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1 Introduction

A dream goal of the analytic S-matrix programme is to be able to construct expressions for

the scattering amplitudes of a quantum field theory based on a few physical principles and

a thorough knowledge of the analytic structure. In this work we are able to tie together

recent advances in determining amplitudes by an analytic “bootstrap” procedure with

discoveries about general classes of analytic functions which appear to play a central role.

The theory we will study is the planar N = 4 supersymmetric gauge (SYM) theory in four

dimensions [1], where the greatest advances have been made in explicitly determining the

scattering amplitudes.
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The analytic structure of the S-matrices of general quantum field theories are noto-

riously complicated [2]. For the planar N = 4 super Yang-Mills theory however, several

simplifying features come into play which reduce the complexity sufficiently to allow con-

jectures to be made about which classes of functions describe the scattering amplitudes,

at least in the simplest cases. The duality with Wilson loops [3–9] and the associated dual

conformal symmetry [7, 10–13] of the planar theory mean that only amplitudes with six

or more external legs are non-trivial. Moreover, for the six-particle case, the same am-

plitude/Wilson loop duality has allowed some explicit results [14] and beautifully simple

expressions [15] to be obtained.

All of the above developments have led to an analytic bootstrap programme, so far

focused on the six-particle (“hexagon”) case [16–21]. The idea of the hexagon bootstrap

programme is to declare that, order by order in perturbation theory, six-particle amplitudes

can be determined in terms of a particular class of multiple polylogarithms called hexagon

functions. Hexagon functions are polylogarithms associated to a natural nine-letter al-

phabet of singularities which can be identified with the nine multiplicatively independent

cross-ratios one can form from six points in CP
1. In addition, hexagon functions obey

conditions on the locations of branch cuts, encoding the fact that amplitudes can have

discontinuities only in certain kinematical regions.

In the case of maximally helicity-violating (MHV) amplitudes, the relevant piece (ob-

tained by subtracting particular universal infrared-divergent terms [22, 23]) which is not

fixed by dual conformal symmetry is called the remainder function. At L loops the n-

particle remainder function R
(L)
n should be a polylogarithm of weight 2L obeying additional

criteria coming from various physical constraints. One constraint is that the remainder

function should be fully dihedrally invariant, that is invariant under cyclic permutations

i→ i+1 and flips i→ n+1− i of its particle labels. This is essentially because supersym-

metry dictates that the MHV amplitudes are given by an overall supersymmetric [24, 25]

Nair-Parke-Taylor factor at tree-level which then receives multiplicative quantum correc-

tions. In addition the remainder function should approach R
(L)
n → R

(L)
n−1 smoothly (i.e.

with power suppressed corrections) in the limit where the momenta of two colour-adjacent

particles become collinear.

Moreover, the relation to Wilson loops means that the remainder function must obey

constraints on its discontinuities [26–29] and on the power-suppressed corrections [30–36] in

the collinear limit coming from an operator product expansion (OPE) for light-like Wilson

loops. The latter expansion is governed by the dynamics of an integrable colour-electric

flux-tube, which in particular gives rise to all-loop integral formulas for individual power-

suppressed terms. The success in systematically evaluating these in the weak coupling

expansion for the first few terms [37, 38] gives hope that it may be even possible to resum

the OPE (see [39] for a first step in this direction) to obtain full amplitudes. More generally,

it is expected that the integrability of the theory [40] will play an instrumental role in

determining its S-matrix, and apart from the collinear limit it has also led to all-loop

expressions in the multi-Regge limit [41], another kinematical regime that has provided

significant information on the remainder function [42–53].
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Finally, the extension of dual conformal symmetry to dual superconformal symme-

try [54], is expressed via the super-Wilson-loop correspondence [55–57] in terms of recur-

sive differential equations [58, 59] which imply certain universal constraints on the total

derivative of the remainder function. Including the original superconformal symmetry of

the amplitudes, or equivalently invoking parity for the amplitudes, extends dual supercon-

formal symmetry to its Yangian [60, 61], leading to further recursive equations, relevant

for determining non-MHV amplitudes.

The hexagon bootstrap programme has yielded explicit expressions up to four loops

for the MHV amplitudes [16, 18, 19] and three loops in the NMHV case [17, 21]. For higher

multiplicities, explicit results in SYM theory so far have been confined (in general kinemat-

ics) to two loops [62–65]. With explicit two-loop results to hand, an important structural

observation has been made [66]: the results are so far consistent with the conjecture that

the relevant classes of functions are given by multiple polylogarithms whose singularities

are dictated by a sequence of cluster algebras [67, 68]. This observation will be of central

importance here because it will allow us to generalise the bootstrap programme to higher

multiplicities, beginning with seven-particle (“heptagon”) MHV amplitudes.

While one might expect that the bootstrap for heptagons would be a similar but more

involved version of the bootstrap for hexagons, we are in fact led to a surprising and

counterintuitive result. Up to three loops, to determine the symbol of the MHV remainder

function, we need only construct the symbols of heptagon functions obeying the differential

constraint coming from dual superconformal symmetry, and then demand that we have a

linear combination of them which is finite in the collinear limit. Dihedral symmetry follows

for free and no information coming from the OPE expansion of Wilson loops or the Regge

limit of amplitudes is required at all. Moreover, the hexagon remainder can be obtained

for free by taking the collinear limit of the heptagon remainder function. In this sense

the heptagon bootstrap provides a conceptually more powerful framework for constructing

even the hexagon amplitudes!

The plan of this paper is as follows. In section 2 we review the basic details needed

to motivate the definition of heptagon functions. In section 3 we review a few of the

simplest general properties of MHV amplitudes in SYM theory, which in the bootstrap

programme are applied as constraints on the space of heptagon functions. Section 4 contains

a discussion of algorithms for imposing the constraint of integrability, which is by far the

most significant computational challenge in applying the bootstrap. The expert reader may

wish to jump directly (after taking a peek at the heptagon alphabet shown in eq. (2.12))

to section 5, where our main results are discussed and summarised in table 1. In section 6

we attempt to formulate some explanation for why the heptagon (and higher-n) bootstrap

is unexpectedly powerful.

Attached to the arXiv submission of this paper the reader may find data files contain-

ing: (1) the heptagon symbol alphabet shown in eq. (2.12), (2) the symbol of the remainder

function R
(3)
7 , and (3) the symbol of the other irreducible weight-6 heptagon function which

satisfies the MHV last-entry condition (see subsection 5.2).
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2 Heptagon functions

In this section we review some basic facts about generalised polylogarithms and symbols,

leading up to our definition of heptagon functions which mirrors that of the hexagon func-

tions studied in [16–20].

2.1 Symbols

Precise definitions and additional details may be found in [69–72] (see also [73] for a review),

but here it is sufficient to recall the recursive definition according to which fk is called a

generalised polylogarithm function of weight (or transcendentality) k if its total differential

may be written as a finite linear combination

dfk =
∑

α

f
(α)
k−1 d log φα (2.1)

over some set of φα, where the coefficients f
(α)
k−1 are functions of weight k− 1. Functions of

weight 1 are defined to be finite linear combinations (with rational coefficients) of log φα. By

applying total derivatives d to each of the coefficient functions f
(α)
k−1 and using property (2.1)

recursively we arrive at a collection of rational numbers f
(α1,α2,...,αk)
0 characterising the

original function fk. The symbol S(fk) encapsulates this data via the definition

S(fk) =
∑

α1,...,αk

f
(α1,α2,...,αk)
0 (φα1 ⊗ · · · ⊗ φαk

) . (2.2)

Since log φ1φ2 = log φ1 + log φ2, it is evident that the consistency of eqs. (2.1) and (2.2)

requires symbols to satisfy

(· · · ⊗ φ1φ2 ⊗ · · · ) = (· · · ⊗ φ1 ⊗ · · · ) + (· · · ⊗ φ2 ⊗ · · · ) . (2.3)

Moreover,

(· · · ⊗ c⊗ · · · ) = 0 (2.4)

for any numerical constant c, since d log c = 0. The collection of φα which appear in

the symbol of a given function is called its symbol alphabet. A symbol alphabet is never

uniquely defined because one can use the identity (2.3) to write symbols in various ways.

Two alphabets {φα}, {φ′
α} are considered equivalent if there exists a linear transformation

log φα =
∑

β

Mαβ log φ
′
β (2.5)

given by an invertible matrix M whose entries are rational numbers.

We consider the set of polylogarithm functions of weight k as a vector space over the

rational numbers. Moreover, since the product of two functions of weights k1 and k2 is a

function of weight k1 + k2, they constitute a graded algebra. The irreducible elements of

this algebra are functions which cannot be written as products of lower-weight functions.

The algebra of generalised polylogarithm functions admits a coproduct ∆ compatible

with multiplication, rendering it a Hopf algebra [70] (see also [74] for a review aimed at
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physicists). Moreover there is a cobracket δ which squares to zero (when acting on the

quotient space of all functions modulo products of lower-weight functions), giving this

algebra the structure of a Lie co-algebra. We will make no direct use of these higher

mathematical structures in the present paper, but these tools have been very useful in

elucidating the structure of two-loop MHV amplitudes [66, 75–77] and in particular the

relation between their coproducts and the cluster Poisson structure [78] on the kinematical

space on which they are defined.

2.2 Symbol alphabets

A fundamental assumption of the “cluster bootstrap” programme is that the symbol

alphabet relevant for n-particle amplitudes in SYM theory consists of the special col-

lection of functions called cluster A-coordinates on the kinematical configuration space

Confn(P
3) = Gr(4, n)/(C∗)n−1. We describe the space as kinematical because the n points

Zi (known as momentum twistors [79]) in P
3 define, after choosing a preferred bitwistor

I ∈ P
3 ∧ P

3, a light-like polygonal contour in Minkowski space-time via

xi ∼
Zi−1 ∧ Zi

〈Zi−1ZiI〉
, (2.6)

where 〈ZiZjZkZl〉 = det(ZiZjZkZl). The particle momenta can be identified with the null

separations of neighbouring points,

pi = xi+1 − xi , (2.7)

and the kinematical Mandelstam variables can be identified with the non-zero separations

and hence related to the momentum twistors,

(pi + pi+1 + . . . pj−1)
2 = (xi − xj)

2 =
〈Zi−1ZiZj−1Zj〉

〈Zi−1ZiI〉〈Zj−1ZjI〉
. (2.8)

There is a vast mathematical literature on cluster algebras; we refer the reader to [66]

for an introduction focused on amplitudes. The cluster A-coordinates relevant to n-particle

amplitudes consist of the Plücker coordinates 〈ijkl〉 ≡ 〈ZiZjZkZl〉 which can be formed

from the momentum twistors Zi specifying the kinematics of the scattering particles, to-

gether with certain very particular homogeneous polynomials in Plücker coordinates which

can be systematically constructed via an algorithm known as mutation.

The fact that amplitudes in SYM theory depend on the individual Zi only through the

(projective) SL(4) invariants 〈ijkl〉 is a consequence of dual conformal symmetry. The indi-

vidual four-brackets are not invariant under projective transformations of the homogeneous

coordinates Zi on P
3, so they must always appear in projectively invariant ratios.

The case n = 6 is the simplest, since mutation does not generate any A-coordinates

beyond the standard Plücker coordinates on Gr(4, 6). From the 15 individual four-brackets

– 5 –
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we can form 9 invariant ratios, for example

u=
〈6123〉〈3456〉

〈6134〉〈2356〉
, v=

〈1234〉〈4561〉

〈1245〉〈3461〉
, w=

〈2345〉〈5612〉

〈2356〉〈4512〉
,

1−u=
〈5613〉〈6234〉

〈6134〉〈2356〉
, 1−v=

〈6124〉〈1345〉

〈1245〉〈3461〉
, 1−w=

〈1235〉〈2456〉

〈2356〉〈4512〉
, (2.9)

yu=
〈1345〉〈2456〉〈1236〉

〈1235〉〈3456〉〈1246〉
, yv=

〈1235〉〈2346〉〈1456〉

〈1234〉〈2456〉〈1356〉
, yw=

〈2345〉〈1356〉〈1246〉

〈1345〉〈2346〉〈1256〉
.

This particular choice of basis has been widely used in the literature, but as mentioned

above any multiplicatively transformed set of ratios would serve just as well, if one is inter-

ested in working only at the level of symbols. The so-called hexagon bootstrap is predicated

on the assumption that all L-loop six-particle amplitudes (both MHV and non-MHV) in

SYM theory are generalised polylogarithm functions of weight k = 2L whose symbols can

be written in terms of the nine-letter alphabet shown in eq. (2.9). This hypothesis has

been successfully tested for the MHV remainder function through four loops [16, 18, 19]

and the NMHV ratio function through three loops [17, 21]. Further support for its validity

comes from a particular “dlog” representation of the all-loop integrand [80], as well as the

all-loop basis of harmonic polylogarithms found for the first few orders of these amplitudes

in an expansion around the collinear limit [37, 38].

For n > 7 the cluster algebra associated to Confn(P
3) has infinitely many A-coordi-

nates. This is not necessarily an obstacle to the cluster bootstrap programme as long as

only a finite number of them appear at any finite order in perturbation theory. For example,

it is known [65] that the two-loop n-particle MHV remainder function is written in terms

of a symbol alphabet of precisely 3
2n(n − 5)2 (projectively invariant) letters. It would be

very interesting to determine whether, for example, the symbol of the three-loop eight-

particle MHV remainder function may be written in terms of the same 108 letters which

appear already at two loops, or whether it requires more exotic cluster A-coordinates. This

amplitude has been evaluated in in two-dimensional kinematics [81], but unfortunately this

limit appears to be insufficient to decide the question.

In this paper we focus on the n = 7 Goldilocks zone, where the number ofA-coordinates

is still finite, but in addition to the Plücker coordinates 〈ijkl〉 there are 14 A-coordinates

which are bilinears of the form

〈a(bc)(de)(fg)〉 ≡ 〈abde〉〈acfg〉 − 〈abfg〉〈acde〉 . (2.10)

This notation emphasises the antisymmetry under exchange of any pair of indices in-

side parentheses, as well as antisymmetry under the exchange of the pairs amongst each

other. In the mathematical literature on cluster algebras the n cyclic Plücker coordinates

〈i i+1 i+2 i+3〉 are usually treated differently and are sometimes called “coefficients” in-

stead of “coordinates”. With this terminology, there are precisely 42 cluster A-coordinates

for the case n = 7, given by

〈2367〉 , 〈2567〉 , 〈2347〉 , 〈2457〉 , 〈1(23)(45)(67)〉 , and 〈1(34)(56)(72)〉 , (2.11)

together with their images under cyclic transformations Zi → Zi+1.

– 6 –
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Projectively invariant ratios can be formed by dressing each of these 42 coordinates

with suitable powers of the 〈i i+1 i+2 i+3〉 Plücker coordinates, as it is always possible to

construct products of the latter with helicity weight at a single point, and combine them so

as to cancel the excess weight of the points appearing in (2.11). We have found a convenient

choice to be

a11 =
〈1234〉〈1567〉〈2367〉

〈1237〉〈1267〉〈3456〉
, a41 =

〈2457〉〈3456〉

〈2345〉〈4567〉
,

a21 =
〈1234〉〈2567〉

〈1267〉〈2345〉
, a51 =

〈1(23)(45)(67)〉

〈1234〉〈1567〉
, (2.12)

a31 =
〈1567〉〈2347〉

〈1237〉〈4567〉
, a61 =

〈1(34)(56)(72)〉

〈1234〉〈1567〉
,

together with aij obtained from ai1 by cyclically relabeling Zm → Zm+j−1. While the

aij are multiplicatively independent, they are of course not algebraically independent: the

dimension of Conf7(P
3) is only six, so one could choose to parameterise all 42 of the aij in

terms of just 6 free variables if needed.

As noted in eq. (2.5) the choice of symbol alphabet is not unique or canonical. In

contrast, it has been noted [66, 82] that the coproducts of two-loop MHV remainder func-

tions R
(2)
n involve only preferred cross-ratios known as cluster X -coordinates on Confn(P

3).

None of the aij in eq. (2.12) are cluster X -coordinates for n = 7. The latter, which have

been tabulated in section 7.3 of [66], may be expressed as products of powers of the for-

mer. It would be interesting to understand if there is a connection between coproducts and

X -coordinates beyond two loops, or for non-MHV amplitudes.

It is also interesting to note that only 14 out of the 105 possible distinct 〈a(bc)(de)(fg)〉

objects appear in eq. (2.11). This is indicative of a qualitative difference between the cases

n = 6 and n > 6. For n = 6 the set of A-coordinates, as a whole, is invariant (up to

overall signs, which are never a concern inside symbols) under arbitrary permutations of

the particle labels, not just under cyclic permutations. However for n > 6, a non-cyclic

permutation would actually change the symbol alphabet. For example, switching 1 ↔ 4

would have no substantive effect on eq. (2.9) (it would rearrange the letters to an equivalent

basis), but it would completely change the heptagon basis (2.12) by introducing genuinely

new letters which are not cyclic rotations of those in eq. (2.11).

This dependence of the symbol alphabet on the choice of dihedral structure, i.e. on

a particular ordering of the particles, is in fact natural. We recall that when we refer

to “amplitude” we really mean the colour-ordered partial amplitude A(1, . . . , n) which

produces the full amplitude upon summation over non-cyclic permutations σ,

Afull =
∑

σ

Tr(T aσ(1) . . . T aσ(n))A
(
σ(1), . . . , σ(n)

)
. (2.13)

Thus, while for six particles, each colour-ordered partial amplitude is described by one and

the same class of polylogarithms, the general case requires different classes of polyloga-

rithms for different colour-ordered partial amplitudes.

The heptagon bootstrap which we initiate in this paper is based on the hypothesis

that all L-loop seven-particle amplitudes (whether MHV or non-MHV) are generalised

– 7 –
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polylogarithm functions of weight k = 2L whose symbols can be written in terms of the

42-letter alphabet shown in eq. (2.12).

2.3 Integrable words

Given a random symbol S of weight k > 1, there does not in general exist any function

whose symbol is S. A symbol of the form (2.2) is said to be integrable, (or, to be an

integrable word) if it satisfies

∑

α1,...,αk

f
(α1,α2,...,αk)
0 (φα1 ⊗ · · · ⊗ φαk

)
︸ ︷︷ ︸

omitting φαj
⊗ φαj+1

d log φαj
∧ d log φαj+1 = 0 ∀j ∈ {1, . . . , k − 1} .

(2.14)

These are necessary and sufficient conditions for a function fk with symbol S to exist.

There are 42k distinct symbols of weight k which can be written in the 42-letter

symbol alphabet shown in eq. (2.12), but only certain linear combinations of these satisfy

the integrability conditions (2.14). Determining these linear combinations is, in general, a

computationally difficult problem which we discuss in detail in section 4 below. For weight

k = 1, 2, 3, only 42, 1035, 19536 linear combinations of the 42k = 42, 1764, 74088 available

symbols are integrable, and hence correspond to actual functions.

It is relatively easy to tabulate these functions explicitly. We begin with the fact that

any generalised polylogarithm function of weight 3 or less can be written in terms of the

classical polylogarithm functions Lik(x). Since

S
(
Lik(x)

)
= −(1− x)⊗ x⊗ · · · ⊗ x

︸ ︷︷ ︸

k−1 times

(2.15)

we can allow the argument x to be any product of powers of the aij with the property

that 1− x can also be expressed as a product of powers of aij ’s. There are precisely 2310

distinct x’s of this type.

At weight 2 not all 2310 of the Li2(x)’s are independent since there are many identities

for the Li2 function. These include Li2(x) ≈ −Li2(1/x) ≈ −Li2(1 − x) (where ≈ means

modulo products of functions of lower weight, i.e. modulo O(log2) in this case), as well as

the pentagon identity. It can be checked that only 132 out of the 2310 Li2(x)’s are linearly

independent mod O(log2). Hence the vector space of irreducible weight-2 integrable words

has dimension 132.

At weight 3 we have the identities Li3(x) ≈ Li3(1/x) and Li3(x)+Li3(1− x)+Li3(1−

1/x) ≈ 0, which leave 2310/3 = 770 independent functions. There are also 22 linearly

independent D4 identities [66], so we see that there are precisely 748 linearly independent

irreducible weight-3 integrable words.

Having determined that there are 42, 132, 748 irreducible functions at weight k =

1, 2, 3, it is simple to consider all possible ways of taking products of lower-weight functions

to count the total number of functions 42, 1035, 19536 given above. Let us stress that here

we have counted all functions written from the heptagon alphabet, but we will only give

the name “heptagon function” to the subset satisfying an important analytic constraint to

which we now turn our attention.
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2.4 Physical singularities

Most of the functions discussed in the previous section have no possible relevance to ampli-

tudes. One simple criterion which eliminates many of them is locality, which imposes tight

constraints on the analytic properties of any scattering amplitude. In particular, it is a basic

consequence of locality that amplitudes may only have singularities when some intermediate

particle goes on-shell. For planar colour-ordered amplitudes in massless theories this can

only happen when some sum of cyclically adjacent momenta pi+pi+1+ · · ·+pj−1 = xj−xi
becomes null. In terms of momentum twistors, this means that amplitudes may only have

singularities when 〈i−1 i j−1 j〉 → 0 for some i, j. The Euclidean region, in which ampli-

tudes must be free of branch points, corresponds to having all non-neighbouring separations

xj − xi space-like.

The effect of this branch cut condition on the symbol of a seven-particle amplitude

is that only the seven a1j are allowed to appear in the first entry. This is because the

singularities of generalised polylogarithm functions are encoded in the first entry of their

symbols: specifically, a letter φ appearing in the first entry indicates that the corresponding

function has branch points at φ = 0 and φ =∞. From eq. (2.12) we see that only the a1j are

built entirely out of Plücker coordinates of the form 〈i−1 i j−1 j〉; the other letters contain

other brackets which could not possibly cancel between different additive terms in a symbol

since the aij are multiplicatively independent. The restriction that only 〈i−1 i j−1 j〉 may

appear in the first entry is referred to as the first-entry condition.

2.5 Heptagon functions

Following the definition of hexagon functions given in [18], we define a heptagon function

of weight k to be a polylogarithm function of weight k whose symbol may be written in the

alphabet (2.12) and which is free of branch points in the Euclidean region. As discussed in

the previous subsection, such functions have symbols in which only the letters a1j appear

in the first entry.

We follow the standard convention of counting heptagon functions of a certain weight

only modulo the addition of functions of lower weight (times numerical constants of the

appropriate transcendental weight). Although in this paper we work entirely at the level

of symbols, if we restrict to the definitions and conventions we have introduced so far, the

counting of the heptagon functions and the counting of their symbols will coincide.

More generally however, it is important to note that when additional constraints are

imposed, the number of heptagon functions satisfying them may be smaller than the number

of their symbols. In particular, it can happen that a symbol which satisfies the first-entry

condition and is well-defined in a collinear limit can be promoted to a function with physical

branch cuts only by adding certain terms of lower weight, which may end up diverging in

the collinear limit. An example of this phenomenon has already been seen at three loops

in the MHV hexagon case [16, 18].

Bearing this caveat in mind, especially in light of the fact that we will be examining

collinear limits in what follows, we will be careful to only interchange the terms “heptagon

function” and “symbol of heptagon function” when the counting coincides, and otherwise
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employ the term heptagon symbol to denote the latter in a more abbreviated fashion.

Finally, it should be understood that we are really counting dimensions of vector spaces

of symbols, not individual symbols, so when we say there is a unique symbol with certain

properties, we mean unique up to an overall multiplicative factor.

Using the algorithms described in section 4 below, we have found that the dimension of

the space of heptagon functions is 7, 42, 237, 1288, 6763 for k = 1, 2, 3, 4, 5. These numbers,

and the dimensions of various physically interesting subspaces, are tabulated in table 1.

It follows from this counting that the vector space of irreducible heptagon functions has

dimension 7, 14, 55, 196, 708 for k = 1, 2, 3, 4, 5.

3 MHV constraints

We believe that all seven-particle amplitudes in SYM theory are heptagon functions as

defined in the previous section. In this section we discuss some of the additional properties

special to MHV amplitudes, which will be the focus of most of the remainder of the paper.

3.1 The Q̄ equation

It has been argued in [65], and subsequently shown to be a consequence of a proposed

anomaly equation for the Q̄ dual superconformal symmetry generators [59], that the ex-

tended superconformal symmetry of SYM theory implies that the differential of any MHV

amplitude can be written as a linear combination of d log〈i j−1 j j+1〉. Evidently, from

eqs. (2.1) and (2.2), this implies that only the Plücker coordinates 〈i j−1 j j+1〉 may ap-

pear in the last entry of the symbol of any MHV amplitude. This is called the last-entry

condition. For the case n = 7, we see from eq. (2.12) that in our basis, only the 14 let-

ters a2j and a3j may appear in the last entry of the symbol of the seven-particle MHV

amplitude.

3.2 The collinear limit

MHV amplitudes have particularly simple behavior under collinear limits. It is baked into

the definition of the BDS-subtracted n-particle L-loop MHV remainder function [83, 84]

that it should smoothly approach the corresponding n−1-particle function in any simple

collinear limit:

lim
i+1‖i

R(L)
n = R

(L)
n−1 . (3.1)

Although we do not do so in the present paper, it would be interesting to also consider the

constraints imposed by multi-collinear limits, under which MHV remainder functions have

a more intricate behavior (see for example [8, 85]).

We can parameterise the 7 ‖ 6 collinear limit as

Z7 → Z6 + ǫ
〈1246〉

〈1245〉
Z5 + ǫτ

〈2456〉

〈1245〉
Z1 + η

〈1456〉

〈1245〉
Z2 , (3.2)

where the limit η → 0 is taken first, followed by ǫ→ 0, leaving the parameter τ fixed. The

ratios of four-brackets in eq. (3.2) could be absorbed into ǫ, η and τ , but these factors are

useful for keeping track of twistor weight.
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Under the replacement (3.2), the 42-letter heptagon symbol alphabet collapses into

the 9-letter hexagon symbol alphabet shown in eq. (2.9) plus nine additional letters: the

vanishing letters ǫ and η, as well as the seven finite letters

τ ,

1 + τ ,

〈1235〉〈1246〉+ τ〈1236〉〈1245〉 ,

〈1245〉〈3456〉+ τ〈1345〉〈2456〉 ,

〈1246〉〈2356〉+ τ〈1236〉〈2456〉 ,

〈1246〉〈3456〉+ τ〈1346〉〈2456〉 ,

〈1235〉〈1246〉〈3456〉+ τ〈1236〉〈1345〉〈2456〉 .

(3.3)

A function has a well-defined 7 ‖ 6 collinear limit only if its symbol is independent

of all nine of these letters. We can parameterise other i+1 ‖ i simple collinear limits by

appropriately relabeling eq. (3.2) cyclically.

3.3 Discrete symmetries

MHV amplitudes must satisfy several discrete symmetries. They are invariant under the

n-particle dihedral group generated by cyclic transformations Zi → Zi+1 as well as the flip

(orientation reversal operation) Zi → Zn+1−i. These discrete symmetries act simply on

the aij , taking each heptagon letter to some other, as may be read off from eq. (2.12).

A less trivial symmetry of MHV amplitudes is spacetime parity, which in momentum

twistor space is generated by the involution

Zi →Wi ≡ 〈∗ i−1 i i+1〉 . (3.4)

This notation is meant to indicate thatWi is a vector orthogonal to the hyperplane spanned

by Zi−1, Zi and Zi+1. Under parity the letters a1i and a6i are invariant, while the others

obey:

a21 ←→ a37 , a41 ←→ a51 , (3.5)

and cyclically related transformations.

4 Methods for constructing integrable words

The problem of enumerating all integrable words of length k written in a given alphabet is

computationally challenging in general. An exception is when the symbol alphabet consists

of cluster coordinates on Gr(2, n), corresponding to iterated integrals [86] on a Riemann

sphere with nmarked points, in which case the functions may be explicitly enumerated [71].

When the symbol alphabet is finite, as is the case for the 42-letter heptagon alphabet,

at least it is a finite problem. Beginning with the vector space spanned by all 42k (or fewer,

if other conditions have been imposed) length-k words, one needs simply to determine how

many linear combinations satisfy the integrability constraints (2.14). Since these are linear

constraints, the problem of enumerating all integrable words is ultimately one of linear
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algebra: it is the problem of finding a basis for the kernel of the matrix of the integrability

constraints.

The calculation may be organised in a couple of different ways, which have various

advantages and disadvantages as we now discuss.

4.1 A stepwise approach

For low weights we can use a standard recursive method of iteratively constructing inte-

grable words. First we make an ansatz for words of length k by adjoining one extra letter

in all possible ways to integrable words of length k − 1 and then we directly impose inte-

grability on the last two slots. For the final step of imposing integrability it is convenient

to calculate once, and store the value of, all possible combinations ωαβ = d log φα∧d log φβ

as explicit two-forms expressed in some choice of variables.

In general the two-forms ωαβ will be non-trivial functions of the φ’s. The condition that

eq. (2.14) should vanish identically may be translated into a collection of linear equations

by evaluating the equation at sufficiently many randomly selected points. The nullspace of

this linear system is the vector space of integrable words. There is never any concern that an

accidentally poor choice of random points may lead to an erroneously large nullspace (i.e.,

to mistakenly conclude that there are more integrable words than actually exist) because

while solving eq. (2.14) is difficult, it is completely straightforward to check whether or not

any putative solution is valid.

4.2 A bootstrap

For higher weights we have found an alternative recursive method preferable. Let A denote

the symbol alphabet, let Wk be the vector space of integrable words of length k written in

A, and let {w
(k)
i } be a basis for this space, where i = 1, . . . , dk = dim(Wk). Suppose that

we have determined such a basis for all weights up to some value k. Then we can expand

each basis element w
(k)
i as a linear combination of words of the form Wk−1⊗A in order to

make the last entry in each term explicit, i.e.

w
(k)
l =

dk−1∑

i=1

∑

α

A
(k)
liα (w

(k−1)
i ⊗ φα) (4.1)

for some rational coefficients A. Similarly, we can make the first entry in each term explicit

by expanding in A⊗Wk−1,

w(k)
m =

dk−1∑

j=1

∑

α

B
(k)
mjα (φα ⊗ w

(k−1)
j ) . (4.2)

The A and B coefficients may be easily computed once bases forWk andWk−1 are known.

Now let 1 < k1, k2 ≤ k. We may then write an ansatz for words of length k1 + k2 − 1

as a linear combination of the form

dk1∑

l=1

dk2−1
∑

j=1

C
(1)
lj (w

(k1)
l ⊗ w

(k2−1)
j ) (4.3)
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for some rational coefficients C(1). This ansatz is manifestly integrable in the first k1
entries, as well as in the last k2 − 1 entries, so the coefficients C(1) are to be determined

by imposing integrability only between entries k1 and k1 + 1. On the other hand we may

write an alternative ansatz of the form

dk1−1
∑

i=1

dk2∑

m=1

C
(2)
im (w

(k1−1)
i ⊗ w(k2)

m ) (4.4)

where integrability is manifest everywhere except between entries k1 − 1 and k1.

Now any integrable word of length k1 + k2 − 1 must of course admit an expansion of

both types simultaneously, so we can impose full integrability by equating the two forms

of the ansatz. Using the basis decompositions (4.1), (4.2) to expose the intermediate letter

in slot k1 lets us express the compatibility conditions as

∑

i,j,l,α

A
(k1)
liα C

(1)
lj (w

(k1−1)
i ⊗φα⊗w

(k2−1)
j ) =

∑

i,j,m,α

B
(k2)
mjαC

(2)
im (w

(k1−1)
i ⊗φα⊗w

(k2−1)
j ) . (4.5)

We may express these equations more simply in matrix form: we have a dk1 × dk2−1

matrix C(1), a dk1−1 × dk2 matrix C(2), and, for each value α (i.e., for each letter in

the alphabet) a dk1 × dk1−1 matrix A
(k1)
α and a dk2 × dk2−1 matrix B

(k2)
α , subject to the

dk1−1 × dk2−1 matrix relations

(A(k1)
α )TC(1) = C(2)B(k2)

α ∀α . (4.6)

Given the A’s and B’s constructed as described above, any solution (C(1), C(2)) to this

linear system determines an integrable word of length k1 + k2 − 1. Note that all of these

matrices should have rational entries.

Although we have phrased it here in a general manner, this construction lets us impose

the first- and/or last-entry conditions in a very straightforward way. For example, to im-

pose the first-entry condition we simply restrict all of the above formulas from the dk1−1, dk1
dimensional spaces of all integrable words to the d̃k1−1, d̃k−1 dimensional subspaces satisfy-

ing the first-entry condition. The same relation (4.6) holds, but with significantly smaller

A
(k1)
α , C(1) and C(2) matrices. Imposing the last-entry restriction reduces the size of C(1)

and C(2) further, and also the size of B
(k2)
α .

4.3 Comparison of the two methods

The only notable disadvantage of the new recursive approach is that the equations (4.6)

to solve involve considerably more free variables. To illustrate this point, let us describe

the construction of integrable words of length 6 satisfying both the first and last-entry

conditions. The traditional approach of subsection 4.1 involves an ansatz with 6763×14 =

94682 free parameters, corresponding (see table 1) to the number of weight-5 heptagon

functions, tensored with the 14 allowed last entries. The number of equations depends on

the number of random kinematical points at which we evaluate eq. (2.14), but should be

at least comparable to the number of free variables.
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In the new approach of subsection 4.2 we use eq. (4.6) with k1 = 4 and k2 = 3. From

table 1 we see that there are 237 (1288) heptagon functions at weight 3 (4), i.e. integrable

words of length 3 (4) satisfying the first-entry condition. Meanwhile one can check that

there are 146 (1364) integrable words of length 2 (3) satisfying the last-entry condition.

Therefore, applying eq. (4.6) to find the space of heptagon functions satisfying the last-

entry condition requires solving 237 × 146 × 42 equations for the 1288 × 146 matrix C(1)

and the 237 × 1364 matrix C(2), i.e. a total of about one and a half million equations for

over half a million free variables! (As discussed in the next section, the solution space of

this system turns out, amazingly, to have dimension four.)

However, we have found this disadvantage to be more than compensated by two signif-

icant advantages. The first is that if the bases for the Wk are chosen with reasonable care,

the matrices Aα and Bα can be made quite sparse. By solving the simplest conditions,

namely those that force a single free parameter to vanish, or express one parameter in terms

of exactly one another, we may quickly reduce the size of the linear system. This contrasts

to the traditional iterative construction described at the beginning of this section, since

the d log φα ∧ d log φβ two-forms generally have no, or only a few, vanishing elements. For

the length 6 linear system we discussed in the previous paragraphs, solving the equations

of length 1 or 2 and then partially solving some more of the shorter constraints leads to

63557 equations for the remaining 15979 free variables, a significant reduction of the size

of the linear system compared to the traditional approach.

The second great advantage of the method of subsection 4.2 is also illustrated in the

length 6 example we have used: if bases are known for all weights less than or equal to

some value k, we may immediately bootstrap directly to a basis of integrable words at

weight 2k− 1, without having to recursively construct bases at weights k+1, k+2, . . . one

step at a time, as with the traditional approach. (Because of this weight-skipping power

of the bootstrap we had in fact found the symbol of the 3-loop MHV heptagon long before

determining the total number of weight-5 heptagon functions.)

4.4 Solving the integrability constraints

Even with the improved method of subsection 4.2, starting at weight 5 the size of the linear

system encoding the integrability constraints grows to such extent that its solution becomes

the most important computational challenge of the bootstrap programme. Let us now

discuss the strategy we adopted for addressing this challenge, which required an efficiency

beyond the capabilities of standard scientific software such as Mathematica or Matlab.

After (or even before) partially reducing the integrability constraints in the form of

subsection 4.2 according to the discussion of subsection 4.3, we may bring them to a more

standard form by grouping all elements of the matrices of unknown coefficients C(1), C(2)

into a column vector X, such that eq. (4.6) becomes

A ·X = 0 . (4.7)

By virtue of eq. (4.3) or (4.4), the set of all integrable words of a given weight will thus

be given by all linearly independent solutions of eq. (4.7), or in other words by the right

nullspace of the matrix A.
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A systematic procedure for computing the nullspace is Gaussian elimination, whereby

A is brought into a column echelon form H by a transformation U ,

A · U = H , (4.8)

U = ( U1
︸︷︷︸

r

|N) , H = ( H1
︸︷︷︸

r

|0) . (4.9)

In the last line we have written out the two matrices in block matrix form, where r denotes

the rank of A, and the first nonzero element at each column of the invertible matrix H1 is

strictly below the corresponding element of the column at its left. Clearly, the submatrix

N will form a basis for the right nullspace of A.

Even though standard Gaussian elimination can be completed in a number of arith-

metic operations that depends polynomially on the size of the system, a major complication

that arises when applying it to matrices with exactly represented rational entries like A is

intermediate expression swell : generically, the size of the entries (in bits) doubles at each

step, so that each operation takes longer and longer time, eventually leading to runtimes

(and intermediate storage required) depending exponentially on the size of the system. A

review of these well-established computer algebra results may be found in [87].

The key idea for avoiding this complication is to transform our matrix from rational to

integer, for which there exist fraction-free variants of Gaussian elimination that bound the

size of intermediate expressions by virtue of Hadamard’s inequality, see [88] and references

therein. Fortunately, there already exists an efficient C library implementation of such

a variant, the Integer Matrix Library (IML) [89]. This implementation also builds on

the use of modular arithmetic to further improve the size of intermediate computations.

Finally, it reduces row and column operations to matrix multiplications, which can be done

very fast with the help of other well-known algorithms, for example [90].

First starting with the transformation of A to an integer matrix A′, we have found

that a minimal increase in the size of its entries can be achieved by dividing each column

of A with the greatest common divisor (GCD) of all its nonzero elements (as opposed to

doing this for the rows or even worse for the entire matrix). In fact, in this way we may

also track down free variables which don’t appear at all in the equations, as their columns

will have zero GCD. These will correspond to the simplest nullspace vectors, which we can

immediately construct and remove from the linear system, in order to reduce its size. If

D is the diagonal matrix whose diagonal elements are the inverses of the aforementioned

GCDs, then A,A′ will be related by A′ = A ·D, and we may obtain the nullspace of the

former from the one of the latter,

A′ ·N ′ = 0 = A ·N ⇒ N = D ·N ′. (4.10)

(Alternatively we may absorb the transformation into a rescaling of the unknown coeffi-

cients, X ′ = D ·X.)

Once we have produced A′ in this manner, we feed it as input into a custom C pro-

gramme using the function nullspaceLong of the aforementioned IML library, which is

optimised for matrices whose elements have absolute values smaller than 231 (like the ones
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we have encountered), and computes a nullspace N ′ with integer entries. Particularly for

the case of the weight 6 hexagon functions obeying last-entry conditions, we also found

advantageous to apply this procedure not to A′ directly, but to its Gram matrix A′T · A′,

exploiting the fact that the two matrices have the same nullspace,

AT ·A ·X = 0⇒ XT ·AT ·A ·X = |A ·X|2 = 0⇒ A ·X = 0 . (4.11)

In this manner we traded a 63557×15979 matrix with a much smaller square 15979 matrix

(albeit with larger entries), and in fact with slightly fewer nonzero entries (corresponding

to a fill-in of 1.6% and 6.2% approximately).

Finally it is worth mentioning that after obtaining N , whose columns span a basis of

solutions for our linear system (4.7), we can further simplify this basis with the help of

the Lenstra-Lenstra-Lovász (LLL) algorithm, see [91] for a more recent, improved version.

The latter, which has also found applications in the computation of anomalous dimensions

in SYM and QCD (see [92] and references therein), is an algorithm for finding a short,

nearly orthogonal basis for a d-dimensional integer lattice embedded in m-dimensional

space, d ≤ m. The integer matrix N has precisely the form of such a lattice, where d is the

dimension of the nullspace, and m the number of components of its vectors. In addition,

it is evident from eq. (4.7) that any rescaling of the columns of N will also be a nullspace

basis. We can thus simplify our basis further by repeating a cycle of division of its vectors

by the GCD of their nonzero elements, followed by an LLL reduction, until a new cycle

leaves the basis unchanged. The final set of solutions to the integrability constraints has

up to 3 times fewer nonzero coefficients than the initial set, leading to considerably shorter

expressions for the corresponding integrable words (4.3) or (4.4).

5 Heptagon symbols and their properties

Table 1 summarises the results of our partial analysis of the space of heptagon symbols

through weight 6 (the question marks in the table indicate numbers that we have not yet

explicitly determined). We remind the reader that in this paper we are working only at the

level of symbols and that the counting of dimensions of spaces of functions obeying various

constraints should be taken with this in mind. Following the conventions of subsection 2.5,

in this section we continue to highlight this point by referring to heptagon symbols (or

hexagon symbols) instead of the more cumbersome “symbols of heptagon functions”.

We now discuss the results of table 1 in detail, beginning with the first three lines

which contain, perhaps, no great qualitative surprises.

5.1 Collinear limits of heptagon symbols

The first line indicates the total number of heptagon symbols of a given weight, which

we have already mentioned in section 2.5. The second line indicates the number of linear

combinations of these which are finite in the collinear limit and independent of the “bad”

letters shown in eq. (3.3). Many linear combinations are not only well-defined, but actually

vanish in the 7 ‖ 6 collinear limit; the number of these is indicated on the third line.
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Weight k = 1 2 3 4 5 6

Number of heptagon symbols 7 42 237 1288 6763 ?

well-defined in the 7 ‖ 6 limit 3 15 98 646 ? ?

which vanish in the 7 ‖ 6 limit 0 6 72 572 ? ?

well-defined for all i+1 ‖ i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table 1. Heptagon symbols and their properties.

Weight k = 1 2 3 4 5 6

Number of hexagon symbols 3 9 26 75 218 643

well-defined (hence vanish) in the 6 ‖ 5 limit 0 2 11 44 155 516

well-defined (hence vanish) for all i+1 ‖ i 0 0 2 12 68 307

with MHV last entries 0 3 7 21 62 188

with both of the previous two 0 0 1 4 14 59

Table 2. Hexagon symbols and their properties.

For comparison with the hexagon bootstrap programme we include the analogous

results for n = 6 in table 2. Here there is no distinction between the cases considered

separately on lines 2 and 3 of table 1: if the 6 ‖ 5 collinear limit of a hexagon symbol is

well-defined, then it necessarily vanishes in the limit, as there are no symbols for n = 5.

The collinear limit ties the two tables together in an interesting way, because the 7 ‖ 6

collinear limit of a heptagon symbol must be a hexagon symbol, whenever the limit is well-

defined. Of course, by taking collinear limits of all possible heptagon symbol we cannot

possibly find more hexagon symbols than actually exist. This criterion partially explains

the third line of table 1. For example, at weights 1, 2, 3 we see by subtracting the third

line from the second that there are 3, 9, 26 linearly independent hexagon symbols which

can be obtained as collinear limits of heptagon symbols. These numbers match the top line

of table 2. So for weight ≤ 3 we conclude that the space of all hexagon symbols is spanned

by the collection of (well-defined) collinear limits of heptagon symbols.

Curiously this pattern breaks down at weight 4. Table 1 indicates that taking the 7 ‖ 6

collinear limit of heptagon symbols generates 646−572 = 74 linearly independent hexagon

symbols, but table 2 indicates that there exist 75 hexagon symbols. Therefore, there is a

weight-4 hexagon symbol which is not the collinear limit of any heptagon symbol!

5.2 Symbols of uniqueness: MHV heptagons at 2 and 3 loops

The real surprises in table 1 lie in the last three lines, which stand out when compared

to the last three lines of table 2. Although the total number of heptagon symbols at a

given weight is much greater (asymptotically exponentially) than the number of hexagon

symbols at the same weight, the entries on the last three lines of the heptagon table are

small compared to the corresponding entries in the hexagon table. The discovery of this

surprising fact is the unexpected “miracle” of our work.
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Let us begin with the fourth line of table 1. A heptagon symbol may have a perfectly

well-defined collinear limit as 7 ‖ 6 while being divergent, or just ill-defined, in a different

collinear limit, 4 ‖ 3, say. (Note that nowhere in the two tables have we imposed cyclic

symmetry.) MHV remainder functions must be finite and well-defined in all i+1 ‖ i simple

collinear limits. The number of heptagon symbols satisfying this criterion is indicated on

the fourth line of table 1. There are no such symbols for weight less than 4, and precisely

one such symbol at weight 4. Obviously, that symbol must be the symbol of the two-loop

seven-particle MHV remainder function R
(2)
7 ! To recap:

The symbol of the two-loop seven-particle MHV remainder function R
(2)
7 is the

only weight-4 heptagon symbol which is well-defined in all i+1 ‖ i collinear

limits.

Let us emphasise that it is not necessary to assume dihedral symmetry, parity sym-

metry, or the last-entry condition. Nor is it necessary to use the expected collinear limit

R
(2)
6 as an input to fix some remaining ambiguity (except for the overall multiplicative

normalisation). All of these properties are automatically satisfied by the unique function

described in the above box. Of course, we have checked that the symbol of the function

obtained in this manner via the bootstrap programme indeed is proportional to the known

symbol of R
(2)
7 found in [65].

It would be extremely interesting to see if this criterion continues to hold at weight 6,

i.e. to see whether the question mark in the last column of the fourth line of table 1 is also

1, but we have not yet completed this calculation. Nevertheless we note that this criterion

certainly could not work at arbitrary loop order; for example at weight 8 the square of R
(2)
7

and the four-loop seven-particle MHV remainder function R
(4)
7 are both well-defined in all

simple collinear limits, and are distinct.

Let us now turn to the last two lines of table 1, where we impose the last-entry condition

appropriate for MHV amplitudes, as discussed in section 3.1. In contrast to the general

heptagon problem, where the complexity of the linear systems involved has forced us to

leave some questions marks in the table, when we impose the last-entry condition the size

of the linear systems becomes “small” enough that we have succeeded in a full classification

through weight 6. This is certainly not to say that the calculation was easy — as explained

in section 4, determining the number “4” in the last column of table 1 required finding the

nullspace of a linear system with over half a million variables.

The number of heptagon symbols satisfying the last-entry condition is shown in the

sixth line of table 1. Let us note right away that none of the numbers are multiples of 7,

hence all of these functions are necessarily cyclically invariant, even though this was not an

input to the calculation. Also it turns out (this is trivial at weights 2 and 5, where there is

a single symbol, and is easily checked at weights 4 and 6) that they are all invariant under

the full dihedral group, as well as under the parity operation shown in eq. (3.5). Again

none of these discrete symmetries were imposed going into the calculation.

At weight 2 we find there is a unique heptagon symbol satisfying the last-entry con-

dition. The corresponding heptagon function is written explicitly, and discussed in more
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detail, in the following section. At weight 4 there are two functions: the square of the

weight-2 function, and the two-loop MHV remainder function R
(2)
7 . As we have already

seen, the latter is the only one which is well-defined in all collinear limits. At weight 5

there is again a unique symbol satisfying the last-entry condition. This weight-5 symbol,

like the weight-2 symbol, is not well-defined in the collinear limit, so these two symbols

have no role to play in connection with MHV scattering amplitudes.

Let us now focus again on the surprising “4” in the last column of table 1. From

our discussion so far we already know that there must be at least two weight-6 heptagon

functions satisfying the last-entry condition: the cube of the weight-2 function discussed

above, and the product of the weight-2 function with R
(2)
7 . The surprise is that, in addition

to the symbols of these two functions, we find only two irreducible symbols at weight 6. We

find that there is a unique linear combination of these four symbols which is finite in the

collinear limit (in this case it happens that it is sufficient to consider only the 7 ‖ 6 collinear

limit since, as mentioned above, the symbols turn out to all be cyclically invariant anyway).

We have checked that the collinear limit matches perfectly (up to an overall factor, which

is not fixed by the bootstrap) the known symbol of the three-loop MHV hexagon [16, 59].

Therefore:

The symbol of the three-loop seven-particle MHV remainder function R
(3)
7 is

the only weight-6 heptagon symbol which satisfies the last-entry condition and

which is finite in the 7 ‖ 6 collinear limit.

The only ambiguity which will be left when passing from the symbol of R
(3)
7 to an

actual function is the addition of a rational linear combination of ζ2R
(2)
7 , ζ23 and ζ6. The

collinear limit will fix all three coefficients (as well as the overall normalisation of R
(3)
7 )

uniquely.

Again we emphasise that the above conclusion does not rely on assuming that any of

the discrete symmetries are satisfied; they all emerge as “accidental” (if there is such a thing

in SYM theory) properties of the unique solution. Moreover, and even more surprisingly,

the unique solution emerges without any free parameters which need to be tuned in order

to match the correct value of the three-loop MHV hexagon in the collinear limit, let alone

to match various terms in the Regge limit and/or OPE expansion around the collinear

limit.

6 Speculations: the n-gon bootstrap at weight 2

Our results were completely surprising. Based on the hexagon bootstrap programme, we

expected that even after imposing all discrete symmetries, there would likely be hundreds

of free parameters in our heptagon ansatz which would need to be fit by comparison to

various data in the literature.

The fact that none of this turned out to be necessary, and that the heptagon bootstrap

turned out, in this sense, to be more powerful than the hexagon bootstrap, requires ex-

planation. It is, after all, a basic tenet of amplitudeology that “accidents do not happen,”

especially in SYM theory.
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Unfortunately we have only very little to offer at this time. In this section we make a

few meager observations at weight 2, where it is simple to tabulate and explicitly analyze

the relevant function spaces. Our observations here admittedly shed only a little light on

the situation at higher weight, but perhaps they serve as a useful starting point.

Let us define the cross-ratio

u1 =
〈1256〉〈2345〉

〈1245〉〈2356〉
=

a17
a13a14

(6.1)

with six other ui defined cyclically (sometimes u1 is called u14 in the literature). According

to the sixth line of table 1, there is a unique weight-2 heptagon function satisfying the last-

entry condition. This function is

7∑

i=1

Li2(1− 1/ui)− log ui log
ui+3

ui−3
. (6.2)

Let us contrast this to the situation at n = 6, where there are three functions

Li2(1− 1/u) , Li2(1− 1/v) , Li2(1− 1/w) (6.3)

which separately satisfy the last-entry condition.

Why does this happen? The functions shown in eq. (6.3) exist because of the identity

1− u

u
=
〈1356〉〈2346〉

〈1236〉〈3456〉
(6.4)

(and two cyclic images). Note that all of the brackets appearing on the right-hand side

are of the form 〈i j−1 j j+1〉. Hence all three of (1− u)/u, (1− v)/v, (1− w)/w are valid

MHV last entries.

Is there an analogue to the identity (6.4) for n = 7? That is, does there exist an identity

which allows products of ui’s and 1− ui’s to be rewritten only in terms of 〈i j−1 j j+1〉’s?

It is simple to check that there are precisely seven such identities:

1− u1
u1

1− u7
u7

1

1− u4
=
〈1235〉〈1247〉〈1345〉〈2456〉

〈1234〉〈1257〉〈1456〉〈2345〉
(6.5)

and its cyclic permutations. If it were not for the factor 1/(1 − u4) on the left, then

the functions Li2(1 − 1/ui) + Li2(1 − 1/ui+1) would satisfy both the first- and last-entry

conditions for all i. Instead, only the particular linear combination shown in eq. (6.2) is

allowed.

It is straightforward to extend this analysis to higher n. The total number of weight-2

n-gon functions grows very rapidly (in fact, as O(n4)) with n. How many of those functions

satisfy the last-entry condition? Obviously, it is to be expected that there should be very

strong interplay between the first- and last-entry conditions at weight 2, but we find an

unexpectedly strong result: we find that there are precisely 3 n-gon functions at weight 2

satisfying the last-entry condition when n = 6 or when n is a multiple of four. For all other

n, we find that there is only one such function!

– 20 –



J
H
E
P
0
3
(
2
0
1
5
)
0
7
2

As we go to higher weight we might expect the interplay between the first- and last-

entry conditions to become less constraining. This expectation may or may not turn out

to be true asymptotically at large weight, but tables 1 and 2 indicate little weakening of

this interplay for k even as high as 6. Clearly it would be interesting to map out the space

of n-gon functions at higher weight.

7 Discussion

We have found that the heptagon bootstrap for computing (symbols of) seven-point MHV

amplitudes in SYM is unreasonably effective in comparison with the hexagon bootstrap,

at least through three loops. In particular, the three-loop heptagon remainder function is

the unique weight-6 heptagon function which satisfies the last-entry condition and which

is finite in the 7 ‖ 6 collinear limit. Evidently the conceptually simplest way of computing

the three-loop hexagon remainder function is, somewhat perversely, to first compute the

heptagon remainder and take its collinear limit.

Naturally, it would be very interesting to further explore the power of the heptagon

bootstrap at higher loops or by relaxing the last-entry condition to those appropriate for

NMHV amplitudes. It would also be interesting to explore the n-gon bootstrap for higher

n. Our analysis at weight-2 in section 6 suggests that the first- and last-entry conditions are

much tighter in combination than each is individually. It would be important to understand

whether this is an accident at weight-2 (and whether the success of our heptagon bootstrap

was similarly accidental), or whether there is some fundamental feature of the structure of

n-gon functions which currently evades our understanding.

The cases n = 6, 7 are special because we believe that we know the appropriate symbol

alphabets for amplitudes (both MHV and non-MHV) to all loop order, based on the fact

that the associated cluster algebras have finitely many A-coordinates. However starting

at n = 8 their number is infinite, so there is the possibility that new, more exotic symbol

letters could start appearing at each loop order (or even when we go from MHV to non-

MHV at a given loop order). Anything we could learn about the pattern of symbol letters

which appear at higher n and at higher weight would be very valuable.

In section 5 we found an indication that thinking about the collinear limits of n-gon

functions may lead to a class of previously underappreciated constraints. Specifically we

found that there exists a hexagon function at weight 4 which is not the collinear limit of

any heptagon function. Similarly, it is natural to expect that there may be heptagon func-

tions which are not the collinear limit of any octagon functions, that there are hexagon

functions which are not the double-collinear limit of any octagon function, etc. In this

way we see that the consistency of collinear limits places an entire infinite tower of poten-

tially very powerful constraints on the bootstrap. Along these lines, it has recently been

shown [82] that the collinear limit, together with dihedral symmetry and the first- and

last-entry conditions, uniquely fixes the two-loop n-point MHV amplitude modulo classical

polylogarithm functions for all n. The results of this paper suggest that even full symbols,

if not full functions (which we have not addressed), may be surprisingly accessible via the

n-gon bootstrap.
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Finally, it is of course important to construct a complete functional representation for

R
(3)
7 . This would require first constructing a heptagon function of weight 6 with the correct

symbol, obeying the differential Q̄ constraint and finite in the collinear limit. After this

there will be beyond-the-symbol ambiguities corresponding to the addition of a numerical

constant (in particular a linear combination of ζ23 and ζ6) as well as a term proportional to

ζ2R
(2)
7 . Both of these ambiguities will be uniquely fixed by the simple collinear limit. Hav-

ing an explicit functional form for R
(3)
7 would not only allow for detailed checks against the

available predictions for its behaviour in the collinear [31, 33] and multi-Regge limits [51–

53], but would also shed light on yet unknown key quantities in these approaches. These

include multi-particle scalar and fermion pentagon transitions, or higher BFKL eigenval-

ues, impact factors and central emission vertices. For example it would be great if our

result could guide the generalisation of the all-loop formulas for the hexagon in the multi-

Regge limit [41], to the heptagon. The continuation of this programme for n = 8 will have

an even more interesting interplay with the BFKL approach, where a new bound state of

three reggeised gluons first appears, and could moreover push forward our knowledge of

the strong coupling behaviour of the amplitudes [93, 94].
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