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Abstract. In this paper energy harvesting from vibrating surfaces through electromagnetic 

induction is addressed. A double pendulum subject to base excitations generates electrical 

energy through energy harvesting coils mounted on the pendulum masses. Optimum double 

pendulum generates energy at a rate of 9mW for excitation parameters characteristic of bridge 

vibration, frequency of 2 Hz and amplitude of 1mm.  
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1. Introduction 

 

Energy harvesting is a process of transforming ambient vibrational kinetic energy into 

useful electrical energy to power devices and sensors with modest energy requirements. If 

implemented successfully, it can save time and costs required to maintain the batteries currently 

being used to power sensors. 

Systems in which the force of excitation depends the upon a system parameter are called 

parametrically excited systems. Rand in [1], discusses the most basic parametrically excited 

system, Mathieu equation. It is shown that the amplitude of oscillation of pendulum grows 

exponentially when the forcing frequency is twice the natural frequency of the pendulum. Jial 

and Seshia in [4] show unlike the linear resonance, oscillatory amplitude growth in parametric 

resonance is not limited by linear damping. Zaghari, et al in [2] showed that a small excitation 

can produce a large response when the system is parametrically excited with a frequency near to 

twice of its fundamental frequency. Krzysztof Kecik [3] proposed conception of simultaneous 

elimination of vibration and energy induction by a pendulum motion. Michal Marszal et al in 

[6] derived the double pendulum natural frequency for the out-of-phase and in-phase modes. 

A.C. Skeldon explored parametrically excited double pendulum in [5] found a range of 

complicated dynamical phenomena in a region where the excitation frequency was close to 

twice the natural frequency. The work presented aims at harvesting energy by harnessing the 

advantages offered by autoparametric resonance.  

 

2. Double pendulum governing equation 

 

The double pendulum is the simplest mechanical apparatus that exhibits a range of dynamic 

responses from periodic oscillations to chaotic rotations. This utility can be harnessed to 

maximize harvest energy from a double pendulum subject to base excitation. 



 
Figure 1 Schematic of an energy harvesting double pendulum subject to base excitation facing a magnet 

wall. 

Consider the double pendulum shown in Figure 1. Let the two pendulum lengths be L1 and 

L2. The pendulum masses are cylindrical coils of radius r and masses M1 and M2 and pendulum 

link masses m1 and m2. The generalized co-ordinates for the double pendulum system are the 

angles made by the two pendulum links with the vertical,  1 and  2. The double pendulum is 

excited by surface vibrations with amplitude A and frequency Ω. The governing equation of 

motion for a dissipative system can be derived using the Euler-Lagrangian equation given by, 
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where, Lagrangian function, L is the difference between the system kinetic energy and potential 

energy, L=T-U, R is the Rayleigh dissipation function and qi is the system generalized 

coordinate. The system kinetic energy, T, is obtained by differentiating mass co-ordinates with 

time, 
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Potential energy of the system assigning pivot point zero potential energy reference is given by: 
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Frictional torque at the bearing as given in reference [8] is given by,  =   𝑑    where,   is 

the coefficient of friction, d is the bearing bore diameter and F is the dynamic radial load on the 

bearing. The Rayleigh dissipation function for frictional damping, 
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Viscous air drag on the coil is approximated as the viscous force acting on a sphere of the 

same radius. The air drag force acting on a sphere of radius r, moving with a velocity v, is given 

by,  =    𝑟 , where,   is dynamic coefficient of viscosity, 2e-5 kg/ms for air. 

Substituting  =   𝑟 =       −  , the Rayleigh dissipation function to incorporate viscous 

losses, 
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Power harvested by induced electromagnetic voltage is given by the equation, 𝑃 =

−(𝑁     ( (𝑡))  ̇(𝑡))
 

 𝑅, where, N is the number of loops in the coil, B is the magnetic 

field strength, A is the area of enclosed by each coil,   is the angle between the normal to the 



coil area vector and magnetic field lines, R is the coil resistance. Taking 𝑟 = (𝑁  )  𝑅, 

Rayleigh dissipation function for electromagnetic damping, 

𝑅 =
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Total Rayleigh function, 𝑅 = 𝑅  + 𝑅  + 𝑅 . Following constants are substituted for the 

corresponding ratios to non-dimensionalize expressions and simplify notation, 

 =
𝐿 

𝐿 

     =
𝑀 

𝑀 

      =
  

𝑀 

      =
  

𝑀 

 

Non-dimensional equations governing the two degrees of freedom  1(t) and  2(t) are given by, 
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3. Numerical simulations 

 

A standard copper coil with dimensions and wire properties listed in Table 1 is taken as 

pendulum one mass M1. Working out the electromagnetic damping coefficient and mass from 

the dimensions gives us, rh=0.00056kg/s and M1=1.6kg. Since the coil is massive, the ratio link 

mass to coil mass can be approximated to zero,   =   = 0  
 

Table 1 Standard coil dimensions 

Coil 

ID 

Coil 

OD 

Wire 

diameter(d) 

Turns(N) Resistivity(  ) Wire density 

(  ) 

Magnetic 

field(B) 

23mm 40mm 1.4mm 1100 1.7e-9Ω/m2 8900kg/m
3 

0.01T/m
2 

 

Natural frequency of the double pendulum for small oscillation amplitudes is obtained by 

implementing method of harmonic balance as employed by Roy et. al in  [7]. Neglecting 

damping and forcing in equations 7 and 8, the equations reduce to, 
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Trigonometric ratios sine and cosine are expanded to first two terms. Substituting   =
   𝑠(  𝑡) and   =    𝑠(  𝑡) where    is the natural frequency of double pendulum, higher 

powers of trigonometric ratios are expanded as linear combinations of higher harmonics. 

Coefficient of   𝑠(  𝑡) in the resulting equations is equated to zero to remove secular terms to 

obtain, 
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Equations 11 and 12 are treated as two linear conditions on the amplitude of oscillation C and 

D, and for consistency demand that, 
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When solved for frequency,    , two solutions obtained correspond to in-phase oscillation   (0) 

= C,   (0) =D and out-of-phase oscillation   (0)=C,   (0)=-D. In-line with the small angles of 

oscillation assumption, substituting C=D=0.3 in Equation 13, natural frequencies of the two 

modes of oscillation, 
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In Figure 3, energy harvested is plotted against the frequency ratio, Ω/   for in-phase and 

Ω/   for out-of-phase oscillating double pendulum. Pendulum length, L1 is changed to satisfy 

the forcing frequency to natural frequency ratio, n, according to, 

𝐿 
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Figure 2 Energy harvested in 100 seconds,1<n<5 for two modes of oscillation, a=1, b=1, A=1mm, 

Ω=10πrad/s 

Distinct energy peak is seen at frequency ratio 2 in both Figures 2a and 2b for the two 

modes of oscillation. The analysis below, attempts to identify optimum a and b to harvest 

maximum energy from a source vibrating with fixed amplitude and frequency. The 

autoparametrically resonant pendulum link length, L1, is modified as a and b vary according to 

Equation 15 for n=2. In the Figures 3a and 3b energy harvested in 100 seconds for steady state 

oscillations is plotted along the Z-axis for in-phase and out-of-phase oscillations respectively. a 

and b vary over the domain,0.1 < a, b < 2.5.             

 
Figure 3 Energy harvested in 100 seconds by autoparametrically resonant double pendulum over the a-b 

domain, A=1mm, Ω=10πrad/s 

The ideal energy harvester, autoparametric in-phase oscillating double pendulum cannot be 

realized for practical implementation as seen readily by the dimensions given in Table 3. The 

resonant out-of-phase oscillating double pendulum is a more pragmatic alternative. 

 
Table 2 Dimension of optimum double pendulum for the two modes of oscillation  

 L1 M1 L2 M2 Power 

Ω =     1.25cm 1.6kg 3.75cm 2.24kg 30mW 

Ω =     31cm 1.6kg 10cm 3.5kg 9mW 

 

 

(a)Ω=2𝜔  (b) Ω=2𝜔  

(a)In-phase oscillation (b)Out-of-phase oscillation 



 
Figure 4 Energy harvested in 100 seconds by double pendulum with optimal a and b for the two modes of 

oscillation over realisable L1.  

Amplitude of in-phase oscillation of the two angles,    and   , for practically realizable link 

lengths decays harvesting negligible steady state energy as seen by the blue plot in Fig. 4. In-

case of out-of-phase initial conditions (red plot in Fig. 4) Eh plot rises exactly at 

autoparametrically resonant L1=31cm, generating 9mW in steady state validating importance of 

autoparametric resonance. The Eh peak at L1=15cm corresponds to out-of-phase 1:4 resonance. 

Maximizing energy harvested requires a comprehensive study of such variety of responses, 

especially so for high frequency base excitation where attaining resonance entails an even 

shorter pendulum link length. 

 

4. Conclusions 

 

The in-phase oscillating pendulum harvests energy at a rate of 30mW, more than five times 

that of an equivalent autoparametrically resonant simple pendulum, for modest excitation 

parameters, A=1mm, Ω= 10πrad/s. Pendulum one link length obtained for in-phase resonance is 

too short for practical implementation. While, the optimum out-of-phase oscillating double 

pendulum, harvests energy at 9mW, which might just be sufficient to power maintenance 

sensors, the dimensions obtained for double pendulum are realizable, making out-of-phase 

oscillation a more desirable mode of oscillation for energy harvesting. Application specific 

design may help design by adding constrains on more equation parameters, which can help us in 

optimizing the remaining parameters more comprehensively giving better results. 
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