two 

backstress components (LH 3: LP1-LP4). 

 C1 (MPa) γ1 C2 (MPa) γ2 Y0 (MPa) Rsat (MPa) n 

Reference values 15000 150 1500 50 350 50 30 

Initial estimate 1 10000 100 1000 10 200 20 20 

Identified 1 16136 156 1551 52.6 357 48.9 33.9 

Relative error (%) 7.57 3.67 3.43 5.24 4.11 -2.12 13.0 

Initial estimate 2 20000 200 2000 100 500 100 50 

Identified 2 16136 156 1551 52.6 357 48.9 33.9 

Relative error (%) 7.57 3.67 3.43 5.24 4.11 -2.12 13.0 
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Fig. 5 Shear stress-strain curves calculated by the identified parameters with and without noise 

effect considered v.s. the reference curves, (a) one backstress component and (b) two backstress 

components (using Identified 1, LH3 in Table 2 toTable 5). 
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4. Experimental applications 

4.1. Materials and experiments 

Three types of AHSS have been considered in this study, which are DP600, TRIP780 and 

TWIP980. For all materials, the specimens were cut from bigger sheets to a shape of 50 × 4 mm, 

with 1.42, 1.43 and 1.25 mm thickness for the DP600, TRIP780 and TWIP980, respectively. The 

specimens were tested under forward-reverse simple shear. It should be mentioned that the 

experiments were previously performed for parameter identification of the homogeneous 

anisotropic hardening (HAH) model (Barlat et al., 2011). A detailed description of the 

experiments has been provided elsewhere (Fu et al., 2016). In the present work, these 

experimental measurements were reused for the calibration of the NLKH models. Thus, only a 

brief introduction of the experimental procedure is given here.   

The specimens were tested in the simple shear experimental set-up (Choi et al., 2015) in a 

way as illustrated in Fig. 2. The experimental set-up and a speckle pattern image are illustrated in 

Fig. 6. Two loading cycles were conducted for each specimen as suggested in Section 3. A mode 

of displacement control was chosen for the tests with a low cross-head speed of 0.01 mm.s-1, 

which corresponds to a strain rate of about 1.25×10-3 s-1. The strain level for each loading path is 

around 5%, which, however, differs for the selected steels due to the compliance of the test 

device with respect to the different material strengths. For each material, two tests were 

performed in order to check the repeatability of the results.  

 

Fig. 6 Experimental set-up and a speckle pattern image. 
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During the tests, the full-field deformations were measured using a stereo digital image 

correlation (SDIC) system. First, a series of stationary speckle images (2048×2448 pixels along 

the x and y directions, respectively) of a specimen were recorded and deformation analysis was 

performed using DIC. The noise level of strain measurement was determined by calculating the 

standard deviations of the strain values by taking ten images of speckle pattern at rest. When 

performing DIC in the commercial DIC software VIC-3D, a subset size of 33×33 pixels with a 

step size of 11 pixels was chosen. For the strain components ߝ௫௫, ߝ௬௬, and ߝ௫௬, the strain noise 

levels were 1.92×10-4, 1.72×10-4, and 1.42×10-4, respectively. Then, for each specimen, a 

reference image was taken before deformation, and the images during deformation were taken at 

a frequency of one image per second. Synchronized load data were recorded by a load cell. Note 

that, for the sake of a good spatial resolution, only the central region of the specimen (4 × 20 mm 

along the x and y directions, respectively) was used for the area of interest (AOI). In Fig. 7, the 

logarithmic shear strain fields, measured by DIC, at different loading stages are shown. It can be 

seen that there are strain concentrations on both left and right boundaries. These were induced by 

the serrated groove of the grips which was designed to prevent the specimen from slipping 

during deformation. For parameter identification using the VFM, the logarithmic strains were 

calculated using an analytical procedure and the finite deformation theory as explained in (Avril 

et al., 2010; Kim et al., 2013). A brief introduction regarding this is given in Appendix B.  
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Fig. 7 Logarithmic shear strain fields at different loading stages measured with DIC. 

4.2. Identification results for the AHSS 

Once the strain and load data were obtained, they were processed with the VFM as explained 

in previous sections. The virtual field VF1 in Eq. (11) was selected. For each material, the results 

are presented here only for one specimen since no significant difference was observed between 

the two specimens. It should be mentioned that Young’s modulus E and Poisson’s ratio ߥ are 

necessary for the determination of the stiffness matrix Q in Eq. (9). E was derived from ߥ and 

shear modulus G through the relation: 

ܧ  ൌ ሺ1ܩ2 ൅  ሻ (12)ߥ
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where G was calculated from the slope of the experimental shear  stress-strain curve in the initial 

linear range, and ߥ was set to a reasonable approximation of 0.3 according to (Chung et al., 2011; 

Kim et al., 2013). Reasonable Young’s moduli were obtained for the DP600, TRIP780 and 

TWIP980, which are 212, 209 and 192 GPa, respectively. 

4.2.1. DP600 

As suggested in Section 3.2.1, one loading cycle is sufficient to provide a reasonable 

parameter identification for the case of one backstress component. Nevertheless, for the 

experimental data, it is interesting to compare the identified parameters obtained with one 

loading cycle to those obtained with more loading cycles. In Table 6, the identification results 

based on one cycle and two cycles are given for the DP600. It can be observed that although the 

identified parameters obtained with the two loading histories are not identical, the difference is 

insignificant. One way to check this difference is to fix the constitutive parameters in the cost 

function using the results obtained with one loading cycle and then calculate the cost function 

value (CFV) for two loading cycles, here, 8.89×107, as given in Table 6. This value is very close 

to the CFV of the 2-loading cycle identification. The latter, namely 7.34×107, is slightly smaller, 

indicating that the fitting between IVW and EVW is slightly better. This is expected since the 

identification in the latter case is based on a more comprehensive loading history. It should be 

mentioned that two different initial estimates have been attempted for each case, and the 

identification results are almost identical, as can be seen in Table 6. In Fig. 8a, the shear stress-

shear strain curves (green dash dot line for the case of one loading cycle and black dot line for 

the case of two loading cycles, one backstress component) calculated using the identified 

parameters (Identified 1) are compared with their experimental counterpart. For the experimental 

counterpart, the shear stress σxy was given by the ratio between the measured load and the cross 

sectional area along the y-direction, and the shear strain εxy was given by the mean shear strain 

value in the AOI measured with DIC. In Fig. 8b, the identified curves and the experimental 

counterpart are plotted with respect to the cumulated shear strain and the absolute values of shear 

stress for the sake of legibility. One can see that both identified curves are reasonably consistent 

with the experimental curve although discrepancies can be found towards the end of each loading 

path. This is not surprising since the NLKH model with only one backstress component is 

probably not sufficient to describe the material behavior thoroughly. One can also observe that 
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the difference between the two identified curves is insignificant, which was expected. For other 

materials in the following sections, only the identification results obtained with two loading 

cycles will be given considering the smaller CFV.  

For the NLKH model with two backstress components, the identification results are given in 

Table 7. Similar to the previous cases, two initial estimates were selected to start the 

minimization. Again, the identified parameters obtained with different initial estimates were in 

good agreement with each other, confirming the robustness of the proposed VFM scheme. 

Interestingly, when one more backstress component is added, the CFV is significantly reduced 

from 7.34×107 to 3.11×107, indicating a better match between the IVW and the EVW. In Fig. 8, 

the shear stress-shear strain curve based on these parameters (Identified 1) is plotted. One can 

clearly see that the fitting between this curve and the experimental counterpart is substantially 

improved compared to the case of the curves for one backstress component, with the 

discrepancies observed towards the end of each loading path significantly reduced. The reason 

for this is that two backstress components provide better fit to describe the material behavior 

than only one component. This is consistent with the observation in (Chaboche, 1986) that the 

hysteresis curve representation gradually improves with more backstress components. In order to 

further study the influence of multicomponents, the Chaboche model with three components 

(two nonlinear components plus one linear component, in which γ3 equals zero) has been applied. 

The identification results are given in Table 8. One can see from the cost function values that 

three components only provide a marginally better fit. The shear stress-shear strain curves for the 

three-component and the two-component cases in Fig. 8 almost overlap with each other. 

Nevertheless, the improvement of three components is expected to be more significant when 

material is subjected to more loading cycles. In other words, adding even more components in 

the model is expected to further improve the fitting, which, however, will require more loading 

cycles to guarantee a reasonable identification as discussed in Section 3.2.2 and will also 

increase the possibility of local minima.  

It is worth noting that from the experimental curves, the Bauschinger effect can be clearly 

observed by comparing the reloading yield stress to the previous yield stress before load reversal, 

e.g., the significant drop from Y1 to Y2 in Fig. 8a. The identified curves suggest that the NLKH 

models are able to capture this effect. 

 



23 
 

 

 

Table 6 Identification results for the DP600 for the case of one backstress component (CFV: cost 

function value). 

 C (MPa) γ Y0 (MPa) Rsat (MPa) n CFV  

Initial estimate 1 10000 100 100 10 10  

1 cycle 
Identified 1 24406 110 295 78.4 28.8 8.89×107 

Initial estimate 2 50000 500 500 100 100  

Identified 2 24407 110 295 78.4 28.8 8.89×107 

Initial estimate 1 10000 100 100 10 10  

2 cycles 
Identified 1 28895 121 281 70.5 34.1 7.34×107 

Initial estimate 2 50000 500 500 100 100  

Identified 2 28896 121 281 70.5 34.1 7.34×107 

 

Table 7 Identification results for the DP600 for the case of two backstress components (two 

loading cycles). 

 C1 (MPa) γ1 C2 (MPa) γ2 Y0 (MPa) Rsat (MPa) n CFV 

Initial estimate 1 20000 200 2000 20 200 50 10  

Identified 1 48874 283 6221 49.3 246 79.7 33.7 3.11×107 

Initial estimate 2 80000 500 8000 100 500 100 50  

Identified 2 48701 282 6142 48.9 246 79.8 33.7 3.12×107 

 

Table 8 Identification results for the DP600 for the case of three backstress components (two 

loading cycles). 

 C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) Y0 (MPa) Rsat (MPa) n CFV 

Initial estimate 1 20000 200 2000 20 200 200 50 10  

Identified 1 48704 286 6399 52.5 135 246 81.3 33.7 3.04×107 

Initial estimate 2 80000 500 8000 100 500 500 100 50  

Identified 2 48308 283 6272 51.9 134 246 81.5 33.7 3.04×107 
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Fig. 8 Experimental and identified shear stress-strain curves for the DP600 in forward-reverse 

simple shear obtained with Identified 1, plotted with respect to (a) true strain (b) cumulated 

strain. 

4.2.2. TRIP780 

The identified parameters for the TRIP780 are given in Table 9, Table 10, and Table 11 for 

the cases of one, two, and three backstress components, respectively. As can be seen, the 
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identification results are consistent with each other when started from different initial estimates. 

The models with two and three components provide very close CFV, both smaller than the case 

of one component. The shear stress-shear strain curves calculated using the identified parameters 

(Identified 1) are given in Fig. 9 and compared with their experimental counterpart. One can see 

that the identified curves are generally in good agreement with the experimental curve, with 

Bauschinger effect properly captured, although the match is not as good compared to that of the 

DP600 in Fig. 8. Expected from the smaller CFV, the models with two and three components 

provide a slightly better match with the experimental curve.   

Table 9 Identification results for the TRIP780 for the case of one backstress component (two 

loading cycles). 

 C (MPa) γ Y0 (MPa) Rsat (MPa) n CFV 

Initial estimate 1 10000 100 100 10 10  

Identified 1 38111 124 344 90.5 14.4 2.14×108 

Initial estimate 2 50000 500 500 100 100  

Identified 2 38088 124 344 90.6 14.4 2.14×108 

 
Table 10 Identification results for the TRIP780 for the case of two backstress components (two 

loading cycles). 

 C1 (MPa) γ1 C2 (MPa) γ2 Y0 (MPa) Rsat (MPa) n CFV 

Initial estimate 1 20000 200 2000 20 200 50 10  

Identified 1 55540 371 17117 79.1 306 96.1 15.4 1.68×108 

Initial estimate 2 80000 500 8000 100 500 100 50  

Identified 2 58085 380 16998 78.1 304 96.8 15.1 1.69×108 

 
Table 11 Identification results for the TRIP780 for the case of three backstress components (two 

loading cycles). 

 C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) Y0 (MPa) Rsat (MPa) n CFV 

Initial estimate 1 20000 200 2000 20 200 200 50 10  

Identified 1 55478 376 17641 80.4 5.77 305 96.2 15.1 1.68×108 

Initial estimate 2 50000 500 5000 100 100 500 100 50  
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Identified 2 55624 355 16169 76.8 7.18 305 97.3 15.1 1.69×108 

 

Fig. 9 Experimental and identified shear stress-strain curves for the TRIP780 in two cycles of 

forward-reverse simple shear obtained with Identified 1, plotted with respect to (a) true strain (b) 

cumulated strain. 

4.2.3. TWIP980 
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For the TWIP980, the identification results based on one backstress component are given in 

Table 12. Interestingly, with different initial estimates, the results are significantly different for 

the Voce hardening parameters, particularly for the parameters Rsat and n. One can see that n 

tends to be a very high value, which makes the term ܴ௦௔௧ሺ1 െ ݁ି௡க౦ሻ in Eq. (6) close to zero. In 

this case, the current yield stress σ௦ becomes a constant Y0, which indicates that the yield surface 

translates in stress space but its shape is maintained. One question that arises is whether or not 

the constant current yield stress is due to the use of Voce hardening since the Voce hardening 

tends to saturate quickly. To answer this question, another two isotropic hardening laws were 

used to substitute the Voce hardening and combined with the NLKH model (one backstress 

component), namely, the Swift and the Modified Voce hardening laws, which write: 

σ௦൫ε୮൯			:݃݊݅݊݁݀ݎ݄ܽ	ݐ݂݅ݓܵ  ൌ ଴ܻௌ൫ߝ଴ௌ ൅ ௣൯ߝ
௡ೞ (13) 

σ௦൫ε୮൯			:݃݊݅݊݁݀ݎ݄ܽ	݁ܿ݋ܸ	݂݀݁݅݅݀݋ܯ  ൌ ଴ܻெ ൅ ܴ଴ெߝ௣ ൅ ܴ௦௔௧ெሺ1 െ ݁ି௡ಾக౦ሻ (14) 

where  ଴ܻௌ ଴ௌߝ , , ݊௦  are the Swift hardening parameters, and  ଴ܻெ , ܴ଴ெ , ܴ௦௔௧ெ , ݊ெ  are the 

modified Voce hardening parameters. The identification results based on these are given in Table 

13. It clearly shows that even different isotropic hardening laws are adopted, the current yield 

stress σ௦൫ε୮൯ still exhibits approximately a constant value, ଴ܻௌ  for the Swift, and ଴ܻெ  for the 

Modified Voce. This confirms that based on the NLKH model, the yield surface does not 

expands but only translates during deformation for the selected TWIP980. Therefore, for the 

Voce hardening, Rsat and n were set to zero and one, respectively, and the identifications were 

performed again based on this. The results are given in Table 14, Table 15, and Table 16 for the 

cases of one, two, and three backstress components, respectively. It can be found that stable 

results were obtained with different initial estimates for all cases. The CFV is reduced from 

6.62×108 to 3.12×108 when two components are used, and further reduced to 2.08×108 for the 

case of three components. One can see that the influence of three components is more significant 

for the TWIP980 than for the other two materials. The identified shear stress-shear strain curves 

are compared with the experimental counterpart in Fig. 10, and similar conclusions as for the 

DP600 and the TRIP780 can be drawn for the TWIP980. 
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Table 12 Identification results for the TWIP980 for the case of one backstress component (two 

loading cycles). 

 C (MPa) γ Y0 (MPa) Rsat (MPa) n CFV 

Initial estimate 1 10000 100 100 10 10  

Identified 1 34481 75.2 521 47.6 2462 6.62×108 

Initial estimate 2 50000 500 500 100 100  

Identified 2 34959 76.6 566 1.00×10-5 16302 6.61×108 

 

Table 13 Identification results for the TWIP980 for the case of one backstress component using 

the Swift and the Modified Voce hardening laws (two loading cycles). 

Swift C (MPa) γ Y0S ε0S nS / CFV 

Initial estimate 10000 100 1000 0.1 0.1 /  

Identified 34952 76.6 566 1.00 5.32×10-7 / 6.61×108 

Modified Voce C (MPa) γ Y0M (MPa) R0M RsatM nM CFV 

Initial estimate 10000 100 1000 1000 100 10  

Identified 34812 76.2 567 1.00×10-5 1.00×10-5 1.00×10-5 6.62×108 

 

Table 14 Identification results for the TWIP980 for the case of one backstress component when 

Rsat is set to zero (two loading cycles). 

 C (MPa) γ Y0 (MPa) CFV 

Initial estimate 1 10000 100 100  

Identified 1 34953 76.6 566 6.61×108 

Initial estimate 2 50000 500 500  

Identified 2 35908 79.4 561 6.61×108 
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Table 15 Identification results for the TWIP980 for the case of two backstress components when 

Rsat is set to zero (two loading cycles). 

 C1 (MPa) γ1 C2 (MPa) γ2 Y0 (MPa) CFV 

Initial estimate 1 20000 200 2000 20 200  

Identified 1 61348 193 7571 13.9 501 3.12×108 

Initial estimate 2 80000 100 8000 100 500  

Identified 2 62205 200 8230 15.8 498 3.16×108 

 
Table 16 Identification results for the TWIP980 for the case of three backstress components 

when Rsat is set to zero (two loading cycles). 

 C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) Y0 (MPa) CFV 

Initial estimate 1 20000 200 2000 20 200 200  

Identified 1 86003 408 19688 66.2 2474 472 2.08×108 

Initial estimate 2 80000 100 8000 100 500 500  

Identified 2 88501 419 20016 64.6 2408 466 2.06×108 

 

It is worth noting that, in Fig. 9 and Fig. 10, for the TRIP780 and TWIP980, the identified 

curves show apparent deviation from their experimental counterparts, particularly in the first 

loading path (LP1). It is considered that the deviation is due to the lack of model robustness. The 

selected isotropic/kinematic hardening models (with two and three backstress components) are 

not robust enough to characterize both the monotonic and reversal material behaviors for the 

TRIP780 and TWIP980 although they are suitable for describing the behavior of the DP600. The 

reason is not well understood, but it may be attributed to the difference in their material 

properties (material anisotropy, hardening behavior, etc.). This should be investigated further in 

the future. A more complex hardening model may decrease the deviation, which, however, is 

beyond the scope of the present work.    

It should be mentioned that the proposed identification method is very computationally 

efficient. For the cases of one component, two components, and three components, the typical 

minimization time is only ~2 min, ~5 min, and ~5 min, respectively (with 32-bit operation 

system, 3.20 GHz CPU, and 8.00 GB RAM). 
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Fig. 10 Experimental and identified shear stress-strain curves for the TWIP980 in two cycles of 

forward-reverse simple shear obtained with Identified 1, plotted with respect to (a) true strain (b) 

cumulated strain. 
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5. Conclusions 

In this work, an identification method was proposed for the NLKH models combined with 

Voce isotropic hardening. This was implemented using the inverse solution tool, namely, the 

VFM. A global cost function that measures the quadratic gap between the IVW and the EVW 

was developed. By minimizing the cost function using the nonlinear least-square algorithm the 

unknown parameters were identified. The cases of one component, two components, and three 

components of the backstress have been studied, which also can be adapted to more components.  

The proposed VFM scheme was validated on FE simulations of forward-reverse simple 

shear. The simulated strain and load data were accommodated in the VFM program and the input 

material parameters for the simulations retrieved successfully. It was found that, for the case of 

one backstress component, one forward-reverse loading cycle is sufficient to provide an accurate 

identification. Increasing a few loading cycles can slightly improve the identification accuracy. 

For the case of two components, two loading cycles are needed for an accurate identification. 

Gaussian white noise with the same amplitude as the current experimental measurements was 

added to the simulated strain data in order to evaluate the effect of noise on the identification 

accuracy. The results showed that the global error level was increased but within a tolerable 

range. 

The experimental validation was implemented on the selected AHSS, namely, DP600, 

TRIP780 and TWIP980, which were tested under two cycles of forward-reverse simple shear. 

Reasonable and robust identification results were obtained for these materials regardless of 

different initial estimates. Specifically, it was found that for the TWIP980, based on the NLKH 

models, the yield surface only translates in stress space but does not expand. Thus, the 

identification was performed with the current yield stress defined as a constant value for the 

TWIP980. The shear stress-strain curves calculated using the identified parameters were 

compared with their experimental counterparts, showing good agreement. It was found that 

compared to the case of one backstress component, two components and three components 

provide a better fit of the material behavior, e.g., a better match between the identified shear 

stress-strain curve and its experimental counterpart. For all cases, the Bauschinger effect was 

well described by the identified curves. The proposed identification method is computationally 

efficient. A typical minimization time is only several minutes. Future work will be pursued to 

adapt this method to other NLKH models, e.g., the model that describes both the Bauschinger 



32 
 

 

effect and the material anisotropy (Lee et al., 2007; Yoshida et al., 2015), in order to provide 

more identification options for the materials mechanics community.   
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Appendix A 

The radial return algorithm developed by Sutton et al. (1996) is adopted to calculate stress 

increments from strain increments. The constitutive equation of elasticity is: 

 ݀࣌ ൌ :ࡽ  ௘ (A1)ࢿ݀

where ݀࣌, ݀ࢿ௘, respectively, are the stress and elastic strain increment vector, Q is the stiffness 

matrix. This equation can be expressed as: 

 ݀࣌ ൌ :ࡽ ൫݀ࢿ െ  ௣൯ (A2)ࢿ݀

where ݀ࢿ݀ ,ࢿ௣, respectively, are the total strain increment vector and the plastic part. For the 

following yield condition: 

 ࣠ ൌ fሺો െ હሻ െ σୱ൫ε୮൯ ൌ 0 (A3) 

with the associated flow rule: 

௣ࢿ݀  ൌ ߣ݀ డ࣠
డ࣌

  (A4) 

and the consistency condition: 

 ݀࣠ ൌ డ࣠

డ࣌
:	݀࣌ ൅ డ࣠

డக౦
݀ε୮ ൌ 0 (A5) 

the elasto-plastic stress-strain relation can be derived as follows: 

 ݀࣌ ൌ ൭ࡽ െ
ങ࣠:ࡽ

ങ࣌
ങ࣠:ࡽ⨂

ങ࣌
ങ࣠
ങ࣌
ങ࣠:ࡽ:

ങ࣌
ି ങ࣠
ങ಍౦

൱ :  (A6) ࢿ݀

Appendix B 

As introduced in (Avril et al., 2010; Kim et al., 2013), in order to calculate the logarithmic 

strain values for the identification of material constitutive parameters using the proposed VFM 
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program, the exact configuration of the specimen AOI is taken from ABAQUS® and meshed with 

triangular elements (here, 0.5 mm mesh size) using a Delaunay triangularization algorithm. In 

the undeformed state, for each triangular element, the nodal coordinates are known values since 

they are predefined in ABAQUS®. The coordinates of scattered data points inside each element 

are also known from DIC measurement. By fitting the scattered data points onto the nodal points, 

a basis of piecewise linear functions can be determined using the least squares regression. Using 

these piecewise functions and the coordinates of scattered points measured with DIC in the 

deformed states, the deformed nodal coordinates can be approximated. This method has an 

advantage that it enables the measurement of coordinates near edges, which are missing in DIC 

measurement. Then, the relationship between the undeformed nodal coordinates (x, y) and the 

deformed nodal coordinates (X, Y) can be expressed through a 2D affine transformation, which 

writes:  

 
ݔ ൌ ܽଵ ൅ ܽଶܺ ൅ ܽଷܻ
ݕ ൌ ܽସ ൅ ܽହܺ ൅ ܽ଺ܻ

 (B1) 

For each triangular element, six equations can be formed for the corresponding three element 

nodes according to Eq. (B1), by solving which the coefficients a1 to a6 can be calculated. The 

deformation gradient F in each element thus can be derived using the following equation with 

the assumption of plane stress state and the incompressibility condition (det(F)=1). 

ܨ  ൌ

ۏ
ێ
ێ
ێ
ۍ
ݔ߲
߲ܺ

ݔ߲
߲ܻ

0
ݕ߲
߲ܺ

ݕ߲
߲ܻ

0

0 0 ଵ
ݔ߲
߲ܺ
ݕ߲
߲ܻെ

ݔ߲
߲ܻ
ݕ߲
ے߲ܺ
ۑ
ۑ
ۑ
ې

ൌ ൦

ܽଶ ܽଷ 0
ܽହ ܽ଺ 0

0 0 ଵ

௔మ௔లି௔య௔ఱ

൪ (B2) 

Finally, the logarithmic strain can be determined from the deformation gradient F through the 

left stretch tensor ܤ ൌ  :using the equation ்ܨܨ√

௟௡ߝ  ൌ ∑ ݈݊ሺߣ௞ሻ
ଷ
௞ୀଵ  ௞ (B3)ݎ⨂௞ݎ

where  ߣ௞  and ݎ௞ , respectively, are the eigenvalues and the eigenvectors of the left stretch 

tensor B.  
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