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Abstract

Background

More than 120 million doses of BCG vaccine are administered worldwide each year.
Most infants are given BCG at birth in accordance with WHO recommendations.
However, the effect of the maturing neonatal immune system on the immune response
and protection conferred by BCG remains uncertain. Previous studies investigating the
influence of age at immunisation on the immune response induced by BCG have
reported conflicting results. This study compared BCG given at birth and at two

months of age in infants in Australia.

Methods

Infants born in Melbourne were randomly allocated to immunisation with BCG-
Denmark at birth or two months of age. Ten weeks after immunisation, anti-
mycobacterial immune responses were measured in a whole blood assay using

intracellular cytokine assays and x-MAP multiplex cytokine analysis.

Results

Results from 98 BCG-immunised infants were included in the final analysis. BCG
immunisation at birth (n=54) and at 2 months of age (n=44) induced comparable
proportions of mycobacteria-specific cytokine-producing CD4 and CDS8 T cells, as
well as comparable proportions of polyfunctional (TNF+ IL-2+ IFN-g+) CD4 T cells.

Concentrations of cytokines in supernatants were also similar in both groups.

Conclusions
Cellular immunity measured 10 weeks after BCG immunisation was similar in infants
given BCG at birth and in those given BCG at 2 months of age. Although definitive

correlates of protection against TB remain uncertain, these results suggest that



68  delaying BCG immunisation does not confer any immunological advantage in cellular

69  immunity.
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Introduction

Bacille-Calmette-Guérin (BCG) is one of the most commonly administered vaccines
worldwide [1]. BCG immunisation is most effective for the prevention of severe forms
of tuberculosis (TB), with protective efficacy of up to 87% against TB meningitis and
miliary TB [2, 3]. These forms of TB are most commonly seen in infants and children
less than two years of age. The World Health Organization (WHO) therefore
recommends that BCG is given as soon as possible after birth in countries with high

TB incidence [4].

However, BCG immunisation soon after birth may not be optimal for two reasons.
Firstly, there is the risk of inadvertently immunising infants who are infected with
human immunodeficiency virus (HIV). HIV-infected infants are at risk of developing
disseminated BCG disease, which is associated with a mortality of up to 75% [5, 6].
As a result, WHO revised their recommendations in 2007 to state that BCG vaccine
should not be used in children who are known to be HIV-infected and, in settings with
adequate HIV services, to delay BCG immunisation for infants born to mothers known
to be HIV-infected until these infants are confirmed to be HIV-uninfected [4]. This
recommendation was reinforced in 2010 [7]. Secondly, BCG immunisation
administered at birth potentially induces an immune response that is inferior to that
provided by immunisation beyond the neonatal period. The human immune system
undergoes significant maturational changes in early life [8]. Consequently, the
‘immature’ immune system of newborns may be less capable of generating protective
anti-mycobacterial immune responses after BCG immunisation compared with the

immune system of older infants.
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Only few studies have investigated the influence of age at immunisation on the
immune response and protection against TB induced by BCG. Clinical studies in
Canada and Colombia indicate that immunisation after 6 to 12 months of age may be
associated with better protective efficacy [9, 10]. More recently, four important studies
in Africa comparing the mycobacteria-specific immune response induced by BCG
immunisation at birth with delayed immunisation have reported conflicted results [11-
14]. In some studies, certain subsets of mycobacteria-specific cytokine-producing CD4
and CD8 T cells were higher in infants with delayed BCG immunisation while in
others the same subsets were not different (detailed further in discussion below). In
addition, geographical setting plays an important role in the early life immune
response in infants. For example, a recently published study comparing the cytokine
response of monocytes and dendritic cells in 2-year old children from Canada,
Belgium, Ecuador and South Africa showed that children from South Africa had lower
interleukin (IL)-6, IL-12, interferon (IFN)-a, IFN-y, and tumor necrosis factor (TNF)
concentrations [15, 16]. The mechanism underlying differing immune responses
between populations is uncertain but is likely attributable to host genetics and
environmental factors. It is therefore important to study the immune response to early

versus delayed BCG immunisation in different settings.

Materials and Methods

Study population and BCG immunisation

Infants were recruited during a related but independent study [17]. Pregnant women
attending the antenatal clinic at the Mercy Hospital for Women in Melbourne,
Australia were approached if one of the parents was born in a country with high TB

incidence (defined as more than 100 cases per 100 000 inhabitants) and planned to
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travel to their country of origin within the next five years. This identified infants for
whom BCG immunisation is recommended by the Australian Immunisation
Guidelines [18]. Written informed consent was obtained from the mother. Exclusion
criteria included mothers known to be infected with HIV, premature birth (less than 35
weeks of gestation), birth weight below 2500 grams, and any symptoms or signs of
illness. Participants were randomly allocated to be immunised with BCG at birth or at
two months of age. BCG vaccine (SSI-1331 from Statens Serum Institute,
Copenhagen, Denmark) was given as a 0.05 ml intradermal injection in the left deltoid

region using a 26-gauge needle.

The study was approved by the Mercy Health Human Research Ethics Committee
(R07/16), and approved as a clinical trial by the Australian Therapeutic Goods
Administration (TGA). The trial was registered with the Australian New Zealand

Clinical Trials Registry (number ACTRN12608000227392).

Immunological assays

Ten weeks after BCG immunisation (ie at 10 weeks of age in the at birth BCG-
immunised group and at 18 weeks of age in the delayed group), up to 6 ml of blood
were collected in sodium heparin tubes and stimulation assays were done within two
hours of collection. A whole blood intracellular cytokine/cytotoxicity assay was done
as previously described [17]. Briefly, blood was incubated with BCG (SSI-1331,
Statens Serum Institute), purified protein derivative (PPD; Batch RT50, Statens Serum
Institute), heat-killed M. tuberculosis (MTB; H37Rv), staphylococcal enterotoxin B

(SEB; Sigma-Aldrich, St. Louis, MO, USA), or medium alone in the presence of co-

8
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stimulatory antibodies CD28 and CD49d (BD Biosciences, San Jose, CA, USA) at

37 °C for 7 hours. Plasma was removed for cryopreservation and the remaining blood
was incubated for a further 5 hours with brefeldin A (BfA; Sigma-Aldrich) for
intracellular cytokine staining or a combination of BfA, monensin (Sigma-Aldrich)
and anti-CD107a-APC (BD Biosciences) for cytotoxicity assays. The remaining blood
was then harvested, and cells lysed and fixed in FACS lysing solution (BD

Biosciences) before cryopreservation at -80 °C.

For the flow cytometric analyses, thawed samples were permeabilised with Perm?2
Solution (BD Biosciences), washed with staining buffer and incubated with the
following fluorochrome-conjugated antibodies (all BD Biosciences): anti-CD3 PerCP-
Cy5.5 (SK7), anti-CD4 FITC (RPA-T4), anti-CD8 Alexa-700 (RPA-TS), anti-IFN-y
PE-Cy7 (4S.B3), anti-IL-2 PE (MQ1-17H12) and anti-TNF APC (Mab11), and anti-
CD107a APC (H4A3). Analysis was done on an LSRII flow cytometer (BD
Biosciences) with optimised PMT voltages and standardisation using CST beads (BD
Biosciences). Automated compensation was calculated with FACSDiva software
(version 6.1, BD Biosciences, San Jose, CA, USA) using stained anti-mouse and anti-
rat Ig kappa beads. Flow cytometric analysis was done using FlowJo software (version
8.8.6, TreeStar Inc, Ashland, OR, USA). A hierarchical gating strategy was used to
select single cell CD4 and CD8 T cell populations. Gates for cytokine expression and
cytotoxic markers for blood stimulated with mycobacterial antigens and SEB were set
using the unstimulated control cells. A Boolean combination was used to determine
polyfunctional T cells producing more than one cytokine, ie double-positive and triple-

positive populations.

Concentrations of cytokines in supernatants were measured using human multiplex

bead-based cytokine kits using xMAP technology (Milliplex Human
9
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Cytokine/Chemokine Immunoassay, Millipore Corp, Billerica, MA, USA).
Preliminary experiments were done to determine which cytokine and chemokines are
detectable in supernatants from infants after BCG immunisation and the variability of
the assay. These included 16 cytokines and chemokines covering the spectrum of Thl,
Th2, Th17, regulatory and pro-inflammatory pathways. IL-4, IL-5 and IL-17 were not
detectable and not further analysed. Differences between samples run in duplicate
were minimal. MIP-1a and MIP-1p results were highly correlated so only MIP-1f was
further analysed. EGF, eotaxin, fractalkine, IL-2, IL-10, IL-12 (p40), IL-13, and IFN-y
were analysed in undiluted samples and IL-6, MCP-1, MIP-1p and TNF were analysed
in 1:20 diluted samples based on previous optimisation experiments. Standard curves
were generated using six dilutions of standards run in duplicate and two controls were
included in every run. Samples were run as single assays. Assays were read with a
Luminex 200 bioanalyser (Luminex Corp. TX, USA), which was calibrated before
each run and set to acquire 50 events per bead. All outcome assessors were blinded to

group assignment.

Statistics

All data were analysed after background correction using the unstimulated control
sample. A Mann-Whitney U test was used for comparisons between groups. All p-
values were interpreted in the light of multiple significance testing; a p-value < 0.01
was considered potentially significant. Statistical analyses were done using STATA 11
software (College Station, TX, USA). Graphs were created using Prism 5 software

(Graph Pad Software Inc., La Jolla, CA, USA).

10
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Results

Participant characteristics

A total of 124 infants were randomised to be immunised at birth or at two months of
age, of which 102 (82%) returned for the follow-up sample collection. Data from 98
infants (79%) were included in the final analysis (Figure 1). The demographic and
baseline characteristics of participants included in the final analysis were comparable

between the groups (Table 1).

The proportions of mycobacteria-specific cytokine-producing CD4 and CD8 T cells
were comparable in at-birth and delayed BCG immunisation

The proportions of single, double and triple mycobacteria-specific cytokine-producing
CD4 T cells were comparable in both groups (Figure 2). Generally, proportions of
mycobacteria-specific single cytokine-producing CD4 and CDS8 T cells were higher
than those of double and triple cytokine-producing CD4 and CDS8 T cells. The
proportions of cytokine-producing CD4 T cells were lower in the group of infants
immunised at two months of age, but none of the comparisons had a p-value < 0.01. In
addition, whilst, for example, the proportion of PPD-specific IL-2/TNF double
positive CD4 T cells was lower in infants immunised at two months of age, this was
not the case when BCG or MTB was used as the in vitro stimulant. Similar to the
findings for CD4 T cells, the proportions of cytokine-producing CD8 T cells were
similar in both groups (Figure 3). Also, there were no significant differences between
both groups in the unstimulated (negative ‘nil’ control) and SEB-stimulated (positive

control) responses (data not shown).

The proportions of mycobacteria-specific cytotoxic CD4 and CD8 T cells were

comparable in at-birth and delayed BCG immunisation

11
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CD107-expressing cytotoxic T cells did not produce IFN-y or IL-2 (data not shown).
The proportion of mycobacteria-specific cytotoxic T cells was generally lower in CD8
than in CD4 T cells, and mycobacteria-specific CD107 expression was similar in both
groups (Figure 4). There were no significant differences between both groups in the
unstimulated (negative control) and SEB-stimulated (positive control) responses (data

not shown).

Cytokine expression was comparable in at-birth and delayed BCG immunisation
There were no significant differences in the concentrations of the 12 background-
corrected cytokines in supernatants between infants immunised at birth and those with
delayed BCG immunisation, regardless of the in vitro stimulatory antigen used (Figure
5). However, in the delayed group, there was a trend towards a higher concentration of
IL-12 p40 (p=0.04) and a lower concentration of EGF (p=0.02) in samples stimulated

with MTB. These differences were not seen in samples stimulated with BCG or PPD.

Discussion

This study compared the mycobacteria-specific immune response 10 weeks post
immunisation in infants immunised with BCG at birth and those in whom BCG
immunisation was delayed until two months of age. To our knowledge, this is the first
study to compare the immune response to at-birth and delayed BCG in a setting
outside the African continent. Our findings suggest that delaying BCG immunisation
from birth to 10 weeks of life does not significantly affect mycobacteria-specific
immune responses, assessed by cytokine-producing and cytotoxic T cells and the
expression of several cytokines involved in the human anti-mycobacterial immune
response. This contrasts with the results of our previous study that compared different

BCG vaccine strains given at birth in a separate set of participants, which showed
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mycobacteria-specific immune responses were significantly influenced by the BCG

vaccine strain administered [17].

Four previous studies have investigated the influence of delayed BCG immunisation,
three of which were randomised trials (Table 2). Two studies used the same BCG
vaccine strain (BCG-Denmark) as our study given at age 8 and 10 weeks [12, 14].
Both these studies showed higher proportions of IFN-y/IL-2 double- and/or IFN-y
single-producing CD4 T cells, measured 6 to 14 weeks after immunisation, when BCG
was delayed. However, consistent with our findings, both studies showed comparable
results for all other cytokine-producing CD4 and CD8 subpopulations, in particular for

polyfunctional T cells.

In addition, our study found that delaying BCG immunisation did not affect cytotoxic
T cell responses. Only one previous study has investigated the influence of delayed
BCG immunisation on cytotoxic T cells [13]. This was a non-randomised study in
Uganda that compared cytotoxic T cells by measuring perforin expression at 40 weeks
of age. Despite the differences in study design, this study also found no differences in
cytotoxic T cells in children immunised at birth compared to children immunised at 6

weeks of age.

When we investigated multiple cytokines that are known to be important in the
protective immune response against TB, infants immunised at birth and those
immunised at 2 months of age had comparable concentrations in supernatants from
whole blood stimulation assays. Two previous studies have investigated the influence
of delayed BCG immunisation on the mycobacteria-specific cytokine response,
assessing eight cytokines (IFN-y, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13 and IL-17) [11,

13]. In the study in Uganda, the concentration of only one (IL-10) of the six measured

13
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cytokines was higher in the delayed BCG group (measured at 40 weeks of age) [13].
Similarly, in the study in The Gambia, higher IL-10 concentrations were found in
infants with delayed BCG compared to those immunised at birth [11]. In addition, in
the Gambian study, three cytokines (IFN-y, IL-6 and IL-17) were lower and one (IL-
13) was not different in the delayed group (measured 20 weeks post-immunisation).
However, when the cytokines were measured at 40 weeks of age (ie 20 weeks post-
immunisation in the delayed BCG group and 40 weeks post immunisation in the at-
birth BCG group), cytokine concentrations were no longer significantly different. This
suggests that mycobacteria-specific cytokine responses wane after immunisation,
which might not be apparent when there is a comparatively short interval between at-
birth and delayed BCG, as was the case in our study. Importantly, the BCG vaccine
strain used in the Gambian study was BCG-Russia, which induces a significantly
different immune response with generally lower proportions of IFN-y, IL-2 and TNF
single and polyfunctional CD4 T cells and lower concentrations of Thl cytokines

compared to BCG Denmark [17].

One important caveat in this study is that the immune response was inevitably
measured at a different postnatal age in the two groups, as the interval between BCG
immunisation and measurement of the mycobacteria-specific immune response was 10
weeks in both groups. This interval had to be consistent as the time between
immunisation and measurement of the immune response influences the detected
immune response [11, 19]. As a result of the limited available blood volumes, a
number of other potentially important aspects of the immune response, including
memory T cell phenotypes, could not be assessed. However, no influence on memory
phenotypes was found in the two previous studies that investigated the influence of
delayed BCG on this aspect of the mycobacteria-specific immune response [12, 13].
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We also did not determine non-conventional T cells, which have recently been
recognised to play an important role in the immune response to BCG [20-22]. Another
inevitable limitation of our study is that we were not able to compare clinical

outcomes (ie protective efficacy) as a result of the low TB incidence in Australia.

Although definitive immunological correlates of protection against TB induced by
BCG remain uncertain, our study, together with the four studies done in Africa,
suggest that delaying BCG immunisation for several weeks results in a similar anti-
mycobacterial immune response as immunisation at birth. The choice of whether to
administer BCG at birth or later in infancy should therefore be based on other factors.
This will involve balancing the risk of inadvertent immunisation of HIV-infected
infants inherent when an at-birth BCG immunisation strategy is used with the risk of
reduced coverage or prior TB infection with a delayed BCG immunisation strategy.
Finally, the potential beneficial heterologous (‘non-specific’) effects of BCG [23-27]
immunisation at birth also need to be considered when deciding on the timing of

routine BCG in settings with high infant mortality.
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Table 1 Characteristics of study participants.

BCG
at birth

BCG at 2
months

(n = 44)

(n =54)

Gestational age Median 39.7 39.9
(weeks) IQR 39.0-40.3 38.9-40.4
Female Number 28 28

Proportion (52%) 62%)
Birth-weight Median 3325 3355
(grams) IQR 3015-3523 3025-3477
Age at immunisation Median 0.1 10
(weeks) IQR 0.1-0.4 9.8-10.6
Interval immunisation to Median 10.0 10.1
follow-up (weeks) IQR 9.9-10.5 9.9-10.9
Maternal age Median 301 301
(years) IQR 26.4-34.2 26.8-35.7
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Table 2 Summary of previous studies comparing the mycobacteria-specific immune response in infants immunised with BCG at birth and those whose

BCG immunisation was delayed until later in infancy

[14]

South

Number
(immuni
sation at
birth/

delayed)

63/59

HIV status

HIV-

Age at
BCG
immunis
ation
birth/del
ayed
(weeks)
0/8

BCG

vaccine

strain

BCG-

Age at
blood
collection
(weeks)

0,6.,8,14

In vitro

stimulation

BCG-

6d

Main findings

At 6 weeks post immunisation:

Africa (only 28 exposed Denmark Denmark whole * BCG-specific CD4 and CD8 T cell proliferation: no
per group | infants blood difference.
(2010- analysed SEB * Proportion of BCG-specific CD4 and CD8
2012) at each polyfunctional T cells: no difference.
time At 14 weeks of age:
RCT point) * IFN-y-expressing CD4 T cells: higher proportion in
delayed group.
* IL-2 and IL-17 expressing CD4 T cells: no difference.
[13] | Uganda 44/40 Mother HIV | 0/6 ns 40 BCG- 7-12h At 40 weeks of age:
negative or Denmark and * proportion of proliferating CD4 and CD8 T cells: no
(ns) ina HIV 6d difference. .
mother to PHA whole * proportion of proliferating cytokine-producing IFN-
Retro- child blood y/IL-2/TNF CD4 T cells: lower in delayed group.
spective prevention » proportion of proliferating TNF-single-producing CD4
program T cells: higher in delayed group.

* proportion of BCG-specific IFN-y-producing CD4 and
CD8 T cells: lower in delayed group.

* polyfunctional CD4 and CD8 T cells T cells: no
difference.

* proportion of memory phenotype of IFN-y producing
CD4 and CD8 T cells: no difference.

¢ IL-10 in supernatant: higher in delayed group

* IFN-y, IL-2 in supernatant: no difference.
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[11] | The 46/41 HIV status | 0/20 BCG- 0, 20, 40 PPD 5d At 20 weeks post immunisation:
Gambia not Russia whole * PPD-specific concentrations for IFN-y, IL-6 and IL-
assessed BCG Russia | blood 17: lower in delayed group.
(ns) * BCG-specific IL-10 in supernatant: lower in delayed
ESAT6/CFP- group
RCT 10 * PPD specific IL-10 in supernatant: no difference.
At 40 weeks of age:
SEB « PPD-specific activated, regulatory or proliferating
CD4 T cells: no difference.
* PPD-specific cytokine concentrations for IFN-y, IL-6,
IL-10, IL-13, IL-17: no difference.
[12] | South 25/21 Mother 0/10 BCG- 8-14 Nil 16 h At 10 weeks post immunisation:
Africa documente Denmark | 18-28 whole * IFN-y and IFN-y /IL-2 producing CD4 T cells: higher
d HIV 41-54 BCG blood in delayed group.
(2006- negative At one year of age:
2008) Denmark * IFN-y /TNF/IL-2, IFN-y /TNF, TNF/IL-2 and TNF
producing CD4 T cells: higher in delayed group.
RCT SEB « memory phenotype of cytokine expressing CD4 T

cells: no difference.

ns = not specified, h = hour, d = day
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Figure 1 Study flow chart showing recruitment and final number of included participants

1 immunised twice
21 withdrew consent
142 randomised to immunisation with
other BCG vaccine strains at birth *

\ 4

\4 v
55 completed follow-up 47 completed follow-up
2 withdrew consent 3 withdrew consent
10 lost to follow-up 7 lost to follow-up
54 data analysed 44 data analysed
1 excluded for technical reasons * 3 excluded for technical reasons *

" as part of a separate study [17]
technical problems included: inadequate staining for flow cytometry, and incorrect instrument settings during flow cytometry
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Figure 2 Box plots (depicting lower, median and upper quartiles, with Tukey
whiskers) showing background-corrected proportions of triple, double and single
cytokine-producing CD4 T cells following in vitro stimulation with BCG, PPD or
MTB (heat-killed whole cell M. tuberculosis) measured 10 weeks post immunisation.
The p-values for comparisons between infants immunised at birth (white bars) and
infants immunised at 2 months (grey bars) are shown above each pair. Note the
different scale used for the y-axis in the plots showing single cytokine-producing cells

in the third column.
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Figure 3 Box plots (depicting lower, median and upper quartiles, with Tukey
whiskers) showing background-corrected proportions of triple, double and single
cytokine-producing CDS8 T cells following in vitro stimulation with BCG, PPD or
MTB measured 10 weeks post immunisation. The p-values for comparisons between
infants immunised at birth (white bars) and infants immunised at 2 months (grey bars)
are shown above each pair. Note the different scale used for the y-axis in the plots

showing single cytokine-producing cells in the third column.
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Figure 4 Box plots (depicting lower, median and upper quartiles, with Tukey

whiskers) showing proportions of CD107-expressing (cytotoxic) CD4 and CD8 T cells

following in vitro stimulation with BCG and MTB measured 10 weeks post

immunisation. The p-values for comparisons between infants immunised at birth

(white bars) and infants immunised at 2 months (grey bars) are shown above each pair.

Antigen for
067 5 =020 b = 0.65 in vitro stimulation
0.4
— . y BCG
S
L)
© 0.2-
o
|_ .
)
£ )
B : 2
S
X
¢ e
N~ = = =
N p=0.14 p=0.82
=
QO
O .
[T
o
c 0.4
Q9
=
& . MTB
Q
9 .
o 0.2-
00 I Saa. bl
CD4 CD8

27



Figure 5 Box plots (depicting lower, median and upper quartiles, with Tukey

whiskers) background (nil)-corrected cytokine concentrations in supernatants

following in vitro stimulation with BCG, MTB and PPD. The p-values for

comparisons between infants immunised at birth (white bars) and infants immunised at

2 months (grey bars) are shown above each pair. Note negative values reflect a

concentration in the antigen-stimulated sample lower than that in the nil control

sample. Background-corrected values with negative concentrations were set to zero.
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Supplementary Figure: Gating strategy used to select IFN-y, IL-2 and TNF

producing CD4 and CDS8 T cells shown in a BCG-stimulated sample from one

individual.
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