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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

MATHEMATICS

Doctor of Philosophy

THE FORMALISATION OF SOFTWARE DEVELOPMENT
USING MASCOT

by Stephen Edward Paynter

Formal techniques are developed for increasing confidence of software systems developed
using the MASCOT-3 design method. Rather than attempt to handle all the complexity of
MASCOT-3, a subset of well-formed MASCOT designs is defined graph theoretically. Two
abstract syntaxes for MASCOT subsets are defined using edge labelled neighbourhood
controlled embedding graph grammars. The richest MASCOT subset given an abstract
syntax consists of designs which have loops, arbitrary branching of paths on activities, but
which only have single reader and single writer IDAs. This is more restrictive than the
graph theoretically defined well-formed MASCOT designs. After a survey of formal
semantics for concurrent languages, the abstract syntax of MASCOT is used to structure
the definition of a linear interleaved semantics. The semantic model is defined using CSP. A
small example is given to illustrate the safety correctness properties that may be proven for
formal MASCOT designs with these semantics.

A graphical mode-based specification notation for reactive systems is developed, known
as Specification Transition Systems, or STSs. STSs are a concise way of presenting large
labelled transition systems (LLTSs), a mode of an STS representing a class of LTS’ states.
STSs achieve this through the identification of sinks which model the devices which the
system controls; and the definition of a dependency relation between sinks, which partitions
the sinks into classes of devices which need to be receive a consistent view of an STS’s mode.
A formal semantics is defined for STSs in terms of allowable histories. A calculus is defined
for demonstrating refinement between STSs. Also, the construction of LTSs which
correspond to STSs is sketched, and the relationship between STSs and process-based
designs is investigated.
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Symbols

Numeric and arithmetic symbols:

numerals representing the integers
the set of all positive integers
natural number subtraction
natural number addition

Logical and Meta-logical symbols:

not

and

or

implies

for all, universal quantification

there exists, existential quantification

such that, a separator between quantifiers, and quantified
expression.

A sequent: E is provable from hypothesis H, in formal system F.

E is "true" when interpreted in model M of formal system F.

Set theoretic symbols:

aeX
AuB
AnB
AcB
AcCB
{t | P®)}

P X)
X

set membership: a is a member of set X.

set union: the union of sets A and B.

set intersection: the intersection of sets A and B.

subset: set A is a subset of set B.

proper subset: set A is a proper subset of set B.

set comprehension: the set contains all t's such that P(t) holds true,
where P is a first-order predicate expression over t.

the power set of X, where X is a set.

the set of all possible sequences of the elements of the set X.

Sequence theoretic symbols:

A-seq
<>

a”L
head(L)
tail(L)

len(L)
CSP symbols:

STOP
c—->P)

the type: sequence of elements from set A.

the null sequence.

the infix concatenation operator. » : A-seq x A-seq — A-seq

a function which returns the start of a sequence. head : A-seq - A
a partial function which removes the head of a sequence.

tail : A-seq — A-seq

a function which returns the length of a sequence. len: A-Seq > N

the process which does nothing
the process that does ¢, and then behaves like process P.

(c -» P)I(d — Q) the process either does ¢, and then P, or d and then Q.

x:B - P(x))

(P/s)
(P\A)

® | @

the process may do any action from the set B, and then behave like
P(x).

the process that behaves like P does after it has performed s.

the set of actions A is hidden from the alphabet of P.

the processes P and Q executing concurrently, synchronising on

shared events, that is, events in both processes alphabets.
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(P M Q)
(P> Q)

pX:A F(X)
Fn

f(P)

the internal choice between processes P and Q.

the parallel processes P and Q are connected by a pipe. This is a
derived operator, and is defined as P and Q in parallel, with their
shared actions over a common channel hidden.

the recursive process with alphabet A, defined by F.

n iterative applications of the process F.

fis a re-labelling function which changes the names of actions in
the alphabet of P.

CSP semantic operators:

<>
s
to
t’
A*

f*(t)
tTA
aP
s<t
s<™t
#t
Other symbols:
ALB
m:A->B

STS symbols:
m-*m

the empty trace.

the concatenation of two traces.

the first element of the trace, t.

the tail of the trace t.

the set of all possible traces whose elements are drawn from the set
A

The function which applies the function f to each element in the
trace t.

the restriction of trace t to elements in A.

the alphabet of process P.

s is a, possibly empty, prefix of t.

s is a, possibly empty, prefix of t, and the length of s is no more than
n shorter than t.

the length of the trace t, a natural number.

A is refined by B.
is defined as.

"fn" is a function which takes values of type A, and returns results
of type B.

for a given STS, <M, M, A, T, ... >, (m,a, m)€ T.
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Chapter 1: Introduction

This thesis is intended as a contribution to formal methods for the construction of
embedded software systems. In particular, formal techniques are presented for increasing
confidence in software systems developed using the MASCOT design method, [JIM87].
MASCOT enables concurrent and distributed software designs to be employed. Time and
the issues of temporal requirements, specification and correctness are not treated
quantitatively in this thesis. This is primarily because, although MASCOT is often used to
design real-time systems, it contains no notation for recording timing behaviour or

requirements.

In this thesis a subset of MASCOT designs is considered. The abstract syntax of these
designs is defined using a graph grammaf. The abstract syntax is used to structure the
definition of a formal semantics of MASCOT. The semantic model used is Hoare Traces,
[Hoa85]1. A mode-based specification notation, known as Specification Transition Systems,
or STSs, is defined, and is given a formal semantics. A refinement calculus for STSs is
defined.

This introduction gives the motivation for the work by discussing the problems of
safety-critical software, and the roles of design methods and formal methods in software

development. It also includes an overview of the content and structure of the thesis.

1.1. Safety-Critical Software

An important and growing class of products have microprocessors as components. The
microprocessors and software of such products are known as embedded systems. The flexible
nature of computer programs, and the ease of encoding complicated algorithms in software,
means that embedded systems are often responsible for controlling the behaviour of a
product. Some products, however, such as fly-by-wire aeroplanes, agile missiles, nuclear
power stations, and railway signal-controllers, may exhibit dangerous, life-threatening
behaviour if they fail to function as intended. Often it is the task of an embedded system to
ensure that correct, and non-hazardous, behaviour is exhibited. The software of such

embedded systems may be termed safety-critical software, often abbreviated to the acronym:
"SCS".

Clearly it is important that safety-critical embedded systems function correctly. A

significant factor in this will be the correct functioning of the software. Fortunately,
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software is not subject to deterioration. Any undesirable behaviour a program exhibits
reflects an error that has been present since it was written. It is hence worthwhile to
investigate how a program will behave before it is used in a potentially hazardous

environment.

One common way of attempting to determine a program’s behaviour is to zest it. This
will involve examining the outputs the program produces for a range of inputs. The very
large number of possible input combinations to any but the most trivial of programs makes
it infeasible to test a program exhaustively. This is especially true of embedded software,
which will often exhibit behaviour dependent upon the precise temporal ordering of the
inputs’ arrival. Testing, therefore, can only provide evidence of the software’s behaviour for
a limited number of scenarios. It cannot say how the software will behave in other
situations. This is especially significant for computer systems, where small input variations

can produce widely different output behaviours, due to their discontinuous nature.

These limitations of testing have led many to assert that testing is incapable of
providing enough assurance in the behaviour of a program to be acceptable for
safety-critical software. It has been suggested that testing should be supplemented by
formal reasoning about the behaviour of the algorithms used in the software. The goal is to
prove mathematically that the software is unable to exhibit behaviour which will drive the

product in a dangerous way; and that it will not fail to drive the product in a safe way.

However, reasoning about embedded systems is a hard task. A minimum pre-requisite
is a formal model of the system; a model from which it is possible to deduce behaviour.
Developing such a model is complicated by the fact that embedded systems are usually
reactive'; the software is often structured into concurrent programs which interact; and it

may well be the case that the hazardous behaviours are time-dependent in some way.

Reasoning is simplified if the software has a sensible structure and if there is a formal
statement of what it is intended to do. It is the role of design methods, introduced in the
next section, to promote the sensible structuring of software into well-partitioned units. A
formal specification is helpful as it is easier to reason about behaviour using more abstract
expressions of the software’s functionality, and to prove that a program implements a
specification, than it is to reason directly about the behaviour of a program. Formal methods

essentially comprise a specification language and a development method; both with

1A discussion of reactive systems can be found in Appendix Two.
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mathematical underpinnings. Thus the use of formal methods has been advocated in the

development of safety-critical software, [BaM92].

As well as functioning correctly, software for safety-critical systems also ought to exhibit
other properties, such as safe behaviour in the presence of hardware failure. However, such

considerations are beyond the scope of this thesis.

This thesis is presented in the context of safety-critical systems because safety and
safety standards, for example [MoD91b], are the most significant forces in motivating the
development and adoption of formal methods, although there are other influences,
including: security; quality; and commercial considerations. Formal methods are discussed

in Section 1.3.

1.2. The Role of Design Methods

A software design method often has at least some of the following features:

* Guidelines (rules of thumb) for partitioning the software into manageable units
* A notation (usually graphical) for recording the structure of the software design
* Rules or guidelines on how the design should be documented.

* Rules for checking the consistency of a design

* Rules or guidelines on how to develop software to fit the design structure

* Rules or guidelines on how to test the resulting software

Examples of design methods which have been advocated include: Structured Design,
[SMC74], JSP (Jackson Structured Programming), [KiP85]; JSD (Jackson System Design),
[Cam86]; Yourdon Structured Method, [Wo0088]; SSADM (Structured Systems Analysis and
Design Method), [Ash88]; OOD (Object-Oriented Design), [Boo86] and [Boo91]; HOOD
(Hierarchical Object-Oriented Design), [Rob88]; and MASCOT-3 (Modular Approach to
Software Construction, Operation and Test), [JIM87]. [Ber81] is a survey of the earlier
methods, and [HOH91 a] is a more recent comparison of design methods for real-time

systems.

Design methods encourage the use of a consistent policy in partitioning software, and, to
some extent, propose good practice in software structuring. A good design notation provides

a structured way of thinking about systems at an abstract level. These methods usually
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have no formal foundation, yet they have proved popular in developing large software

systems.

It should be noted that design methods usually do not enable the functionality of the
system to be expressed. They are limited to defining the different software units of the
design, and the interfaces between the units. The functionality that design notations can
define is usually incomplete, and is expressed in terms of some informal intuition of what a

graphical symbol represents.

Clearly, design methods cannot, by themselves, be used to generate the level of
confidence required for safety-critical software. Nevertheless, it is claimed that the
structuring which good design methods encourage means that they have a role in the
development of large safety-critical programs. It is believed that the structuring guidelines
embodied in design methods actually capture important experience?, and that designs which

follow such guidelines are likely to be easier to reason about than those which do not.

1.3. The Role of Formal Methods

Formal methods are approaches that use logic and mathematics in developing computer
programs, with the aim of increasing knowledge of the behaviour of a program so developed.
Formal methods essentially consist of a specification language and a development method.
The specification language usually has a formal syntax and a formal semantics. That is, a
well-formed specification is taken to denote a (possibly empty®) class of mathematical
objects. There may also be a proof theory for the specification language; this enables
properties of the specification to be proven. Clearly such proof theories must be sound with

respect to the language’s semantics®.

Development methods which are associated with formal methods are not prescriptive,
that is, they do not define how to construct a program, [C0092]. Instead they provide the
framework in which programs can be formally related to specifications. A program which

can be formally related to its specification are said to be a "refinement” or "reification” of it.

2To embody such guidelines a design method need not be prescriptive concerning how to develop
designs, nor do the guidelines need to be explicit. Design guidelines may be transmitted in the
philosophy of the method, in the case studies in the accompanying literature, or be a result of using the
design notation.

3a well-formed, syntactically correct, specification may still be self-contradictory, and so denote nothing.

4A basic introduction to formal systems, including the definition of basic terms such as "soundness” can
be found in Appendix One.
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Formal methods contain some formalised definition of what it means for one expression to
be a refinement of another. Expressions related by refinement can be viewed as forming a
hierarchy of levels. Demonstrating refinement ensures that the functionality of one level
can be exhibited by the next. Demonstrating that two levels are related by refinement
usually involves discharging proof obligations. The fact that refinement is transitive enables
the proof of refinement to be broken down into a number of steps, each demonstrating

refinement between adjacent levels of abstraction.

Formal development methods are still a research area, especially development methods
for concurrent systems. However, three broad approaches to demonstrating refinement have
been proposed, [HaJ89]: the constructive-type-theoretic approach; the derivation approach;
and the design-and-verify approach. In the type-theoretic approach, a program is extracted
from a constructive proof of the existence of an implementation of the specification.
Refinement is established by the validity of the proof and extraction rules. Examples of this
approach include: [Mar82]; [BCM89]; and [Hen89]. In the derivation approach, the
specification is manipulated into a design using correctness preserving transformations.
Refinement is guaranteed by the soundness of the transformations. There are often proof
obligations to discharge to demonstrate the applicability of a given transformation.
Examples of this approach include: IMRGS88]; [BMP89]; [Mor90]; and [Par90]. In the
design-and-verify approach, each subsequent level is posited, and then proof obligations are
discharged to demonstrate its validity, thus establishing the refinement relation. A well
known example of this approach is VDM (Vienna Development Method), [Jon90]. It is the
design-and-verify approach which is advocated in this thesis as it includes the posit phase
where the traditional skills of the designer can be utilised. It is contended that this
integrates formal methods most naturally with design methods. However, other views have
been expressed, for example, [Fei93], which advocates integration within a derivation

approach.

Formal methods have a number of significant advantages over traditional methods of
software development. A formal specification introduces clarity, precision, and, used
correctly, abstraction early into the software development process. The fact that it has a
precise semantics may enable the presence or absence of certain system properties to be
proven formally from the specification. A formal development ensures that close reasoning
is carried out to demonstrate the correctness of the software with respect to the

specification; the systematic nature of the reasoning encouraged requires the behaviour of
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the software to be considered much more exhaustively than is common in traditional

development methods.

The advantage of formal reasoning over other kinds of reasoning is that it is a
machine-checkable symbol manipulation process. The process is unaffected by rhetoric and
any intuitions about the intended properties of the formal symbols being reasoned about.
The only sources of error are in the underlying formal system itself, i.e. the axioms and
inference rules, and the misinterpretation of what has actually been proven. Formal

arguments force underlying assumptions to be made explicit®.

However there have been a number of serious objections raised to formal methods and
formal verification; some of the most prominent of which are De Millo et al's arguments,
[DLP79], and Fetzer's arguments, [Fet88]. The first of these may be summarised as arguing
that proof is a social process involving peer review, but that the sheer size of proofs in
formal methods prevents them from being subject to that process. De Millo et al conclude
that such proofs cannot increase confidence in the quality of the software. A weakness in
this argument is the assumption that machine checked proofs need to be validated by a
social process. It can be argued that the peer review for formal proofs is the acceptance of
the underlying formal system, and the confidence in the tool which checks or constructs the
proof. Hence, the social-review problem is only applicable to the proofs of the soundness of
the proof tools. Furthermore, tool confidence can be generated through testing and wide use.
This is not to argue that such tools and formal systems already exist, but only that the

problem is solvable.

Fetzer's argument is more interesting. It is that programs are causal entities that
control computers, while verification proofs can only reason about non-causal entities, for
example, the algorithms which the programs encode. Fetzer concludes that formal
reasoning cannot guarantee the correctness of programs. This is, of course, correct, yet the
distinction only manifests itself when the model of the algorithm and computer is different
from the actual language and computer. As pointed out in [BSY89], in principle it ought to
be possible to reduce this gap to the difference between the boolean "and" operator, and the
"and” operator encoded in the computer’s silicon. At present however this gap is significant.
The semantic model of programming languages used in proofs of the correctness of

algorithms are usually given axiomatically using Hoare logic, [Hoa69], or Dijkstra’s weakest

3 This explains the comment in [Lak76], that "the virtue of a logical proof is not that it compels belief but
that it suggests doubts”, on page 48, attributed to H.G. Forder.
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preconditions, [Dij75], and these are significantly removed from assembly code which the
high-level language will be compiled into. Furthermore, the differences between the
functional model of the processor implicit in such models, and the processor’s logical design
in silicon are also significant. This gap between model and embedded system is even larger
when models of concurrent software are considered, as such models usually abstract away

from details of scheduling and distribution.

Formal methods suffer from significant fundamental limitations, as well as numerous
limitations associated with their current development. Perhaps the most significant of the
fundamental limitations is that although the software may be proven correct with respect to
the specification, the specification itself cannot be verified, only validated, [BaM92]. Two
main schools of thought have developed concerning how it is best to validate a formal
specification. One, argued in [HaJ89], recommends the use of the most abstract and
powerful mathematical concepts suitable to express the specification of the system, thus
enabling the easiest comprehension by the reader, and making it easiest to reason about the
system’s behaviour. The other, argued in [Fuc92], recommends the use of executable subsets
of mathematics in specification, so that a specification can be tested by executing it, and
hence the properties of the system specified can be investigated interactively. Fuchs, in
[Fuc92], argues that a modern logic programming language can be used to present a
specification at the same level of abstraction as a non-executable specification. Fuchs

illustrates this argument using the examples that were used in [HaJ89].

However, neither of these solutions to specification validation can generate complete
confidence that the specification actually specifies the desired system. They both share a
limitation of testing, naming only certain properties will be proven, and limited scenarios
animated. Furthermore, the properties of the desired system may be ill defined, and poorly
articulated. Indeed, it is not uncommon for different people (users and customers) to have

contradictory ideas of the properties that the system should exhibit.

Other fundamental limitations of formal methods include: ambiguity in formal
specifications, irrespective of the precision of their semantics, as they have to be interpreted
by people; and the inability to express or prove certain properties in a given formal system,
[BaM92]. For these reasons, amongst others, formal methods should never completely

supplant the testing of the final software and product.

It has been argued, [BaM92], that formal specification languages are currently too

arcane. There have been three basic responses to this: one is to deny it, and contend that
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symbols quickly become invisible as their meaning is apprehended, [Hoa85]; another is to
develop a graphical representation of the formal language, for example, [Arm92]; and yet
another is to start from a graphical notation, and to develop a formal semantics for it. While
there is some merit in the first position, it is the last that is pursued in this thesis. The
main reason for this was the desire to develop a formal development method which was as
close as possible to current, industrial, practices. For example, currently within BAe
Dynamics Ltd.°, mode-based graphical specifications are sometimes used, usually with only
informally defined semantics. The specification language proposed in this thesis is a
mode-based graphical notation with a formal semantics. It is hoped that this position will

ease the dissemination within industry of the formal methods proposed in this thesis.

To summarise; I have argued that the use of formal methods can increase confidence in
a software system’s behaviour, and hence that formal methods have a role in developing
safety-critical software. I also believe that the advantages of well-structured software
means that design methods also have a role in developing safety-critical software. Hence
there is a need to produce formal semantics for design notations, so that designs produced
using these methods can be reasoned about formally. I also believe that graphically based

specification notations make formal notations more usable.

This basic position motivates the work in this thesis, which is described in detail in the
next section. The design method which is formalised is MASCOT, [JIM87], and the
graphical specification language is a mode-based notation suitable for describing reactive

systems.

1.4. Introduction to the Thesis

This thesis has seven chapters. After this introduction, the second chapter briefly
introduces the MASCOT design method and some of the extensions that have been proposed
during the DORIS’ applied research project at BAe Dynamics, [Sim91]. MASCOT was
chosen over the other design methods for two main reasons. Firstly, MASCOT is widely

used in the UK defence industry for producing software, being the Ministry of Defence’s

6The author is an employee of British Aerospace Dynamics Ltd., (referred to as BAe Dynamics in the rest
of the thesis).

7Data Oriented Requirements Implementation Scheme
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preferred design method, [MoD85], [MoD91 al®, and it has been, and is being, used to
develop safety-critical software. Secondly, MASCOT is considered by many to be one of the
better design methods, especially for concurrent embedded systems. [HOH91a] is a fair
comparison of MASCOT with other major design methods, including MOON, an
object-oriented extension of MASCOT, [HOH91b]. Although MASCOT has been used in the
development of SCS, there are no widely used formal semantics for the method; in spite of
one having been defined in [BJP87]. The main MASCOT extension from the DORIS work
which is considered in this thesis is the Signal IDA®. The second chapter defines a simplified

MASCOT, and gives a graph theoretic characterisation of well-formed MASCOT designs.

A simplified MASCOT is considered in this thesis, rather than the whole MASCOT-3
method, as the aim was to be able to develop SCS in a MASCOT-like way, rather than to
formalise MASCOT per se. The position has been taken that it is acceptable to exclude the
use of certain aspects of MASCOT on safety-critical projects when those aspects are difficult

to reason about. This is analogous to the use of "safe” programming language subsets for
SCS, [Car90] and [CGW91].

The third chapter discusses the ways that a design method may be formalised; and it
defines the abstract syntax of two simplified MASCOT-like design notations. The abstract
syntax is defined for the MASCOT graphical language, and so graph grammars are used. In
particular, directed edge-labelled neighbourhood controlled embedding (deNCE) graph
grammars are used. These are a particular kind of Node Labelled Controlled (NL.C) graph
grammar, and are properly introduced in the third chapter. The first syntax, known as
Simple Linear MASCOT (SLM) is an especially simple class of designs. The second,
Branching Looping MASCOT (BLM) is more complicated, but it is still simpler than the
class of well-formed MASCOT designs defined in chapter two. The BLM abstract syntax is

used in chapter five to structure the definition of a denotational semantics for MASCOT.

The fourth chapter reviews various formal models that have been proposed for

concurrent systems with respect to their appropriateness for being a semantic foundation

8The Navy’s commitment to MASCOT is strong, as revealed by the following statement from [MoD91z2]:
"For real-time multi-tasking systems the design methodology and philosophy of MASCOT, (DEF STAN
00-17) (or for use with Ada, MASCOT 3), is to be used unless the Contractor can demonstrate that an
alternative approach is better suited for the application."

9IDAs (Inter-communication Data Areas) and other MASCOT acronyms and concepts are introduced in
Chapter 2, and in the standard MASCOT literature such as [JIM87] or [Sim86].
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for MASCOT designs. This chapter concludes that Hoare Traces, [Hoa85], can be used as a
suitable semantic model for MASCOT designs.

Chapter five uses this conclusion and defines a denotational semantics for SLM and
BLM MASCOT designs in terms of Hoare Traces, by being defined in terms of CSP'?,
[Hoa85]. The utility of this semantic model is illustrated with the proof of correctness of a
simple MASCOT design with respect to a predicate-over-traces specification using the
normal CSP SAT logic, [Hoa85].

Chapter six defines a mode-based notation called Specification Transition Systems or
STSs. The modes of an STS define a class of labelled transition system (LTS) states.
However, STSs are not more expressive than LTSs, and this is demonstrated by defining
the construction of an equivalent LTS from an STS. STSs contain a notation to identify the
devices which the system is to control. STSs also contain a notation to define which devices
need to be given a consistent view of the system’s mode. A graphical presentation notation
and a refinement calculus for STSs is defined. The mapping between MASCOT designs and

STSs is discussed, but not formalised.

The seventh chapter summarises the thesis, evaluates the work, and identifies areas for
further work. There are five appendices to the thesis. The first introduces formal (logical)
systems; the second introduces reactive systems; the third gives the formal definitions of the
models of concurrency which are mentioned in the thesis; the fourth contains proofs of the
soundness of the STS refinement rules; the fifth contains an outline of a ten rule deNCE
grammar for BLM designs; and the sixth contains the formal version of the BLM_GG
grammar given graphically in chapter three. The first three appendices are included in an

attempt to make the thesis self-contained and accessible to a wider audience.

10Communicating Sequential Processes
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Chapter 2: Introduction to MASCOT Designs

This chapter introduces the MASCOT design method. "MASCOT" is an acronym for
"Modular Approach to Software Construction, Operation and Test". MASCOT has been
advocated for the design of large, concurrent or distributed, real-time, embedded software
systems. MASCOT is widely used in the United Kingdom defence industry, being a
preferred design method of the Ministry of Defence, [MoD85] and [MoD91a]. MASCOT-3 is
the latest version of the MASCOT design method. [JIM87] is the official definition of
MASCOT-3, other introductions to MASCOT include: [Sid79], [Bat86], and [Sim86].

The designs considered in this chapter are a subset of the valid MASCOT-3 designs;
they make use of some of the simplifications and extensions to MASCOT that have been
proposed during the DORIS research project, [Sim91]; [Tho91]; and [Sim93]. There are two
main motivations for introducing a simplified MASCOT. The first is that there are elements
of MASCOQT-3 designs which, while useful for presenting large scale designs, actually add
no new operational entities. As the intention is to present a formal semantics of MASCOT
designs so that their behaviour can be reasoned about, there is a case for only considering
designs consisting of entities which affect the behaviour of the design. This case is
strengthened by the realisation that the removal of these non-operational entities can result

in a dramatically simpler characterisation of MASCOT.

A second motivation for considering a simplified MASCOT is the desire to remove from
consideration certain MASCOT entities for which it would be hard to provide a formal
semantics. For example, the behaviour of general IDAs is under-defined in MASCOT-3. It is
anticipated that, even if a formal semantics were defined for them, they would not have a
powerful enough theory associated with them to enable anything interesting to be deduced

about the behaviour of designs which contained them.

2.1. Activities and IDAs

There are two basic kinds of component in a MASCOT design: activities and
intercommunication data areas (IDAs). Activities are the active processes (or tasks, or
agents) of the design, and IDAs are, conceptually, the passive storage areas through which

activities communicate. IDAs are only "conceptually passive” because they may be
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implemented by active processes in a given implementation of a design'!. This is the case,
for example, with the proposed mapping between MASCOT designs and Occam, [INM88], in
[Kno90]. However, at the MASCOT design level of abstraction, IDAs appear passive. They
store the data in transit between activities, and do not engage in independent processing of
their own. Activities may only communicate via IDAs. MASCOT designs are static networks

of activities and IDAs.

There are three basic kinds of IDA, known as: pools; channels; and signals. They are
distinguished by the protocols they impose upon the communication of data which passes
through them. Pools, for example, are like shared variables. Their value is unaffected by
activities reading from them, and activities which write to them overwrite their previous
value. Pools are said to have a destructive writing and a non-destructive reading protocol.
In contrast, channels have a buffer associated with them, and data is consumed from the
buffer by a reading activity, and is added to the buffer by a writing activity. Reading
activities must wait when a channel’s buffer is empty, and writing activities must wait
when the buffer is full'2. Channels are said to have a non-destructive writing and a
destructive reading protocol. Signals, like channels, also have buffers associated with them,
however signals have a destructive writing and reading protocol. Signals impose a circular
overwriting protocol on the buffer for writing activities. Signal IDAs are an extension

proposed in [Sim91], they are not distinguished in MASCOT-3.

The above information about the communication protocols of the different IDAs is
captured in the table in Figure 2.1, which was taken from [Sim93]. The "Constant” IDA
mentioned in the table is included in the DORIS work for completeness. Constant IDAs
indicate the use of fixed configuration data by an activity. They will not be considered

further in this thesis.

11The MASCOT-3 Handbook, [JIM87], does not draw this distinction, and simply asserts that, "An IDA
is a passive element".

12The buffers associated with MASCOT channels are intended to be implemented and so are always of
finite length.
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Destructive Non-Destructive
Reading Reading
Destructive SIGNAL POOL
Writing
Non-Destructive
Writing CHANNEL CONSTANT

Figure 2.1: IDA Communication Protocols

The data propagation protocols of IDAs have a natural impact on the synchronisation
of activities that communicate via them. This can be characterised by whether or not the
reading or writing activities can be forced to wait for data from the IDA. This
characterisation of the kinds of IDA is presented in Figure 2.2, which was taken from
[Sim93].

Reader can be Reader cannot be
held up held up
Writer cannot be SIGNAL POOL
held up
Writer can be
held up CHANNEL CONSTANT

Figure 2.2: IDA Synchronisation Protocols

Pools are suitable for storing information that needs to be shared by more than one
activity, and for de-coupling activities which produce and consume data at different and,
particularly, varying frequencies. Signals are suitable for communicating messages between
activities where it is more important for the consuming activity to process the latest
message than for it diligently to handle each message in turn. This is common is real-time
systems. Channels are suitable for communicating messages where no message may be lost,

even if this forces one or more of the activities to wait from time to time.
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It is the richness in communication and synchronisation mechanisms which are
provided by IDAs that is the essential advantage of MASCOT designs over other real-time
design approaches. For example, consideration of a channel with a zero-place buffer reveals
that the rendezvous mechanism of Ada, [LRM83], is a special case of the MASCOT channel
IDA.

Pools can be implemented in such a way that truly asynchronous communication is
possible between activities which execute on distributed processors. In particular, the
four-slot mechanism, [Sim90b], [Sim92] and [Ben92], can be used to ensure the coherence of
data communicated via a pool without introducing critical regions, and hence

synchronisation'®,

MASCOT-3 designs may contain general IDAs, that is, IDAs without an explicit
protocol associated with them. There are few things that can be deduced about the
behaviour of a design which contains such an IDA without knowing more about its
functionality. A model may be found for a design with a specific example of such an IDA, but
it is hard to find a powerful enough semantics for the general case. For example, a
particular design may use a general IDA to represent a complicated intercommunication
data area, such as a database. Usable bespoke models may be able to be defined for such

specific examples. Nevertheless, general IDAs are not considered further in this thesis.

MASCOT-3 also supports the definition of the interfaces between activities and IDAs.
These interfaces, known as "access interfaces”, may include data types, variables, and
procedures and functions. An access interface is defined by a "window" at the IDA, and it’s
signature (the signature of the types, variables, procedures, and functions) must be common

to a "port” associated with every activity connected to that window.

The MASCOT designs considered in this thesis are simplified in this aspect. Each IDA
supports two implicit windows, one for a reading activity and one for a writing activity. The
access interfaces for these windows support a single procedure or function, namely a writing
procedure or a reading function. The semantics of these operations are such that the data
value being communicated is passed from the activity to the IDA or vice versa without being
modified, and the IDA is updated appropriately according to the communication protocol it

imposes. These simple default access interfaces for IDAs mean that windows and ports can

13The asynchronism possible in an implementation of a MASCOT design is therefore fundamentally
different from the asynchronous process communication discussed in [JHH89], which is with
communication through buffers of unbounded capacity.
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be dropped from IDAs and activities. Any activity reading or writing to an IDA will be
automatically assumed to be using the implicit access interface. Ports, windows, and access
interfaces have an important role in making the consistency of a MASCOT-3 design
automatically checkable, as well as flexible. However, for formal reasoning about MASCOT

designs, such complexity is an undesirable overhead.

2.2. Interfacing with the Environment

A MASCQT-3 design interacts with its environment via special network components
known as servers. A server is intended to collect together the software required for handling
a particular device in the system’s environment. A server, therefore, includes any interface
software (i.e. memory mapped variables; and the procedures and functions which
manipulate them) and any interrupt handlers associated with the device. A server (with
interrupt handler) may hence be viewed as a partially active, as well as a passive,
component. Similarly to a MASCOT-3 IDA, a server may provide a number of different

access interfaces to the underlying device via different windows.

The designs considered in this thesis take a simpler view than MASCOT-3 of design
environment interfacing. Rather than collecting together in a "server" a number of
hardware access routines, each hardware access will be handled separately. Furthermore,
rather than allowing arbitrary access interfaces, simple "read” and "write" routines will be
assumed, which transport, but do not manipulate, the data being passed between the
activities and the hardware. Another simplifying assumption adopted is that the
synchronisation protocol for an activity communicating with the hardware will be one of the

ones associated with the three kinds of IDA described above.

The consequence of these simplifications is that a MASCOT design may be considered to
be a network of activities and IDAs components, and each path through the network will be
bounded by interface IDAs. Interface IDAs would be connected to either consuming
activities or producing activities within the design, and to (implicit) devices in the
environment, which either produced or consumed the data on the other side. The advantage
of this view is that the MASCOT designs considered in this thesis consist of only two kinds
of components: activities and IDAs, and a third kind for interfacing is not required. This

keeps the ontological commitments of MASCOT to a minimum.
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The equivalent of interrupt handlers could be modelled in this approach by providing a
dedicated activity connected to the appropriate hardware device by a signal interface IDA,
with zero length buffer.

Servers have also been dropped from MASCOT in the DORIS work, and DORIS
networks are also bounded by IDAs, [Sim93].

2.3. MASCOT Networks

A MASCOT design is a network of activity and IDA components. It can be viewed as a
node labelled graph, where the connections of the network (the arcs of the graph) indicate
the paths by which data may be communicated between these components. Thus, if an
activity writes data to a pool, there is be a connection between the activity component and
the pool component. In the MASCOT designs considered in this thesis, as the only access
interfaces supported are "reads” and "writes”, a network may be considered to be a directed

graph, where the arcs indicate the direction of the flow of data between the components.

The fact that activities may only communicate via IDAs means that activities and IDAs

must label alternating nodes of a MASCOT network on each path through the network.

There are other desirable constraints to be placed upon how components may be
connected in MASCOT designs. In particular, pools should only be connected to a single
producer activity, and channels and signals should only be connected to a single consumer
activity. Also no interface IDA may be written to by more than one activity. Output
interface IDAs are treated differently than other IDAs to keep them simpler as they define
the hardware / software boundary. It prevents the problem of two different activities
sending conflicting values to the same place, and means that an implementation of such an
IDA does not need to implement mutual exclusion, or other protocols to ensure data

coherence'?.

2.3.1. Terminology

A directed graph is a pair, G = (N, A), where N is a finite set of elements known as

nodes, and A is a subset of the cartesian product N x N, whose elements are known as

14"Shared resources” can still occur in these simplified MASCOT designs, providing the MASCOT
design explicitly provides an activity to arbitrate access to such resources.
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arcs. For an arc, a € A, where a = (%, y), x and y are the endpoinis of a, x is known as the
initial endpoint of a, and y is the terminal endpoint of a. The initial and terminal
endpoints of an arc a may also denoted by a, and a,, respectively. Two nodes are
adjacent if they are joined by an arc. Two arcs are adjacent if they share a common
endpoint. A node x is said to be an immediate predecessor of a node y iff (x, y) € A.
Similarly, y is said to be an immediate successor of x iff (x, y) € A. The set of all
immediate successors to a node n will be denoted by Y*(n), and the set of all immediate
predecessors to a node n will be denoted by Y(n). The set of all neighbours to a node n is
TH(n) U Y (). A subgraph, H, of graph, G, is H = (Y, Ay), where YS N, and A, =ANY x
Y. (These definitions are taken from [Car79].)

2.3.2. Formal Characterisation of MASCOT Designs

The MASCOT designs which are considered in this thesis may be characterised as a
directed graph,

MASCOT_DESIGNS ::Nodes : COMPONENTS
Arcs : COMPONENTS x COMPONENTS

Four helpful functions are:
Node_Type : COMPONENTS — { IDA, Activity },

which returns the kind of the component. Node_Type is a total function.

IDA_Type : COMPONENTS — { Pool, Channel, Signal },
which returns the type of IDA. The precondition of IDA_Type is that the value returned
by applying the Node_Type function to the parameter is "IDA".

Predecessors : COMPONENTS — COMPONENTS-set
which returns the set of all predecessors to the node, that is, all immediate
predecessors, and their predecessors. When the set returned is empty the node is said to

be an input node.

Successors : COMPONENTS — COMPONENTS-set
which returns the set of successors to the node, that is, all immediate successors, and

their successors. When the set returned is empty the node is said to be an output node.

The following well-formedness rules apply to valid MASCOT networks:
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i) dom Arcs U ran Arcs = Nodes

ii) V a € Arcs » Node_Type(a,) # Node_Type(a,)

iii) ¥ n € Nodes ® Predecessors(n) = @ = Node_Type(n) = IDA
iv) V¥ n € Nodes ® Successors(n) = @ = Node_Type(n) = IDA

v) Vn€ Nodes eI n’ € Nodes

n’ € Predecessors(n) A Predecessors(n’) = @ = Node_Type(n’) = IDA

vi) ¥V n € Nodes * 3 n’ € Nodes ¢

n’ € Successors(n) A Successors(n’) = @ = Node_Type(n’) = IDA

vii)V a, a’ € Arcs
&', = a, A Node_Type(a,) = IDA A
(IDA_Type(a,) = Pool v Successors(a,) = @) = a' =a

viii) V a, a’ € Arcs ® &; = a; A Node_Type(a;) = IDA AIDA_Type(a;) # Pool > a’'=a

2.3.3. Well-Formedness Rules

Informally the well-formedness rules state:
Each component is connected to another component.

Every arc must connect an activity at one end, and to an IDA the other end. This is
the standard MASCOT restriction on direct activity to activity communication. It is
easier to state for these networks, where the complexity of MASCOT-3 composite
IDAs (see below) has been avoided.

All start nodes are IDAs.

All end nodes are IDAs.

Every node is connected by a path to an input node. No (cyclic) part of a MASCOT

design is not connected to an input device.

Every node is connected by a path to an output node. No (cyclic) part of a MASCOT

design is not connected to an output device.
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7. An IDA may only be connected to more than one writing activity if it does not have a
pool dynamic protocol, and it is not an output interface IDA. The motivation for this

restriction is to keep the semantics of pools as simple as possible.

8. An IDA may only be connected to more than one reading activity if it has a pool
dynamic protocol. Again the motivation for this restriction is to keep the semantics

of IDAs as simple as possible.

The above well-formedness rules imply that MASCOT designs have certain

desirable properties. For example:

A. For every input to the design, there is be a path through the network by which it

may influence an output!®

. This does not guarantee that every input will be used to
generate an output, only that the design must not be such that an input is

prevented from influencing at least one output.

B. There is no need for a network to be connected, in a graph theoretic sense. That is, a
design need not consist of only one connected component. It is perfectly valid for a
MASCOT design to consist of two or more totally independent networks for

processing inputs and producing outputs.

The characterisation of MASCOT designs above has been given to explain, from a
MASCOT perspective, how activities and IDAs may be interconnected. However, the
designs which will actually be considered in this thesis are defined by graph grammars
rather than as a graph. The reasons for this are that graph grammars are needed for
the structuring the formal semantics of MASCOT designs. Unfortunately, a graph
grammar will not be presented which can generate the same set of graphs as defined by
the well-formedness rules above. While there is a need for such a grammar, it would be

significantly larger than the small grammars presented in this thesis.

2.4. MASCOT-3 Hierarchical Structuring Mechanisms

The MASCOT-3 design notation has been developed as a design notation for recording
large scale software designs, and hence has a number of structuring mechanisms to enable

large MASCOT networks to be presented economically. Servers, access interfaces, windows

15 Clearly, an input which cannot influence the output behaviour of the system is an input which is not
needed.
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and ports have already been described. Other MASCOT-3 mechanisms are described briefly

in this section for completeness, but they are not used in the rest of the thesis.

As a guide to the relationship between the terms used in the following discussion, a map
of the various MASCOT-3 module terms and their classification is given in Figure 2.3,

reproduced from [JIMS87].

MASCOT Software
] 1
Application Software Context Software
1
Speci!ﬁcation Temlplate
1 ]
Interc]onnection Suppleentary Ne!work Elejnent Subllement Suppllementary
Specification Specification Template Template Template Template
1 1 1 1 L 1
Simple Access Definition System Simple Root Library
Interface Activity
e . - \
Subroot Library Subsystem Simple Simple
Interface \Interface IDA Subroot
Composite Access Composite Simple Composite
Interface Server Server Subroot
ry
Composite
Activity
1

Composite Simple Composite Simple
Specification Specification Template Template

Italic Font indicates Mandatory Module Types

Figure 2.3: MASCOT Module Taxonomy

The primary structuring mechanisms used in MASCQOT-3 are subsystems, composite
components, and templates. Subsystems are arbitrary (well-formed) fragments of a

MASCOT-3 network. Subsystems may be nested within other subsystems, thus forming a

hierarchy.

Composite components include composite servers, IDAs, access interfaces, and
activities. Composite IDAs may contain networks of composite or simple IDAs, and
composite servers may contain networks of servers and IDAs. Composite access interfaces
enable a number of paths between components to be combined, and presented graphically as
a single line. This simplifies the pictures corresponding to MASCOT-3 designs and, used to

reflect suitable abstractions, can keep a design comprehensible. Composite access
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interfaces, like ordinary access interfaces, are known as interface specification modules,

they define the interfaces between the components of a MASCOT-3 design.

Subsystems, and composite servers, IDAs, and access interfaces, do not have any
semantic content. That is, they do not describe entities whose operation influences the
behaviour of the design. They enable large design networks to be partitioned and presented

hierarchically.

Composite activities are used in MASCOT-3 in the place of simple activities when the
internal sequential data-flow of the activity is to be defined. This data-flow is defined in
terms of instances of sub-element templates (see Figure 2.3). This data-flow description
itself may be presented hierarchically, using composite subroots. MASCOT activities
cannot, unlike for example CSP processes, be decomposed into a network of active

components.

Elements of a MASCOT-3 design are partitioned into two broad kinds: specifications
and templates.

Composite servers and subsystems are instances of network templates. Multiple
instances of a template may occur in the same design, thus easing design re-use. Templates
may not be defined recursively. Network templates are used in structuring and presenting a
MASCOT-3 design, but they do not have a semantics independent of the components they

contain.

A MASCOT design is hierarchical. At its top level is a system template. An

implementation of the design is said to be an instance of this template.

For a more detailed introduction to MASCOT-3 the reader is referred to [JIM87].

2.5. The Graphical Notation

A MASCOT-3 design has both a graphical and a textual representation; however the
graphical representation cannot portray all of a design. In particular, the type and
procedural information associated with MASCOT specifications is not portrayed graphically
using the MASCOT-3 notation. Types and procedures are considered to be defined outside of
the MASCOT-3 design notation; usually in the programming language chosen to implement

the design.
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The MASCOT graphical notation follows a number of conventions. It is described here,

and illustrated in Figure 2.4, below.

rA Server )
A Composite IDA A Subsystem A general IDA
A Port |
A Window
A Channel IDA
An Activity
A Composite
A Composite Server
Activity
h 1
The system template A Pool IDA
\ Figure 2.4: An Illustrative MASCOT-3 Diagram y

Active, or potentially active, components are portrayed with rounded edges. For
example, activities are represented as circles; servers are represented as boxes with a
semi-circular end; and subsystems, which may contain activities or servers, as rectangles
with rounded corners. Non-active components, such as IDAs, are represented by symbols
drawn with straight lines. For example, a general IDA is a box; a pool IDA is a rectangle
whose short edges protrude past one long edge; and a channel IDA is a rectangle whose
short edges protrude past both long edges. Composite components are indicated by thicker

edges; and their contents are presented on separate diagrams.

Ports are drawn on an inside edge of a component as a small filled circled. Windows are

drawn on the inside edge of a component as a small filled rectangle.

Paths between components are represented as lines. The access interface associated
with a window or port is mentioned as a label beside the line which represents the path that
connects to that window. The direction of data-flow along a path may be represented by an
arrow an the end of the line. Bi-directional data-flow may be represented by arrows at both

ends.
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Not all the MASCOT-3 graphical notation has been illustrated in the MASCOT-3
diagram above; omissions include: composite ports and windows; roots; subroots; and

subroot interfaces. For full details see [JIM87].

2.6. The MASCOT-3 Method

MASCOT-3 claims to be much more than simply a design notation. It also claims to
address the design process; software construction; software operation; and software testing.
It furthermore claims to support design re-use. The MASCOT-3 method will be briefly

described and evaluated using these categories.

2.6.1. Deriving the Design

This is not a subject which the MASCOT method addresses in any depth. The
MASCOT handbook, [JIM87], explains that: "[MASCOT-3] does not provide recipes for
filling out the framework for a given design problem”. Not only is MASCOT not
prescriptive, but the handbook contains no informal guidelines for developing MASCOT

designs.

Developing MASCOT designs is an incremental process. MASCOT allows a
progressive consideration of a system’s functionality through abstraction due to
hierarchical facilities of the design notation. MASCOT designs may be developed in a

top-down or bottom-up manner, or a mixture of both.

The lack of rules or recipes for design derivation should not be seen as a failure of
MASCOT as a design method. The lack simply reflects the fact that design is a creative
process, and is currently inadequately understood. It is arguable that it is better to
provide the designer with a flexible and appropriate language in which to express

designs naturally, than to guide, perhaps inappropriately.

One element of the MASCOT notation that particularly recognises that designs are
developed incrementally is a "status" assigned to design elements. There are five status
values: Registered; Partially and Fully Introduced; and Partially and Fully Enrolled.
The conditions under which an element may be ascribed a particular status are defined
recursively over the structure of a MASCOT design. An element’s status reflects how
completely it has been defined, and the status of the other elements it depends upon.

The precise meaning of each status value can be found in [JIM87].
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2.6.2. Software Construction

MASCOT-3 does not define how to develop software to implement a MASCOT
design. However, software constructed from a MASCOT-3 design should reflect the

structure of the design.

Software constructed from a MASCOT-3 design is more likely to reflect the
component, rather than the template, structure of the design, unless the
implementation language supports a form of generics. Network templates and their

instances may have no mapping into the implementation.

Clearly MASCOT only provides the outline of a software implementation. Even a
composite activity whose internal data-flow has been defined may be implemented to
perform many different computations. It is this ambiguity which will be removed from

MASCOT when designs are given a formal semantics in Chapter 5.

2.6.3. Software Operation

MASCOT-3 is less prescriptive than the previous version of MASCOT, (i.e.
MASCOT-2 [JIM83]), concerning what facilities it requires the execution environment
to provide. This allows MASCOT designs to be implemented in a number of different
languages and run-time systems. MASCOT-2 defined a set of scheduling primitives
(commands) that the kernel (run-time system) had to provide for use in the activities

and IDAs. MASCOT-3 defines no such list of obligatory primitives.

An implementation only needs to reflect the structure of the design during
execution. This means that activities are implemented as parallel processes, which can
only communicate via IDAs, along the paths given in the design. However, MASCOT-3
does not define whether an implementation is to be concurrent on a single processor;
distributed on separate processors; or a mixture of both. Nor, for distributed processors,
does it prescribe local or global kernels. This ambiguity adds to the generality of

MASCOT, but reduces what may be deduced or proven about a MASCOT design.

2.6.4. Software Testing

MASCOQT-3 claims to provide facilities which ease the task of software testing.

However, the introduction to [JIM87] indicates that the "testing facilities”" are actually a
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by-product of representing the design as de-coupled components. The MASCOT design
notation forces the interfaces between the various components of the design to be
explicitly identified. This eases the task of developing test harnesses for parts of an
implementation of a MASCOT design. The ports and windows of a MASCOT component
(for example, a subsystem) define the access interfaces that the component expects to
see and provide. The system around such a component can be replaced by test harness

components, providing they provide and expect the same interface.

MASCOT-3 does not provide recipes describing how best to test a MASCOT design.

2.6.5. Design Re-Use

Design re-use in MASCOT is a result of three properties of the MASCOT-3 design
notation: templates; access interfaces; and subsystems. Templates may be multiply
instantiated within one design, or may be instantiated within more than one design,
thus supporting re-use. Access interfaces, by providing a well-defined interface, ease the
re-use of components in different designs. Subsystems encourage the partitioning of
designs, hopefully into re-usable components. MASCOT-3 however provides no

guidelines on what constitutes a good or easily re-usable component.

2.6.6. An Evaluation

Undoubtedly, MASCOT’s strength lies in its approach to design representation. The
MASCOT-3 design notation allows a design’s concurrent agents, and the data flows
between them, to be explicitly represented. Its hierarchical presentation, and its strong
emphasis on the de-coupling of components by IDAs and the strong typing of the
interfaces between components, eases the design task. The IDA communication model is
richer than that found in many concurrent languages, such as Occam, [INM88], Ada,
[LLRM83] and CSP, [Hoa85], which only support synchronous communication. It
supports message passing, like CSP, and shared variable communication, like extended
VDM, [Jon83]. This richness of the IDA communication model adds flexibility to the
design. The appropriate protocol may be adopted for each part of the design.

The asynchronous pool IDA, in particular, enables designs to be constructed which
are robust against component failure. MASCOT has proven itself a suitable design
notation for defining the structure of large, robust, real-time, embedded software

products.
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The extent to which MASCOT-3 method addresses the design, construction,
operation, test, and re-use elements of software development is variable, and is usually
a by-product of the design notation. However, its philosophy on these subjects seems

adequate.

MASCOT has been favourably reviewed in the following comparisons of design
methods for real-time systems: [HOH91a] and [Jac90]. However, there are four
significant areas where MASCOT may be criticised. Firstly, the design notation does not
support the recording of temporal information. However, currently it is not clear what
temporal information ought to be recorded. There is some ongoing research in this
direction, for example the SPIRITS'® project, [IED91]. Secondly, MASCOT only captures
the architecture of the design and not its full functionality. This is normal for design
methods, and many designers find this abstraction helpful when considering a design at
an early stage. However, it does prevent the correctness or safety properties of the
design being established before the software is developed. Thirdly, the MASCOT design
notation does not have a widely used formally defined semantics'®. Fourthly, MASCOT

has failed to create a large user-base outside of the UK defence industry.

MASCOT has also been criticised for requiring a large number of names to be
generated to label a design. However these are needed to present a design

unambiguously, [HOH91a].

Personally, I consider the core MASCOT approach to real-time software design of
hierarchically presenting such designs as static networks of activities strongly
de-coupled by IDAs to be one of the best currently developed. DORIS, [Sim93], and
MOON, [HOH91b], have both demonstrated how MASCOT can be usefully extended,

while retaining this same design philosophy.

18Supporting Predictable Implementation of Requirements on Time and Safety

19[BJP87] is a description of a previous attempt to define the semantics of MASCOT-3 designs. A fuller
discussion of [BJP87] can be found in chapter 7.
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Chapter 3: Formalising MASCOT

This chapter addresses the formalisation of the MASCOT design method. It starts by
considering how the various elements of a design method can be formalised, and the
objectives of such formalisation. This is followed in section 3.2 by an introduction to node
labelled controlled graph grammars. These are used in subsequent sections to define the
abstract syntax of simplified MASCOT designs. The MASCOT designs considered are a
significant simplification of MASCOQOT-3 designs, but they retain most of the operational
expressiveness of MASCOT-3. The abstract syntax defined in this chapter is used in
subsequent chapters to structure the definition of a denotational semantics of MASCOT

designs.

3.1. Formalising Design Methods

The formalisation of design methods is considered in this section. Section 3.1.1 contains
a discussion of the parts of a design method that can be formalised, and section 3.1.2

analyses the benefits of formalising design notations.

3.1.1. Formalisation

When discussing the formalisation of a design method it is important to be clear
about what part or element of the design method is being formalised. The elements
found in many design methods include: the rules for using the method to produce
designs; the syntax rules of the design notation; and the semantics of a design written
in that notation. A more intricate model of a design method is given in [HoW92], and is
repeated below in Figure 3.1. It distinguishes five elements of a design method: the way
of thinking; the way of conirol; the way of modelling; the way of working; and the way of
support.

According to [HoW92], the way of thinking is the basic assumptions and view point
of the method; the way of control concerns the project management elements of the
method; the way of modelling is the models and model components used in the design;
while the way of working is the strategies and procedures of the method for arriving at

the models. The way of support deals with tool support prescribed by the method.

Page 36



Managerial
Way of Control

/ l J, Operational
Way of —
Thinking

Way of > Way of
\ Modelling Working
Product Process
Way of Support
Figure 3.1: Model of A Design Method

Rather than considering this model of a design method in a vacuum, each element
will be related to the MASCOT design method. The formalisation of each element is

briefly discussed.

3.1.1.a. The Way of Thinking

The way of thinking, or the basic assumptions and view point of a design
method, are unlikely to be clearly identified, as they are often shared and
unquestioned by the originators of the method. However, clearly, such elements are
fundamental, and are likely to have a significant impact on the applicability of the
method for different types of software. This information is usually passed on to the
users of the method through general statements and the presentation of a number

of small examples.

MASCOT is directed towards the design of large embedded systems, with

distributed or concurrent software. It has a hierarchical and network or data-flow
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view of software systems. However, beyond this, clearly delineating its way of

thinking is beyond the scope of this thesis.

1t is not clear how the underlying world view and philosophy of a design method
could be formalised. However, any method will benefit from having as clear a

presentation of this element of it as possible.

3.1.1Lb. The Way of Control

The rules and guidelines concerned with the project management of designs
comprise a method’s way of control. There are three main elements of MASCOT
which could be considered its way of control: the identification of "technical
authorities”; a MASCOT database which records and controls the status progression

of the elements of the design; and it documentation requirements.

MASCOT-3 requires "technical authorities” to be responsible for defining the
requirements for MASCOT templates and (informally) verifying and accepting the
designer’s design of the template. MASCOT-3 requires a Requirements Review; and
a Verification and Acceptance Review, to monitor the transfer of work between

technical authority and designer. This is clearly part of MASCOT’s way of control.

In MASCOT-3 each component of a design is ascribed a status which may be one
of the following: registered; partially introduced; (fully) introduced; partially
enrolled; and (fully) enrolled. A component can only be progressed to a higher status
if it satisfies certain preconditions; preconditions related to its completeness and
consistency. For example, the preconditions for a composite component require all
the elements of which it comprises to have acquired a certain status before the
composite component can be progressed to a higher status. Details can be found in
[JIM87]. It may be debated as to whether this is really part of MASCOT’s way of
control, or whether such status progression rules are part of the static (syntactic)

constraints on MASCOT designs, and hence part of its way of modelling.

The MASCOT handbook, [JIM87], also provides a helpful discussion of design
documentation and how it ought to be maintained, preferably using a configuration
management database. However, MASCOT is not prescriptive concerning design
documentation, and so it could be argued, that this element of MASCOTs way of

control need not be formalised.
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It ought to be possible to formalise a design method’s way of control. A model of
the process of design when using the method can be formally defined, as can the
inputs required (e.g. the authorisations and previously finished tasks) to move from
one phase to the next, and the outputs (e.g. the reports, documents, or justifications)
for each phase. Formalisation of the way of control of a method would undoubtedly
clarify exactly what a properly controlled design process meant. It would force the
relationship between different reports and authorisations to be made unambiguous,
so that a given development could be checked for compliance with the method. The
objective of such formalisation would be to clarify the process, and perhaps to aid

the development of a configuration tool.

No attempt will be made in this thesis to formalise MASCOT’s way of control.

3.1.1.c. The Way of Support

MASCOT does not prescribe particular tool support, so, strictly, MASCOT has
no way of support element. However, this is not to say that tools have not been

produced which support MASCOT:, for example the BAe MADGE tool, [Har91].

There would not seem to be much scope in formalisation of the way of support of
a design method. A clear statement of which tools should be used should suffice, if a
method is prescriptive on this issue. If a method hints at the properties that a tool
that supports the method should exhibit, undoubtedly these would benefit from
being specified formally. Presumably this would exploit existing formal specification
languages. The objective of such formalisation would be to state precisely the
behaviour of the tools so that tools developed by different vendors would provide a

guaranteed functionality.

3.1.1.d. The Way of Working

The way of working of a design method is the process for developing designs
using that method. However, MASCOT is not a prescriptive design method, in that
it does not tell one how to arrive at a MASCOT design. The MASCOT-3 Handbook,
[JIM87], page 5-2, claims "MASCOT is not prescriptive: thus it does not provide any

recipes for establishing or filling out the framework for a given design problem”
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It can be argued that the way of working concept ought to be extended for
MASCOT to include the construction of software (the "shell” of a program) from the
design. MASCOT requires that software has the same structure as its design.

However, this is not part of MASCOT that will be considered further in this thesis.

Formalisation of the way of working will involve developing the process model
mentioned above in the discussion about the formalisation of the way of control.
Formalisation of the way of working may also consist of a precise statement of how a

design is to be derived.

3.1.1.e. The Way of Modelling

The way of modelling is the models and model components used in the design.
The way of modelling is perhaps the most important element of a design method to
formalise. It entails defining what a valid design is, and what it means. It should
include a definition of the concrete and abstract syntax® of the design notation, and
a definition of the semantics of each element of the design, including the semantics
of any interconnections or interfaces which limit interactions between the elements.
Many design methods use more than one notation or diagram to record design
information, a full formalisation of such a design method would necessitate the
precise relationship between these different representations of the design to be

clarified, and formally stated.

In formalising a design method’s way of modelling it is likely to be a trade-off
between capturing the ambiguity in the informal description of the design and
changing the semantics of components so that they have a clean model. In this
thesis the trade-off is resolved in favour of changing or clarifying the semantics. It is
believed that this is the best hope of developing a semantics which can be utilised in

formally developing industrial scale software.

MASCOT’s way of modelling is its design notation, both graphical and textual;
along with the semantics of the various elements of a design: activities; IDAs; paths

servers; access interfaces; subsystems; and templates etc.. The concrete syntax of

20The word "syntax” is used here, as in [HoW92], to include the definition of the notation of the design
representation and the rules which restrict which designs are considered well-formed, or wvalid.
"Semantics" is used to refer to the meaning of well-formed designs.
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the MASCOT textual notation has been formalised using a modified BNFZ in
[JIMS87]. This fails to capture the well-formedness rules of MASCOT, which are only
presented informally in [JIM87]. More general languages, such as GDL, [SWB87],
and [WBS90], have been proposed for describing the graphical syntax of design
languages, including positioning and well-formedness rules. However, instead of
using GDL, graph grammars will be used in later sections to define the abstract
syntax for a subset of MASCOT-3. Developing a formal semantics for MASCOT is
the topic of chapters four and five.

3.1.1.f. Summary

The formalisation of design methods has been discussed with specific reference
to MASCOT-3 using the model given in [HoW92]. It was concluded that a method’s
process model could be formalised; as could the specification of any prescribed tools
and the rules for constructing designs. However, the most important element of a

design method to formalise is its way of modelling.

3.1.2. The Benefits of Formalisation

In this section the benefits of formalising the way of modelling element of a design
method are considered. Benefits which have been suggested in the literature are
presented. The benefits are broken down into two lists: those associated with
formalising the syntax of the design representation; and those associated with

formalising the semantics of designs.

The semantics of design notations are usually insufficient to define the full
functionality of a design. Therefore, in the process of being formalised, the syntax and
semantics of the design notations may be extended to rectify this, for example [MVL92].
Therefore, some of the literature talks of integrating design and formal methods, rather
than formalising design methods, for example [TKP90] and [SFD92]. The pre-existing

semantics of the design method are usually formalised during such integration.

2 1Bachus-Naur Form
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3.1.2.a. Design Notation Syntax

It has been contended that the following benefits arise from formalising the

syntax of a design notation.

It facilitates the automatic checking of the syntactic consistency of the design.

This includes:

- the detection of syntactic discrepancies between different parts of the

design; similar to the compilation process for programs.

- the checking of the well-formedness of the design hierarchy, and the

detection of incomplete designs.
Easier construction of software tool support, [Tse911.

Data flows in the design can be checked for "continuity”: [Tse91]. This consists of
analysing the data and information flow of a design (assuming the design
method enables that to be recorded) and checking that inputs affect outputs, and

data is not generated from nothing.

3.1.2.b. Design Notation Semantics

It has been argued, [SrH851, [TKP90], [Tse91], [HoW92], and [SFD92] that the

following benefits arise from formalising a design notation’s semantics:

The removal of ambiguity in the meaning of a design, facilitating

communication between designer and specifier, and designer and programmer.

The ability to establish the equivalence of different representations of the

design.

The ability to prove the implementation correct with respect to the design,

assuming the implementation has a formal semantics.
Properties of the design may be able to be proved.

The proliferation of formal techniques and correctness issues in industrial

software development.
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e The ability to integrate different design methods (if they both have a formal

semantics), and to compare or transport designs between them.
» The facilitation of the creation of sound prototyping tools.

» Formal specification languages gain a graphical presentation notation, and

maybe modularisation constructs.

The realisation of at least some of these benefits is not automatic upon
formalisation of a design notation. To some extent it depends upon the quality of the
semantic models defined. If the semantics are to be used they must be accessible to
the users of the method, and must be neither too complicated, nor too great a
revision of the informal intuitions of the method. Furthermore, some of the benefits
only arise if the design notations are extended so that they provide a more complete

description of the functional behaviour than is common for design notations.

3.2. An Introduction to Graph Grammars

This section introduces and provides the basic definitions of graph grammars needed in
this thesis. Graph grammars are used in subsequent sections to define the abstract syntax
of the MASCOT designs which are to be given a formal semantics. The set of valid MASCOT
designs was characterised graph theoretically in section 2.3. However, it is difficult to
structure and formalise the definition of the denotational semantics of designs defined
graph theoretically. Semantic definitions of programming languages, ((Pag81], [Sch86],
[Hen90], and [NiN92]), are usually structured around the abstract syntax of the language.
However, most programming languages are textual and one-dimensional, hence string
grammars are adequate for defining their abstract syntax. MASCOT designs, however, are
essentially two-dimensional, and their abstract syntax is better defined using graph

grammars®. This is the motivation for introducing graph grammars in this section.

22MASCOT-3 has a textual representation which obviously could be given an abstract syntax using a
string grammar. However, it is contended that the structure of the textual form of a MASCOT design is
not as revealing as the structure of the graphical form of a MASCOT design. The structure of the textual
form of a MASCOT design is a collection of elements, the details of which reveal their
inter-relationship, whereas the structure of the graphical form of a MASCOT design includes this
inter-relationship information. It is further contended that the inter-relationships between the elements of
a design is fundamental for understanding the design, and that a semantics based around this information
will be more transparent. The complexity of graph grammars over string grammars is hence worth
accepting in this case.
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Graph grammars are a generalisation of string grammars, where strings are replaced
by graphs. However, graph grammars are significantly more complicated than string
grammars, there are numerous variations, and the supporting body of theory is still under
development, [Kap90]. A good overview of the field can be obtained from the proceedings of
the four international workshops on graph grammars: [CER79]; [ENR83]; [ENR&6]; and
[EKR90].

Like string grammars, graph grammars can be characterised as context free or context
sensitive. However, unlike string grammars, the non-terminal symbols of graph grammars
may represent more than simply sequences of terminal and non-terminal symbols. That is,
a graph grammar’s productions may define rules which replace a non-terminal symbol with,
for example: subgraphs; edges; hyperedges; or nodes. Graph grammars also differ from
string grammars in that there are a number of options concerning how the replaced graph is
embedded in the remaining graph. The grammars which are introduced and used in this
chapter are from the class of context-free graph grammars known as Node Labelled
Controlled (NLC) grammars. These only allow node replacement with local embedding

conditions. This will be explained below.

3.2.1. Terminology

Basic graph theory terminology has been introduced in section 2.3.1. This section

introduces further terminology to ease the discussion of graph grammars.

A node labelled graph is a four-tuple (N, A, X, L), where N is the finite set of nodes;
and A € N x N, is the set of arcs; £ is the set of node labels or alphabet of the graph, and
L: N — Zis the labelling function. I{n), where n € N, is the label of node n. (This
definition is standard, but was taken from [Roz86].) An edge labelled graph is a
four-tuple (N, A, £, L), where N is the finite set of nodes; and A €N x N, is the set of
arcs; X is the set of edge labels or alphabet of the graph, and L: A — X is the labelling
function. I(a), where a € A, is the label of arc a. A node/edge labelled graph is a six
tuple (N, A, Xy, Zg, Ly, Lg), where N is the finite set of nodes; and A €N x N, is the set
of arcs; Iy is the set of node labels; Iy, is the set of edge labels; Ly: N — Ey is the node
labelling function; and Ly: A — Xy is the edge labelling function.

A (sequential) graph grammar consists of a set of production rules, and an initial
graph. A production rule defines the removal of a subgraph, known as the mother graph,
from the host graph, the replacement of the mother graph with a daughter graph, and
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the embedding of the daughter graph in the host graph with the mother graph removed.
The host graph with the mother graph removed is sometimes called the resigraph.

Where one graph can be obtained from another by one application of a production
rule from a graph grammar, that graph is said to be a direct derivation of the second in
that grammar. A graph that can be obtained from another by a sequence of production

rule applications is said to be a derivation of the second graph.

Where the mother graphs are always single nodes, and the embedding definition is
always in terms of nodes in the host graph which are in the neighbourhood of the

mother node, the grammar is called Node Labelled Controlled (NLC).

3.2.2. NLC Graph Grammars

The following definition is standard, but was taken from [EnR90]. A NLC graph
grammar, GG, is a five-tuple: (T, A, Z, P, C), where X is the set of all node labels, A is the
set of terminal node labels, Z is the initial node labelled graph over Z, P is the finite set
of production rules, and C is the embedding relation. - A is the set of non-terminal
node labels. A production rule has the form: x ::=Y, wherex € Z- A, and Y is a graph
with node labels from X. The embedding relation, C, is a binary relation over X, that is,
C € x . Each member of C, (a, b), is known as connection instruction, and defines
that, once a production rule x ::= Y has been applied to a node in the host graph labelled
with non-terminal x, every node labelled with a in the daughter graph Y is connected to
every node in the restgraph in the neighbourhood of the mother node labelled with b.

For example, with initial graph Z, embedding C, and rule R1 shown in Figure 3.2,

the direct derivation is the final graph shown.

a o R -
b I b
C = {(b,b), (c,a)} A:= Oc b
A l .
b
a . )
g Rl Final Graph
Figure 3.2: An NLC Grammar and Derivation
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The graph language generated by GG is IL(GG) = {g € GR) | Z = g}, where
GR(A) is the set of graphs labelled with symbols from A, = represents a direct

. . * . -
derivation, and = represents a derivation.

The embedding relation defined above is not expressive enough to define the
abstract syntax of MASCOT designs, and so NCE graph grammars are introduced in the

next section.

3.2.3. NCE Graph Grammars

Basic NLC graph grammars only allow daughter graphs to be embedded in hosts by
reference to the labels of the nodes of the daughter graph. Neighbourhood Controlled
Embedding graph grammars, [EnR90], allow the actual daughter nodes to be

referenced, not just their labels.

A NCE graph grammar is a four-tuple: (T, A, Z, R), where £, A, and Z are as for NLC
graph grammars, and R is the finite set of re-writing rules, each rule taking the form: (x
=Y, C), where x ::= Y is the production, and C is the connection relation for Y, C € V5

x L. Vy is the set of nodes of Y.

The embedding relation in NCE grammars is local to each production rule, and so is

much more expressive than the global one used in basic NLC grammars.

For example, with initial graph Z, and rule R1 shown in Figure 3.3, the direct

derivation is the final graph shown.

2 a 1o D . a p1
b Au=, I ¢ {(Lb),2a),Ba)} b )
A c
a 30 b a 3
Z R1 Final Graph
Figure 3.3: An NCE Grammar and Derivation

3.2.4. ANCE Graph Grammars

The basic NCE graph grammar definition above is extended in this section, as in

[EnR90], to provide distinguishable embedding connections between host nodes
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depending upon the direction of the arc between the host node and the mother node.
Again, this complexity is needed in defining a graph grammar for the abstract syntax of
MASCOT designs.

A directed NCE (dNCE) graph grammar is a four-tuple: (£, A, Z, R), where £, A and
Z are as for previous graph grammars, except that Z is a directed graph. R is the finite
set of re-writing rules, each rule taking the form: (x :=Y, G, , C_ ,), where x ::=Y is the
production; and C, is the connection relation for the incoming connections to the nodes

of Y, G, ©Vy x X;and C_; is the connection relation for the outgoing connections from

the nodes of Y, C out & Vy * . As before, Vy is the set of nodes of Y.

3.2.5. deNCE Graph Grammars

The final extension which is considered enables the embedding connection to
distinguish between nodes in the host graph. Generally, these nodes cannot be referred
to directly due to the arbitrary number of the nodes in the neighbourhood of the mother
node, instead the nodes are partitioned according to the label on the arc connecting the
host node to the mother node. Such grammars are called edge labelled NCE grammars
(eNCE grammars). An embedding connection instruction is a four-tuple (%, q, m, p),
where x is a daughter node, p and q are edge labels and m is a node label. It should be
interpreted as connecting, using an arc labelled with a "q", a daughter node "x" to all
nodes labelled with an "m" which were connected to the mother node with an arc

labelled with a "p".

Strictly, eNCE grammars do not need the directed extension used in ANCE
grammars as the direction information can be coded in the edge labels. However, it is
considered clearer to maintain this separation, resulting in grammars known as deNCE

graph grammars, [EnR90].

A deNCE graph grammar is a four-tuple: (I, A, Z, R), where ¥ and A are as for
previous graph grammars; Z is the initial node/edge labelled graph; and R is the finite
set of re-writing rules, each rule taking the form: (x ::= Y, Cip» Cout)> where x =Y is the
production; and C, | is the connection relation for the incoming connections to the nodes
of Y, Cin CVyxLxZE xL;and C_, is the connection relation for the outgoing
connections from the nodes of Y, C out = Vy * L x I x L. As before, Vy is the set of nodes
of Y. L is the set of edge labels.
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For example, with initial graph Z, and rule R1 shown in Figure 3.4, the direct

derivation is the final graph shown.

A A
A
b B 30b
; A In: {(2,a,3,}), (3,8,a,8) }
O/ Out: {1,v,b,8), (3,a,a,A)} a O“E“_—> b3
a 7 R1 Final Graph

Figure 3.4: A deNCE Grammar and Derivation

3.3. A deNCE Graph Grammar for Simple Linear MASCOT

Designs

In this section a deNCE graph grammar is presented which defines the abstract syntax

of particularly simple MASCOT designs. The set of MASCOT designs defined is given by the

language of the graph grammar.

A deNCE graph grammar for Simple Linear MASCOT (SLM) is SLM_GG = (Z, A, Z, R),
where Z, the set of all node labels, is {A_IDA, IDA, pool, channel, signal, activity}, A, the set

of all terminal symbols, is {pool, channel, signal, activity}, and Z, the initial node/edge

labelled graph, is*® ( {i’, ai’}, {(i’, ai)}, {A_IDA, IDA}, {read’), {(’, IDA), (ai’, A_IDA)}, {((¥’, ai’),

read’)} ). Z can be presented pictorially as in Figure 3.5, where nodes are drawn as boxes,

23Remember the signature of node/edge labelled graphs is: (N, A, Zy, £, Ly, Lp).
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the name of the nodes adjacent to the box, the label of the node in the box, arcs as arrows

between the boxes, and arc labels adjacent to the arcs.

IDA

. ‘Lread’
ai
A_IDA

Figure 3.5: Initial Graph

R, the set of re-writing rules, is { r;, r,, 15, 1, 1 }, Where each rule, r;, takes the form: (x

=Y, C,;,, C ), wherex € £- A, Y is an node/edge labelled graph, and C S Vy x Lx £ x L.
The rules are defined below with the daughter graphs presented pictorially.

3.3.1. The Production Rules

r; = ( IDA == ({p’}, @, {pool}, @, { (¥, pooD) }, P),
{ (p’, write’, activity, write*) },
{(p’, read’, activity, read*), (p’, read’, A_IDA, read®) } ).

The node name p’ on the right hand side of r; is chosen on each application of the
rule to be unique in the host graph. Likewise the edge labels read’ and write’ are also
chosen to be unique, but prefixed by read or write respectively. The wild-card character
"#" is used in the embedding definition to indicate that the given node links to any node
(with appropriate label) connected by a link labelled with a value which starts with a

read or write, irrespective of its unique suffix.

Pictorially, r, is:

lwnte* lWI'lte’
p,
IDA n= pool
l read* lread’
Figure 3.6: Ruler,

It should be noted that this pictorial representation does not carry as much

embedding information as the textual version of the rule.
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r,=( IDA:=({s}, @, {signal}, @, { (s’, signal) }, @),
{ (s, write’, activity, write*) },

{ (s, read’, activity, read™), (s’, read’, A_IDA, read*) } ).

Pictorially, T, is:

lwrite* lwrite’
S’
IDA = signal
l read* lread’
Figure 3.7: Rule r,

rg=( IDA:=({c}, @, (channel}, @, { (¢, channel) }, §),
{ (¢, write’, activity, write*) },

{ (¢, read’, activity, read¥), (¢, read’, A_IDA, read*) } ).

The node name ¢ on the right hand side of ry is chosen on each application of the

rule to be unique in the host graph.

Pictorially, ry is:

lwrite* lwﬁte’
c,
IDA = channel
l read* lread’
Figure 3.8: Rule r,

r, =( A_IDA :=({af, ai’}, { (af, ai”) }, {A_IDA}, {read’},
{ (ai’, A_IDA), (ai”, A_IDA) }, { ((af’, ai”), read’) } ),
{ (af’, read”, channel, read*), (ai’, read”, pool, read®),
(ai’, read”, signal, read*®), (ai’, read”, IDA, read®),
(ai’, read”, A_IDA, read®) },
{ (ai”, read”, activity, read*), (ai”, read”, A_IDA, read*)} ).
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Pictorially, r, is:

lread”

lread* al’ [ A_IDA
A_iD Al = read’

l read* ai” A_\IIDA
lread”’

Figure 3.9: Rule r,

ry=( A_IDA:=({a, 1}, { (&, 1)}, {activity, IDA}, {write’}, { (a’, activity), (¥, IDA) },
{((&, ), write) }),
{ (&, read’, channel, read*), (a’, read’, pool, read*), (&, read’, signal, read*),
(&, read’, IDA, read®*), (a’, read’, A_IDA, read*®) },
{ @, read”, activity, read*), (i’, read”, A_IDA, read*) } ).

Pictorially, ry is:

read’
a activity
l read*
ApA = lwrite’
l read* U A

l read”

Figure 3.10: Rule ry

The language of this grammar, I{SLM_GGQ), is the set of all simple linear MASCOT

designs. This class of designs is one of the simplest.

3.3.2. An Example Design

Figure 3.11 contains is a valid derivation of a MASCOT design using the SLM graph
grammar, where =% indicates the re-writing of the non-terminal node on the left hand

side with the daughter graph associated with the production rule x.
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p ool pool
, read a rea:ctivity
p a activity
. pool
i 1 . o ft?
DA = lread’ ¥ write write
" 9 ’
, i’ =5 1| IbA = C |channel
lread ar| A_IDA Tead” ]
4 » a” activity rea
AIDA] ~ read a” activity
19 \ 5
ail A_IDA = . v Write” L
1 IDA =>1 p” ‘L write
pool

Figure 3.11: An Example SLM_GG Derivation

3.3.3. Ambiguity in the Grammar

Even with such a simple grammar as SLM_GG there can still be more than one
sequence of production rule applications which will generate the same design. For
example, rl, r4, r5, r5 r2, rl and r4, r5, r2, r5, rl, rl both generate the same design, the
one shown in Figure 3.11. It can hence be argued that SLM_GG is an ambiguous
grammar for simple linear MASCOT designs. However, it is contended that this is not a
problem as SLM_GG is intended as an abstract grammar rather than as a concrete

grammar.

It is normal in defining the syntax of programming languages, [Sch86], to separate
the definition of the syntax into concrete and abstract syntaxes. The concrete needs to
be unambiguous as it is responsible for defining the "derivation tree” for a given
program. However, the abstract syntax may be ambiguous, as it defines the semantics
of a program, given a particular derivation tree. Indeed, it is common for the grammar
which defines a language’s abstract syntax to be ambiguous, as ambiguous grammars
are usually simpler, and they are usually clearer at revealing the structure of the
language. The semantics of a language are defined over the abstract syntax of a
language. SLM_GG is intended as an abstract syntax of MASCOT and so this ambiguity

is unimportant.
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3.4. A deNCE Graph Grammar for Branching/Looping
MASCOT Designs

A deNCE graph grammar is presented informally in this section for Branching/Looping
MASCOT designs, and is called BLM_GG. The Simple Linear MASCOT designs are a
subset of such designs, and indeed the production rules of the SLM_GG graph grammar are
also part of the BLM_GG grammar. These rules retain their original numbering. The

grammar is presented formally in Appendix Six.

) J, read* @p’ lwrite’

]
]
IDA 7 : g
Z= ‘]/ Tead’ IDA = pool 1 signal
al I
A_IDA ‘L read*® lread’ : lread’
1
]

-

1 1
1 I

1 s ¥ M el

l'read* write’ | , o write e
’ : IDA Ly _
= ! : i v
Ii)A channel L | read ! DA DA

1
read* read’ | AIDA |

: ‘L read” 1 read’ ﬁad”
1
1 ]

read”

ai’

‘Lread” \Lread’

] 1
1 I
1 1
write* ! ’ ! ¥
l A_IDA : ACT : IDA
. . [ b,
A_TDA i air | read b | write : ai’ | read
1
l read* A_lI,DA | DA | A_IDA
read” : ”» ! 353
' \I, read” ! ‘1, read
1 1
1

Figure 3.12: BLM_GG
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\l,read* a ' a : l read’
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write* 1 IDA |!? : A
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@ read”
l read”
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read””\t

Figure 3.13: BLM_GG (Continued)

3.4.1. An Example Design

Figure 3.14 contains is a valid derivation of a MASCOT design using the BLM graph
grammar, where =% indicates the re-writing of the non-terminal node on the left hand

side with the daughter graph associated with the production rule x.
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p’ i,” p,
pool ) IDA pool
road read™ )
Tea dm
v I =8 read\ / rea
i’ :>1 ai’ A_IDA \
IDA read” I i :>9 at’ A__IDA
) lread, 2[ ACT| [ DA read”| »
a :>12 erte1 L___.d‘ =>1 ,
A_IDA . ID A WI’ite” a pOOl
i
=3 write’
c write”
channel

Figure 3.14: An Example BLM_GG Derivation

p
pool
-_—>2 read’
-_-;5 read”
a”
=>9 write’”
c )
3 channel
=
read” p”
a’ pool
write’ write’ R
) write
C, write c
channel channel

Figure 3.15: Example BLM_GG Derivation (Continued)

The derivation can be completed by applying rules Iy and r4 to the two nodes

labelled with non-terminals, a™ and 1’ respectively.
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3.5. Alternative Grammars for MASCOT

The twelve production rules for BLM designs are not the only rules which could be
chosen to define the same class of designs. In particular, r,, could be replaced by r; ; given

below. This has a simpler daughter graph, but it increases the ambiguity of the grammar.

r;o =( ACT :=({a, ai’}, { (ai, @) }, {ACT, A_IDA}, {read’}, { (ai’, A_IDA), (2, ACT) },
{((al’, 8"), read) }),
{ (ai’, read”, channel, read*), (ai’, read”, pool, read*), (ai’, read”, signal, read*),
(ai’, read”, IDA, read®), (ai’, read”, A_IDA, read¥®) },
{ (a’, write’, channel, write*), (a’, write’, pool, write*), (a’, write’, signal, write¥),

(a’, write’, IDA, write*), } ).

Pictorially, 1, is:

lread”
. ai’
lread A_IDA
ACT RES , 1, read’
: a
j, write® ACT

l write’

Figure 3.16: Rule r,,’

The extra simplicity of this rule is not judged to be sufficient to warrant the extra

ambiguity it introduces.

Other grammars for the same class of MASCOT designs can be produced. For example,
there is one which only contains the non-terminals ACT and IDA, and which only requires
ten production rules (see Appendix 5). However, this is more ambiguous than BLM_GG. It
also fails to include the SLM_GG production rules as a subset. For these reasons it is not

considered further.

It is important to realise that rule rg of BLM_GG can be criticised for making the
grammar ambiguous in sense that the same graph can have different derivations. For
example, the design: [pooll—(activity)—[channel]—(activity)—[pool], can be derived using
rl, r4,r5, 13,19, r5, r9, rl or rl, r5, r9, r6, 3, r5, r9, rl. Basically, either r6 or r4 can be

used to unwrap the second activity and IDA. However, r, is not redundant, for without Tg
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the number of MASCOT designs in the class IL{(BLM_GG) would be significantly reduced.
For example, the back loops could only contain single IDAs and not arbitrary graphs.

This ambiguity of the grammar can be lessened, without changing L(BLM_GG), by
removing rg, and adding six extra production rules. These rules are needed to show that
where an IDA labelled node occurs alone in a path in a daughter graph, an [IDA]J—-[A_IDA]
sequence can also occur. Informally, such a grammar would contain the following extra

production rules:

2
@read”’ read

—

@ 2 ‘Lread’

I
1
o ‘Lread* l o [AIDA : 7 ACT
ACT| = o R read e
T ACT DA | IDA
write* l T : v wntei’
m”l :WI‘ite”’ A_-IDA al
]

@ read”” read” .
read* @ '

write’ J’ | A write”

1
ai ! | : read” IDA ,
AIDA w= a[ATDA| o [ADA] ! v read i
ai
i read,l, T I'ead” 1 A_IDA
read* ) : »
@[ ACT| [ DDA] | ’ | read
! al A_IDA
i
)
}
}
1

i’ IDA lread””
read5J,
I .
lwrite* @i’ ny \Qn-te,, : WI"lt/ \Y‘ﬁte,,
i” 1 i”
= .. [IDA TDA : IDA IDA
. ready, ' _read’ v J, read”
l read at’ A_IDA read™ : ai A_TDA ai” A_IDA
|
1

rea(i)\ read” Ad””

Figure 3.17: The Extra BLM_GG Rules

Given that BLM_GG is intended to define an abstract syntax of BLM designs, and so
does not need to be unambiguous, this extra complexity is not needed. Also, unfortunately,

this extended grammar is still slightly ambiguous, and so is still not suitable for a concrete
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syntax of BLM designs. Consider, for example, the design in Figure 3.18. This can be
generated by r4, r5, r10 and r5, r14.

IDA | T
v reada,
ACT
Writ? ‘: I’lt e”
IDA | 17 IDA | 1”7
‘L write”
A_TDA | @
Figure 3.18: Example of Ambiguity

Due to its extra complexity, and because not all ambiguity is removed by exchanging
rule 6 for rules 13 to 18, this extended grammar will not be considered further.
Nevertheless, a less ambiguous grammar for BLM designs has been presented should one

be required for other purposes.

Not all the designs which were described as being well-formed in chapter 2 are valid
BLM designs. In particular, BLM designs must be connected graphs, pools can only have
single readers, and channels and signals can only have single writers. None of these
restrictions need hold for a well-formed MASCOT design. It is believed that a graph
grammar could be defined to generate designs which were not constrained by these
restrictions. However, it is further believed that it will contain more non-terminal symbols
and significantly more production rules. It is not anticipated that there will be any problems

with extending the denotational semantic definition to cover such an extended grammar.
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Chapter 4: Semantic Models for MASCOT

This chapter explores possible formal semantics for MASCOT. It starts with a
discussion of the features of MASCOT designs that will need to be captured by a suitable
model. This is followed by a brief survey of existing formal languages, so that the promising
ones can be identified and their semantic foundations examined further. Attention is then
turned to the various options in developing a formal semantics for a concurrent network.
The chapter concludes with a firm proposal for use of CSP in defining the formal
foundations of MASCOT. This is worked out in detail in the next chapter. The aim of this

chapter is to motivate the choice of CSP over the other formal models.

4.1. MASCOT Intuitions

As already discussed in chapter 2, MASCOT designs consist of two fundamental
entities: activities and IDAs, which are linked by point-to-point data flows. An acceptable
formal model for MASCOT needs to handle these entities naturally. It is important that a
semantic model carries some intuitive conviction of correctness, as this is the best validation
for it. A natural correspondence between the model and the design entities is a good way to
achieve this. Furthermore, an acceptable semantics ought to enable a network to be

reascned about.

4.1.1. Activities

An acceptable semantic model of activities needs to capture the concept of a
concurrent process. 1t is unlikely that semantic models of formal specification languages
which do not have a process concept will be suitable for MASCOT designs. This
assumption is considered further in the section 4.2, where languages are considered

such as VVSL*, that model concurrency without the process concept.

According to [JIM87], page 4-10, "The MASCOT definition does not prescribe the
use of any particular scheduling strategy...". Further, a MASCOT design makes no
commitment to either a single or mulitiple processor implementation, and with
multi-processor implementations there is no commitment to either a single kernel, or

separate kernels for each processor. This means that a formal semantics for MASCOT

24VIP VDM Specification Language, where VIP = VDM for Interfaces of the PCTE (Portable Common
Tools Environment).
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networks needs to reflect this ambiguity. Although reflecting this ambiguity reduces
what may be deduced about the behaviour of a MASCOT design, the failure to do so

would greatly limit the generality of the resulting formal semantics.

As explained in [Sim86], it is intentional in MASCOT that there is no explicit
ordering of the activities. It can be argued that this ambiguity brings implementation
freedom, while still conveying important information about the behaviour of the system
through the dynamic protocols imposed on communications between activities by the
IDAs. However, while the scheduling details may be left under-determined, there needs
to be some basic fairness assumptions about activity progress and data propagation
through the network. Unfortunately, these fairness assumptions remain unstudied in
the MASCOT literature, certainly in anything approaching a formal framework. No
position will be adopted concerning what fairness assumptions ought to be incorporated
in a MASCOT semantics.

4.1.2. IDAs

IDAs are the data holding elements of a MASCOT design. In MASCOT-3, an IDA’s
protocol need not be specified, (such an IDA is known as a general IDA), but in the
MASCOT subset formalised here, IDAs must possess one of the three kinds of protocol:
i.e. pool, channel, or signal protocols. Any semantic model will have to be able to capture

these kinds of protocol.

The IDA concept in MASCOT-3 includes a rich access interface notion; this allows
for the type structure of the data handled by the IDA to be defined, along with
procedures which may manipulate the data as it enters and leaves the IDA. The
"windows" element of a MASCOT-3 IDA enables this access interface to be different to
for each activity connected to it. However, the BLM concept of IDA is simpler, in that
only implicit reading and writing procedures are associated with an IDA’s data, and
only one of these is visible to an activity per connection to the IDA*. The intended
implicit semantics of the reading and writing procedures is that the data values are
placed in the IDA, and taken from it, without being modified in any way. It can be

argued that there a need in a model of MASCOT to capture the type structure of the

25 The definition of BLM does not exclude the possibility of an activity being connected twice to the same
IDA - see rule 11 of BLM_GG.
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data that a given IDA can handle®. Signals and channels have a possibly zero place
buffer associated with them. A semantic model of such IDAs has to capture the size of
the buffer, and be able to record the passage of data through the buffer.

4.1.3. Paths

The point-to-point data flow of an MASCOT design obviously needs a semantic
model. This does not mean, however, that an explicit point-to-point semantic model
must be adopted, as broadcast communication models can usually be used to model
point-to-point communication through the use of suitable conventions. Nevertheless the
semantic model of a MASCOT design ought to be constructed in such a way that data
can only be communicated between activities and IDAs which are connected. The data
flow through the network must also obey the direction imposed by the read/write IDA

interfaces.

4.2. Various Formal Languages

Numerous formal specification languages have been advocated at one time or another as
suitable languages for specifying and describing systems. These languages may be broadly
classified as: algebraic or axiomatic languages; model-based languages; languages with
inter-conditions; modal or temporal logics; nets; and process algebras. A language is only
"formal"” if it has a mathematical semantics. Therefore, determining formal specification
languages that are broadly suitable for describing MASCOT designs will automatically
identify semantic models that may be adopted for MASCOT.

4.2.1. Sequential Languages

Algebraic and model-based languages such as OBJ, [GoT'79], and VDM, [Jon90],
may be discounted as they do not purport to support reasoning about concurrent
systems, and in particular, provide no notation for defining the behaviour of separate

processes.

26However, unfortunately, the work presented in this thesis does not include support for such type
information.
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4.2.2. Languages with Inter-conditions

Languages with inter-conditions are more interesting, as they tackle the problem of
concurrent interactions. Examples of languages with inter-conditions include; Jones’
extended VDM, [Jon83]; Stelen’s work, [Stg92]; Xu and He’s work, [XuH91] and
[XuH92]; and Middelburg’s VVSL, [Mid89al, [Mid89b] and [Mid92]. A language with
inter-conditions is one where the state of the system, and the operations which
manipulate that state are identified, and each operation is defined not only by its input /

output relation, but also by a condition or conditions which hold while it is executing.

Jones added Rely and Guarantee conditions, [Jon&3], to the usual pre and
posteonditions of VDM used to define an operation, [Jon90}. These are first-order
predicates over the (shared) state, and assert invariants on the state that the operation
can rely on holding while it is executing, and invariants that it must undertake not to
violate. A specification consists of the definition of a shared state, and a set of such
operations; the operations may execute whenever their preconditions hold. However,
this approach fails to provide an explicit language for sequencing the operations, this

has to be done in terms of state manipulation and precondition definition.

Stelen added a Wait condition, and Xu and He added a Run condition to Jones’ basic
rely and guarantee conditions. These assert (in first-order logic) that an operation may
be blocked in certain states, and that an operation can rely on the environment
establishing the Run condition if it is blocked, respectively. These extensions start to
provide a language in which each operation may be considered to be a process that can
deadlock; but it may be argued, the language is less expressive than the language of
process algebras, introduced in section 4.2.5. In process algebras, the precise sequence of
communications of a process can be spelt out, and deadlock can be deduced depending

upon the sequence of communications the other processes can engage in.

The inter-condition in VVSL is different from the ones discussed so far, in that it is
expressed in a form of linear temporal logic (LTL), rather than first order predicate
logic. The use of LTL means that only one inter-condition is needed, instead of two or
three. As will be reviewed in the next section, temporal logic has been advocated as a
specification language for reactive systems; hence in VVSL each operation may be
considered to be a concurrent reactive system. It can therefore be argued that in VVSL
inter-conditions are powerful enough to turn operations into processes, and hence

concluded that VVSL may be suitable for MASCOT. This is reinforced when it is
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considered that IDAs may be seen as the shared states between the operation. However,
unfortunately, the semantics of VVSL, given in [Mid89a], are very complicated, and
currently do not have an associated proof theory. This mitigates against using this
model for MASCOT. Another problem with VVSL for MASCOT, is that IDAs are more
than just shared state, they also impose dynamic protocols. Now, while VVSL could
emulate this effect by specifying it in the inter-conditions of the operations, this
redistribution of important semantic content starts to make the mapping to MASCOT

designs look unnatural.

4.2.3. Modal and Temporal Logics

Modal logics are logics in which the "mode” in which a given logical expression is
true can be reasoned about, [HuC72]. Modal operators include: Necessarily and Possibly
in Modal logic; Must and May in Deontic logic; Know and Believe in Epistemic logic; and
Always and Eventually in Temporal logic (TL). It is usually a TL that is advocated for
system specification, although deontic operators have been used in system specification
logics such as Modal Action Logic, [GoF91]. Nevertheless, TL is the logic which has been

more extensively advocated, and which will be considered further in this section.

The model chosen for a TL, that is, the structure that TL expressions are
interpreted in, inevitably reflects a particular view of the nature of time, and this
influences the expressive power of the logic. TLs with models that view time as a linear
sequence are referred to as Linear Temporal logics (LTLs); TLs with models that take
the view that there are different possible futures are referred to as Branching Temporal
Logics (BTLs); and TLs with models which reflect that there can be more than one
possible history which arrives at a point, as well as more than one possible future from
a point, are referred to as Partial Order Temporal Logics (POTLs). Temporal logics can
also be characterised by whether they view time as discrete or dense. Also, most
temporal logics only enable the relative ordering of events to be reasoned about.
However some logics have been extended with metrics which enable time to be handled
quantitatively, eg. [Koy89]. In the rest of this thesis, TL will be used to refer to
non-metric and discrete logics, but without commitment to either LTL, BTL or POTL.

Manna and Pnueli have advocated TLs as specification languages for reactive®’

systems on many occasions, [MaP81], [Pnu86a], [Pnu86b], and [MaP92]. TL expressions

27A definition and discussion of reactive systems can be found in Appendix Two.
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can be used to assert the desired ordering of system events, including the required
response to inputs. However, in spite of TL being a good specification language, since it
does not presuppose a particular concurrent design for a given reactive system, it is not
an ideal language for describing MASCOT designs for the same reason. A MASCOT
design has particular activities, IDAs, and communication paths, and these have to be
captured by a suitable semantics. Therefore TL semantics (usually the Kripke possible

worlds model), are unlikely to be an ideal semantics for MASCOT.

4.2.4. Net Languages

Nets, or Petri-Nets, [Thi87] and [Rei87], are an extensively studied class of
formalisms for modelling concurrent systems: they range from the simple Elementary
Nets, [Thi87], with one token per condition, to infinite tokens per condition Place /
Transition nets; [Rei87], to the relatively complicated, Predicate / Transition Nets,
[Gen&7] and Coloured Petri-Nets, [Jen87]. The basic idea of Petri-Nets is a net
consisting of nodes and arcs, and the traversal of the net by tokens. In the different
models tokens move around the net under different conditions, but in each model the
movement of a token indicates some action, and the structure of the net some causal
relation. Predicate / Transition nets allow tokens to be individualised, and logical
guards to be associated with transitions. Coloured Petri-Nets associate information with
the tokens, information that can be inspected and modified as the tokens move around

the net.

Petri-Nets have been used to define the semantics of other design notations, for
example, DeMarco Data Flow Diagrams, [TsP89]. Undoubtedly, Petri-Nets could also be
used to describe MASCOT designs. The position of separate tokens in almost de-coupled
nets could be used to represent the state of different activities. Communication between
the activities using different IDAs would have to be explicitly modelled by the nets
fragments that link the nets modelling the activities. The limited number of IDA
protocols should mean that only a limited number of such linking net fragments need be
developed. The need to model naturally the data holding nature of IDAs suggests that
either Predicate / Transition or Coloured nets might be more appropriate than basic

Place / Transition nets.

Petri-Nets are often given a semantics in terms of more fundamental models of

concurrency, such as labelled transition systems or labelled asynchronous transition
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systems, both of which are described later. These models are also used as semantics for
Process Algebras, which, it will be argued, are also suitable for describing MASCOT

designs.

4.2.5. Process Algebras

Process Algebras are based on the use of algebraic laws to describe the interactions
of concurrent processes. Numerous process algebras have been advocated over the last
decade or so, including: CCS (Calculus of Communicating Systems), [Mil89]; CSP,
[Hoa85]; and ACP (Algebra of Communicating Processes), [BaW90al.

CSP is the notation which will be considered further as a representative of this class
of formal language. CSP is chosen for a number of reasons, including: the fact that the
more fundamental treatment of concurrency possible with CCS because of its t-operator
is not needed to define a semantic model for MASCOT,; CSP is better suited as a
"programming notation” for the designer to use to capture the behaviour of activities (as
that is what it was initially intended for, [Hoa78]); and, most importantly, trace
semantics are already defined for CSP. It is argued later that Hoare traces should form

a suitable model for MASCOT.

4.2.5.a. Describing Activities

Processes are fundamental to process algebras, so their semantic models should

have no trouble with handling the activities of MASCOT.

For example, CSP, [Hoa85] has three increasing expressive semantics, known as
(Hoare) traces; failures; and failures+divergences, [BrR84]. Traces only capture the
possible histories of the processes; there is no scheduling commitments, but nor are
there any progress or fairness commitments. For example, the null trace is a
possible behaviour of any process. The failures model enables the fact to be captured
that at certain points in its history a process may refuse to engage in an action.
While this helps in distinguishing non-deterministic programs, it still fails to
require a process to progress. The addition of divergences, that is, histories after
which the process behaves chaotically, also fails to require a process to progress.
This is interesting as fairness properties are usually defined with respect to some

progress requirements, [AFK87] and [Kwi89].
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To conclude: CSP processes are a natural way to describe MASCOT activities,
and CSP only has an informal progress assumption, as does MASCOT. The
formalisation of this progress assumption, while increasing what may be deduced
about a MASCOT design, would impose constraints that a MASCOT run-time
system must satisfy. It can be argued that this is better done with a significantly
richer formal model which takes into account the current limitations of scheduling

theory, [ABR93].

4.2.5.b. Describing IDAs

The suitability of process algebras’ semantic models may be questioned because
of concerns over whether a process algebra can adequately describe IDAs. CSP, for
example, is based on a synchroenous message passing communication mechanism,
while pool IDAs are shared variables, and it has been shown that shared variable
communication may be implemented in a truly asynchronous way, [Sim30b],
[Sim92] and [Ben92]. Further, MASCOT IDAs generally may be implemented as
either passive or active components, while CSP only has a notation for active

processes.

However, before process algebras are dismissed, the possibility of using a
process to model an IDA needs to be considered. The objection that IDAs may (or
indeed, will often) be implemented as a passive component is not relevant when it is
realised that the semantic model only needs to capture its behaviour, and does not

necessarily imply or constrain any particular implementation approach.

A model of an IDA based on a process is not completely un-intuitive when it is
realised that the dynamic protocols associated with IDAs mean that a channel or a
signal IDA can influence (via synchronisation when it is full or empty) the
behaviour of the activities connected to it. An IDA may also interact with activities

by alerting reading activities to the presence of new data to be read.

The main reason why it may be inappropriate to view an IDA as a process is
that the accessing of an IDA via two or more different access interface windows may
be implemented so that they can overlap in time. This is the fundamental idea
behind the asynchronism of MASCOT designs, especially in distributed

implementations where processors do not share a common clock. However, a CSP
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process can only do one thing at a time; so it may be argued that a process model of

an IDA is bound to impose some unnecessary synchronisation.

Nevertheless, on analysis, the strength of this argument relies on a reference to
time. The assumption that a process cannot perform two actions at the same time is
obviously correct for an implementation of a process, but it is less clear that it holds
for mathematical model of a process which has no model of time associated with it.
In fact, the basic model of a CSP process is a set of traces of actions that the process
can engage in. The actions are atomic, and have no time lapse associated with them.
Indeed when time is added to CSP, as in Timed CSP, [DaS89], the time lapse is
associated with the transition between actions™. Therefore, in un-timed CSP, it is
possible to interpret a process model of an IDA as engaging in more than one action
simultaneously, albeit in sequence. The presence in the traces of the process of the
actions in both orders is how in CSP the "concurrency” of the actions is modelled.
Clearly, such a CSP model could give no indication as to how an asynchronous IDA

may be implemented, but, as has been argued, this is not its task.

It may be considered perverse that CSP, a notation which is based on the

concept of synchronous communication, is being investigated as a language for
describing IDAs which can be used to support asynchronous communication
between activities, especially when there are process algebras that support
asynchronous communication directly, eg. [BKT84], and [JHH89]. However, there is
a difference of definition in asynchronous communication between these algebras
and that which MASCOT designs support. In the asynchronous process algebras
asynchronous communication is defined in terms of infinite (unbounded) channels,
while in MASCOT it is in terms of un-hindered access to a variable, a variable
whose integrity can be maintained using a four-slot mechanism, [Sim90b], rather
than by synchronous access using blocking. The buffers associated with channels in
MASCOT designs are always of finite length: the fact that they are intended to be

implemented requires this constraint. It can therefore be seen that the issues

28Of course, the enforced requirement of a time delay is enough to prevent a Timed CSP process from
being a model of an IDA, as actions could not be viewed to overlap in time. However it is un-timed
process algebras and not Timed CSP which is being investigated as a formal language for MASCOT
designs. Should the semantic model of MASCOT need to be extended at any time to enable reasoning
about the temporal behaviour of such networks, the semantic model would have to be reconsidered from
the beginning as the enforced delay of Timed CSP is unacceptable.
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addressed by asynchronous process algebras are not relevant to the problem of
modelling MASCOT.

4.2.5.c. Describing Paths

Communication in CSP is via synchronisation through shared actions in the
alphabets of two or more processes. Appropriate control of the alphabets of processes
can ensure that only point-to-point communication occurs. CSP contains a channel
mechanism to make achieving this relatively simple. CSP is hence suitable for

describing the communications within a MASCOT design.

4.2.5.d. Summary

Process algebras are a natural approach for describing activities, and processes
can be used to model IDAs providing that the instantaneous atomic nature of the
actions that access them is insisted upon. This allows the interleaved model of
concurrency to be used to capture the concurrency of actions. Thus the semantic
models of process algebras, such as Hoare Traces, are likely to be suitable models
for MASCOT designs. The following section explores the options that occur in
choosing a formal model, to ensure that the choices made for process algebras, and

CSP in particular, are suitable for MASCOT.

4.3. Semantic Model Options

In this section some of the numerous models of concurrency are compared. They are
classified according to a taxonomy used by Winskel and Nielsen, [WiN92] and [Nie92].
This distinguishes models depending upon whether or not concurrency is modelled as
non-determinism; on whether or not the model has a state element; and on whether the
history is branching or linear. This taxonomy is not completely general, as some models
of concurrency do not fit into it neatly. Nevertheless, it is used as it helps to highlight
various semantic options that must be made in developing a semantic model for a

concurrent system.

The following models are discussed during the presentation of the taxonomy of
modelling options: Labelled Asynchronous Transition Systems, (LATS); Labelled Event
Structures, (LES); Mazurkiewicz Traces, (MT); Labelled Transition Systems, (LTS);
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Synchronisation Trees, (ST); and Hoare Traces (HT). Their definitions can be found in

Appendix Three.

Category theory, [BaW90b], has been used to formalise the relationship between
these various models, [Win85] and [WiN92]. However, the various models are only

compared informally here.

4.3.1. The Interleaved - Non-Interleaved Option

The various models of concurrency can be partitioned into those which model
concurrency in terms of non-determinism, and those that do not. Those that do, model
the concurrency of two events by enabling them to be arbitrarily interleaved, while
those that do not usually introduce a notion of causality into the model. An action which
is caused by another action cannot happen concurrently with that action, while actions

which are not causally related are free to occur concurrently.

Labelled Asynchronous Transition Systems, (LATS); Labelled Event Structures,
(LES); and Mazurkiewicz Traces, (MT), are all examples of models which take the
non-interleaved option. These models are also known as partial order models, in that
only causally related actions are ordered, while the order of occurrence of non causally
related actions cannot be determined. This is sometimes referred to as a true
concurrency model, and is suitable as a model of a distributed system, where there is no
synchronisation of events on different machines to enable an ordering to be established

between them.

4.3.2. The State - Behaviour History Option

The various models of concurrency can also be partitioned into those that capture
the information about the states of the system, and those that only record the history of
the observable actions that the system may engage in. Clearly, a finite, cyclic, state
machine may produce infinite behavioural histories; therefore the state based models
are in many ways more compact than their infinite behavioural histories. Nevertheless,
history models are often preferred because they are more abstract; they do not record

information which cannot be perceived by an outside observer of the system.
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Labelled Asynchronous Transition Systems (LATS), and Labelled Transition
Systems (L'T'S), are examples of models which capture the state information. The other

models under consideration do not.

4.3.3. The Branching - Linear Option

The models of concurrency which adopt the behavioural history approach can be
partitioned into those that record the branching structure of the behaviour and those
that only record the linear histories of the system. The branching models have the
advantage of being able to distinguish between the occasions when a particular

§ non-deterministic choice is made in a system’s history. Linear models are more abstract,

but cannot distinguish certain systems.

Labelled Event Structures (LES) and Synchronisation Trees (ST) are examples of
branching history models, while Mazurkiewicz Traces (MT) and Hoare Traces (HT) are

examples of linear history models.

This map of the various models is presented in Figure 4.1.
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Interleaved Non-Interleaved

States Labelled Transition| Labelled Asynchronous
Systems Transition Systems

Branching Synchronisation Labelled Event
Behaviour Trees Structures

Y
I\
ANEAR ARAV

Linear Hoare Traces Mazurkiewicz
Behaviour Traces

{{}, a,b,ab,ba,.,} | {a,ac, aa, aac, aaa, ...
b, be, beb, ... }

Figure 4.1: A Map of the Semantic Options

The position of each model in the above map correlates to the distinguishing power

of that model, as shown in Figure 4.2.

Pairs of Processes LTS |ST HT LATS |[LES |MT
a->PlIb-oQ
a->Pib—-Q X X X v v v/
a—=s(b-oPlec>Q)
(a-»b->P)l@a>c—>Q) / v X v v X
pX:{a}.(a->X)
a—sa—-a—>a—a—a.. v/ X X v X X

Figure 4.2: The Distinguishing Power of the Models
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4.4. Semantic Options and MASCOT

There is a strong case for arguing that a natural model for MASCOT will be behavioural
rather than state-based, namely, because state is not a prominent concept in MASCOT
designs. However, there are no clear grounds for deciding between linear and branching
behavioural models: it depends upon the detail that the design needs to be modelled. Also a
MASCOT design may be given an interleaved or a non-interleaved semantics. There is
nothing in MASCOT which makes the interleaved abstraction particularly inappropriate,
although if action refinement was required, for example, to allow MASCOT designs to be
verified against significantly more abstract specifications, non-interleaved models are

required, [Ace92].

4.5. Conclusion: A Proposed Model

The above discussion of formal semantics for concurrent systems has indicated that HTs
are the most abstract model which has been considered. Winskel and Neilsen have
formalised this informal intuition using category theory, [WiN92] and [Nie92]. There are
strong advantages in adopting abstract semantics over more concrete semantics. In
particular, abstract semantics tend to be the simplest, and hence the most comprehensible;
and the easiest to reason about. However, the disadvantages of abstract semantics are that:
some intuitions developed from the real phenomena being modelled may not hold; certain
properties may not be modelled, and hence other properties may not be able to be
demonstrated to hold. For example, liveness properties cannot be demonstrated for systems
with HT semantics. The position adopted here, as in [M0090], is that the advantages of HTs
are such that the disadvantages can be tolerated. Clearly, it would be desirable to be able to
reason about the liveness properties of a MASCOT design, but it is a reasonable initial goal
to investigate a semantics for which enables safety properties of MASCOT designs to be

demonstrated.

HTs, as well as being an abstract model of concurrency, have also been used a semantics
for CSP, a process algebra. Furthermore, it has been argued that process algebras are
languages which allow MASCOT designs to be described relatively naturally. Therefore
CSP with HT semantics will be used as the basis for a language for describing MASCOT

designs in the following chapter.
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Chapter 5: MASCOT Communicating Activities

This chapter contains a definition of a denotational semantics for MASCOT designs. The
definition is structured using the the Branching / Looping MASCOT graph grammar
(BLM_GG) presented in chapter 3. This is interpreted as defining the abstract syntax of
MASCOT designs. The semantic model used is Hoare Traces, and it is defined by describing
MASCOT designs as networks of CSP processes, [Hoa85].

Once the semantic model is defined, its utility is demonstrated with a small example of
how it facilitates reasoning about MASCOT designs. In particular, it is shown how safety
properties may be proven with respect to predicate-over-traces specifications, and deadlock

freeness may be demonstrated.

5.1. A Denotational Semantics for MASCOT Designs

The BLM graph grammar defined in section 3.4, is used in this section to present a
denotational semantics of MASCOT designs. The semantics are expressed in terms of CSP
processes. The primary advantage of defining the model via CSP rather than directly is that
the well-formedness of the semantic domain has already been demonstrated. In particular,

recursion in CSP has been shown to have a fixed-point semantics, [Hoa85].

In this section, the function which maps from MASCOT to CSP will be denoted by M.

M is sometimes called the valuation function, [Sch86].

The daughter graphs on the right hand side of the productions of the BLM_GG will be
mapped into parallel compositions of CSP processes, with suitable re-labelling to ensure
communications and suitably disjoint alphabets. The nodes labelled with terminal symbols
of the grammar (the IDAs and activities of the design) will be mapped directly into CSP

processes. The meaning of their composition in the design is given by the model assigned by
M to the production rules which were used in the design’s derivation from the initial graph

of the grammar. The initial graph of the grammar is also given a semantic model by M.

As explained before, BLM_GG is the abstract syntax of MASCOT, so the denotational
semantics given by M is calculated for a given design and a given derivation. The ambiguity

of BLM_GG therefore does not introduce problems by defining more than one different

semantics to a design.
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The essence of this model of MASCOT is that a MASCOT design is a network of CSP
processes. IDAs map into fixed CSP processes, defined below, while activities are user
defined CSP processes. A MASCOT design is therefore modelled as a CSP design where
general processes may only communicate with each other via one of the three pre-defined

processes.

5.1.1. CSP Syntactic Conventions

Designers should use the CSP notation which is proposed in this section when
defining the behaviour of MASCOT activities in formalised MASCOT designs. It is a
slightly extended notation from that found in [Hoa85]. Extensions are defined which
make the type of the IDA which is being communicated with explicit in the text of the
activity description. An important side benefit of using these notations and conventions
is that actions in the activities and IDAs associated with communication automatically

synchronise without the use of re-labelling functions in the semantic definitions.

Actions which model communication events are to have the following form:
VW(XY,Z)

where: Ve {c,p,s}; We {?,!}; Xis the name of the IDA adjacent to the activity
being communicated with; Y is the name of the link to X; and Z is the value
communicated. V makes plain in the text of the activity the dynamic protocol associated
with this communication link, where "¢" stands for channels; "p" for pools; and "s" for
signals. W indicates the direction of the flow of data: "?" for input to the activity, and "!"
for output from the activity. For example: "P = p?( il.left, x ) —» P(x)" describes an

activity which repeatedly reads from IDA il on link "left", where i1 has a pool protocol.

Functions are defined for extracting the different components from these actions,
similarly to the way in which channels are handled in CSP, [Hoa85]. Protocol{ VW( X.Y,
Z))=V; Channel( VW(XY, Z) ) =XY; and Message( VW(X.Y,Z))=Z.

VI(X.Y, v ) - Preduces to the CSP expression X.Y.v - Pand V?2(X.Y, x ) = P®),
reduces to y:{y  Channel(y)=X.Y)} - P(Message(y)). Hence, these extensions reduce to

the normal conventions used for CSP channels in [Hoa85].

A function, called Links, is assumed to exist, which takes a process and returns the

set of communication actions in which the process can engage. For example,
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Links( uP: {i2.right.x, a} U {a | Channel(a)=il.left}.
(p?(il.left,x) —» a — cl(i2.right,x) > P))

returns the set { i2.right.x } U {a | Channel(a)=il.left}

5.1.2. Semantics of Activities

Rule 9 contains a daughter graph with a single node, labelled with the terminal
activity symbol. In a complete formal design, such a node would also be labelled with
the CSP expression which defines the activity. Such an expression is needed to provide
the functional definition of an activity; information which MASCOT, along with most
design methods, fails to provide. A MASCOT design with this added functionality
definition will be called a Formal MASCOT design.

The process expressions should make use of the conventions defined above for
defining communication actions. P is this expression in the example given below. The
valuation function, M, defines the meaning of an activity to be the CSP process defined
by the expression P, with all non-communication actions hidden. The hiding of these
actions ensures that interactions due to common actions cannot occur in formal

MASCOT designs.

Rule Ty
P=.. activity
read write

P=..\ (aP - Links(P))

Links(P), the set of actions that are not hidden in the semantic definition of an
activity, is the set union of the alphabets of the channels on which that activity

communicates.

5.1.3. Semantics of IDAs

Rules 1, 2, and 3 have daughter graphs with a single node, labelled with the

terminal pool, signal, and channel labels respectively. The valuation function, M,
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defines the meaning of these IDAs by mapping these daughter graphs to specific CSP

processes. These processes model the protocols that these IDAs impose.

Rule r,

P read’

write’ ]
A' -

M

Ly

p’:ulnit : {write’.x, read’ A} . ( write’?x — P(x) | read’!X — Init)
p:uP) : {write’ x, read’ x} . ( write’?x — P(x) | read’'x — P(x) )

Init and P are the recursive CSP processes which define the behaviour of a pool IDA.
Each instance of such an IDA is labelled with a unique name, denoted by p’ in this
example. Pool nodes are also labelled with initial value, A. The labelling in the semantic
model of the processes with the IDA’s name, p’, means that all the actions of the IDA are
prefixed with "p’.". This is used to ensure that IDAs have disjoint alphabets, and so do
not cause unwanted synchronisations. IDAs are defined using the standard CSP
channel communication actions. After labelling, these actions correspond to the

communication actions of activities.

Rule r,

nrr—s
Ml e 2l eoq |

n>0

§m8".,  =(write?x - S"__ )
8% n . = (write’?y — Sn<y>,\s,\<x> | read!x > S") #s<n
§":8" A o = (write?y — Sn<y>,\s | read’!x — S™) #s=n-1

S is a set of mutually recursive CSP processes which defines the behaviour of a
signal IDA. Each instance of such an IDA is labelled with a unique name, denoted by s’
in this example. A signal IDA is also labelled with the size of its buffer, n. The model is
only defined for n > 0 and not n = 0, although strictly this is a possible signal protocol.
The restriction is adopted to keep the model simple, but, if required, the model could be
adapted to handle this case. However, the n = 0 case also requires modifications to the
semantics of composite MASCOT designs, given below. In particular, actions will need
to be re-labelled to ensure activities on both sides of such an IDA synchronise on

communication.
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Rule ry

n ¢ -
Ml sme—LE ]

read’

n>0
c¢:C”_ =( write?x > C"_)

c’:CzsA - = write?y - (]31’1 orsras | TERDIX C") #s<n
C:C ay =( read’’x — C") #s=n-1

C is a set of mutually recursive CSP processes which define the behaviour of a
channel IDA. Each instance of such an IDA is labelled with a unique name, denoted by
¢ in this example. A channel IDA is also labelled with the size of its buffer, n. As for
signal IDAs, only the n > 0 case is defined. The n=0 case is not considered for the same

reasons as before.

5.1.4. Composite Semantics

In this section a denotational semantics for activity and IDA compositions are
defined. The definitions are defined using rules 4 to 12 of the BLM_GG. First the

meaning of the initial graph, Z, is given.

Initial Graph Z

. 3 i, ) ai? ’
MI iﬂ_ﬁ_)ﬂl_, 1

(MIIDA] || M[AIDA])\ {c | c=*read.*

The meaning of this daughter graph, is the parallel composition of the meanings of
the nodes. The naming conventions adopted for communication actions in activities and
IDAs means that the actions communicating over the read’ channel will automatically
synchronise. The set {c | ¢ = *read’.*} indicates that all the actions which communicate
over this channel are hidden, and only the input and output actions (ie the actions on

channels write’ and read”) of the overall system are visible.
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Rule r,
MI read” A n) A_ﬂ_} A aread”, 4
(MIAIDAD) | MIAIDAD\{c ! c=*read.*}

The meaning of this daughter graph, is the parallel composition of the meanings of

the nodes. Again the communications over read’ are hidden.

Rule P

9 a, b 3 i’ bib)
MI read - write read ]
(MLACT] || MIIDAD\ {c | c=*write’

The meaning of this daughter graph, is the parallel composition of the meanings of

the nodes. The actions which communicate over the write’ channel are hidden.

Rule g
IR i’ H ar d”
MI write - read rea 1
(M IDA] || M[ A IDA1)\ {c | ¢ =*read’.*}

The meaning of this daughter graph, is the paraliel composition of the meanings of

the nodes. The actions which communicate on the internal channel are hidden.

Rule ry
write’

MI

write”

(M[IDA] || MI[IDA])
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The meaning of this daughter graph, is the parallel composition of the meanings of
the nodes. No actions are hidden, and no actions should synchronise; the alphabets of

each IDA will be disjoint.

Rule rg

ai
MI read” D) read 1

(M[1IDA] || MI A_IDAD \{c | ¢ =*read’.#}

The meaning of this daughter graph, is the parallel composition of the meanings of

the nodes. The actions which communicate on the internal channel are hidden.

Rule r;,
»
write’ IDA
! read’ aACT write” ]
(MIACT] || MIIDAD)\{c | ¢=*write’*}

The meaning of this daughter graph, is the parallel composition of the meanings of

the nodes. The actions which communicate on the internal channel are hidden.

Rule ry
r
read’ DA write’
Ml read” _—>| ACT IIL write” 1
_—_—% >
a
(M[ ACT ] I MIIDA])\ {c | ¢ =*read.* v ¢ = *write’. ¥}
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The meaning of this daughter graph, is the parallel composition of the meanings of

the nodes. The actions which communicate on both read’ and write’ channels are hidden.

Rule ryo

3

1 . b2
read” :ID X write
[ d’” ai’ a’ i” IDA read””
BIPA P AT F—0s’

(M[AIDA] | MIAcT] || M{iDA]l | M[IDA])

\{ec | ¢c=*read.* v ¢ = *read”.* v ¢ = *write’.* v ¢ = *write”.* }

The meaning of this daughter graph, is the parallel composition of the meanings of

the nodes. Actions which communicate on all internal channels are hidden.

5.1.5. Well-Formedness Rules for Formal MASCOT Designs

The rules presented in this section help to ensure that well-formed formal MASCOT

designs descriptions are internally consistent.

Rule 1: A CSP process expression used to define an activity may not
refer to an IDA to which it is not directly connected

in the design graph.

Rule 2: A CSP process expression used to define an activity must refer to
an IDA to which it is directly connected as defined in the design
graph, and it must pass data to the IDA in the direction specified.

Rule 3: A CSP process expression used to define an activity may not

refer to a process which is used in the definition of another activity.

Rule 4: A CSP process expression used to define an activity may not
include the parallel, | ,or hiding, \, operators.
Rule 5: All IDAs and activities must have unique names.,
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5.1.6. Traces

This section defines how the Hoare Trace model is calculated for CSP expressions.

The definitions are repeated from [Hoa85]. They are included for completeness.
traces( STOP ) = { <>}

traces(xBoPX))={t Il t=<>v (t0 € BAt € traces(P(tO))) }

traces( uX:AF(X)) = U traces( F*(STOP,))
nz0

traces(P/s)={t | sAt € traces(P)}
traces( PNC ) = { t{ (aP-C) | t € traces(P)}

traces( AP) ) = { f(s) | s € traces(P)}

traces(P || Q)={t ! ({aP)e€ traces(P) A(faQ) € traces(Q) t €(aP L aQ)* }

traces(P [ Q) = traces(P) L traces(Q)

These are the basic CSP expressions, a richer collection can be found in [Hoa85].

5.2. Reasoning About Formal MASCOT Designs

The motivation for formalising the way of modelling of MASCOT was to gain a means of
reasoning about MASCOT designs. MASCOT’s semantic definition in terms of CSP
processes means that there are three kinds of formal reasoning about MASCOT designs
that may now be carried out, namely: proof of equivalence; proof of safe behaviour with

respect to a specification; and proof of absence of deadlock.

CSP’s specification language is Predicates-over-Traces, and such specifications can now
be used in specifying MASCOT designs. The Predicates-over-traces specification language
consists of the use of first order logic with a library of functions for manipulating sequences
of actions (traces) defined in [Hoa85]. Through being given a semantics in CSP, MASCOT
designs can be proven to be safe with respect to such specifications using the SAT logic
described in the subsection below. That is, it can be proved that if the MASCOT design does
anything, it will do what has been specified. It cannot be proved that the MASCOT design

will do anything, liveness properties cannot be demonstrated. An example of a safe
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behaviour proof of a MASCOT design is given in the second subsection. The third subsection

discusses the proof of deadlock freeness of MASCOT designs.

No algebraic laws are given for manipulating MASCOT designs, despite this being
normal in the literature on process algebras. The reason for this is not that such laws could
not be developed, but that their use is not advocated in this thesis. A MASCOT design is
expected to be derived from the use of the MASCOT design method and philosophy. It is not
expected that during normal system development such designs will be transformed into
logically equivalent designs, through the use of algebraic laws. However, as the semantic
model is expressed in CSP, at the semantic level MASCOT inherits the laws of CSP should
they be needed.

5.2.1. The SAT Logic

The basic inference rules of the CSP sat logic are repeated in this section from
[Hoa85].

11 —_—
P sat true

L2A PsatS,PsatT

PsatSAT

L2 vV nePsat S(n)
Psat VvV neS(n)

L3 PsatS,S=T
PsatT

14 V x € B ¢ P(x) sat S(tr, x)

x:B - P(x)) sat (tr=<> v (try € B A S(tr’, try))
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L6

L7

L8

P sat S(tr), s € traces(P)

(P/s) sat S(s™tr)

F(X) is guarded, STOP sat S, (X sat S) = (F(X) sat S))

uX.F(X) sat S

P sat S(tr), Q sat T(tr)

P || Qsat(StfaP) ATt aQ)

Psat S, r), Q sat T(1, 1)
P is left guarded or Q is right guarded

P > QsatdseS(, s)AT(s, )

An alternative version of L8 which does not use the pipe connective is given below.

L®

P sat S(, r), Q sat T{, r)
P is left guarded or Q is right guarded

(P || Q)\{c!lce aShared_Channel } sat3s ® S(1, s) A T(s, r)

The requirement for P to be left-guarded or Q to be right guarded in L8 is to guard

against livelock, which is where P >> Q spend all their time engaged in internal

communication with hidden actions. A process, P, is said to be left guarded if 3 f ¢ P sat

(#r <f(1)). This insures that there is a defined bound on the number of hidden

communications that P will engage in on the r channel before engaging in a visible

communication on the 1 channel.

It is worth considering whether there are any further rules which may be added to

the SAT logic which are specific to CSP programs derived from MASCOT designs, given
that such CSP will be of a stylised form.
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One indication that there will not be any new rules is that the CSP which results
from MASCOT designs is still very general. In particular, the CSP for activities is only
slightly restricted (parallel and hiding operators are not allowed), and the CSP used to
define IDAs is also quite rich. For example, pool IDAs cannot be specified by separate
predicates on the traces of its channels. This is because the overall behaviour of a pool is
dependent upon the relative ordering of the occurrences of reads and writes to the pool.
The same is true of signals, but not channels. Hence, the rule L8 above is not generally

applicable to MASCOT designs.

Any rules which would be applicable to MASCOT designs would also be applicable
to a large subset of ordinary CSP. Also there are ordinary CSP rules which are already
more specific than MASCOT can use. It is hence reasonable to suppose that such
general laws would have been developed independently, given the vigour of research in

the process algebra community.

5.2.2. An Example

A predicate-over-traces specification is: ¢”.read” <3 double*( ¢’.write’ ), where this is
an abbreviation for message*(tf ¢”.read”) <3 double*(message™(tr] ¢’.write)), and £*(t ) is
the function which applies the function f to each member of the trace t. Double is the
function which returns twice the value of its parameter. This specifies a design which
accepts inputs along ¢”.write’, and which produces outputs on ¢”.read” which are double

the value of the inputs, and which may lag up to three values behind the inputs.

A possible MASCOT design consists of a single simple activity, and two interface
IDAs with channel protocols. The design is the simplest well-formed MASCOT design: it
was chosen to illustrate the reasoning which can be performed about formal MASCOT

designs.
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A derivation-tree of the design is given in Figure 5.1.

. rite’
lwrlte’ ¢ lw

¢ 1 channel 1
lwrite’ L channel
i )
DA = read’ read
a 3 =9 a’ activity,
lread’ ACT P=
ai’ 5 o
AIDA] = write write”
i A 3 1
lread IDA channel

l read l read”

Figure 5.1: Case Study Derivation

The semantics of the design, calculated using the rules given in section 5.1, is:

(M] IDA ] I MU A_IDA)\ {c | ¢c=*read.*} Initial Graph

(¢ || (MLACT] | MIIDAD\f{c! c=*write”*})\ {c | ¢ = *read.*}

Rulesrl, r5

(¢ || (P=.. \(aP-Links(P)) || ¢’ )\{c | c=*write”*} )\ {c¢ | ¢ = *read.*}

Rules r9, r3

If the alphabets of the three CSP processes are disjoint, except for communications

over channels, the model can be tidied up to become:
(¢ || P || &)\ielc=*write”* ve=*read.* vce aP - Links(P) }

The functionality chosen for P will be simple: the consumption of data from the
input IDA, and the production of data at the same rate, only at twice the magnitude.

That is, P = c?( ¢.read’, x ) — ¢!( ¢”.write”, 2%x ) = P.
Links(P) is the same as aP, resulting in the further simplification of the model.

(¢ || P || ¢ )\l c=*write”* vc="*read.*}
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The proof of the correctness of the design is given in Figure 5.2, below. The proof is

presented in a natural deduction style, but it is only discharged rigorously.

5.2.3. Reasoning About Deadlock

The proof obligation which needs to be discharged to show that a given MASCOT

design, D, is free of deadlock is:
YV s € traces(D) ¢ (D/s) # STOP

The way to discharge the proof obligation is to consider the various states a design
could be in after an arbitrary trace, s, and to demonstrate that for each state the design

may engage in an action.

Consider, for example, the design used above. After an arbitrary trace, either the
activity will be ready to read from ¢’ or it will be ready to write to c¢”. If the former, ¢
may be either full or empty (the buffer is only 1-place). If empty, the system is ready to
accept an input from the environment as soon as it is provided, so it is not in deadlock.
If full, the activity may read the value in ¢, so again the system is not deadlocked. If the
activity is ready to write to ¢”, ¢” may be either empty or full. If empty, the activity may
proceed to write its value, so again the system is not deadlocked, while if ¢” is full, the
system is ready to have the value read by the environment, so again the system is not

deadlocked. The design is therefore deadlock free.

It is, of course, not surprising that this example is deadlock free. Deadlock only
occurs in a design where pairs of processes only communicate on single channels, and
there are no loops in the design, when a process stops. Nevertheless, the argument
about deadlock freeness of the design does demonstrate the kind of deadlock reasoning

that may be carried out about MASCOT designs, now that they have a CSP semantics.

There is work on the development of automatic algorithms which can determine
whether a CSP program is deadlock free, [BrJ92], [FS93]. The essence of these
approaches is one of model-checking, the examination of an exhaustive model

constructed from the CSP description.
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fromc, P, ¢”
1: from P = pX. (¢?( ¢.read’, x ) — c!( ¢”.write”, 2¥x ) — X)
1.1: STOP sat (tr=<>)
1.2: tr=<> = ¢”.write” <' double*(c’.read’)
1.3: STOP sat ¢”.write” < double*(c’.read’)
1.4: from X sat ¢”.write” <' double*(c’.read’)
1.4.1:c?(c.read’, x) - c!( ¢’.write”, 2x ) - X
sat ( tr € <c¢.read’.x, ¢”.write”.2x> v
(tr = <c.read’.x, ¢’ write”.2x> A
tl(e”.write”) <! ti(double*(c’.read’))))
1.4.2: tr € <c¢’.read’ x, ¢’ write”.2x> =
¢”.write” <! double*(c’.read’)
1.4.3: tr > <c’.read’ x, ¢”.write”.2x> A
tl(c”. write”) <! tl(double*(c’.read’))
= ¢”.write” <! double¥(¢’.read’)
1.4 infer ¢?( ¢.read’, x ) — ¢!( ¢”.write”, 2x ) - X
sat ¢”.write” < double*(c’.read’)
1: infer P sat ¢”.write” <' double*(c’.read’)
2: from ¢’ = uX.( ¢.write'?x - ¢’.read’lx - X )
2.1: STOP sat (tr=<>)
2.2: tr=<> = ¢’.read <' ¢.write’
2.3: STOP sat ¢ .read’ < ¢.write’
2.4: from X sat ¢’.read’ <' ¢’ write’
2.4.1: ¢ write'?x — c.read’x - X
sat ( tr € <¢.write’ x, ¢.read’ x> v
(tr > <c.write’.x, ¢.read’.2x> A
tl(¢.read’) <! t(c’. write)) ))
2.4.2: tr £ <¢’.write’ x, ¢.read’ x> = ¢’.read’ < ¢ write’
2.4.3; tr > <¢’.write’.x, ¢’.read’.2x> A
ti(c.read) < tl(c . write’) = ¢’.read’ <' ¢’ write’
2.4 infer ¢ write'’?x — ¢’.read’!x — X sat ¢.read <* ¢’ write’
2: infer ¢ sat ¢’.read’ <! ¢’.write’
3: ¢” sat ¢”.read” <! ¢”.write”

-14
-- Logic, <*
-13,1.1,1.2

14,14

-- Logic, <

-- Logic, <

- 13141142143
--16,P,1.3,1.4

14
-- Logie, <®
-13,21,22

-14,24
-- Logic, <

-- Logic, <
--13,241,24.224.3
-16,c¢,23,24

-- Similarly to 2

--18,1,3

4: (P || ¢)\{c | c€ ac”.write” }
satIses <! double*(c’.read’) A ¢”.read” <'s
5: (¢ || (P || ¢’)\{clce ac’write’})\{c | c€ ac.read’ }

sat 3t e t<' ¢.write’ Ads e s < double*(t) A ¢’.read” <' s

6: Itet < c.write Adses<t double*(t) A ¢”.read” s

¢’.read” < double*(¢’.write’)

7: (¢ ” (P “ ¢’I\{c! ce€ ac’.write” vc € ac.read’ }
sat ¢”.read” < double*(c’. write’)
infer(¢ || P || ¢ )\{c!c="*write”*ve=*read.*}

sat ¢”.read” <° double*(c’.write)

--18,4,2

-- Logic, <", arith.
-- 13, 5, 6, simplify

-- 7, notation change

Figure 5.2: Proof of the Correctness of Case Study
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5.3. Conclusions

MASCOT has been given a denotational semantics structured around its abstract
syntax using CSP. Edge labelled, neighbourhood controlled embedding graph grammars
have proved to be a very suitable formalism for defining the abstract syntax of graphical
MASCOT designs, thus enabling the semantic model to share the same structure as the
design. It is claimed that semantic models which share this structure are likely to be more
intuitive that those structured around the abstract syntax of a textual representation of
MASCOT designs.

A significant core of MASCOT now has a formal underpinning and a supporting theory
associated with it: a theory which is standard and well understood. It has been
demonstrated how formal MASCOT designs can be proven to be safe with respect to
predicate-over-traces specifications, and it has been discussed how they can be proven to be
free of deadlock.

In the first part of the thesis, MASCOT, an important informal graphical design method
used in industry, has been given a formal semantics. However, the formal specification
notation proposed, predicates-over-traces, is quite dissimilar to any informal notations
currently used in industry to specify MASCOT designs, and predicates-over-traces
specifications do not have a suitable graphical presentation. In the next chapter, an attempt
is made to formalise a "mode-based” graphical notation which is sometimes used in industry

to specify MASCOT designs.
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Chapter 6: Specification Transition Systems

This chapter presents a formal notation for the specification of reactive systems®. The
notation, known as Specification Transition Systems, (STSs), is mode-based®. The
semantics of STSs are defined in terms of sets of valid histories or behaviours. A refinement
calculus for STSs is defined, and the relationship between STSs and process-based designs
is discussed. A way of presenting STSs graphically is described. The chapter is motivated by
a discussion of the informal use of modes to specify process-based designs, such as may be

described using formal MASCOT.

6.1. Modes and Process-Based Designs

MASCOT designs provide a data-flow perspective of a system, and gives rise to
process-based implementations. An alternative perspective of a system can be gained by
viewing it as operating in a number of different modes, the system switching between those
modes under certain conditions, such as the occurrence of specific events. Modes have been

found to be a powerful concept for organising the description of a system.

It is often the case that the modal perspective of a system is a useful abstract
characterisation of it. Modal descriptions are therefore sometimes used as a specification of
a system, even of systems which are ultimately designed and implemented in a
process-based paradigm, such as MASCOT. This, for example, is sometimes the case with
BAe Dynamics products, where they have been found to simplify significantly the informal

description of systems.

As an example of this way of working, consider a guided missile system. It may be
viewed as consisting of four basic components: a launcher, a radar, a missile, and a
user-interface. Within the launcher it can be considered that there is a controller, the
embedded computer-based system which implements a process-based software design for

controlling the missile system. This is depicted in Figure 6.1.

Such a system may be viewed as operating in six basic modes: searching; firing;

collecting; guiding; stalled; and warning. In the searching mode, the controller drives the

294 discussion of reactive systems can be found in Appendix Two.
3OWhat is meant by a "mode-based" notation is clarified subsequently.
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radar so that it scans the sky for targets. The event of the radar detecting a target moves

Missile Radar’s Field of View

Controller adar

User Interface Launcher

Figure 6.1: Schematic of a Surface-To-Air Missile System

the system into the firing mode. In this mode the controller asks the launcher to fire the
missile. Confirmation of the firing from the launcher sends the system into the collecting
mode, and failure to receive any confirmation causes the system to enter the stalled mode.
In the sfalled mode the system alerts the user of the problem, and does nothing until told to
continue by the user. In the collecting mode, the controller drives the radar in such a way
that it looks for the missile that has been fired. The detection of the missile moves the
system into the guiding mode, where the controller sends guidance commands to the missile
via the radar to direct it to the detected target. Failure to detect the missile moves the
system to the warming mode, where the user is informed of the problem. The interception of
the target, or the loss of the missile returns the system to the searching mode, and new
targets are sought. The mode and transition information in this description is depicted
graphically in Figure 6.2. Obviously, a real system would also contain other modes, such as
"off", "test", and "set-up" modes, and other transitions, such as "target-lost”. However, those

given are sufficient to demonstrate the basic idea of this approach.
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Target_
Intercepted

Noi_Fired

Continue Missile_

Found

Searching® Guiding

Missile_
Lost

Figure 6.2: A Mode Description of the Missile System

A MASCOT design® of the missile system, is given in Figure 6.3. It is loosely based

upon a BAe Dynamics’ product which was specified informally using a mode-machine.

C1

<
<

/AO\‘L
I Vi
| I

Searching

Al
LMR-1

0
L ‘g |
LMR-2 P/k/ LMR-3
A

Figure 6.3: A MASCOT Design of the Missile System

The pools, UI-1 and UI-2, model the input and output interface between the controller
and the user interface. The pools LMR-2 and LMR-3 represent the input and output passive

3l rpe design is not a BLM_GG design, in that it contains a multiple reader pool and a multiple writer
channel, but it is a well-formed MASCOT design according to the criteria given in Chapter 2. A

basically equivalent BLM_GG design could be given, but it would need more components.
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interfaces with the launcher, missile and radar. LMR-2 provides access to the sensors, and
LMR-3 provides access to the actuators. LMR-1 is the interface through which active signals

from the missile system, such as "Target_Found", reach the controller.

Pool P1 stores a representation of the current mode of the system. This mode
information is used by activities Al and A2 to determine what processing they should be
performing. P1 is updated by the activity A0. A0 changes the mode stored in P1 upon receipt
of events passed to it through the channel C1, in accordance with the information recorded

in the mode-machine.

The basic algorithm structure of activity Al is given in pseudo-code in Figure 6.4. The
algorithm structure for A2 is similar to Al, but instead of executing periodically, delaying,
and polling the pool P1, it consumes events from the signal LMR-1, executing immediately a
signal arrives. A2 is an aperiodic or sporadic activity. The algorithm structure for A2 is

given in Figure 6.5.

Activity Al:
-- any initialisation code needed
loop
p?( P1, current_mode ); -- Al takes copy of the mode from the pool P1
-- Al is now committed to processing in this mode
p?( UI-1, user_input ); -- Commands read from user interface
c!( C1, user_input ), -- Events are passed to A0Q, the mode controller
case current_mode of
Searching :.... -- OQutputs are produced for the user
Firing T -- appropriate to the view Al has of the mode
Guiding Do -- of the system
end case;
delay X; -- Al is a periodic process. With some scheduling
-- implementations a "suspend” might be
-- preferable instead.
end loop -- Al services the user interface continuously
End Activity;
Figure 6.4: Algorithm for Activity Al
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Activity A2:
-- any initialisation code needed

loop
s?( LMR-1, event ); -- wait for, then store, any signals from LMR-1
p?( P1, current_mode ); -- A2 takes copy of the mode from the pool P1

-- A2 is now committed to processing in this mode
p2( LMR-2, status_of LMR); -- sensors read from LMR-2
c!(C1, events ); -- Events are calculated from LMR event and

-- status, and are passed to AO via C1.
case current_mode of

Searching :.... -- OQutputs are produced for the launcher, missile,
Firing T -- and radar appropriate to the view A2 has of the
Guiding - -- mode of the system.
end case;
end loop; -- A2 loops, ready to process more events from the

-- missile system, should any have arrived.
End Activity;

Figure 6.5: Algorithm for Activity A2

This missile example is discussed further later on in the chapter. For now, it simply
serves as an example of a mode-based specification of a process-based design. A number of

points should be noted about this informal use of mode.

Firstly it should be noted that, although these mode-machines seem similar to Moore
Finite State Machines®® (FSMs), they are different. A Moore FSM maps a state to an output,
while a mode-machine associates an output process with a mode, or, alternatively, a
sequence of outputs with a mode. This difference is not always noted, and this is probably
why, for example, Avnur says that Moore FSMs have proven themselves as an intuitive and

useful specification approach in software engineering, [Avn90].

Secondly, it should be noted that modes are not mutually exclusive like states. States
can be viewed as defining the exhaustive set of "things” in which a system resides, and of
requiring that at any time a system is in one, and only one, state. Modes by contrast, it can
be argued from the above example, are not so restrictive. The activities A1 and A2 may
concurrently perform processing appropriate to different modes due to delays in becoming
aware of a mode changes in P1. This toleration of some "raggedness” throughout the system
in transition from mode to mode means that modes should be carefully distinguished from

states.

32 A Moore FSM is a finite state machine with output, where the outputs are associated with a state; Mealy
FSMs associate outputs with transitions, [HoU79].
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These two differences between mode-machines and state-machines are important
because it is these differences which make it practical to describe large systems using
modes. Mode-machines essentially become shorthand notations for much larger state-
machines: models which have a much more manageable state-space, and which more closely
correspond to an intuitive view of the system. It is, for example, possible to map CSP
described process-based designs into state-machines. Each process can be viewed as a
state-machine, and the state-space for the state-machine which corresponds to the parallel
composition of such processes is essentially the cross-product of the state-spaces of each
process, [Jos88]. Unfortunately for designs of any size, this results in an explosion in the
size of the state-space. Such state-machines are not the abstract mode-based machines

which it is helpful to construct in specifying a system.

To summarise; as far as this chapter is concerned, mode-machines differ from
state-machines in two ways: 1) a mode-machine may produce a series of outputs while
residing in a mode, while a state-machine defines an output per state; and 2) at any given
instant, a mode-machine may be in more than one mode at a time, while a state-machine

must be in only one state.

In this chapter an attempt is made to formalise mode-machines. The model defined is

named a Specification Transition System or an STS.

STSs are founded on the observation that the essence of the mode abstraction over state
lies in the freedom it gives to the designer to build a design which consists of elements
which do not change mode synchronously. This freedom is usually only implicit in an
informal mode-machine specification, but nevertheless is normally understood to be limited.
A correct design will not contain a subsystem which stays in the old mode for "too long".
Sometimes this limitation is made explicit in terms of temporal bounds on the maximum
delay between producing certain outputs after entering a given mode. Such temporal
bounds normally reflect the fact that the outputs are being sent to devices which the system
is controlling and which need to be driven in a mutually consistent way. That is, the devices
should share the same perception of the system’s current mode. In the missile system, for
example, it could be contended that the missile and the launcher are two devices which need

a consistent view of the system’s mode, especially when the mode is Firing.

No attempt will be made to provide quantitative temporal notations or semantics for
STSs. Instead, the devices which an STS system controls will be identified, and any which

need to be driven consistently will be grouped together. A constraint will be imposed which
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requires that, in a given mode, if one device has an output sent to it, all the others devices
in the same group must also receive outputs appropriate for the same mode. It is believed
that, by only imposing this constraint on devices in the same group, the freedom which
makes modes such a useful abstraction is obtained. This point will be returned to after STSs

have been defined.

6.2. Specification Transition Systems

In this section STSs are presented. They are based around Labelled Transition Systems
(LTSs), [Hen88], [Mil89], and [WiN92], but have extensions and constraints to make the
"states” more like the modes of a mode-machine. However, it will be argued that these

extensions do not extend the fundamental expressive power of LTSs.
An STS is a seven tuple: <M, M, A, T, S, D, 5>, where

M = set of system modes.

M, = set of initial system modes, where My € M and M, # Q.

A = set of actions in which the system can engage. Actions are classified as being of
one of three kinds: inputs, events, and outputs, denoted by the sets Ip, Ev, and
Op respectively. Formally, A =Ip U Op U Ev, and Ip, Op and Ev are disjoint.

T = arelation that defines the transitions between modes in which the system can
engage. TS M x A x M®* where the first M defines the start mode; the A defines
the actions that occurs upon that transition; and the second M defines the end

mode. It is assumed that there are functions Actions, Start and End, which
return the appropriate element of a transition.
Outputs may only label transitions which start and end on the same mode:

vmmeMacAe@e Opam—>"m?*Y)=m=m.

wn

= the set of devices outside the system.

D = the destination function, which maps transitions labelled with outputs to
sinks. D : T — S. All output labelled transitions must be mapped to a sink. Also
only one transition per mode may be mapped to a sink, and a transition may only

be mapped to one sink. Formally:
Vte Tete dom D < Action(t) € Op
Vv t, ¥ € T » D(t) = D(t)) A Start(t) = Start(t) = t=t’

33For convenience, the abbreviation "TRANSITION" will be used for M x A x M.
34m —3 m’ will be used as short-hand for (m,a,m’)e T.
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0 = the dependency relation between sinks. 5 = S x S. Two sinks are

defined by the specifier as being dependent by relating them via d.

The sets M, M,,, A and T are as for LTSs, except that A is not normally partitioned into
three subsets, and transition labels are unconstrained. The partitioning of actions is done to
invoke the intuitions of the specifier, and to enable the constraint on outputs to be stated,
which requires that they only label transitions which start and end in the same mode. This
constraint is imposed on output labels to reflect the fact that output processes are

associated with modes and not transitions in informal mode-machines.

S, D and & are totally new elements of the tuple. S is the set of sinks, and should be
considered to define the devices outside the system, to which output values are sent. D maps
| the output labelled transitions to the sinks, and d defines that certain sinks are
"dependent”. The intended intuition is that sinks which are dependent upon each other are
a critical resource which needs to be updated consistently in each mode. Formally, & imposes
a constraint on the ordering of transitions which can occur in valid histories in which the

STS can engage. This is formalised below.

There are also certain properties or constraints that must apply to the static definition
of the dependency relation, given its intended intuition. Clearly, every sink is "dependent”
upon itself; also, if one sink is dependent upon a second, the second must also be dependent
upon the first; and lastly, if one sink is dependent upon a second, which in turn is
dependent upon a third, the first is also dependent on the third. Formally this means that &

is a reflective, symmetric, and transitive relation. That is:

Vs,s,8"€Se
SOSA
s08 =8 dsA

SOSAS’ DS =508,

The fact that these properties must be true of 5, means that 5 forms a "dependency”
equivalence class on Sinks. The following notation will be used to denote the subset of sinks

in the same dependency class as a given sink, s: "d_", where d_ = {s’€ S | s 55’ }.

Special event actions, known as output commitments, are also identified. The set of all
such events is denoted by OC, where OC < Ev. These events have names, a field of which is
the name of a sink. A function, Committed_Sink: OC — S, is defined for such events, it

returns the sink to which "commitment” has been made. Output commitment event actions,
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like output actions, may only label transitions whose start and end modes are identical.

Formally:
VvmmeMaeAe(aceOCAam—-»"m)o>m=m’

The definition of the valid histories that an STS can engage in will reveal that output
commitments are actions which commit the STS to produce outputs directed to all the sinks
in the same class as the sink to which commitment has been made; outputs which are
appropriate for the mode in which the STS was residing when the commitment was made.
Outputs will only occur after a suitable commitment has been made. Strictly, per mode, it is
only necessary for there to be one transition, per class of sinks, labelled with an output

commitment, but this is not stated as a constraint on the construction of STSs.

6.2.1. Some Definitions

An STS in which M, is a singleton set, and for every mode, there is only one
transition in T which starts from that mode and is labelled with that action, is known as
a deterministic STS. A deterministic STS is therefore one which satisfies the following
property:

cardMp) =1 A((m =" Am~»*m’)=>m=m")
An STS which does not satisfy this property is known as a non-deterministic STS.

It should be noted that, like LTSs, the behaviour of a deterministic STS is
determined by the sequence of actions that it engages in. Thus deterministic STSs are

unambiguous, [Kwi89].

All modes should be reachable from an initial mode. This is the weakest constraint
that ensures that all the modes contribute to the description of the system. A mode is
reachable if there is a sequence of transitions from an initial mode to that mode.

Formally this constraint can be defined as:
vVme Me3m' € M, *Path(m’, m)
where Path is defined as:

Path(ml, m2: M) b : Boolean
post

be mi=m2 v
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Ime Me
Jae€ Ae(ml, a, m) € T A Path(m, m2)

It should be noted that there has been no requirement for there to be transitions
labelled with every input, in every mode. An STS which satisfies such a requirement is

called an Input Complete STS. Formally, an Input Complete STS satisfies:
Vme M,i€ Ipedte T e Start(t) = m A Action(t) =1

If an STS, in every mode, defines an output to every sink in the dependency classes

to which it can make an output commitment, it is called Output Complete. Formally:

Vme Me
JteTe
Start(t) = m A Action(t) € OC =
VseESe

S € OGommitted_Sink(Actiony = 1 U € T ® Start(t) =m AD(t) = s

If an STS further defines, for each mode, an output commitment to each dependency

class, the STS is called Fully Output Complete. Formally:
vme M,s€ Se3ee OC» Committed_Sink(e) € 9, Am —°m

An STS which is Input and Output Complete will be called a Complete STS. It is
suggested that it is normally best to ensure that an STS which is used for specification

is Complete.

6.2.2. Dynamic Behaviour

A serial derivation of an STS, L= <M, M,,, A, T, S, D, &>, is a sequence of transitions
which only contain transitions drawn from T, and where the start of the first transition
in the sequence is a member of M,;, and where the end and start of adjacent transitions
in the derivation coincide. Der*(¥) is the set of all finite serial derivations for the STS, X.

Formally:

Der*(Z)={ d : TRANSITION-seq |
Start(dy)) € MyAaVie 0..Len(d) * d; € T A Is_Serial(d) }

where, for a sequence s, s, represents the it element of the sequence, and
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Is_Serial is a function, with signature Is_Serial: TRANSITION-seq — BOOLEAN,

whose definition is:

Is_Serial( d : TRANSITION-seq ) b : BOOLEAN
postb Vi€ 0..Len(d) - 1  End(d)) = Start(d,,,)

Before the behaviour of an STS can be defined, input-event serial derivations (or
"IES derivations") must also be defined. An IES derivation for an STS, X, is a sequence
of transitions all of which have been defined in the T element of L. Unlike serial
derivations the end and start modes of adjacent transitions in the derivation need not
coincide. In fact, only transitions labelled with either input or event actions need be
serial, while output labelled transitions do not need to be "in sequence”. The set of all

IES derivations for an STS, X, is denoted by IES_Derivations(X). Formally:

IES_Derivations(X) = { d : TRANSITION-seq |
Start(dy) € MyAV i€ 0. . Len(d) e d; € TAls_Serial(d[ (Ip WEV)) ],

where [ is the sequence restriction operator. Informally it removes from a sequence
of transitions all transitions not labelled with actions from the second parameter.

Formally:

the signature of [ is:  infix[ : TRANSITION-seq x A — TRANSITION-seq

and the semantics of [ is defined by:

<>[S=<>
t[ S = head(t) * (tail(t)[ S) if action(head(t)) € S.
t[ S=tail®)[ S if action(head(t)) ¢ S.

where » is the sequence concatenation operator, and <> is the null sequence.

The set of behaviours or histories in which an STS may engage is larger than the set
of serial derivations, but is smaller than the set of IES derivations. If the set of

behaviours of an STS, I, is denoted by Beh(X), this can be formalised as:
Der*(Z) € Beh(X) C TES_Derivations(X).

Informally, the rationale for Der*(X) € Beh(X) is that once an STS makes a

commitment to a sink in a given mode, the STS must engage in all the transitions
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labelled with outputs defined on that mode which are mapped by D to a sink in the
same dependency class as the sink to which the commitment has been made. However,
these outputs may occur after the STS has moved on to a new mode. Thus not all
behaviours are serial, and in this way the aspect of modes not being mutually exclusive
like states is modelled. However, Beh(X) € IES_Derivations(X) holds, because outputs
are not totally unconstrained in the order in which they may occur. Only outputs
directed to sinks in a class to which a commitment has been made may occur "out of
sequence”, and then only once, without a subsequent output commitment. OQutput
Commitments, being event actions, must occur serially. The constraint will be imposed
that, subsequent output commitments to a sink in a dependency class may not occur

until after all the previous ocutputs to that class have occurred.

The precise restrictions which derivations in Beh(Z) must satisfy are now

formalised.
Beh(X) = { d : TRANSITION-seq | STS_Der(d,X) }

where
STS_Der(d,r) &
d € IES_Derivations(Z) A
VieNe
i<lendna
Action(d)) € Op =
-- the destination of the output is to a sink which has not been written to
-- since its dependency class was last enabled in d. And the output is as
-- defined for the mode in which the commitment was made.
JjENe
j<ina Action(dj) € OC A Commitbed_Sink(Action(dj)) € aD(dj) A
-3k e Nej<k<iAD(dy) = D(d) A
Start(d,) = Start(d) A
Action(d)) € OC =
-- the commitment is to a dependency class not currently enabled in d; (d
-- € IES_Derivations ensures that the commitment is appropriate for the
-- given mode.)
Jj€E Ne
j<ia Action(dj) € OC A

Committ;ed__Sink(Action(dj)) € E)C ommitted_Sink(Action(di)
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—3dke Ne
j<k<i A Action(d;) € OC A
Committed_Sink(Action(d))) € aC ommitted_Sink(Action(di))
V $ink € doommitted_ Sink(Action(di) ®
Jle Ne
j<l<i AD(dy = sink
\2
—3jeNe
i<ina Action(dj) € OC A

Committed_Sink(Action(d;)) € dgommitted_sink(Action(@i

It should be noted that Beh(X) is the set of possible transitions that an STS can
engage, however, the transitions are not observable, only the sequences of actions
associated with the transitions. Obs_Beh(Z) is the set of observable behaviours, and is

defined as:

Obs_Beh(X) ={b:A-=seq | 3d€ Beh(X) e Vi€ 0..len(d) * Action(d;) = bi |3

6.2.3. Intuitions about STSs

It is intended that transitions labelled with input actions are transitions that cccur
when an input occurs in the system’s environment. It is also intended that transitions
labelled with outputs are those which, when the system engages in them, send an
output value to the system’s environment. It should be noted that there is no
synchronisation implied between the environment and the system. It is intended that
the transitions labelled with actions which are not inputs can occur at any time the STS
is in the mode from which the transition starts; that is, the the environment may not
block the STS.

An input which occurs while the STS is in a mode which is not the start mode of a
transition labelled with that input, is considered to be ignored by the STS. It would be
unrealistic to expect a system’s environment to freeze with the input continually offered
until the STS is ready to process it. Likewise, the environment cannot prevent the
system from engaging in a transition labelled with an output. This follows Murphy’s
classical observations and concurrency theory, [Mur91al, [Mur91b] and [MuP91], where

observations of a system are non-interactive, unlike for example, many process algebras,
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which assume that to observe what a system is doing there must be some interaction

with it, [Hoa85], [Hen88], and [Mil89].

Transitions labelled with event actions correspond to autonomous, internal, actions
of the STS, which involve no exchange of data with the environment. Some event names
will be evocative of situations, such as a particular time-out. However ST'Ss do not
provide any way of recording or formalising these intuitions. Hence it will be the task of
the validator to convince himself (informally) that the implementation of an event will
only occur when the conditions implicit in the event’s name arise. Other event names

will be evocative of a computation or process, similar to output actions’ names.

Output names will normally be evocative of an output process rather than an
explicit output value. The intuition is that such an event or output action will be refined
into a process in the design. Unfortunately, however, there is not an adequate definition
of action refinement in semantic domains such as have been used for STSs, [Ace92].

This will be discussed further in Section 6.6.3.

Before STSs are considered further, a graphical presentation scheme is introduced

for them.

6.3. Presenting STS Specifications

So far, STSs have been presented as basic mathematical structures with an associated
formal semantics. However, it is not usually convenient to work directly with mathematical
structures; a suitable presentation scheme can significantly contribute to making the same
information more accessible. Hence a graphical presentation for STSs is described in this
section. It is normally the case that people can develop better intuitions about graphically
presented systems, and this has motivated other visual formalisms, for example [Har87]
and [Har88]. A suitable presentation approach can also sometimes help to encourage the

construction of well-formed structures.

It has long been standard when graphically presenting state-machines and automata to
use circles or dots to represent states; arrows between states to represent transitions, and
text labels to define the actions. The same basic presentation scheme will be used for STSs,
however of course, it will be extended to handle sinks, sink dependencies, and the mapping
of output labelled transitions to sinks. Sinks will be presented by square boxes, which will

be positioned to one side of the diagram in a single vertical line. They will be ordered so that
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all the sinks in the same dependency class will be contiguous. The classes will be
represented by a dashed line between adjacent sinks in the same class. Thus, the reflective,
symmetric, and transitive aspects of the dependency relation will not be presented
graphically, but should be considered to be implicitly present. This significantly reduces the

dependency lines which need to be drawn.

The names of all non-output actions should be written adjacent to the arrow which
represents the transition with which they are associated. To reduce the number of arrows,
two or more actions may label the same arrow, being separated using the "+" symbol. Input
and event actions should be distinguished on the diagram by the use of a postfix subscript

ety (IR}

1 0r e.

The name of an STS mode is also presented by text. This is placed either within, or
adjacent to, the circle representing that mode. Initial modes of an STS are identified by a

star, "*", after the mode name.

Rather than follow the "obvious” approach of treating output labelled transitions like
the rest, and also adding lines linking each output to its sink, use is made of the constraints
imposed on the positioning of sinks to keep the presentation simple. OQutput actions are
ordered in vertical vectors adjacent to the mode with which they are associated. The
position of an output in a vector corresponds to the sink to which it is directed. That is, the
i*® output in a vector is mapped to the i*® sink in the column of sinks at the side of the

diagram.

The definition of an STS is such that it is not possible to distinguish two transitions
labelled with the same output defined on the same mode, even if the output is being directed
to different sinks. It may sometimes be desirable to send the same output to different sinks,
in the same mode, so the convention will be adopted that the same output value may occur
more than once in the same output vector, it being implicit that there is more to the output

names which distinguish them.

Redundant, but helpful, information is provided by the use of dashed lines to separate
the values in the output vectors into the dependency classes. Thus, all the elements of the
vector not partitioned by a dashed line are directed to sinks in the same dependency class,

and so will be updated "together”. A dash is placed in an output vector where no output is

defined for that sink, in that mode.
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An example of such a presentation of an STS is:

T
Qi Q
™R R
[o
o©
)

Figure 6.6: Graphical Presentation of an STS

The STS portrayed above is: <M, M,,, A, T, S, D, 5>, where

M ={ml, m2, m3, m4 }
M, ={ml}
A={a,b,c,d,ocl, 0oc3 al, a2, a3, 8,v2,v3,01,02},
wherelp={a,b}, Ev={c,d, ocl, 0c3}, and Op = {al, 02, a3, B, ¥2, v3, 01, 52}
T={ml »*m2, ml »°ml, ml -* mi, m1 »®m1, m1 -"*mi,
m2 5% m2, m2 —»°m3, m2 5™ m2, m2 »°2 m2, m2 —»f me,
m3 -2 m4, m3 —»° m4, m3 -°m2, m3 - m3, m3 —°2 m3,
m4 % m2, m4 5° m4, m4 -2 m4, m4 =% m4, m4 -2 m4,
m4 = m4, m1 »°! m1, m1 »°® m1, m2 5% m2, m2 -°° m2,
m3 -°% m3, m4 -°°! m4, m4 5°3 m4
S={1,2,3}
D={ml>"ml=lml >’ ml=2m -%ml=3m2-"m2=1,
m2 -"?m2=2 m2 5P m2 =3, m3 5" m3 = 1,
m3 - m3 =2, m4 - ma = 1, m4 -2 ma = 2,
m4 ¥ md = 3}

0={1062}

Note that this STS is not Fully Output Complete because there is no output defined for

sink 3, in mode m3. This is illustrated on the diagram by a dash in the appropriate point in

the output vector for mode m3. To determine if the STS is Output Complete or not, depends

on whether or not there is a transition on the mode which is labelled with an output

commitment to a sink in the class of which there is not an output. The static requirements
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are such that if there are outputs to other sinks in the same dependency class as the one
missing this will be obvious, and the STS will not be Output Complete. Adopting the
convention that, on any given mode, there are only output commitments to sinks in
dependency classes for which there are other outputs to sinks that class, on that mode, has
the advantage that Qutput Completeness, as well as Fully Output Comple’teness, can be
determined from the diagram. In the STS above, adopting this convention, it is Output
Complete, but not Fully Output Complete. Thus output commitments are not shown
explicitly. Their explicit presentation would not reveal any new information about the

system.

It can also be helpful to present the mode and transition information in a transition
table. The modes of the STS label the columns, the actions label the rows, and the contents
of the table are, usually singleton, sets of mode names; the names represent the termination
mode of a transition labelled with the action of the row, which starts from the mode of the

column. The transition table for the above example is given below. Note that the brackets

around singleton sets have been dropped for convenience.

Current Mode

Next Mode ml* | m2 m3 m4

a; m2 m2 m4 m4

Transition bi ml m3 md m4
"'"'(';'e """" ST T T " T me 1T T

dg - - - m2

Figure 6.7: Transition Table

The dashed line separates input labelled transitions from event labelled transitions, and

the dashes within the table indicate that no transition is defined with that action from that
mode. An STS which has no dashes associated with input labelled transitions, as in the

above example, is Input Complete.

There is no advantage in including transitions labelled with outputs or output
commitments in such a table; they always label transitions which return to the same mode.
Also, there is no advantage in recording the output information in a different table, for
example one which records the output values for each sink and mode. Such a table would

simply be repeating the output vectors drawn on the STS diagram, in essentially the same

form.
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6.4. STSs and LTSs

Labelled Transition Systems (L'TSs) are defined by the tuple: <S, S, A, T>, where Sis a
set of states; S is the set of initial states, S, ©S; Ais a set of actions or events; and T is
transition relation: T : S x A x S, which relates states and actions to a successor state.
(Sometimes slightly different definitions are given: for example, [Hen88], [Mil89], and
[Nie92], but they are all essentially the same.)

It has been contended that STSs have not changed the expressive power of LTS, but
have only introduced a more terse presentation scheme, where modes effectively represent
an equivalence class of LTS states. It is not contended that every LTS can be represented as
an STS, only that any STS can be represented as an LTS. To justify this contention, a

mapping is sketched from STSs to LTSs, and it is illustrated with some small examples.

The state-space of an LTS will be significantly larger than the mode-space of the
corresponding STS. The names of the states of the LTS may be constructed from the modes
of the STS, together with some indication of which classes of sinks have been committed to
in that state, and which sinks have been written to. The information recorded in the D
mapping, may be recorded in the names of the output actions. Qutput actions of the LTS
should be considered to be divided into fields representing each sink. An output which
labelled a transition in an STS which was mapped to a sink, would be represented as an
action with blank fields apart from the field corresponding the sink to which it was directed,
and this would contain the name of the original output. The information recorded by the

relation is encoded in an LTS in terms of which states and transitions are present.

A small example is given below:

A B

%
c—
e 2

Figure 6.8: A Simple STS

The corresponding LTS has eighteen states. The state names are made up of three
fields: one which records the current mode; one which records which mode, if any, has

currently made an output commitment to sink 1, and one which records which mode, if any,
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has currently made an output commitment to sink 2. Thus the alphabets of each field are:
{A,B},{®, A, Bland { @, A, B} respectively, where "@" indicates that there is no
outstanding commitment to that sink. The size of the state-space of the LTSis 2 x 3 x 3 or
18. The transition labels of the LTS are the same as for the STS, with the appropriate
renaming of outputs. The existence of transitions in the larger state-space of the LTS is
determined by the transitions in the STS and the "meaning” of the state names. Thus, for
example, the output commitment transitions are only defined on states for which the class
of sinks to which they commit has not already been committed to. Thus, ocl only labels
transitions which start from states with a @ in the second field of the state name. Such
transitions always terminate on states with the same name, except that the second field
now has the same name as the current mode, that is, the second field of the state name is
identical to the first field of the state name. Similarly, output labelled transitions, only start
from states which record the fact that the class of sink to which they are directed has been
committed to in the mode in which that output is defined, and that that particular sink has
not been written to since then. Thus, in this example, a_ only starts from states with an A
as the second field, and _c only starts from starts from states with a B in the third field. In
cases where all the other sinks (if there are any) have already been written to, such a
transition ends in the state with that field restored to @, while in the case where there are
other sinks which still need to be written to, the state name changes to record that this sink
has now been written to. Input and event labelled transitions change the first field of the

state name in the same way that they change the mode of the STS.

The transition table for the LTS which corresponds to the above STS is given in Figure
6.9. The initial state(s) of the LTS is(are) the initial mode(s) of the STS with no output

commitments to any sinks, and is(are) distinguished by a * as for STSs.
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Current Transition Labels

States ocl oc2 a_ b c_ _c A T
APD* AA®  APA - - - - BO® -
ADA AAA - - APP* - . BQA R
APB AAB - - . . APP* BPB )
AAQ - AAA AP - - - BA® -
AAA - - APA  AAQP - . BAA .
AAB - - AgB - - AA®  BAB ;
ABQ® - ABA - - APP* - BB® -
ABA - - - AB® APA - BBA -
ABB - - - - AQPB AB® BBB -
BY@ BB B@B - - - - - AP+
BPA BBA - - B@® - ; - AQA
B@B BBB - - - - BOP - AQB
BA® - BAB BpQY - - - . AAQD
BAA - - BPA BA® - - - AAA
BAB - - B®B - - BAQ - AAB
BB® - BBB - ; BOQY - ; AB®
BBA - . - BB® BPA - - ABA
BBB : - - : BYB  BBP - ABB

Figure 6.9: Transition Table for the Corresponding LTS

The above example does not illustrate the state naming convention which should be
adopted when there are dependency classes of sinks greater than one. Therefore, the same
example is repeated with the addition of a third sink which is dependent upon the second.

The output vectors are also extended.

1
A B

A*
00
c X
3
a

Figure 6.10: A Second STS

There are still three fields to the state name of the corresponding LTS. These fields
represent the current mode, and the states of both of the dependency classes of sinks

respectively. As before, the alphabets of the first two fields are {A, B} and {®, A, B}.

However, the alphabet of the third field is extended to enable it to record which sinks in
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that class have been written to since the last commitment to it. Its alphabet is {@, A, B, A,,
Ag, B,, Bgl, where, for example, A, means that sink 2, but not sink 3, has been written since
commitment occurred in mode A, and Bg means that sink 3, but not sink 2, has been written

since commitment occurred in mode B.

This LTS therefore has 2 x 3 x 7 or 42 states. The action alphabet is {ocl, 0c23,a__, b

-

_ac ¢_, A, t}. Due to the size of the LTS, only a fragment of its transition table is given

—_— =V

in Figure 6.11.

It is informative to consider the implications for the LTS, should an extra dependency
be defined between sink 1 and sinks 2 and 3. The state name would be contracted to two
fields, the current mode, and the status of the dependency class. The alphabet of the current
mode would remain the same, but the alphabet of the second field extends to become: {@, A,
B, A, Ay A Ay Ajg. Ay, B,;, By, Bs, B;s: By3: Bos 1, where, for example, A, 5 represents
the state where an output commitment to the class has been made in mode A, and the sinks
1 and 2 (but not 3) have been written to since that commitment. The size of the state-space

of the LTS is reduced to 30 by introducing this dependency.

C Transition Labels

urrent

States | ocl oc23  a_ b _a c_ c_ A n
AQPD* | AAD®  AQA - - - - - BP® -
APA | AAA - : APA,  ADA, - - BPA -
ADA, | AAA, - - - AQQ* - - BPA, -
ADA, | AAA, - - AQP* - - - BPA, -
A@B | AAB - - - A@B, - APB, BZB -
APB, | AAB, - - : AP - - B@B, -
APB, | AAB, - - - - - APQ* BEB; -
AAQ - AAA  APP* - - - - BA® -
AAA | - - APA  AAA,  AAA, - - BAA -
AAA, | - - APA, - AAD - - BPA, -
AAA; | - - APA,  AAD - - - BOA; -
AAB | - - AgB" - AAB, - AAB, BAB -
AAB, | - : APB, - AAD - : BAB, -
AAB, | - - A®B, - - . AA®  BAB, -
AB® - ABA - - - ADPD* - BB®Y -
BBB - - - - BBB B®B BBB2 - ABB
BBB, | - . . . BB B@B, - ; ABB,
BBB, | - - - - . BB, BB - ABB,

Figure 6.11: Transition Table for the Second LTS
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These examples have illustrated the construction of an LTS which corresponds to an
STS. They have demonstrated that the modes of a system may be significantly fewer than
its states. The general relationship between the size of the state-space of an LTS and a

corresponding STS is given by the following equation:

No_of_States = M x ozS1 x ozS2 X ... aSn

where M is the number of modes, n is the number of dependency classes, and aSi is the
size of the alphabet of the i® dependency class of sinks. The size of this alphabet is given by

the following equation:

N.!
asS. = 1+M+(-1+ E 1 - )"M
1 j=0..Ni-1 (Nl-‘]), J'

where N; is the number of sinks in the ith dependency class. The first term, 1, counts
the @ symbol, the addition of M counts the number of modes which can make a commitment
to the sink (assuming every mode can make such an output commitment). Ideally, the
summation should be from 1 to N-1, but this would necessitate the N=1 case being treated
separately. To avoid this, the j=0 case is also included, which happens always to equate to 1,
and this offset is removed by the inclusion of the "-1" term. This sum counts the different
combinations in which sinks in the class can be written, and this is multiplied by the

number of modes in which these outputs can occur. Obviously, the equation simplifies to:

asi= 1+( X AL IV

1 j=o.n.1 (Ng!!

The ability to map an STS into an LTS supports the contention that STSs have the
same expressive power as L'TSs. The mapping has not been formalised, but sufficient

explanation has been given to demonstrate that the process could automated.

6.5. STSs and Process-Based Designs

The mode-machine specification of the missile system given in Figure 6.2 can now be

repeated using an STS. This is done in Figure 6.12.

It is interesting to consider an informal mapping between this STS and the proposed

MASCOT design given in Figure 6.3, and the implications of the semantics of STSs on the
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design. For example, as with the mode-machine, the current mode of the STS would be
stored in P1; the mode transitions of the STS would be stored in activity AO; the Ul sink
would correspond to the UI-2 pool; the L, M and R sinks would be mapped to the single
LMR-3 pool. An output commitment to a class of sinks, for example, L and M, would
correspond to A2, the activity responsible for producing outputs to L. and M, reading the
current mode value stored in the pool P1. The fact that an STS can change mode before any
of the outputs directed to the sinks to which commitment has been made can occur, is
similar to the A0 activity changing the value in P1 before A2 can finish computing the
outputs to send to LMR-3. The algorithm in A2 will not include another read of the mode
P1, and so outputs for LMR-3 appropriate to an old mode will be produced. Consideration of
pre-emptive scheduling or distributed implementations of the design reveals that this is
likely to be common behaviour for such a design. A Hoare trace model of the MASCOT
design would also capture such behaviours of the design; for example, it will include the
trace where A2 made extremely slow progress after reading the pool. The existence of such

traces is identical to the arbitrary delays in the occurrence of outputs that STS semantics

allow.
Target_
warning] Intercepted,;
Search_tone} / N\ |----- Ul
Sweep_sky L
!
Searching* M
________ Guiding
- - EE
» issile_ g;ide R
t. -
0%t Track
Missile Lost! arning Missile_
- "ol T T Lost
Explode
Figure 6.12: STS Specification of Missile System
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The implications for the MASCOT design of an STS defining two sinks as being
dependent, is that a single activity must be responsible for writing all the outputs to the
IDAs which model those sinks. Certainly with Hoare Trace semantics of MASCOT, two
activities cannot be guaranteed to keep in step (without explicit synchronisation messages
being sent between them). Similar consideration of pre-emptive scheduling, and
asynchronous distributed implementations reveals that two unconnected activities cannot
be guaranteed to have the same view of the mode, and so drive the devices consistently.
Thus the number of dependency classes of sinks in an STS is an effective bound on the
number of activities which can be engaged in writing to output IDAs. In the missile
example, the MASCOT design does not exploit the full parallelism allowed for in the STS
specification, in that it uses A2 to produce outputs for R as well as L and M, thus treating

the radar as though it were a critical resource with the launcher and missile.

STSs use single output actions to represent the output sent to a sink in a given mode.
The corresponding MASCOT design however, has activities which change their output
producing processing depending upon the mode, see Figures 6.4 and 6.5. The MASCOT
design is therefore not limited to sending a single value to an IDA/sink per mode. This is a
case where some form of action refinement between an STS specification and a MASCOT

design would be desirable.

The informal relationship between STSs and MASCOT designs described in this section
provides motivation for some of the features of STSs, such as output commitments, and
helps to provide confidence that STSs have captured many of the informal intuitions which
underlie the use of mode-machine as specifications of process-based designs. Formalisation

of this relationship is discussed in section 6.6.4.

6.6. Refinement of STSs

Refinement is usually defined as a semantic relation, that is, as a relationship between
the semantic domains of two expressions. For example, the semantic model of a design
might be the set of behaviours of an implementation, and the semantic model for the
design’s specification might be either a (larger) set of behaviours, or a set of designs.
Refinement may be defined as "set inclusion” in the first case, and "set membership” in the

second.

However, while refinement is defined semantically, it is normally proved syntactically.

This is because of the difficulty of reasoning about semantic models, and because syntactic
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refinement can be compositional. Compositional proof systems are desirable as they enable
the refinement of a compound statement to be proven with reference only to the

specification of its constituent parts, rather than to the full detail of their implementations,
[Hoo91). Reasoning about semantic models usually involves reasoning about the full model,

and so is not compositional.

Syntactic rules for refinement form a "calculus” or logical system for proving
refinement. These rules need to be shown to be sound with respect to the definition of
refinement over the semantic models. This ensures that no expression can be proven to
refine another unless it actually is a refinement of it. It is also desirable for the syntactic
rules for refinement to be complete. This ensures that any expression which, semantically,

is a refinement of another can be proven to be so, using only the syntactic rules.

The STS semantic model is a set of valid behaviours. Therefore, refinement is a task of
demonstrating that the set of behaviours of the refined STS is a subset of the set of
behaviours of the original STS. Should refinement between STSs and formal MASCOT be
defined, this will also involve demonstrating set inclusion, as traces semantics are also sets

of behaviours.

The fact that one STS, sts2, is a refinement of another, stsl, will be written as:

sts1 L sts2. This is the usual refinement symbol.

Formally, sts1 L sts2 < Obs_Beh(sts2) < Obs_Beh(stsl).

Josephs, in [Jos88], has defined what it means for one state-machine to be a refinement
of another by relating state-machines to processes, and by defining "refinement” between
processes. Josephs identifies three basic conditions which are sufficient for state-machine
refinement: one machine is a strengthening of the other; the existence of a downward
simulation between the machines; or the existence of an upward simulation between the
machines. Separately these rules are sufficient for refinement, together they are complete.
They have been proven to form the basis of a sound and complete proof method for
demonstrating refinement between state-machines. He, [He89], has used the same concepts
to define process refinement rules, and Woodcock and Morgan have used them with CSP
failure-divergences and action systems, [WoM90]. The approach of demonstrating

refinement using upward and downward simulation was initially proposed in the context of

data refinement, [HHS86].
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Josephs’ rules could be used directly after the STS was converted to an LTS. However,
due to explosion of the state-space that this conversion results in, this approach is not
advocated for any but trivial STSs. Instead, Josephs’ rules are modified to apply directly to
STSs. The definitions of strengthening, and upward and downward simulation need to be
modified slightly before they can be applied to STSs, because of the extra elements of the
STS tuple. Nevertheless, the same simulation concepts will form the basis of a proof system
for STSs.

Sink and Action refinement is considered in sections 6.6.2 and 6.6.3. Refinement
between STSs and MASCOT is discussed in section 6.6.4. The soundness of the refinement

rules is argued in Appendix Four.

A useful function on an STS is: Next_Actions : M — ((A). It defines the set of actions

that may occur at a given mode. A similar function is defined in [Jos88] for state-machines.
Formally:

Next_Actions(m : M) next_a : (A)
post

next_a:{aeAlEim’eM'm—aam’}

Next_Actions will be used in the definitions of refinement that follow.

6.6.1. Mode/Transition Refinement

In this section three rules for the mode and transition refinement of STSs are
described, known as: Strengthening an STS; Downward Simulation; and Upward
Simulation. The Strengthening rule allows an STS to be refined by one with the same
modes, but which is more deterministic. The Downward Simulation rule enables an STS
to be refined with one with more modes, providing the extra modes can be related to the
modes of original STS while providing similar inter-connectivity. The Upward

Simulation rule enables an STS to be refined to an STS with less modes.

' 6.6.1.a. Rule 1: Strengthening an STS

Given that: stsl = < M1, M1, A1, T1, S1, 81, D1 >

and sts2 = < M2, M2, A2, T2, S2, 82, D2 >
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sts1 L sts2if

1.Mi = M2
2. My2 S M,1
i 3. Al = A2

4a.V m € M1 » Next_Actions,,(m) = Next_Actions o(m)

4b. T2<cT1
5.81 =82
6.0l =d2

7.V te Tl et e dom D2 = D1(t) = D2(t)

This asserts that one STS refines another if it is more deterministic, while
responding to the same range of inputs. The STSs must have the same modes,
actions, and sinks. The fact that the actions are the same for both STS, namely, Al
= A2, is intended to convey that the actions retain their same classification as

inputs, outputs or events. That is: Ipl = Ip2; Opl = Op2; and Evl = Ev2.

An example of STS strengthening is given in Figure 6.13, where one of the A

labelled transitions from mode A is removed in the refinement.

i

Figure 6.13: Mode Strengthening Refinement

6.6.1.b. Rule 2: Downward Simulation

One STS may refine another while introducing more modes. To establish the

validity of refinement in this situation it is necessary to to demonstrate that the

larger number of modes can be partitioned into an equivalence class of modes with a

Page 115




one-to-one mapping with the modes of the first STS. The behaviour of the second
STS, viewed in terms of these clumped modes, must be the behaviour of the first
STS. The clumping is achieved by defining a relation between the modes of the two

STSs, called DS, that is: DS € M1 x M2, where:
stsl = < M1, M1, A1, T1, 81, 81, D1 > and
sts2 = < M2, M2, A2, T2, S2, 52, D2 >.
sts1 L sts2if

I.VmeMl, me M2e

DS(m, m’) = Next_Actionsstsl (m) = Next_Actionsstsz(m’)
2.Vvm e My2¢3me Myl ¢ DS(m, m’)
3. Al = A2.

4.Vme ML, m’ ,m”€e M2,a€ Al »
DS(m, m) Am’ S5qm’ =

Im” € M1 e m »% m” ADS(m”, m”)
5.51 =52
6.01 =02
7.V te Tl et € dom D2 = D1(t) = D2(t)

An example of downward simulation refinement for an STS is given in Figure
6.14, where mode A* is divided into two modes, A’ and A”, neither of which are a
possible initial state. The transitions which started from A* are distributed over A’
and A”.
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where DS = {(A, A), (A, A”), (B, B)}

Figure 6.14: Mode Downward Simulation Refinement

6.6.1.c. Rule 3: Upward Simulation

One STS may refine another while merging modes. To establish the validity of
refinement in this situation it is necessary to to demonstrate that the larger number
of modes in the first STS can be partitioned into an equivalence class of modes with
a one-to-one mapping with the modes of the second STS. The behaviour of the
second STS, must be at least as responsive to inputs as the first STS. The definition
of which modes are merged in the refinement is given by a relation between the

modes of the two STSs, called US, that is: US € M1 x M2, where:
stsl = < M1, M1, A1, T1, S1, 51, D1 > and

sts2 = < M2, M2, A2, T2, S2,52, D2 >.
S1 L oSaif

1.vme M2e

dm e M1 e US(m, m’) A Next_Actions o1 (M S Next_Actionssts2(m’)
2.Vvme Ml, m’e€ M2 ¢ US(m, m’) = m € Myl
3.A1 = A2

4.vm”e Ml,m’,m”€ M2,a€ Ae

a

USm”, m”) Am’ -, m” =

IJmeMlem—-2m” A US(m, m”")

5.81 =82
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6.01 =082
7.Vt€ Tl ot € dom D2 = D1(t) = D2(t)

An example of mode upward refinement is given in Figure 6.15, where two

modes, A* and B*, are combined into one mode A* during the refinement.

obk-d =
1

where US = {(A, A), (B, A), (C, B)}

Figure 6.15: Mode Upward Simulation Refinement

It should be noted that Rule 1 is a special case of both Rule 2 and Rule 3, where
DS and US are the identity relation.

6.6.2. Sink Refinement

In the rules for refinement given so far, the STSs have had to have the same
sinks, and the same sink dependencies. In this section refinements which either
reduce or increase the number of sinks, or which reduce or increase the number of

sink dependencies, are discussed.

The number of dependencies cannot be reduced as this would enable the refined
STS to exhibit a wider range of behaviour, and so violate the definition of
refinement. For example, behaviours which only produced outputs for the sinks still
in the same class would be valid, while before such a "refinement” they would not.
Unfortunately, neither can the number of dependencies be increased, as this also
increases the number of behaviours: for example, after such a "refinement”,

following an output commitment to the larger class of sinks, there are more outputs

which can occur.
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It is also undesirable to increase the number of sinks during refinement. The
problem with increasing the number of sinks is that, without action refinement, the
output that was directed to one sink, must be directed towards one of the collection
of sinks into which the sink has been refined.” This leaves the other refined sinks
without an output directed to them, that is, with an STS which is not Output
Complete. However, if other sinks are dependent upon one of these new sinks with
no output directed to them, once one sink in the dependency class has been written
to, that whole class of dependent sinks will refuse further outputs until they have
been updated "consistently”. However, this can never happen as, in that mode, there
are no outputs directed to certain sinks in that class. This does not violate the
definition of refinement, but it is not the intuitively desirable behaviour of such a

refinement.

Lastly, Sink refinement which decreases the number of sinks will also not be
defined. Consider, for example, the removal of one sink from a dependency class
during a refinement. This will require a similar removal of all output transitions
which are directed to that sink; one such transition for each mode. If the STS is not
Output Complete because, in one mode, there is a sink to which it does not direct an
output, and if that mode is removed during refinement, the refined STS becomes
Output Complete. However, an Output Complete STS will have a wider range of
behaviours than a similar one which is not, and hence this violates the definition of
refinement. If, however, only Output Complete STSs are considered, there is no
such problem with decreasing the number of sinks during refinement. Nevertheless,
this constraint will not be imposed, primarily because the need to reduce the

number of sinks during refinement is unlikely to occur.

It is concluded that there is not a sensible rule to be defined for an STS which

modifies its sinks and their dependencies, and which also refines the STS.

35 Another option must also be considered, namely, that of multiplying the transitions labelled with the
output value, so all the refined sinks are written to. However, this cannot be done, due to D being a
function not a relation. In any case, it violates the definition of refinement by introducing histories which
contain a sequence of outputs, where, before the "refinement", only one output could occur.
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6.6.3. Action Refinement

Action refinement is a highly desirable property of most refinement calculi.
Unfortunately it is very problematic in concurrent languages with an interleaved model

of concurrency. Aceto, [Ace92] provides the following example which illustrates this:
1) allb =(a-b)l b—oa)

2) a C c—od

but replacing the right hand side of (2) for "a" in (1) gives
(3) (c>dIIb*c—>d-b) | (b-oc—d™

(1) is the standard identity that holds for all interleaved models of concurrency; (2)
is the basic action refinement assertion; and (3) demonstrates that the interleaving

assumption is in conflict with action refinement.

A notation with action refinement needs a richer semantic model than the
interleaving one, such as, for example, a partial-ordered model, [Ace92]. However, it has
been argued that STSs are essentially L'TSs, and hence are an interleaved model of
concurrency. It should be noted that, for example, STSs contain nothing equivalent to
the independency relation, 1, used in LATSs, which make LATSs partially ordered
models. Therefore STS are not a suitable formalism on which to define action

refinement.

The two main implications of this are that unwanted level of detail may have to be
included in STSs specifications, and that the intuitive relationship between STS output
actions, and the processes they are intended to represent in a process-based design
cannot be formalised. This is discussed further in the following section which discusses

the formal relationship between STSs and formal MASCOT designs.

6.6.4. Refinement Between STSs and MASCOT

The informal relationship between an STS specification and a MASCOT design was

described in Section 6.5. Unfortunately, however, it has proven to be extremely hard to

3 6For convenience (1) and (2) have not been expressed in legal CSP, which requires the second parameter
of the "—" operator to be a process and not an action.
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formalise this relationship, despite the clear intuitions which underlie it, and despite
informal mode-based models regularly being used as a specification technique for such

systems.

It is hard to define the operating "modes” of an arbitrary MASCOT design. "Mode"
in a process-based design may be viewed as values stored in the system which influence
the processing that the system is performing, but which are not data which are
consumed during the processing. Such values may, however, be distributed around the
system. They need not necessarily be stored in a separate IDA, but may be stored in
variables within the activities. Things may be further confused by designs where not all
the activities are aware of the same modes. This difficulty in recognising the modes of a
MASCOT design is the root of the difficulty in formalising the intuitive relationship
between STSs and MASCOT. The definition of a mapping between the modes of an STS
and the operating modes of a MASCOT design would be the basis of a demonstration
that the concurrent nature of the design does not introduce freedoms in transition

behaviour which not allowed by the semantics of the STS.

An alternative approach to formalising the relationship between STSs and
MASCOT designs is to relate them as state-machines. A MASCOT design could be
viewed as a massive state-machine, whose state-space is the cross-product of the states
of the elements of the design. Indeed, Josephs, in [Jos88], has defined the construction
of a state-machine which corresponds to an arbitrary CSP program. The construction of
state-machines (LTSs) from STSs has been sketched in section 6.4, and this could be
formalised. Verification of a MASCOT design against an STS specification could then be
performed using the simulation rules given in [Jos88]. Unfortunately, the major
problem with this approach is the large state-spaces which would have to be considered
in constructing the simulation relations. This is well illustrated by consideration of the
size of the state-space of the missile system example used in Section 6.5. Now while the
STS only has six modes, and four sinks, and is of manageable complexity, the equation
defined in section 6.4 gives the size of the state-space of the corresponding LTS as being
6x7x19x7, or 5586. It is contended that this is an unmanageable size when trying to
define upward or downward simulation relations. The size of the state-space of the
state-machine corresponding to the MASCOT design, given by the cross-product of the
state-spaces of the activities and IDAs is likely to be of comparable size, if not larger.
However, increased processor speeds, and the development of efficient algorithms,

means that tool-supported model-checking of state-machine refinement is becoming
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possible, [BrJ92] and [FS93], and so this may not remain a totally unfruitful way of
relating STSs and formal MASCOT.

A third way of formally relating STSs and concurrent designs is to relate their
behaviours. An STS specification defines a set of valid behaviours for the system. As
seen in earlier chapters, MASCOT designs can also be given semantics in terms of a set
of valid behaviours, that is, Hoare Traces. The verification task is one of showing that
all the behaviours of the design are behaviours of the specification. This may involve a
mapping between the names of actions in the design, and their corresponding names in
the specification. This is similar to the second approach mentioned above, but does not
require the large state-space to be considered explicitly. However, it does run into the
problem of the complexity of the predicates which describe the set of behaviours of the
STS and design. Again this approach would fail to exploit the informal intuitions which

relate mode-machines and process-based designs.

The difficulty in formalising the relationship between MASCOT and STSs was not
anticipated until after STSs had been developed. It is hoped that further research will
lead to a way of formalising the intuitive relationship, as it is believed the complexity of
the other approaches means that they are unworkable on realistically sized systems.
The solution probably lies in the consideration of a suitable subset of MASCOT designs

whose modal operation is easily identifiable.

The whole issue of formalising the relationship between STSs and MASCOT is also
complicated by the intended action refinement between output actions, and output
producing processes. It should be possible to solve this problem by adopting richer
semantic domains for STSs and formal MASCOT. Alternatively, a significant
modification to STSs, which allowed processes, and not just an action, to be associated

with a sink in a mode, is another approach which ought to solve this problem.

6.7. Conclusions

Formal models for describing reactive systems, called Specification Transition Systems

(STSs) have been defined. STSs enable the general modes of operation of a system to be

described, thereby enabling STSs to describe large LTSs compactly. A refinement calculus

for STSs based on upward and downward simulation, [Jos88], has been defined. Although

the intuitions for STSs were drawn from the informal use of mode-machines to specify

process-based designs, a formal mapping between STSs and formal MASCOT was not
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defined, although it was pointed out that they could be formally related by being mapped
into LTSs. A graphical presentation of STSs was described.
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Chapter 7: Conclusions and Further Work

This chapter contains a brief summary of the thesis, and a critical analysis of the value
of the formal techniques which have been developed. The chapter closes with a discussion of
further work.

7.1. Summary

In this thesis formal techniques have been developed with graphical presentation
notations. In particular, MASCOT designs have been given a denotational semantics, and

mode-based specifications for reactive systems have been proposed.

Graph grammars have been used to define the abstract syntaxes of subsets of MASCOT
designs. Two increasingly complex grammars were defined, SLM_GG and BLM_GG.
BLM_GG was a compact twelve rule grammar whose language corresponded to the class of
MASCOT designs with loops, arbitrary branching of paths on activities, and single reader
and writer IDAs. The grammar was ambiguous, but was suitable as a definition of the
abstract syntax of an interesting class of MASCOT designs. The BLM graph grammar was
used to structure the definition of a denotational semantics of MASCOT. Hoare Trace

semantics, defined via CSP, was the model adopted.

Specification Transition Systems (STSs), a mode-based specification model, has been
defined for specifying the safety properties of reactive, systems. A behavioural semantics
was defined for STSs in terms of allowable transition histories. A calculus was defined for

refining STS specifications.

The STS specification includes an output sink extension, for modelling the devices in a
system’s environment. A dependency relation between sinks allows the fact that certain
devices need to be driven with sets of consistent data to be captured. These extensions
reduce the number of states which need to be explicitly described, and so the number of
modes which need to be explicitly mentioned in an STS specification is usually significantly
less that the number of states in a corresponding state-machine. This has been
demonstrated by sketching the construction of an equivalent LTS from an STS. It has been

contended that STSs capture and formalise the concept of mode found in informal

mode-machines.

Page 124



7.2. An Evaluation of Formal MASCOT

Formal MASCOTs abstract syntax and formal semantics are evaluated in this section.
The first section considers the subset of MASCOT formalised and the success of using
deNCE graph grammars to define the abstract syntax. The second section reviews the
adequacy of the formal model, discusses it utility, and compares it with other attempts to
formalise MASCOT.

7.2.1. Formal MASCOT’s Abstract Syntax

It is important to structure the denotational semantics of a program or design
around the syntax of the language which is used to describe the program or design. This
provides confidence that all designs expressible have been given a meaning. An abstract
syntax was developed for MASCOT’s graphical notation so the structure of the semantic
model would better reflect the structure of the design. It was believed that a
denotational model which reflected this structure would be easier to reason about and
would be more intuitive. The resulting model is intuitive, but it has not been compared
with an equivalent model based on an abstract syntax of a textual form of a MASCOT

design.

A definition of the abstract syntax of the graphical form of MASCOT required the
use of graph grammars rather than string grammars. The class of grammars known as
NLC graph grammars were chosen as being suitable for this purpose, and deNCE
grammars in particular. These proved to be a relatively simple, powerful, and an
intuitive way of defining the abstract syntax of MASCOT designs. It was particularly
satisfying that such a large subset of MASCOT designs could be characterised by a
grammar with only twelve production rules. The formalisation of the embedding
relation in these modern graph grammars proved to be vital in including in the
language of the grammar, designs with arbitrary branching on activities. Also, the edge
labels of the deNCE grammars proved to be important in formalising the definiticn of

the actions which were hidden in the denotational model of MASCOT.

The subset of MASCOT which was described by the BLM_GG deNCE graph
grammar was of a significant size. The removal of templates, subsystems, servers, and
access interfaces from MASCOT-3 probably did not significantly weaken the operational
expressiveness of the designs considered. However, it was unfortunate that the full

range of well-formed MASCOT designs defined in chapter two could not be handled. In
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particular, the removal of multiple reader pools, and multiple writer channels and
signals was regrettable. It is interesting that the limitation to point-to-point IDAs is
similar to the restriction to point-to-point routes which occurs in DORIS, [Sim93]. This
shows that, even with this limitation, the subset of designs which have been handled is

not without interest.

7.2.2. Formal MASCOT’s Semantics

To evaluate the semantic model used for MASCOT designs, it is necessary to
consider three aspects of the situation: the adequacy of the semantics; the utility of the

formalism; and a comparison of the semantics with other models.

As discussed in chapter 4, the faithfulness of a model has to be balanced against its
simplicity: the simpler the model the easier it is to reason about, but the less that may
be deduced from it. The traces model captures the concurrency of the activities in terms
of non-determinism, and it is the most abstract of the commonly used models of
concurrency. It does not capture the liveness or progress properties of MASCOT, but
these are unstudied in the MASCOT literature. One of the abstractions of the model,
which the literature on MASCOT explicitly fails to make, is the reduction of the
accesses to an IDA to atomic, indivisible, actions. The MASCOT-3 literature discusses
multiple threads of execution which can overlap on different windows of an IDA, and
even on the same window. Traces are not capable of modelling the detail of this
behaviour. However, traces record the non-deterministic order of these events, which is
intended to model their potential concurrency. Furthermore, the MASCOT literature
asserts that an implementation of an IDA must ensure that these interleaving of
threads will not interact to produce inconsistent data in the IDA. The overall behaviour
ought to be as if, either one or the other got in first, and was uninterrupted. Therefore,

this abstraction of traces does not conflict with the informal semantics of MASCOT.

The utility of trace semantics for MASCOT has been demonstrated for an extremely
small MASCOT design, however, even reasoning about the correctness of this design
proved to be a complex task. It is to be expected that richer, more faithful models of
MASCOT, would result in even greater complexity, and hence, arguably, less utility.
The advantage of using trace semantics via CSP, is that MASCOT can benefit from the
work of the established CSP research community, again hopefully maximising the
utility of formal MASCOT.

Page 126




There has been a previous attempt to provide a formal semantics for MASCOT,
[BJP87]. This used Broy’s time stamped streams, [Bro83], to define the data-flow
between components of a design, and an applicative real-time language, ART, [Bro83],
to define the algorithmic components, that is, the activities and the IDAs. This formal
model is much richer and more faithful to actual implementations of MASCOT, but it is
more complex and harder to reason about. It is used to define the semantics of a larger
class of MASCOT-3 designs, including: multiple-reader pools; multiple window IDAs;
maultiple thread windows; IDA to IDA paths; and subsystems. However, the relationship
between the semantic model and MASCOT is left informal in {BJP87], in particular,
the semantics are not structured around an abstract syntax of MASCOT. [BJP87]
suggests a number of tools which could be built to exploit this semantic definition, but it
does not provide a calculus for reasoning about the correctness or equivalence of
MASCOT designs. The problem noted in [BJP87] concerning the industrial acceptance
of applicative programming in defining the components of MASCOT designs, should be
avoided with the use of CSP advocated here.

One disadvantage of the CSP traces model for semantics, is that is does not form an
acceptable basis to be extended for a timed model of MASCOT. Timed CSP, [DaS89],
{Sch90], [Dav9l], is based on assumptions which are in conflict with the asynchronous
freedom that MASCOT designs retain for the implementor. In particular, it forces a
minimum non-zero, delay, between actions, and this prevents a single process from
having the same model as two parallel processes with instantaneous access to a shared
variable. This was the essence of the validity of the CSP model of an IDA used here.
Incidentally, the timed semantics of MASCOT defined in [BJP87] is also deficient for

similar reasons, as noted in the conclusions of [BJP87].

7.3. An Evaluation of STS Specifications

STSs have succeeded in introducing a mode construct which abstracts a whole class of

state-machine states. It has been contended that these modes are similar to the informal
modes which are used in mode-machine specifications of software systems. While this
contention is essentially unprovable, some evidence for this conclusion has been given

through consideration of a missile system case study derived from an actual industrial

application.
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The relationship between STSs and LTSs was only sketched and not formalised.
However, it is not anticipated that its formalisation should provide any problems. Once the
relationship between STSs and LTS is formalised, ST'Ss will effectively have two semantic

definitions, and obviously, there will be an obligation to prove their equivalence.

There were problems in generalising and formalising the mapping between STSs and
process-based designs. The failure to formalise the intended mapping between STSs and
MASCOT leaves open an important question over the suitability of STSs for the
specification of distributed systems. It has also become clear that it would have been

desirable to have given STSs a semantic model which supported action refinement.

The definition of the behavioural semantics of STSs is open to the criticism that it is
rather awkward; the complexity is a little disappointing, but this probably reflects the
complexity of the intuitions which underlie mode-machines. The refinement calculus for
STSs is similar to the one for state-machines, proposed in [Jos88]. The proof of the
soundness of the refinement calculus, given in Appendix 4, means that a user of STSs may

refine them without having to manipulate their semantic model.

It is obvious that STSs treat inputs and outputs asymmetrically. Input devices, or
sources, are not distinguished, unlike sinks. The reason for this is that they are not needed
to enable STSs to capture the essence of mode. However, it can be argued that for some
systems, it would be desirable to be able to express the requirement that certain inputs
must be consumed and processed as though the system were in a single mode. It can

therefore be argued that STSs ought to include sources as well as sinks®’.

STSs may be sensibly compared with Statecharts and Temporal Logic, both formalisms
advocated for the specification of reactive systems. Statecharts, [Har87], are a state-based
graphical specification notation for reactive systems. Statecharts contain a number of
features not present in STSs, for example, a hierarchical structuring mechanism, and the
decomposition of states into concurrent state-machines with broadcast communication. The
hierarchical presentation of Statecharts enables the number of top-level states to be kept
manageable. However, these top-level states retain the properties of states, namely, that at
any given time, the system is in one, and only one, such top-level state. In contrast, STSs
keep the number of "states” manageable by changing their properties, and turning them

into "modes". The modes of an STS are effectively a class of states. It is argued that this is a

37 Thanks are due to Prof. John McDermid of York University for pointing out this need.
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better model for reactive systems which will be implemented as distributed systems,
especially distributed systems with asynchronous communication, because, with such
systems, a global, synchronised, change of state cannot be ensured. Nevertheless, STSs
would undoubtedly benefit from a hierarchical mechanism. The modes of an STS cannot be
decomposed into parallel state-machines as can the states of a Statechart. However, as
argued in [TIOW90], it is debatable whether a specification language for reactive systems
should explicitly specify concurrency. The position has been adopted that STSs should not.
Statecharts do not have anything which corresponds to the sinks, and dependency classes of
sinks of STSs.

Temporal Logic (TL) is a significantly different approach to the specification of reactive
systems. A TL specification defines a set of valid models which exhibit the properties stated
in the TL expression. These models can be interpreted as either a set of behaviours, or as a
set of models of the system. TLs are more powerful than STSs, in that they allow discussion
of infinite behaviours, and hence the expression of fairness requirements. However, as has
already been discussed, this is not relevant in the specific domain of STSs and MASCOT
designs. TLs make no commitment to state; they only record the required ordering
relationships between the occurrence of events. TLs are a more flexible specification
language, in that TL specifications can be extended with a new property by conjoining a new
expression. STSs, in contrast, define a particular structure or model; the properties of the
system are dependent upon the actual model. The need to record that the system has
another property may require the entire structure to be changed. However, a well-formed
STS specification always defines a system, while a well-formed TL specification may be

contradictory. Furthermore, it may not be obvious that a TL specification is contradictory.

TLs have an associated calculus, so a specification in one form can be proven to be
equivalent to a specification in another form. The refinement calculus plays a similar role
for STSs, but again TLs are more flexible in this respect. STSs have a nice graphical
presentation scheme, with natural intuitions, whereas a TL specification, is usually a dense
textual expression, and the precise interactions between, and the semantics of, the logic
operators carry important information. An STS specification is likely to be smaller than the
TL equivalent. This is because a lot of information is stored in the precise semantics of an
STS model. A TL equivalent would have to contain explicitly all this semantic information.

This will significantly obscure the intended behaviour which is specific to the system being

specified.
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7.4. Further Work

The work described in this thesis is the result of a three year period of research. It does
not claim to be a finished piece of work, in that there are some significant loose ends, and
there are a number of ways in which the work presented here could be extended and
improved. This section collects together a number of suggestions as to what could sensibly

be done to develop the work.

7.4.1. Formal MASCOT

Chapter three contained a full discussion of different elements of formalising a
design method, and it identified that only MASCOT’s way of modelling would be
formalised in this thesis. Obviously the other elements of MASCOT would benefit from
the clarity of formalisation, in particular, its way of control and working; that is, its

process model.

There is further work which should be done on formalising MASCOT’s way of
modelling. In particular, an unambiguous graph grammar needs to be developed for the
formalisation of the concrete syntax of graphical MASCOT designs, thus enabling a
unique derivation tree to be assigned to a MASCOT design. There should also be
extended concrete and abstract grammars for all well-formed MASCOT designs, in
particular, it would be desirable to be able to include designs with multiple reader pool
IDAs, and multiple writer channels and signals. It should be proven that the language
of these grammars coincides with the class of well-formed designs defined in chapter 2.
The denotational model of MASCOT would need to be extended for such a larger
abstract syntax. It is anticipated that a deNCE graph grammar will suffice for this
task, and that the denotational model will follow the pattern already established in
chapter 5 with the BLM_GG.

The BLM_GG abstract syntax provided should be suitable for structuring the
definition of any richer denotational models that might be required for MASCOT. There
is probably a case for special, tailored, semantic models of MASCOT for particular
implementation schemes of MASCOT designs. For example, models tailored for Ada,
[LRM83], Occam, [INM88], or DIA®, [Sim91], implementations could be much stronger

in their modelling of the progress, liveness, and scheduling of activities. Clearly, calculi

38Data Interaction Architecture
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would need to be developed with these richer models to support proof of correctness.
Tailored models such as these are a relatively unexplored area of concurrent formal

methods.

Related to these tailored models, is the development of a general formal model for
MASCOT which handles time quantitatively, yet which retains the freedom for
asynchronous implementations. Currently the temporal properties of MASCOT designs

is the subject of an ongoing research project, SPIRITS, [IED91].

7.4.2. Specification Transitions Systems

There are two desirable extensions to STSs that have already received some study:
namely, the addition of triple column output vectors per mode, similar to the extensions
for state-machines advocated by Avnur, [Avn90], and the addition of hierarchical
nesting of STSs. The triple output vectors would allow the definition of the initialisation
output which should be sent to each sink upon entry to a mode, the definition of the
steady mode output, as currently, and the definition of a tidying up output, which occurs
upon exit from the mode. The hierarchical nesting of STSs would enable the complexity
of larger systems to be managed. Obviously, the refinement calculus and its soundness

proofs would need to be extended to cover such extra features.

It would be desirable to formalise the construction of an LTS from an STS, and to
prove that the set of behaviours of such an LTS is the same of the set of behaviours of
the STS.

Perhaps the most important extension to the current theory would be the
formalisation of the relationship between STSs and formal MASCOT designs. It is
anticipated that such formalisation will involve defining a subset of MASCOT designs
which can be related to STSs, and the use of an abstraction function which extracts

"mode" information from such MASCOT designs.

It is clear that STSs and MASCOT would benefit from a richer semantic model
which supported action refinement. Alternatively, it would be interesting to explore the
reformulation of STSs with output processes rather than only actions. This may be a
way of reducing the need for action refinement. Nevertheless, there is merit in the

argument that the abstract nature of STS specifications compared with MASCOT
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designs means that it is totally inappropriate to have to specify at the level of detail of
the "actions" of a MASCOT activity.

Another area of further research is the extension of STSs to include the specification
of quantitative temporal requirements, and the definition of their relation to a temporal
MASCOT semantics. It is possible that such research will conclude that dividing sinks
into dependency classes is not necessary if time is handled quantitatively. The
reasoning may be that, specific constraints can be imposed on the delay between
updating different sinks, replacing the need for collecting such sinks together in a
dependency class. Presumably, with temporal extensions, the constraint that a single
activity would have to look after all the sinks in a class, could be loosened to allow
multiple activities to be engaged in producing the outputs, providing the activities could
be demonstrated to meet the temporal requirement that all the sinks must be updated

within the time bound.
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APPENDIX ONE: Introduction to Formal Systems

When dealing with formal systems it is important to maintain a clear distinction
between the language of the system or logic, and the meta-language used for discussing and
reasoning about the system. The language of a formal system defines what constitutes a
well-formed sentence in that system; it consists of a (possibly infinite) set of symbols, along

with rules for combining these symbols into sentences, or "well-formed expressions".

The well-formedness rules may state that some symbols in the given system must take
other symbols as parameters; for example, predicate symbols in first order predicate logic
are normally distinguished by their arity, that is, by the number of parameters they
require. It is normal for there to be a relatively simple finite algorithm for determining if a

given expression is a well-formed sentence of a given formal system.

In a formal system, certain well-formed sentences are distinguished from the others by
being called axioms. Axioms are taken to be "true” (or valid) in a sense which will defined

later. Axioms form the basis of a formal system.

As well as a language and axioms, a formal system also consists of a (non empty) set of
inference rules. An inference rule consists of two parts: a list of well-formed sentences
known as hypotheses; and a well-formed sentence known as a conclusion. The intention of a
system’s inference rules is to capture all the basic reasoning steps which are valid in the
logic. That is, if the hypotheses of a rule are valid or true, so must the conclusion to the rule.

Axioms may be presented as inference rules with a null list of hypotheses.

A theorem of a formal system is a well-formed sentence in the language and must be the
conclusion of an inference rule for which every hypothesis of the rule is either an axiom or
another theorem of the system. In other words, a sentence is only a theorem when it is
well-formed, and there exists at least one sequence of inference rules from the axioms of the

system to that theorem. The fact that an expression, E, is a theorem of a formal system, F,
is sometimes written, F E. An expression which can be proven, given the assumption of

extra hypotheses, H, is written H | ; E.

So far the truth or validity of a sentence has only been discussed informally. Actually

these concepts can only be formalised with respect to an interpretation of a formal system®.

39There can also be an informal notion of extra-systemic validity, however this is not under-
consideration here. Further discussion can be found in [Haa78].
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A formal system as described so far, is simply a set of rules for manipulating sentences
composed of meaningless symbols. However, symbols, axioms, and inference rules are
usually chosen to reflect some meaning. This concept of meaning is formalised by the
interpretation of the well-formed sentences of the formal system in some mathematical
structure. An interpretation maps well-formed sentences to members of a given

mathematical structure.

Certain members of the mathematical structure are designated to be truthful. If all the
axioms of a formal system map by the interpretation to members of structure which are
designated as "truthful”, the structure is said to be a model of the formal system. It is in this
sense that axioms are said to be "true”. Clearly, a formal system may be interpreted in
numerous different models. A model may be said to define (one) semantics of the formal

system. A formal system can be seen as defining a set of models; a set of possible semantics.

The fact that an expression E is true when interpreted in a model, M, of formal system

F,is written M [ o E.

A formal system for which every theorem maps to a true member of a given model of the
system is said to be sound, or consistent with respect to that model and interpretation. This

can be expressed, as, a system, F, is sound with respect to a model M, if, and only if|
VEe | zE=M FE

A sound formal system is one where the inference rules capture valid reasoning with
respect to a given interpretation and underlying mathematical structure. A formal system
for which no sentence can be proven to be both true and false is said to be consistent, or

consistent with respect to provability.

A formal system for which there exist a theorem for every member of a model which has
been designated truthful is said to be complete with respect to that model. This can be

expressed, as, a system, F, is complete with respect to a model M, if, and only if,
VEeM F E= I ,E.

Such a formal system can be used to prove any "truth” that holds for the members of its

model.
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Obviously, it is desirable to deal with a sound and complete formal system and model
whenever possible. This ensures that if something is true it can be proven, and if something
is proven it will be true. Unfortunately, Godel has demonstrated that any formal system
capable of capturing the reasoning of arithmetic is so expressive that it can express a
sentence which asserts that if the system is consistent the sentence can neither be proven
nor dis-proven, [G6d31]. This means that formal systems that can express arithmetic cannot

be complete.
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APPENDIX TWO: Reactive Systems

Reactive systems are an important class of systems which are built by engineers; many
software controlled systems are reactive. However, many slightly variant definitions of
reactive systems have been given, as can be seen in: [Led90]; [AIR91]; and [Bro91]. One of

the earliest definitions is by Pnueli:

"Reactive systems are systems that cannot adequately be described by the relational
or functional view. .... Typically, the main role of reactive systems is to maintain an
interaction with their environment, and therefore must be described (and specified) by

their on-going behaviour", [Pnu86b].

The common element to the various definitions of reactive systems is the mention of the
system’s environment. This is significant, as the "interaction” of a reactive system with its
environment depends upon the system and its environment being able to engage in
autonomous actions. The system and its environment must be viewed as being concurrent.

This point is made in the following quotation:

"A fundamental element in reactive programs is that of concurrency. By definition, a

reactive program runs concurrently with its environment”, [MaP92].

This concurrency is the distinguishing property of a reactive system. It is not
distinguished by non-termination: a reactive system may terminate after having
maintained some interaction for a period; nor is it distinguished by internal concurrency: an
internally concurrent system may calculate a function, and then terminate, and its
environment may do nothing of importance until the result is calculated®’. Reactive systems
do not necessarily have to be real-time systems in the sense of being dependent upon the
quantified timing of inputs. Reactive systems may simply be dependent on the relative

ordering of inputs with respect to system events.

The STS model described in this thesis has been proposed as a specification notation for
reactive systems. It should be noted that finite state machines (FSMs) are not an
appropriate specification notation for reactive systems. The reason for this is that FSMs
implicitly assumes that the inputs from the environment, and the transitions of the

machine, take turns: and hence there is no concurrency between the machine and its

4OManna and Pnueli make the point in [MaP92] that the internal processes of a concurrent
system which is non-reactive, must be understood as reactive systems. The other processes
act as the concurrent environment for each other.
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environment. This limitation holds in spite of the standard automata theoretic result that
finite state machines with e—moves have the same expressive power as finite state machines
without e-moves, [HoU79]. An FSM which can engage in autonomous transitions (e-moves)
is a reactive system. However, the equivalence between FSM with e-moves and those
without, is one of language recognition, and not one of on-going behaviour. The need for a
stronger equivalence than the one used in automata theory is argued in Chapter 4.1 of
[Mil89].

LTSs, however, are suitable for specifying reactive systems as they can contain
transitions labelled with actions which are not inputs, and so can engage in internal
behaviour independent of, or concurrently with, their environments. It is thus significant

that STSs are based on LTSs and not FSMs.
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APPENDIX THREE: Formal Models of Concurrency

In this section the various formal models discussed in chapter four are defined.
Labelled Transition Systems

Labelled Transition Systems (L'TSs) are interleaved state-based models. They are
defined by the tuple: <S, s, A, T>, where S is a set of states; s is the set of initial states, s €
S; A is a set of actions or events; and T is transition relation: T: S x A —» £(S), whichis a
function from states and actions to a set of successor states, each of which must be in S. If
the set is null, then the transition is not enabled on that state. (Sometimes slightly variant
definitions are given: for example, [Hen88], [Mil89], and [Nie92], but they are all essentially

the same.)

It should be noted that LTS are not the same as finite-state-machines, (FSMs). An FSM
only changes state upon receipt of an input, while an LTS simply records the events that
occur on transitions between states, that is, by the action label on the transition. LTSs are
therefore suitable for modelling reactive systems because autonomous transitions are

simply described by labelling transitions with non-input actions.

Concurrency is present in L'TSs only as an interpretation of non-determinism. A
particular state may have more than one possible transition defined from it, these may be
taken non-deterministically. This may be viewed as occurring "concurrently” using the
interleaved model of concurrency. Although this is not a particularly intuitive model of
concurrency, it often forms an adequate underlying model, for some more intuitive notation,

such as a process algebra, [Hen88].

Using the notation of s, - s, to mean (s;, a, s,) € S, and s; -7 s, where vis a
sequence of actions, a,, a,, a5 ... 8, to mean that there is a sequence of states, s, s,, Sg, ...
sy, such that, for alli€ 1..n-1, s, & $;,1- it is possible to define the following important

properties of an LTS:
A state, s, is reachable iff there exists a v, such that, s &' §'.

An LTS is acyclic iff for every state, s’, there exists a v, such that, s’ >’ s’.
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Synchronisation Trees

Synchronisation Trees (STs) are interleaved, branching history-based models of
concurrency. They are basically trees, where the nodes represent program states, and the
branches from each node are the various transitions from that state. The branches are
labelled with the actions involved in that transition. They are also called derivation trees in
[Mil89]. STs are basically just the unfolding of LTSs. A state which is visited more than
once in a given history will give rise to a different node in the ST each time that it is visited;

however, STs fail to record the identity of these nodes.

An ST may be viewed as an acyclic LTS where every state is reachable from the initial
state, and each state has a unique predecessor. Formally, every state having a unique

predecessor may be defined as:
¢ %" As” 2Ps" > a=bag = s, for every state, s, s”, and 5.
Hoare Traces

Hoare Traces (HTs) are interleaved, linear history-based models of concurrency. They
are sets of linear histories of system actions. They satisfy the properties that a null history
is always present, and that the set of traces is always prefixed closed. That is, if one history

is a possible behaviour of a system, so is any prefix of that history.

The concurrent occurrence of two events is captured by the fact that they will occur in
both orders in different traces in the set. Obviously, this fails to distinguish between
non-determinism and concurrency. HTs also fail to distinguish between a system which
makes a non-deterministic choice between two executions which start with the same event,
and then behaves differently, and a system which engages in the common event, and them
makes a non-deterministic choice between different behaviours. This information either
needs to be captured by the use of STs mentioned above, or the use of extra sets of traces,

such as refusal and divergences sets, as defined for CSP, [Hoa85].

Formally, an HT = <H, A>, where H is set of sequences of actions, and A is a set of

actions. H € A*, which is prefixed closed:

a,, 8y, 8g, ... , 8, &

el € H=>al,a2, ag, ..., a, € H.

A¥* is the set of possible sequences of the elements of A.
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Labelled Asynchronous Transition Systems

Labelled Asynchronous Transition Systems (LATSs) are non-interleaved state-based
models of concurrent systems. They are defined by the tuple, [Kwi89l: <8, S, A, T, 1>,
where S is a set of states; S is the set of initial states; and Sy = S. A is the set of actions or
events. T is the transition function: T : S x A — (S), a function from states and actions to
a set of successor states, each of which must be in S. If the set is null, then the transition is
said to be "not enabled” on that state. 1 is an independency relation between actions;1: A —
A. 1is a symmetric and irreflective relation on actions. Actions which are independent may

execute concurrently, while those which are not are considered to be causally related.

LATS are significantly different to LTS described above, for example, they distinguish
concurrent actions from non-deterministic choice of actions. Also, while retaining a state
concept, an LATS can effectively be in more than one state during an execution. Like LTSs,
LATSs are suitable for modelling reactive programs because the actions labelling each

transition need not include an input event, and hence autonomous actions are describable.

Unfortunately, LATS do not form a natural semantics for process algebras. Process
algebra usually identify processes as being concurrent, while LATS identify actions.
However, actions in a process algebra may alternate between being concurrent and not.

Consider, for example the CSP process:
a—->b—-(a->Pllb-Q)

A similar point is noted in [Kwi91], but this is not considered an insurmountable
problem. Indeed, by mapping actions which are dependent anywhere in an expression, to
dependent actions, Kwiatowska argues the desired semantics are obtained for synchronous

communication.
Labelled Event Structures

Labelled Event Structures (LESs) are non-interleaving. branching. history-based
models of concurrent programs, [Win87]. They are effectively a set of tree histories, and
they bear the same relation to LATS as STs do to LTSs. The trees record the parallel
executions of LATS, the actions in each tree cannot be related to the actions in other tree,

hence revealing LESs as being a form of partial order semantic model of concurrency.
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The trees record the branching history of each concurrent process, and hence can

distinguish between when non-deterministic choices are made.

Formally, a LES is a three-tuple, (E, <, #). where E is a set of events, <is a partial order
on events (£ € E x E), which relates dependent events, and # is a symmetric relation on

events, (# € E x E) which defines conflict between events, and
1)Ve,e’,e”e Eee##te<e” = e#e”
2)Vee Ee{e | € <elis finite.

Mazurkiewicz Traces

Mazurkiewicz Traces (MTs) are non-interleaving linear history-based models of
concurrent programs, [WiN92]. An MT model is a partial order of traces, where each class of
traces which are related indicates the linear trace behaviour of one concurrent processes.
The actions in traces which are not related by the partial ordering are unordered so as to

indicate that they come from concurrent (perhaps distributed) processes.

Non-determinism is modelled by interleaving actions within one trace. MTs hence do
not distinguish where a non-deterministic program makes its choices, unlike LESs. This is

similar to the relationship between HTs and STs.

Formally, an MT = < M, A, 1 >, where M is the set of traces, A is the set of actions, and 1
is a symmetric irreflective relation on actions which defines their independence. M < A* and
M=,

MTs are:

Prefixed Closed: VseE A¥,a€c Aesac M=>se M.

I-Closed.: Vs, te A¥, a,be Aesabte MAaib = sbate M.
Coherent: Vs€E A*, a,be Aesae MAsbe Maaib=sabe M.
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APPENDIX FOUR: Soundness of the Refinement Rules

In this appendix a natural deduction style proof, [Jon90], is given of the soundness of
the first STS refinement rule, and a more informal, mathematical style argument is given of
the soundness of the third rule. The second rule would be proven similarly to the third. The
first proof is not discharged with full formally, but most steps are justified with reference to

an explicit inference rule, and the ones that are not follow from basic logic or arithmetic.
Logical Rules

The following logical, set and sequence theoretic inference rules are used explicitly in

the soundness proofs that follow.

a=¢c (a=b)Aac=4d)
Xl aAb=cAD X2 ((arnc)=bad)
ScT vx ¢ P(x) = Q)
Defc Vses€e S=seT Set {(y I PMlc{z | Q=)}
Vx:XePx)
Seql
Vs:X-seqe

Vi€ 0. (lens)-1ePGs,)

Soundness of the STS Refinement Calculus

Three syntactic refinement rules for STSs were defined in Chapter 6. Refinement was
defined in terms of the semantic behavioural models of STSs. It is necessary to prove that
when any of the rules are used to demonstrate an STS refines another STS, the first
actually is a refinement of the second. That is, it is necessary to prove the soundness of each
of the three refinement rules. This is done by proving that one STS refines another,

assuming only the conditions that each rule requires.

Thus, if a rule has seven conditions, for example, hl to h7, it is necessary to

demonstrate that:

hl, h2, h3, h4, h5, h6, h7 | Obs_Beh(sts2) < Obs_Beh(stsl)
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Soundness of Rule 1

Numbering the eight conditions of Rule 1 as hi1 to h4a, and h4b, to h7, it is necessary to

demonstrate:

hl, h2, h3, h4a, hdb, h5, h6, h7 | Obs_Beh(sts2) € Obs_Beh(sts1)

The proof is:

from hl, h2, h3, h4a, h4b, h5, h6, h7

1.

2
3
4:
5

10:

11:

12:

13:

Vt: TRANSITIONete T2 =>t€ T1 [h4b, Defg]
. Vmeme M2=me Myl (A2, Def_}
. V't: TRANSITION e start(t) € M2 = start(t) € Ml 2]

V't : TRANSITION e start(t) € M2 At € T2 = start(t) € Myl Ate T1 [1,3,X2]

: Vd: TRANSITION-seq ®

start(d,)) € M2AVi€ 0..(lend)-1ed, e T2=
start(do)e Myl avVie 0. (Iend)-1 0di€ T1 [4, Seq1]
Vv d : TRANSITION-seq ¢
de {x | start(xp)) e My2AaVie 0. lenx-1lex;€ T2} =
de {x | start(xp)) € Myl AVie 0..lenx-1ex,€ T1} [5, set2]

Vv d : TRANSITION-seq ® d € Der*(sts2) = d € Der*(stsl) [6, Def Der*}
Vv d : TRANSITION-seq ® d € Der*(sts2) A Is_Serial(d[ (Ip2 U Ev2)) =
d € Der*(stsl) A Is_Serial(d[ (Ip2 u Ev2)) [7, X1]

Vv d : TRANSITION-seq ® d € Der*(sts2) A Is_Serial(d[(Ip2 U Ev2)) =
d € Der*(sts1) A Is_Serial(d[(Ip1 U Ev1)) [8, h3, Sub of identities]

Vv d : TRANSITION-seq ¢ d € IES_Derivations(sts2) = d € IES_Derivations(stsl)
[9, Def IES_Derivations]
Vv d : TRANSITION-seq * d € IES_Derivations(sts2) A F(d, sts2) =
d € IES_Derivations(stsl) A F(d, sts2)
[10, X1, F being an unassigned proof variable]
F(d, sts2) = F(d, stsl), [If F is only dependent on M, A, Op, OC,
S, d, D, and common transitions in d. All of
which are identical for sts1 and sts2, hl..h7]
Vv d : TRANSITION-seq ¢ d € TES_Derivations(sts2) A F(d, sts2) =
d € IES_Derivations(S1) A F(d, sts1) {11, 12]
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14: vV d : TRANSITION-seq ® STS_Der( d, sts2 ) = STS_Der( d, sts1 )
{13, Defn. of STS_Der, and F'is
defined as the second clause of the STS_Der
predicate in section 6.2.2, which satisfies the

conditions for step 12.]

15: Beh(sts2) < Beh(sts1) [14, Defn. of Beh, Set]
infer Obs_Beh(sts2) € Obs_Beh(stsl) [Defn. of Obs_Beh]
Soundness of Rule 3

The soundness of rule 3 could be proven using a natural deduction style proof, similar to
rules 1 and 2, however, a more informal "mathematical-style" argument is given instead. It
is hoped that this will make the reasons for the soundness of the rule clearer by presenting

the proof more abstractly.

Rule 3 is sound if it can be shown that its seven sufficient conditions for stsl to be
refined by sts2, imply that the observable behaviours of sts2 are a subset of the observable

behaviours of stsl.

The observable behaviours of an STS are the sequences of actions which label
derivations in the set "Beh" for that STS. A derivation is in the set "Beh" if it satisfies the
predicate STS_Der. There are two conjoined clauses to STS_Der. The first clause constrains
input and event labelled transitions to occur "serially” in a derivation, while the second
places different constraints on all the output and output commitment labelled transitions in

each derivation.

It is first proved that, when only input and events are considered, the observable

behaviours of sts2 are a subset of stsl. It is then proved that this is also true when outputs

are considered.

(1) The first clause of STS_Der requires that the derivations of both sts1 and sts2 will be
IES_Derivations. However, sts2 may have less modes than sts1, and have different
transitions in its derivations as a result. Constraint 4 on rule 8, requires that for every
transition that sts2 can engage in, there is a corresponding transition in sts1, defined
between modes, which are related to the modes of the sts2 transition by the US relation. US
may reduce the number of modes in sts2. Therefore there may be transitions which sts2 can
engage in, that stsl cannot, due to the change of mode names associated with certain

transitions. However, when observable behaviours are considered, variant modes are
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abstracted from. Constraint 4 ensures that, while transitions may become defined on
amalgamated modes, the actions available at each step will be the same. This, coupled with
constraint 2, which ensures that the initial modes of sts2 are suitably related by US to
initial modes in stsl, means that sts2 IES derivations have the same observable behaviour

as stsl TES derivations.

(2) The second clause of STS_Der constraints the occurrence of transitions labelled with
outputs and output commitments in STS behaviours. Output commitments are considered
first. These are constrained to be "serial” with respect to other inputs and events, being
event actions. However, they are further constrained to only occur when they are directed to
sinks in a class not currently committed to in the derivation. This means that either, i), a
commitment has not yet been made to that class of sinks, or ii), a commitment has been
made, but it has been subsequently followed by a full set of outputs to that class of sinks.

Constraints 5 and 6 ensure that stsl and sts2 share the same sinks and sink classes.

i In the first case, i), sts2 will only engage in such an output commitment in series, and
we know from part 1 of the proof, sts1 will be able to engage in the same sequence of event
actions. So the observable behaviour will be the same. In the second case, ii), sts2 will only
be able to engage in an output commitment which stsl cannot, if sts2 is able to complete the
set of outputs to the class of sinks in a way which stsl cannot. Qutput actions are
considered next, and it will be argued that this is will not be the case, and so the observable

view of output commitments of sts2 are a subset of sts1’s output commitments.

Output labelled transitions can only occur once in a derivation after an appropriate
output commitment, and before a subsequent commitment. The start mode of an output
labelled transition must correspond to the start mode of the transition which was labelled
with the output commitment. However, sts2 may have less modes than sts1, and have
different transitions in its derivations as a result. Constraint 4 requires that for every
transition that sts2 can engage in, there is a corresponding transition in sts1, defined
between modes, which are related to the modes of the sts2 transition by the US relation. In
particular, there must be the same output labelled transitions, allowing for the
amalgamation of modes allowed by the US relation. Therefore, considering only the
sequences of actions which may occur, sts2 has defined the same output actions as stsl per
"equivalent” mode. Output labelled transitions, of course, need not be "serial". They may
occur arbitrarily after the associated output commitment. It has already be argued that
sts2’s first output commitment per class is only occur to occur if stsl can engage in the same

i output commitment. Therefore, in the start up case, sts2 outputs may only occur when
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stsl’s output commitments. Assuming that up to an arbitrary point in a derivation sts2
outputs are the same as stsl outputs, the output commitments each can engage in are
identical, and so the next output actions that they can engage in are identical. Using
induction, it is therefore possible to conclude that all sts2 outputs only occur when stsl
outputs can occur. Therefore subsequent output commitments for sts2 are the same as for
stsl. It can hence be concluded that all of the observable behaviours of sts2 are observable

behaviours of stsl. It therefore follows that Rule 3 is sound.

The soundness of the second rule could be argued in a similar manner to third rule.
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APPENDIX FIVE: Ten Rule deNCE Branching-Looping
MASCOT Grammar

A deNCE graph grammar is presented informally in this appendix. It defines the same
subset of Branching/Looping MASCOT designs as the BLM_GG given in the body of the
thesis, but contains two fewer production rules. It can be argued that this is the simpler
grammar, and would be better as the abstract syntax of MASCOT, however, it does not
contain the production rules of the SLM_GG as a subset its rules. It is also more ambiguous
than the BLM_GG.

write’
v
IDA
Initial Graph= & , read’
ACT
i” ¢ Write”
IDA
J, read”
©® lread’ @ @ et ®) read’ o
1
2 ‘1’ read* @ : AT E l =%
ACT = : \lIWI'lte’ : a l’ Tea
Jy ; IDA | T | ACT
- : g
| |
? ]
@ & ‘Lread : read”

2 J, read* ACT : l read
ACT s \WI’I'Dﬁ : o | r—l "
v el B ACT IDA

erte* a” ] read” : I -
ACT . write ——
) write”
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IDA = pool
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o ‘L write
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APPENDIX SIX: Branching-Looping MASCOT Graph
Grammar

A deNCE graph grammar is presented in this appendix for Branching/Looping
MASCOT designs, and is called BLM_GG. The Simple Linear MASCOT designs are a
subset of such designs, and indeed the production rules of the SLM_GG graph grammar are

also part of the BLM_GG grammar. These rules retain their original numbering.

BLM_GG = (T, A, Z, R), where X, the set of all 1abels, is {ACT, A_IDA, IDA, pool,
channel, signal, activity}, A, the set of all terminal symbols, is {pool, channel, signal,
activity}, and Z, the initial node/edge labelled graph, is ( {’ ai’}, {(i’, ai))}, {A_IDA, IDA},
{read’}, { @, IDA), (a’, A_IDA) }, { ((, ai’), read’) } ). Z can be presented pictorially as shown
below. It is the same initial graph as used in the SLM graph grammar.

3

1

IDA

lread’
ai’

A_IDA

BLM_GG Initial Graph

R, the set of re-writing rules, is {r; | i € 1.. 12}, where each rule, r;, takes the form: (x
=Y, Gy, C ), wherex € X - A, Y is an node/edge labelled graph, and Cc Vy x L x Z x L.
The rules are repeated below with the daughter graphs presented pictorially. r; tor, are
exactly as for the SLM grammar, except that the embedding relations are extended to
handle the new non terminal, ACT. r, is modified very slightly, replacing the terminal

activity node in Y with a non-terminal ACT node, which can be re-written into an activity

using ry,
The Production Rules

r; =(  IDA = ({p}, @, {pool}, @, { (v, pooD) }, D),
{ (p’, write’, activity, write*), (p’, write’, ACT, write*) },
{ (p’, read’, activity, read®), (p’, read’, A_IDA, read®),
(p’, read’, ACT, read*) } ).
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Pictorially, r; is:

lwrite* lWﬁte’
v P
IDA u= pool
read* lread’
Ruler,

As before, it should be noted that this pictorial representation does not carry as

much embedding information as the textual version of the rule.

ry=( IDA:=({s}, @, Isignall, @, { (s, signal) }, @),
{ (¢, write’, activity, write*), (s’, write’, ACT, write¥) },
{ (¢, read’, activity, read®), (s’, read’, A_IDA, read*),
(s, read’, ACT, read®) } ).

Pictorially, r, is:

lwrite* lwrite’
S,

IDA = signal

l read* lread’

Ruler,

rg=( IDA :=({c}, @, {channel}, @, { (¢, channel) }, @),
{ (¢, write’, activity, write®), (¢, write’, ACT, write*) },
{ (¢, read’, activity, read®), (¢, read’, ACT, read®),

(¢, read’, A_IDA, read*) }).
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Pictorially, rg is:

lwrite* lwrite’
c7
IDA = channel
l read* lread’
Ruler,

r,=( A_IDA:=({af, ai"}, {(ai’, ai”) }, {A_IDA}, {read’},
{(ai’, A_IDA), (ai”, A_IDA) }, { (ai’, ai”), read’) } ),
{ (af’, read”, channel, read*), (ai, read”, pool, read*),
(af’, read”, signal, read®), (ai’, read”, IDA, read®),
(ai’, read”, A_IDA, read*) },
{ (ai”, read™, activity, read*), (ai”, read”, A_IDA, read*®),

(ai”, read”, ACT, read™) }).

Pictorially, r, is:

lread”

lread* a’ [ A_IDA
A_TID = read’
l read® ai” A__IDA

l read”

Ruler,

r,=( A_IDA:=({a, i}, {(a, 1)}, {ACT, IDA}, {write’}, { (a’, ACT), (", IDA) },
{ (@@, 1), write) }),
{ (@, read’, channel, read*), (&', read’, pool, read*), (a’, read’, signal, read*),
(&, read’, IDA, read*), (2, read’, A_IDA, read*) },
{ @, read”, activity, read*), (7', read”, A_IDA, read*),
@{, read”, ACT, read™) } ).

The node names a’ and i’ on the right hand side of r, are chosen on each application

of the rule to be unique in the host graph.
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Pictorially, ry is:

read’
a’ \ 4
lread* ACT
AIDA| = write’
‘l' read* v IBA

Rule r,

rg=( IDA:=({af, 7}, {({, ai’)}, {A_IDA, IDA}, {read’}, { (ai’, A_IDA), (", IDA) },
{(@, ai’), read) } ),
{ (¥, write’, activity, write*), (', write’, ACT, write*) },
{ (af’, read”, activity, read*), (ai’, read”, A_IDA, read*),

(af’, read”, ACT, read*) } ).

Pictorially, rg is:

, lwrite’
lwribe* 1 IDA
IDA = read’
l read* a'[" A IDA

l read”

Rule r,

r;=( IDA:=({f,1"}), @, {IDA}, @, { (, IDA), (", IDA) }, §),
{ (@, write’, activity, write*), (i’, write’, ACT, write*),
(i, write”, activity, write*), (i”, write”, ACT, write*) },
{ @, read’, activity, read®), (', read’, A_IDA, read*), (", read’, ACT, read*),
(i”, read”, activity, read*), (i”, read”, A_IDA, read*),
(i”, read”, ACT, read™) } ).
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Pictorially, r, is:

write’ write”
l write* -3
1 i

IDA n=| IDA IDA
[ N
Rule r,

rg=( A_IDA :=({al, i}, {(, ai’)}, {A_IDA, IDA}, {read?}, { (ai’, A_IDA), (7", IDA) },
{ (@, ai’), read) } ),
{ (at, read”, channel, read*), (ai, read”, pool, read*),
(ai’, read”, signal, read*), (af’, read”, IDA, read®),
(af’, read”, A_IDA, read¥®) },
{(ai’, read”, activity, read®), (ai’, read”, A_IDA, read®),

(ai’, read”, ACT, read*) } ).

Pictorially, rg is:

read” .
lread* D Al
A_IDA] = read’
l read* ar’ A_I];A
l read”
Rule rg

rg=( ACT :=({a}, @, {activity}, @, { (&, activity) }, @),
{ (@, read’, channel, read®), (a’, read’, pool, read*), (a’, read’, signal, read*),
(a’, read’, IDA, read®), (a’, read’, A_IDA, read®) },
{ (a’, write’, channel, write*), (a’, write’, pool, write®),

(2, write’, signal, write®), (a’, write’, IDA, write*) } ).
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Pictorially, r, is:

read’
lread* ’ l

<]

ACT =

l write®

Rule r,

1,=( ACT:=({a’, i}, {(a, 1)}, {ACT, IDA}, {twrite’}, { (', ACT), (i, IDA) },
{ (@, 1), write) } ),
{ (&, read’, channel, read*), (a’, read’, pool, read*), (a’, read’, signal, read®),
(&, read’, IDA, read®), (&', read’, A_IDA, read*) },
{ (a’, write”, channel, write*), (a’, write”, pool, write™*),

(a’, write”, signal, write¥), (a’, write”, IDA, write*), } ).

Pictorially, I is:

lread’
a)
*
l read ACT
ACT = write’
\ H

l write* IDA

write”
Ruler,,

r;; =( ACT:=({a, i}, {({, a), (@, 1)}, {ACT, IDA}, {read’, write’},
{(a’, ACTD), (", IDA) },
{ (@, &), read’), ((a, 1), write’) } ),
{ (&, read”, channel, read*), (a’, read”, pool, read*), (a’, read”, signal, read™*),
(a’, read”, IDA, read¥), (a’, read”, A_IDA, read™) },
{ (2, write”, channel, write*), (a’, write”, pool, write®),

(&, write”, signal, write®), (8, write”, IDA, write*) } ).

Page 154




Pictorially, ry; is:

read”

lread* l read

a £ I v

ACT i= ACT IDA
A
l write* ) l
write write’
Ruler;;

r,=( AIDA:=({a,al, {,i"}, {(al, @), (&, 1), (&, "), (", a) },
{ACT, A_IDA, IDA}, {read’, read”, write’, write”},
{(a’, A_IDA), (a’, ACT), (", IDA), (i, IDA) },
{((af’, &), read), (&, 1), write), (&, 1*), write”), (i”, ai’), read”) } ),
{(al’, read™, channel, read*), (ai’, read”, pool, read*),
(af’, read”, signal, read*), (ai’, read’””, IDA, read*),
(ai’, read”, A_IDA, read™) },
{ (@, read”™, A_IDA, read*), (i, read™, ACT, read®),

@i’, read”™, activity, read*) } ).

Pictorially, Iy, is:

9y

l $ read”

| lread* ai’| A_IDA
x| - read’),

a’l ACT i»| IDA
| l read* write] [——— A e
| o[ DA

\ read"]

read’

Ruler,,

The language of this grammar, I{BLM_GGQG), is the set of all Branching/Looping
MASCOT designs. This class of designs will be given a formal semantics in chapter 5, and of

course, in the process, SLM designs will be given a semantics.
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