1 TRPA1 gene polymorphisms and childhood asthma

- 2 Valentina Gallo¹, PhD, F Nicole Dijk², MD, John W Holloway³, PhD, Susan M
- 3 Ring^{4,5}, PhD, Gerard H Koppelman², MD PhD, Dirkje S Postma⁶, MD PhD, David P
- 4 Strachan⁷, MD, Raquel Granell⁴, PhD, Johan C. de Jongste, MD, PhD⁸, Vincent W.V.
- 5 Jaddoe, MD, PhD^{9,10,11}, Herman T. den Dekker, MD^{8,9,10}, Liesbeth Duijts,

6 MD, $PhD^{8,10,12}$, A John Henderson^{4*}, MD, Seif O Shaheen, PhD^{1*} .

7

8 ¹Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, London, UK; ²University of Groningen, University Medical 9 10 Center Groningen, Groningen Research Institute for Asthma and COPD, Department 11 of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; ³Human Development and Health, Faculty of Medicine, 12 13 University of Southampton, Southampton, UK; ⁴School of Social and Community Medicine, University of Bristol, Bristol, UK; ⁵MRC Integrative Epidemiology Unit at 14 15 the University of Bristol, University of Bristol, Bristol, UK; ⁶University of Groningen, University Medical Center Groningen, Groningen Research Institute for 16 Asthma and COPD, Department of Pulmonology, Groningen, The Netherlands;⁷St 17 George's, University of London, London, UK; ⁸Department of Pediatrics, Division of 18 19 Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands, ⁹The Generation R Study Group, Erasmus University Medical Center, 20 Rotterdam, The Netherlands, ¹⁰Department of Epidemiology, Erasmus University 21 Medical Center, Rotterdam, The Netherlands, ¹¹Department of Pediatrics, Erasmus 22 University Medical Center, Rotterdam, The Netherlands, ¹²Department of Pediatrics, 23 24 Division of Neonatology, Erasmus University Medical Center, Rotterdam, The 25 Netherlands.

26 *joint senior authors

- 27 **Running title:** *TRPA1* and childhood asthma
- 28
- 29 Correspondence and reprint requests to: Prof Seif Shaheen, Centre for Primary Care
- 30 and Public Health, Blizard Institute, Barts and The London School of Medicine and
- 31 Dentistry, 58 Turner Street, London E1 2AB.
- 32 Email: s.shaheen@qmul.ac.uk
- 33 Tel: +44 (0)20 7882 2480; Fax: +44 (0)20 7882 2552
- 34
- 35 *Word count: 2813*
- 36 Number of tables: 4
- 37 Number of figures: 1
- 38 *List of online material*: *Table E1, Table E2, Figure E1, Figure E2, Figure E3, Figure*
- 39 *E4, Figure E5, Figure E6, Supporting information*

40	The UK Medical Research Council, the Wellcome Trust (Grant ref: 102215/2/13/2)
41	and the University of Bristol provide core support for ALSPAC. The PIAMA study is
42	supported by grants from the Dutch Lung Foundation (grant numbers 3.4.01.26,
43	3.2.06.022, and 3.2.09.081JU), ZonMw (the Netherlands Organization for Health
44	Research and Development), the Netherlands Ministry of Spatial Planning, Housing
45	and the Environment, the Netherlands Ministry of Health, Welfare and Sport. Genome
46	wide genotyping in PIAMA was supported by BBMRI-NL (CP29) and the European
47	Commission (Gabriel study, contract number 018996). FND is supported by a grant
48	from the Ubbo Emmius Foundation. The Generation R Study is made possible by
49	financial support from the Erasmus Medical Center (Rotterdam), the Erasmus
50	University Rotterdam and the Netherlands Organization for Health Research and
51	Development (ZonMw; 21000074). Dr Vincent Jaddoe received an additional grant
52	from the Netherlands Organization for Health Research and Development (ZonMw-
53	VIDI) and a European Research Council Consolidator Grant (ERC-2014-CoG-
54	648916). Dr Liesbeth Duijts received funding from the Lung Foundation Netherlands
55	(no 3.2.12.089; 2012).
56	

00	Shaheen SO
61	Title: TRPA1 gene polymorphisms and childhood asthma
62	Pediatr Allergy Immunol 2016
63	
64	Background: Animal data have suggested that the transient receptor potential
65	ankyrin-1 (TRPA1) ion channel plays a key role in promoting airway inflammation in
66	asthma and may mediate effects of paracetamol on asthma, yet confirmatory human
67	data are lacking. To study associations of TRPA1 gene variants with childhood asthma
68	and total IgE concentration, and interactions between TRPA1 and prenatal
69	paracetamol exposure on these outcomes.
70	Methods: We analysed associations between 31 TRPA1 single nucleotide
71	polymorphisms (SNPs) and current doctor-diagnosed asthma and total IgE
72	concentration at 7.5 years in the Avon Longitudinal Study of Parents and Children
73	(ALSPAC) birth cohort. We sought to confirm the most significant associations with
74	comparable outcomes in the Prevention and Incidence of Asthma and Mite Allergy
75	(PIAMA) and Generation R birth cohorts. In ALSPAC we explored interactions with
76	prenatal paracetamol exposure.
77	Results: In ALSPAC there was strong evidence for association between six SNPs and
78	asthma: rs959974 and rs1384001 (per allele odds ratio for both: 1.30 (95% CI: 1.15-
79	1.47), P=0.00001), rs7010969 (OR 1.28 (1.13-1.46), P=0.00004), rs3735945 (OR
80	1.30 (1.09-1.55), P=0.003), rs920829 (OR 1.30 (1.09-1.54), P=0.004) and rs4738202
81	(OR 1.22 (1.07-1.39), P=0.004). In a meta-analysis across the three cohorts the pooled
82	effect estimates confirmed that all six SNPs were significantly associated with

57 Abstract

- 58 Gallo V, Dijk FN, Holloway JW, Ring SM, Koppelman GH, Postma DS, Strachan
- 59 DP, Granell R, de Jongste JC, Jaddoe VWV, den Dekker HT, Duijts L, Henderson AJ
- 60 Shaheen SO

83	asthma. In ALSPAC, TRPA1 associations with asthma were not modified by prenatal
84	paracetamol, although associations with IgE concentration were.
85	Conclusion: This study suggests that TRPA1 may play a role in the development of
86	childhood asthma. (249 words)
87	
88	Key words: ALSPAC, asthma, birth cohort, Generation R, gene-environment
89	interaction, genotype, paracetamol, PIAMA, prenatal exposure, TRPA1,
90	
91	Correspondence and reprint requests to: Prof Seif Shaheen, Centre for Primary Care
92	and Public Health, Blizard Institute, Barts and The London School of Medicine and
93	Dentistry, 58 Turner Street, London E1 2AB.
94	Email: s.shaheen@qmul.ac.uk
95	Tel: +44 (0)20 7882 2480; Fax: +44 (0)20 7882 2552
96	
97	Abbreviations used:
98	TRPA1: Transient receptor potential ankyrin-1
99	ALSPAC: Avon Longitudinal Study of Parents and Children
100	PIAMA: Prevention and Incidence of Asthma and Mite Allergy
101	SNP: Single nucleotide polymorphism
102	PAF: Population-attributable fraction
103	LD: Linkage disequilibrium

104 Introduction

105 The transient receptor potential ankyrin-1 (TRPA1) ion channel is expressed on 106 peripheral endings of primary afferent neurons and is a highly conserved sensor of 107 noxious reactive electrophiles; these form covalent adducts with the receptor to 108 activate the neurons (1). In particular, TRPA1 is a major oxidant sensor in the 109 airways (2), sensing exogenous airborne irritants as well as endogenous by-products 110 of oxidative stress (3). In keeping with this function, the TRPA1 receptor is thought 111 to play a key role in the cough reflex (4) and in promoting airway inflammation in 112 asthma (3, 5). Experiments using knock-out mice and TRPA1 antagonists have shown 113 that TRPA1 plays a critical role in allergic and non-allergic neurogenic airway 114 inflammation and hyperreactivity (6, 7). However, evidence implicating TRPA1 in 115 asthma in humans is lacking. 116 Following our initial discovery of an association between frequent paracetamol 117 (acetaminophen) use and asthma in adults (8), we and others have reported that 118 maternal use of paracetamol in pregnancy was associated with an increased risk of 119 childhood asthma, wheezing and elevated total IgE concentration (9). Nassini et al 120 subsequently showed in a rodent model that systemic administration of therapeutic 121 doses of paracetamol led to generation of its electrophilic and reactive metabolite in 122 the lung which, in turn, caused neurogenic airway inflammation through activation of 123 TRPA1; they proposed that this mechanism might explain the epidemiological link 124 between paracetamol exposure and asthma in humans (10). 125 In a population based birth cohort we investigated whether TRPA1 (8q13) gene 126 variants are associated with childhood asthma and IgE concentration, and whether 127 these associations were modified by prenatal exposure to paracetamol. We also sought 128 to obtain confirmatory evidence for the most significant SNP associations in the

129	Prevention and Incidence of Asthma and Mite allergy (PIAMA) and Generation R
-----	--

- 130 birth cohorts. Methods
- 131

132 ALSPAC

133 <u>Subjects</u>

- 134 The Avon Longitudinal Study of Parents and Children (ALSPAC) is a population-
- 135 based birth cohort that recruited 14,541 predominantly white pregnant women
- resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st
- 137 December 1992. Of these pregnancies there were 14,062 live births and 13,988
- 138 children alive at one year of age. The cohort has been followed since birth with annual
- 139 questionnaires and, since age 7 years, with objective measures in research clinics. The
- 140 study protocol has been described previously (11, 12) (further information at:
- 141 <u>http://www.alspac.bris.ac.uk</u>). Ethics approval was obtained from the ALSPAC Ethics
- 142 and Law Committee (IRB 00003312) and the Local Research Ethics Committees.

143

144 <u>Outcomes</u>

- 145 When the children were 7.5 years old, mothers were asked: 'Has your child had any
- 146 of the following in the past 12 months: wheezing; asthma?'. Children were defined as
- 147 having current doctor-diagnosed asthma (primary outcome) if mothers responded
- 148 positively to the question 'Has a doctor ever actually said that your study child has
- 149 asthma?' and positively to one or both of the questions on wheezing and asthma in the
- 150 past 12 months.
- 151 Serum total IgE concentration (kU/l) was measured by fluoroimmunoassay using the
- 152 Pharmacia UNICAP system (Pharmacia & Upjohn Diagnostics AB, Uppsala,
- 153 Sweden) at 7 years.
- 154

155 <u>Prenatal paracetamol exposure</u>

156 Mothers were asked at 18 to 20 weeks how often they had taken paracetamol ('not at

157 all, sometimes, most days, every day') during their pregnancy. At 32 weeks they were

asked the same question about use in the previous 3 months. Hence we defined use of

159 paracetamol (Yes/No) in early (<18-20 weeks) and late (20-32 weeks) pregnancy.

160

161 <u>Genotyping and selection of *TRPA1* SNPs</u>

162 DNA samples were extracted from lymphoblastoid cell lines, cord blood, or venous

163 blood collected at 7 years of age, with a small number extracted from venous blood

164 collected at 43-61 months. A total of 9,912 subjects were genotyped at 500,527 SNPs

165 using the Illumina HumanHap550 quad genome-wide SNP genotyping platform.

166 After applying rigorous exclusion criteria genotype data were available for 8,365

167 unrelated individuals (see Online Supplement for further details).

168 We identified 29 SNPs in *TRPA1* (8q13) which had been included in a genetic

association study of cough (13). The participating cohorts in that study were part of a

170 large European GWAS of asthma (the GABRIEL consortium) (14). All SNPs within

171 the gene region had been selected, allowing capture of the majority of common

172 haplotype variations of the gene (13, 14). In addition, we identified 11 SNPs (four of

173 which had already been selected) associated with various pain phenotypes (15-17) and

174 with menthol preference in smokers (18). Of the 36 potential SNPs, five had not been

typed or could not be imputed, leaving 31 SNPs to be analysed. Of these SNPs, 21

176 were genotyped and 10 were imputed. Where genotyped data were missing these

177 were replaced by imputed data if possible (see Online Table E1 and Supplement for

178 further details).

179

180 Statistical analysis of ALSPAC data

181	Although the GWAS dataset only included individuals of European ancestry, we
182	excluded mother-child pairs from all analyses if the mother's reported ethnicity was
183	non-white or unknown (14.1% of the cohort) to further reduce potential confounding
184	by population substructure. We used logistic regression to analyse relations of child
185	TRPA1 genotype with asthma, and linear regression to analyse associations with log-
186	transformed total IgE concentration. All analyses were carried out using Stata
187	(version 10.1). Univariate gene main effects were evaluated as continuous per allele
188	effects and using between genotype comparisons. We used Haploview (19) to
189	compute linkage disequilibrium (LD) statistics for the 31 TRPA1 SNPs of interest.
190	The population-attributable fraction (PAF) was calculated using the formula: PAF=1-
191	PUF, where PUF is the population unattributable fraction (20). We used the Nyholt
192	approach (21) updated by Li and Ji (22) to estimate the effective number of
193	independent marker loci in our data (12.8 out of 31) and the threshold required to
194	keep type I error rate at 5% after adjusting for multiple testing (P
195	value=0.05/12.8=0.004).
196	

197 PIAMA and Generation R (Netherlands)

The Prevention and Incidence of Asthma and Mite Allergy (PIAMA) birth cohort is a
multi-centre study that selected 4146 pregnant women in The Netherlands in 1996/97
(23, 24). The Generation R Study is a population-based prospective cohort study of
pregnant women and their children in Rotterdam (25, 26). All children were born
between April 2002 and January 2006, and currently followed until young adulthood.
Current doctor-diagnosed asthma at 8 years and at 6 years was defined in PIAMA and
Generation R, respectively (see Online Supplement for further details).

205	We analysed the associations between	TRPA1 (for SNPs most	significantly associated
-----	--------------------------------------	----------------------	--------------------------

- with asthma in ALSPAC) and asthma separately in PIAMA and Generation R, and
- then undertook a meta-analysis across the three cohorts, using a fixed effects model.

208

209 Other European asthma studies

- 210 In other European studies included in the GABRIEL study (14) we explored
- 211 associations between doctor-diagnosed asthma 'ever' (of childhood onset) and the
- 212 TRPA1 SNPs most significantly associated with asthma in ALSPAC. We carried out
- 213 these subsidiary analyses using publicly available data from GABRIEL, and meta-
- analysed the data using a fixed effects model.
- 215
- 216

217 **Results**

218 In ALSPAC, information on current doctor-diagnosed asthma at age 7.5 years was

219 obtained for 7,221 children. After excluding non-white mother-child pairs, and

applying quality criteria to imputed genotype data, TRPA1 genotype data were

available for 6,901 children, generating a final sample of 5,141 white children with

complete data on asthma and genotype, of whom 614 (11.9%) children had current

doctor-diagnosed asthma at age 7.5 years. 53.9% and 42.3% of children were exposed

to paracetamol *in utero* during early and late pregnancy, respectively. Data on total

IgE concentration and genotype were available for 3,834 children.

226 TRPA1 genotype data are summarised in Table E1. TRPA1 genotype frequencies did

227 not deviate from Hardy-Weinberg equilibrium for the 31 SNPs of interest (P>0.05). In

228 PIAMA, information on current doctor-diagnosed asthma at age 8 years was obtained

for 3,253 children, and *TRPA1* genotype data were available for 1,968 children,

230 generating a final sample of 1,877 white children with data on asthma and genotype,

of whom 89 (4.7%) had current doctor-diagnosed asthma at age 8 years. In

232 Generation R, data on TRPA1 genotype and current doctor-diagnosed asthma at age 6

233 years were available for 2,073 children, after excluding twins and restricting to

234 Caucasians only, based on genetic ancestry. Of these, 64 children (3.1%) had current

235 doctor-diagnosed asthma.

236

237 Gene main effects in ALSPAC

Table 1 shows the per allele associations between *TRPA1* genotypes and asthma in

ALSPAC. Of the 31 SNPs tested, 13 were associated with asthma (P<0.05). The six

240 SNPs (five genotyped, one imputed) that were most significantly associated with

asthma (P<0.005) were: rs959974 and rs1384001 (per allele odds ratio for both SNPs:

242 1.30 (95% CI: 1.15-1.47), P=0.00001), rs7010969 (OR 1.28 (1.13-1.46), P=0.00004),

243 rs3735945 (OR 1.30 (1.09-1.55), P=0.003), rs920829 (OR 1.30 (1.09-1.54), P=0.004) and rs4738202 (OR 1.22 (1.07-1.39), P=0.004). Adjustment for multiple testing 244 245 suggested that associations with these six SNPs (and especially the first four) were 246 unlikely to have arisen by chance (adjusted P value threshold 0.004). With a more rigorous P value threshold of 0.001, evidence against the null hypothesis was still 247 248 very strong for 3 SNPs. 249 Additional effect estimates using between genotype comparisons for these six SNPs 250 in relation to asthma are shown in Table 2. This shows that, for four of these SNPs, 251 children who were homozygous for the risk allele were approximately 70% more 252 likely to have asthma than children who were homozygous for the non-risk allele. Of 253 the 31 SNPs tested, only three (rs959974, rs1384001, rs4738202) were nominally 254 associated with total IgE concentration (P<0.05) (Table E2). 255 Figure E1 in the online supplement shows LD (r^2) between the 31 *TRPA1* SNPs; 29 of 256 257 those SNPs are located in four LD blocks. Of the six SNPs most significantly 258 associated with asthma, two (rs959974 and rs1384001) were in one block, rs4738202 259 was in another block, and rs7010969, rs3735945 and rs920829 were in a third block. 260 We chose three of the most significantly associated SNPs from different LD blocks 261 (rs959974, rs7010969 and rs4738202) to separately estimate the proportion of asthma 262 in the population attributable to *TRPA1* genotype (PAF). The PAF estimates were,

263 respectively, 21.7% (95% CI: 9.6-32.2; P=0.001), 29.1% (12.5-42.6; P=0.001) and

264 30.7% (7.7-47.9; P=0.012).

265

266 Gene main effects in PIAMA and Generation R and meta-analysis

- 267 Table 2 also shows the associations between the six SNPs most significantly
- associated with asthma in ALSPAC and asthma in the PIAMA and Generation R

269 cohorts. In PIAMA there was some evidence for association ($P \le 0.05$) with asthma 270 for the three SNPs most significantly associated in ALSPAC, with effect estimates 271 that were larger than those in ALSPAC. In Generation R none of the six SNPs were 272 associated with asthma. Figure 1 shows the Forest plots for the weighted per-allele 273 associations of the six SNPs with asthma. For all six SNPs the pooled effect estimates 274 confirmed significant associations with asthma. 275 276 Gene main effects in other European asthma studies 277 Figures E2-E6 online show Forest plots for the meta-analysis of the associations 278 between TRPA1 and childhood-onset asthma across GABRIEL studies, for five of the 279 six SNPs most significantly associated with asthma in ALSPAC (rs920829 was not 280 genotyped in GABRIEL; it was imputed in ALSPAC, but is in strong LD with 281 rs3735945). The plots compare associations with current doctor-diagnosed asthma in 282 ALSPAC and PIAMA versus associations with doctor-diagnosed asthma 'ever' (of 283 childhood-onset) across other GABRIEL studies, with three studies which were

exclusively of children separated from remaining studies. The pooled effect estimates

do not confirm associations with asthma 'ever'. Furthermore, there was evidence of

substantial heterogeneity in the effect estimates for the three childhood GABRIEL

studies.

288

289 <u>Paracetamol analyses in ALSPAC</u>

290 For the 13 SNPs associated with asthma (P < 0.05) we stratified the per allele

associations by early and late gestation paracetamol exposure. Associations were

similar in exposed and unexposed children for the six SNPs most significantly

associated with asthma overall (Table 3) and for the remaining 7 SNPs (data not

shown). For the three SNPs associated with IgE concentration (P<0.05) we similarly

- stratified the per allele associations by prenatal paracetamol exposure (Table 4).
- 296 *TRPA1* was associated with IgE concentration amongst children who were exposed,
- especially in later gestation, but not amongst non-exposed children (P interaction 0.02
- 298 for rs959974 and rs1384001, and 0.06 for rs4738202).
- 299

300 Discussion

301 We found strong evidence for an association between *TRPA1* polymorphisms and 302 asthma in children at 7-8 years of age in the population-based ALSPAC birth cohort. 303 Of the six SNPs most significantly associated with asthma in ALSPAC, three showed some evidence of association (and larger effect estimates) with a similar asthma 304 305 phenotype in the PIAMA birth cohort, whilst none of the six SNPs were associated 306 with asthma at 6 years in Generation R. However, both PIAMA and Generation R 307 were considerably smaller, and had a lower prevalence of current asthma, than 308 ALSPAC, and hence lacked statistical power to replicate findings individually. When 309 we meta-analysed across all three birth cohorts the pooled effect estimates confirmed 310 associations with asthma overall. Given the *a priori* selection of SNPs, the level of 311 statistical significance for the 'top hits' in the ALSPAC discovery dataset, and 312 supportive evidence in PIAMA and following meta-analysis across all three cohorts, 313 we believe these results may represent a causal influence of the TRPA1 gene on the 314 risk of active childhood asthma. Other genes in the vicinity of TRPA1 are unlikely to 315 explain our findings as there is little apparent LD extending between TRPA1 and other 316 nearby genes (1000 Genomes Phase 1 CEU (www.1000genomes.org)). To our 317 knowledge these findings are novel, and suggest that TRPA1 may play a role in the 318 development of childhood asthma. Whilst a recent study reported correlations 319 between two TRPA1 polymorphisms and asthma control in children with asthma (27), 320 it was underpowered and statistical evidence was weak. 321 322 Importance of asthma phenotype

323 There is likely to be genetic heterogeneity of asthma phenotypes in childhood (28), as

demonstrated for adult asthma phenotypes (29). This may partly explain why TRPA1

325 was not associated with asthma in the other European studies. A limitation of the

326 GABRIEL asthma GWAS was that the asthma 'ever' phenotype was not directly 327 comparable to the 'current' asthma phenotype used in ALSPAC, PIAMA and 328 Generation R; a doctor diagnosis of asthma 'ever' is likely to comprise many different 329 phenotypes or endotypes which, when analysed together, may lead to dilution of effects of genetic variants (30). For example, in children, 'asthma ever' may capture 330 331 early transient childhood wheezing. We confirmed that the effect estimates for the 332 association between *TRPA1* and asthma were smaller in ALSPAC, and especially in 333 PIAMA, when we analysed 'ever' asthma rather than 'current' asthma in these 334 cohorts. Other possible reasons for the lack of association across the other European 335 studies include differences in how cases were selected, which may have contributed to 336 heterogeneity of the asthma phenotype; unreliability of recall of childhood onset 337 asthma amongst the adult studies in GABRIEL; and variation in the prevalence of 338 environmental exposures that interact with the gene across different European 339 populations (31).

340

341 <u>Mechanisms</u>

342 Given that reactive oxygen species are thought to play an important role in the 343 pathogenesis of airways disease (32), and the TRPA1 receptor is an important oxidant 344 sensor expressed on sensory neurons innervating the airways (2), it seems plausible 345 that TRPA1 may play a critical role in asthma pathogenesis. Activation of TRPA1 346 can, through release of neuropeptides, promote neurogenic airway inflammation (3, 5). Conversely, in murine models of airway inflammation induced by allergen, 347 348 cigarette smoke and paracetamol, deletion or antagonism of TRPA1 has been shown 349 to reduce airway inflammation and hyper-reactivity (6, 10, 33). However, as 350 neurogenic inflammation has not been demonstrated in human asthma, there are two 351 other mechanisms to consider. First, TRPA1 may also influence airway inflammation

non-neuronally, as confirmed in animals (34), and recent *in vitro* studies have shown
that *TRPA1* is functionally expressed in human lung, including pulmonary epithelial
cells (34, 35), smooth muscle cells (34), and lung fibroblasts (35). Second, a neuronal
reflex mechanism may be involved, as suggested by experiments in rodents (36).
The lack of modification of the association between *TRPA1* and asthma by prenatal
paracetamol exposure suggests that, even if fetal TRPA1 is activated by exposure to

359 the metabolite of paracetamol (10) *in utero*, this mechanism is unlikely to explain the

360 association between prenatal paracetamol and asthma. The apparent interaction we

361 observed between prenatal paracetamol exposure and *TRPA1* genotype on IgE

362 concentration is intriguing, but may be a chance finding and we cannot offer a
363 mechanistic explanation. We speculate that other prenatal and postnatal oxidant

364 exposures may be more important than paracetamol as activators of TRPA1, thus

365 contributing to the association we have found between *TRPA1* genotype and

366 367

368 Conclusions and future work

childhood asthma.

Our findings suggest, for the first time, that TRPA1 may play a role in the development of childhood asthma. In terms of therapeutic implications, these data lend further support to the proposition that TRPA1 antagonists may have promising potential in asthma (4). It is important that our findings are further replicated in adequately powered studies with comparable asthma phenotypes, and we plan to explore interactions between *TRPA1* and other oxidant exposures such as tobacco smoke and air pollution on childhood respiratory outcomes.

376 **Contributors**

- 377 SOS conceived the study analyses, searched the literature, supervised the ALSPAC
- analyses and drafted the manuscript. VG carried out the ALSPAC analyses, with
- additional contribution from RG; FND and GHK carried out the PIAMA analyses;
- 380 HTD carried out the Generation R analyses; DPS carried out the meta-analysis of
- 381 GABRIEL data. JWH and GHK advised on analysis and interpretation of genetic
- data; SMR was responsible for the ALSPAC genotyping; AJH was responsible for all
- respiratory and allergy phenotype data collection in ALSPAC; GHK and DSP were
- 384 responsible for DNA, respiratory and allergy phenotype data collection in PIAMA
- and supervised data analyses; JCJ, VWVJ and LD were responsible for DNA,
- 386 respiratory and allergy phenotype data collection in Generation R. All authors
- 387 contributed to and approved the final version of the report. SOS and AJH will serve as
- 388 guarantors for its contents.
- 389

390 Conflict of interest statement

- 391 None of the authors have any conflicts of interests to declare.
- 392

393 Acknowledgments

394 We are extremely grateful to all the families who took part in the ALSPAC study, the

395 midwives for their help in recruiting them, and the whole ALSPAC team, which

396 includes interviewers, computer and laboratory technicians, clerical workers, research

397 scientists, volunteers, managers, receptionists and nurses. We would like to thank all

- 398 participants of the PIAMA birth cohort, and Roger Newson for advice on calculation
- 399 of population attributable fraction. ALSPAC GWAS data were generated by Sample
- 400 Logistics and Genotyping Facilities at the Wellcome Trust Sanger Institute,
- 401 Cambridge, UK, and LabCorp (Laboratory Corporation of America), Burlington, NC,

402	USA, using support from 23andMe. The Generation R Study gratefully acknowledges
403	the contributions of the children and their parents, the general practitioners, the
404	hospitals and the midwives and pharmacies in Rotterdam. They thank M. Jhamai, M.
405	Ganesh, P. Arp, M. Verkerk, L. Herrera and M. Peters for their help in creating,
406	managing and performing quality control for the genetic database. Also, they thank K.
407	Estrada and C. Medina-Gomez for their support in the creation and analysis of
408	imputed data. The Generation R Study is conducted by the Erasmus Medical Center in
409	close collaboration with the School of Law and the Faculty of Social Sciences of
410	Erasmus University Rotterdam, the Municipal Health Service, Rotterdam area, the
411	Rotterdam Homecare Foundation and the Stichting Trombosedienst &
412	Artsenlaboratorium Rijnmond (STAR-MDC; Rotterdam). The generation and
413	management of genotype data for the Generation R Study were performed at the
414	Genetic Laboratory of the Department of Internal Medicine at Erasmus Medical
415	Center.
416	

- 418 Table 1: Per-allele associations between child *TRPA1* SNPs and current doctor
- 419 diagnosed asthma at 7.5 years in ALSPAC
- 420

SNP	Position	Doc	tor diagnosed asthma	at 7 years
		Ν	OR (95% CI)	P value
rs12540984	72927920	5110	1.00 (0.84-1.18)	0.985
rs4738201	72930711	5140	1.16 (1.03-1.31)	0.013
rs6996723	72933632	5141	0.88 (0.75-1.04)	0.137
rs7827617	72934032	5141	1.21 (1.04-1.41)	0.013
rs959974	72935839	5141	1.30 (1.15-1.47)	0.00001
rs959976	72936145	5141	1.22 (1.05-1.42)	0.008
rs1384001	72936237	5141	1.30 (1.15-1.47)	0.00001
rs13279503	72939626	5116	1.08 (0.95-1.22)	0.222
rs4738202	72940861	5141	1.22 (1.07-1.39)	0.004
rs13280644	72948588	5141	0.82 (0.66-1.02)	0.075
rs13249568	72949209	5141	0.95 (0.83-1.09)	0.468
rs10504523	72951490	5141	0.95 (0.83-1.09)	0.484
rs1025926	72953158	5141	1.14 (1.00-1.30)	0.055
rs10504524	72955891	5141	0.95 (0.83-1.09)	0.479
rs13255063	72959535	5140	0.95 (0.83-1.09)	0.476
rs1025927	72963135	5138	0.82 (0.66-1.01)	0.067
rs1025928	72963258	5141	0.94 (0.83-1.07)	0.344
rs10504525	72965123	5141	1.06 (0.90-1.25)	0.494
rs3735942	72965973	5141	1.11 (0.98-1.26)	0.097
rs3735943	72966002	5141	0.88 (0.78-0.99)	0.040
rs10504526	72966552	5141	1.13 (1.01-1.28)	0.041
rs12548486	72971527	5138	1.11 (0.98-1.26)	0.102
rs10109581	72974329	5141	1.19 (1.05-1.36)	0.009
rs3735945	72974806	5141	1.30 (1.09-1.55)	0.003
rs920829	72977703	5136	1.30 (1.09-1.54)	0.004
rs1443952	72980652	5141	1.11 (0.98-1.25)	0.116
rs7010969	72982365	5141	1.28 (1.13-1.46)	0.00004
rs7011431	72982398	5141	1.20 (1.05-1.36)	0.008
rs4738206	72986348	5141	1.10 (0.97-1.25)	0.120
rs2278655	72987277	5038	1.01 (0.79-1.28)	0.964
rs13268757	72987638	5097	1.06 (0.89-1.2 <mark>5)</mark>	0.528

422 Table 2: Associations between the six most significantly associated TRPA1 SNPs in ALSPAC and current doctor diagnosed asthma at 7-8 years in ALSPAC and PIAMA, and

423 current doctor diagnosed asthma at 6 years in Generation R

		ALSPAC			PIAMA			GENERATION R		
SNP	Alleles	Ν	OR	p-value	Ν	OR	p-value	Ν	OR	p-value
rs959974*	G/G	1,401	1.00		512	1.00		555	1.00	
	G/T	2,615	1.33 (1.07-1.65)	0.009	932	1.36 (0.77-2.38)	0.28	1,054	1.15 (0.61, 2.14)	0.67
	T/T	1,125	1.69 (1.32-2.16)	0.00001	433	1.82 (0.99-3.36)	0.053	464	1.39 (0.68, 2.82)	0.37
	Per allele		1.30 (1.15-1.47)	0.00001		1.35 (1.00-1.83)	0.052		1.18 (0.83, 1.68)	0.37
rs1384001 ⁺	c/c	1400	1.00		512	1.00		555	1.00	
	A/C	2,616	1.33 (1.07-1.65)	0.009	933	1.36 (0.78-2.38)	0.28	1,054	1.15 (0.61, 2.14)	0.67
	A/A	1125	1.69 (1.32-2.15)	0.00001	432	1.83 (0.99-3.37)	0.053	464	1.39 (0.68, 2.82)	0.37
	Per allele		1.30 (1.15-1.47)	0.00001		1.35 (1.00-1.83)	0.051		1.18 (0.83, 1.68)	0.37
rs4738202*	A/A	483	1.00		150	1.00		179	1.00	
	A/G	2,233	1.45 (1.02-2.05)	0.038	816	1.54 (0.54-4.41)	0.42	880	0.71 (0.30, 1.68)	0.44
	G/G	2,425	1.66 (1.18-2.34)	0.004	911	2.21 (0.79-6.20)	0.13	1,014	0.78 (0.34, 1.81)	0.57
	Per allele		1.22 (1.07-1.39)	0.004		1.45 (1.01-2.09)	0.042		0.96 (0.65, 1.41)	0.83
rs7010969 ⁺	A/A	827	1.00		299	1.00		324	1.00	
	A/C	2,477	1.43 (1.09-1.89)	0.010	920	1.09 (0.56-2.10)	0.80	1,005	1.08 (0.51, 2.32)	0.84
	C/C	1,837	1.74 (1.31-2.29)	0.00005	658	1.42 (0.73-2.77)	0.30	744	1.20 (0.55, 2.62)	0.65
	Per allele		1.28 (1.13-1.46	0.00004		1.23 (0.89-1.68)	0.21		1.10 (0.76, 1.59)	0.61
$rs3735945^{\dagger}$	c/c	4,067	1.00		1519	1.00		1,621	1.00	
	C/T	1,005	1.38 (1.13-1.68)	0.002	338	1.15 (0.67-1.95)	0.61	428	1.40 (0.80, 2.47)	0.24
	T/T	69	1.19 (0.59-2.41)	0.633	20	0.00 (0.00)¶	0.99	24	0.00 (0.00) [¶]	0.99
	Per allele		1.30 (1.09-1.55)	0.003		1.01 (0.61-1.65)	0.98		1.21 (0.71, 2.04)	0.48
rs920829 [#]	c/c	4,066	1.00		1519	1.00		1,621	1.00	
	C/T	1001	1.37 (1.12-1.68)	0.002	338	1.15 (0.67-1.95)	0.61	428	1.40 (0.80, 2.47)	0.24
	T/T	69	1.19 (059-2.41)	0.634	20	0.00 (0.00)	0.99	24	0.00 (0.00) [¶]	0.99
	Per allele		1.30 (1.09-1.54)	0.004		1.01 (0.61-1.65)	0.98		1.21 (0.71, 2.04)	0.48
				+						

424 *Genotyped in ALSPAC and in PIAMA, and imputed in Generation R; [†]Genotyped in ALSPAC, and imputed in PIAMA and Generation R; [#]Imputed in ALSPAC and in PIAMA,

425 and genotyped in Generation R; [¶]No asthma cases in minor allele homozygote group in PIAMA and Generation R.

Table 3: Per-allele associations between the six most significantly associated TRPA1 SNPs and current doctor diagnosed asthma, stratified by prenatal

paracetamol exposure during early and late gestation in ALSPAC

SNP	Ν	Paracetamol early in pregnancy	p-value	Ν	Paracetamol later in pregnancy	p-value
		OR (95% C.I.)			OR (95% C.I.)	
rs959974						
Exposed	2,734	1.29 (1.10-1.50)	0.002	2,118	1.26 (1.06-1.50)	0.008
Unexposed	2,338	1.37 (1.12-1.66)	0.002	2,889	1.31 (1.10-1.56)	0.002
		p-interaction	0.639		p-interaction	0.765
rs1384001						
Exposed	2,734	1.29 (1.10-1.50)	0.002	2,118	1.26 (1.06-1.50)	0.008
Unexposed	2,338	1.37 (1.12-1.66)	0.002	2,889	1.31 (1.10-1.56)	0.002
		p-interaction	0.643		p-interaction	0.760
rs4738202						
Exposed	2,734	1.22 (1.03-1.45)	0.024	2,118	1.23 (1.02-1.49)	0.031
Unexposed	2,338	1.24 (1.00-1.54)	0.049	2,889	1.18 (0.97-1.43)	0.090
		p-interaction	0.910		p-interaction	0.753
rs7010969						
Exposed	2,734	1.25 (1.07-1.47)	0.006	2,118	1.25 (1.05-1.50)	0.012
Unexposed	2,338	1.34 (1.09-1.64)	0.005	2,889	1.31 (1.09-1.57)	0.003
		p-interaction	0.621		p-interaction	0.738
rs3735945						
Exposed	2,734	1.15 (0.91-1.44)	0.242	2,118	1.31 (1.02-1.68)	0.036
Unexposed	2,338	1.59 (1.20-2.09)	0.001	2,889	1.24 (0.96-1.60)	0.096
		p-interaction	0.076		p-interaction	0.755
rs920829					-	
Exposed	2,732	1.15 (0.91-1.44)	0.238	2,114	1.30 (1.01-1.67)	0.041
Unexposed	2,335	1.57 (1.19-2.08)	0.001	2,888	1.24 (0.96-1.61)	0.093
	-	p-interaction	0.086		p-interaction	0.809

441Table 4: Per-allele associations between the three most significantly associated442*TRPA1* SNPs and total IgE concentration, stratified by prenatal paracetamol

- *TRPA1* SNPs and total IgE concentration, stratified by prenatal paracetamol443exposure during early and late gestation in ALSPAC

SNP	N	Paracetamol early in pregnancy GMR* (95% C.I.)	p-value	N	Paracetamol later in pregnancy GMR* (95% C.I.)	p-value
rs959974						
Exposed	2066	1.12 (1.01-1.24)	0.037	1587	1.22 (1.08-1.37)	0.001
Unexposed	1719	1.05 (0.94-1.17)	0.408	2149	1.01 (0.91-1.12)	0.849
		p-interaction	0.414		p-interaction	0.017
rs1384001						
Exposed	2066	1.12 (1.01-1.24)	0.037	1587	1.22 (1.08-1.37)	0.001
Unexposed	1719	1.05 (0.94-1.17)	0.402	2149	1.01 (0.91-1.12)	0.849
		p-interaction	0.418		p-interaction	0.016
rs4738202						
Exposed	2066	1.16 (1.03-1.29)	0.011	1587	1.21 (1.06-1.37)	0.003
Unexposed	1719	1.02 (0.91-1.15)	0.714	2149	1.03 (0.92-1.15)	0.585
		p-interaction	0.145		p-interaction	0.062

446 *Geometric Mean Ratio

- Figure 1: Forest plots showing meta-analysis of the per-allele associations between the six *TRPA1* SNPs most significantly associated with asthma in
- ALSPAC and current asthma in ALSPAC, PIAMA and Generation R

455 **References**

456

457 458 Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, et al. 1. 459 Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature. 2010;464(7288):597-600. Epub 2010/03/20. 460 461 2. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is 462 a major oxidant sensor in murine airway sensory neurons. The Journal of clinical 463 investigation. 2008;118(5):1899-910. Epub 2008/04/10. 464 3. Facchinetti FP, R. The rising role of TRPA1 in asthma. Open Drug Discov J. 465 2010;2:71-80. Belvisi MG, Dubuis E, Birrell MA. Transient receptor potential A1 channels: 466 4. 467 insights into cough and airway inflammatory disease. Chest. 2011;140(4):1040-7. 468 Epub 2011/10/06. 469 Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: A gatekeeper for 5. 470 inflammation. Annual review of physiology. 2013;75:181-200. Epub 2012/10/02. 471 6. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D'Amours M, 472 et al. A sensory neuronal ion channel essential for airway inflammation and 473 hyperreactivity in asthma. Proc Natl Acad Sci U S A. 2009;106(22):9099-104. Epub 474 2009/05/22. 475 Hox V, Vanoirbeek JA, Alpizar YA, Voedisch S, Callebaut I, Bobic S, et al. 7. 476 Crucial role of transient receptor potential ankyrin 1 and mast cells in induction of 477 nonallergic airway hyperreactivity in mice. American journal of respiratory and 478 critical care medicine. 2013;187(5):486-93. Epub 2012/12/25. 479 Shaheen SO, Sterne JA, Songhurst CE, Burney PG. Frequent paracetamol use 8. 480 and asthma in adults. Thorax. 2000;55(4):266-70. Epub 2000/03/18. 481 Henderson AJ, Shaheen SO. Acetaminophen and asthma. Paediatric 9. 482 respiratory reviews. 2013;14(1):9-15; quiz 6. Epub 2013/01/26. Nassini R, Materazzi S, Andre E, Sartiani L, Aldini G, Trevisani M, et al. 483 10. 484 Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and 485 transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in 486 the airways and other tissues in rodents. FASEB journal : official publication of the 487 Federation of American Societies for Experimental Biology. 2010;24(12):4904-16. 488 Epub 2010/08/20. 489 Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. 11. 490 Cohort Profile: the 'children of the 90s'--the index offspring of the Avon Longitudinal 491 Study of Parents and Children. Int J Epidemiol. 2013;42(1):111-27. Epub 2012/04/18. 492 Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, 12. 493 et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC 494 mothers cohort. Int J Epidemiol. 2013;42(1):97-110. Epub 2012/04/18. 495 Smit LA, Kogevinas M, Anto JM, Bouzigon E, Gonzalez JR, Le Moual N, et 13. 496 al. Transient receptor potential genes, smoking, occupational exposures and cough in 497 adults. Respiratory research. 2012;13:26. Epub 2012/03/27. 498 Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A 14. 499 large-scale, consortium-based genomewide association study of asthma. N Engl J 500 Med. 2010;363(13):1211-21. Epub 2010/09/24. 501 Binder A, May D, Baron R, Maier C, Tolle TR, Treede RD, et al. Transient 15. 502 receptor potential channel polymorphisms are associated with the somatosensory 503 function in neuropathic pain patients. PLoS One. 2011;6(3):e17387. Epub

504 2011/04/07.

505 16. Kim H, Mittal DP, Iadarola MJ, Dionne RA. Genetic predictors for acute 506 experimental cold and heat pain sensitivity in humans. Journal of medical genetics. 507 2006;43(8):e40. Epub 2006/08/03. 508 17. Doehring A, Kusener N, Fluhr K, Neddermeyer TJ, Schneider G, Lotsch J. 509 Effect sizes in experimental pain produced by gender, genetic variants and sensitization procedures. PLoS One. 2011;6(3):e17724. Epub 2011/03/23. 510 511 18. Uhl GR, Walther D, Behm FM, Rose JE. Menthol preference among smokers: 512 association with TRPA1 variants. Nicotine Tob Res. 2011;13(12):1311-5. Epub 513 2011/07/02. 514 19. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of 515 LD and haplotype maps. Bioinformatics. 2005;21(2):263-5. Epub 2004/08/07. 516 20. Newson RB. Attributable and unattributable risks and fractions and other 517 scenario comparisons. STATA Journal. 2013;13:672-98. 518 Nyholt DR. A simple correction for multiple testing for single-nucleotide 21. 519 polymorphisms in linkage disequilibrium with each other. American journal of human 520 genetics. 2004;74(4):765-9. Epub 2004/03/05. 521 22. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the 522 eigenvalues of a correlation matrix. Heredity. 2005;95(3):221-7. Epub 2005/08/04. 523 Brunekreef B, Smit J, de Jongste J, Neijens H, Gerritsen J, Postma D, et al. 23. 524 The prevention and incidence of asthma and mite allergy (PIAMA) birth cohort study: 525 design and first results. Pediatric allergy and immunology : official publication of the 526 European Society of Pediatric Allergy and Immunology. 2002;13 Suppl 15:55-60. 527 Epub 2003/04/12. 528 24. Wijga AH, Kerkhof M, Gehring U, de Jongste JC, Postma DS, Aalberse RC, 529 et al. Cohort profile: the prevention and incidence of asthma and mite allergy 530 (PIAMA) birth cohort. Int J Epidemiol. 2014;43(2):527-35. Epub 2013/01/15. Jaddoe VW, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, 531 25. 532 Steegers EA, et al. The Generation R Study: design and cohort update 2010. Eur J 533 Epidemiol. 2010;25(11):823-41. Epub 2010/10/23. 26. Kruithof CJ, Kooijman MN, van Duijn CM, Franco OH, de Jongste JC, Klaver 534 535 CC, et al. The Generation R Study: Biobank update 2015. Eur J Epidemiol. 536 2014;29(12):911-27. Epub 2014/12/21. Deering-Rice CE, Shapiro D, Romero EG, Stockmann C, Bevans TS, Phan 537 27. 538 QM, et al. Activation of Transient Receptor Potential Ankyrin-1 by Insoluble 539 Particulate Material and Association with Asthma. American journal of respiratory 540 cell and molecular biology. 2015;53(6):893-901. Epub 2015/06/04. 541 Bonnelvkke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, 28. 542 Belgrave D, et al. A genome-wide association study identifies CDHR3 as a 543 susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 544 2014;46(1):51-5. Epub 2013/11/19. 545 Siroux V, Gonzalez JR, Bouzigon E, Curjuric I, Boudier A, Imboden M, et al. 29 546 Genetic heterogeneity of asthma phenotypes identified by a clustering approach. The European respiratory journal. 2014;43(2):439-52. Epub 2013/12/07. 547 548 Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. 30. 549 Asthma endotypes: a new approach to classification of disease entities within the 550 asthma syndrome. The Journal of allergy and clinical immunology. 2011;127(2):355-60. Epub 2011/02/02. 551 552 31. Meyers DA, Bleecker ER, Holloway JW, Holgate ST. Asthma genetics and 553 personalised medicine. The Lancet Respiratory medicine. 2014;2(5):405-15. Epub 554 2014/05/06.

- 32. Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol
 Med. 1990;9(3):235-43. Epub 1990/01/01.
- 557 33. Andre E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, et al.
- 558 Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-
- unsaturated aldehydes and the TRPA1 receptor in rodents. The Journal of clinical
 investigation. 2008;118(7):2574-82. Epub 2008/06/24.
- 561 34. Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, et al.
- 562 Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells
- promotes non-neurogenic inflammation. PLoS One. 2012;7(8):e42454. Epub2012/08/21.
- 565 35. Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, et al.
- 566 Expression of functional TRPA1 receptor on human lung fibroblast and epithelial
 567 cells. Journal of receptor and signal transduction research. 2011;31(5):350-8. Epub
 568 2011/08/19.
- 569 36. Raemdonck K, de Alba J, Birrell MA, Grace M, Maher SA, Irvin CG, et al. A
- 570 role for sensory nerves in the late asthmatic response. Thorax. 2012;67(1):19-25.
- 571 Epub 2011/08/16.