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Future  architectures  designed  to deliver  exascale  performance  motivate  the  need  for  novel  algorithmic
changes  in  order  to fully  exploit  their  capabilities.  In this  paper,  the  performance  of several  numerical
algorithms,  characterised  by  varying  degrees  of  memory  and  computational  intensity,  are  evaluated  in
the context  of  finite  difference  methods  for  fluid  dynamics  problems.  It  is shown  that,  by storing  some
of  the  evaluated  derivatives  as  single  thread-  or process-local  variables  in  memory,  or  recomputing  the
eywords:
omputational fluid dynamics
inite difference methods
lgorithms
xascale
arallel computing
erformance

derivatives  on-the-fly,  a speed-up  of ∼2 can  be  obtained  compared  to traditional  algorithms  that  store
all  derivatives  in global  arrays.

© 2016  The  Author(s).  Published  by Elsevier  B.V. This  is  an open  access  article  under  the CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).
. Introduction

Explicit finite difference methods are an important class of
umerical methods for the solution of partial or ordinary differen-
ial equations. For example, they are used for numerically solving
he governing equations in computational fluid dynamics (CFD),
strophysics, seismic wave simulations, financial simulations, etc.

In CFD they are used by many researchers for the direct numeri-
al simulation (DNS) or large eddy simulation (LES) of compressible
ows. DNS is often performed to study boundary layers, aerofoils
involving both hydrodynamics and noise computations) [1], mix-
ng analysis [2], shock-wave boundary layer interactions [3] or
enchmark test cases such as the Taylor–Green vortex [4], decay-

ng homogeneous isotropic turbulence, etc. Even with the advances
n computing hardware during the past decade, the current capa-
ilities of DNS are limited to moderate Reynolds number flows
5].

It is expected that computing architectures will be capable of

xaFLOPs (1018 Floating Point Operations) by 2018 and 30 exaFLOPs
y 2030 [6]. Exascale architectures have the capability to perform
NS of the aforementioned examples (amongst others) at higher

∗ Corresponding author.
E-mail address: s.p.jammy@soton.ac.uk (S.P. Jammy).
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Reynolds numbers, or potentially wall-modelled LES of the full
model of an aircraft at operating Reynolds numbers. However,
while there is a consensus [6] that future architectures would not
look much like the present IBM Blue Gene, Cray, or IBM Produc-
tive, it is hard to predict the architectural design of such exascale
systems. For example, they are expected to comprise less mem-
ory per core than the existing architectures. Exploiting the full
potential of the exascale architectures poses many challenges to
researchers, such as the sustainability of the solver’s implemen-
tation with the uncertainty of architectures, the need for new
revolutionary algorithms/numerical methods, increasing compu-
tation to communication ratio and the likelihood of I/O bottlenecks.

To address the problem of sustainability, taking into account
the uncertainty in future architectures, one solution adopted by
the CFD community involves decoupling the work of a domain sci-
entist and a computational/computer scientist [7]. In this approach,
Domain Specific Languages (DSL) are developed by the computa-
tional/computer scientists, and the specifics of the problem and the
numerical solution method are specified in the DSL by the domain
scientist. Using source-to-source translation the numerical solver
is targetted towards different parallel hardware backends (e.g. MPI,
CUDA, OpenMP, OpenCL, and OpenACC) [8,9]. This ensures that, for

new architectures, only the backend that interfaces with the new
architecture needs to be written and supported by the translator.
The underlying implementation of the solver remains the same,
thereby introducing a separation of concerns.
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On the algorithms front, a lot of effort has gone into rewriting
FD solvers to exploit the available FLOPS of existing architectures.
hile the architectures have changed drastically in the last decade,

lgorithms have not advanced at a similar pace [6]. Some algo-
ithmical changes have been attempted by [10,11] to reduce the
ata transfer on Graphics Processing Units (GPUs), but a complete
nd detailed study on the performance of such algorithms on the
xisting CPU-based architectures is currently lacking. A first step
owards exascale computing would be to evaluate the performance
f algorithms characterised by varying intensities of memory usage
nd computational cost on current CPU-based architectures for a
elevant hydrodynamic test case, solved using a finite difference
cheme.

To facilitate these investigations, the capabilities of the recently
eveloped OpenSBLI framework [12] are extended to easily gen-
rate algorithms with varying amounts of computational and
emory intensity. OpenSBLI is a framework for the automated

erivation and parallel execution of finite difference-based models.
t is written in Python and uses SymPy to generate a sym-
olic representation of the governing equations and discretisation.
he framework generates OPS-compliant C code that is targetted
owards MPI  via the OPS active library [9]. A similar approach can
lso be applied to any set of compute-intensive equations solved
sing finite difference methods.

The aims of this paper are to: (a) study the performance of vari-
us algorithms on current multi-core CPU-based architectures, (b)
dentify the best possible algorithm for the solution of explicit finite
ifference methods on current multi-core CPU-based architectures,
nd (c) demonstrate the ease at which algorithmic manipulations
an be achieved with OpenSBLI framework to overcome the chal-
enges exascale architectures can pose.

The rest of the paper is organised as follows. The various algo-
ithms are described in Section 2. The validation of the algorithms
s presented in Section 3. The performance and scaling results are
resented in Section 4. Some conclusions are drawn in Section 5.

. Algorithms

All the algorithms presented in this paper solve the three-
imensional unsteady compressible Navier–Stokes equations, with
onstant viscosity, given by

∂�

∂t
= − ∂

∂xj

[
�uj

]
, (1)

∂�ui

∂t
= − ∂

∂xj

[
�uiuj + pıij − �ij

]
, (2)

nd

∂�E

∂t
= − ∂

∂xj

[
�Euj + ujp − qj − ui�ij

]
, (3)

or the conservation of mass, momentum and energy, respectively.
he quantity � is the fluid density, ui is the velocity vector, p is
ressure and E is the total energy. The stress tensor �ij is defined as,

ij = 1
Re

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3

ıij
∂uk

∂xk

)
, (4)

here ıij is the Kronecker Delta and Re is the Reynolds number. The

eat flux term qj is given by,

j = 1
(� − 1) M2 Pr Re

∂T

∂xj

, (5)
Fig. 1. Pseudo-code for the solution of the compressible Navier–Stokes equations.

where T is temperature, M is the Mach number of the flow, Pr is
Prandtl number and � is the ratio of specific heats. The pressure
and temperature are given by,

p = (� − 1)
(

�E − 1
2

�u2
j

)
, (6)

and

T = �M2p

�
, (7)

respectively. The variables that are advanced in time (�, �ui, �E) are
referred to as the conservative variables, and the right-hand sides
(RHS) in the mass, momentum and energy equations are referred
to as the residuals of the equations.

The mass, momentum and energy equations are discretised in
space using a fourth-order central finite-difference scheme and a
low storage Runge–Kutta (RK) scheme with three stages of tem-
poral discretisation. For improved stability, the convective terms
in the governing equations are rewritten using the formulation of
[13],

∂
∂xj

��uj = 1
2

(
∂

∂xj

��uj + uj
∂

∂xj

�� + ��
∂

∂xj

uj

)
, (8)

where � is 1, ui or internal energy (e) for the mass, momentum
and energy equations, respectively. To improve the stability of the
present scheme, the viscous terms in the momentum and energy
equations are expanded to second derivatives as used by [2,10,14].

A generic pseudo-code of the solution algorithm is shown in
Fig. 1. The time loop is the most computationally expensive part
of the algorithm. It consists of evaluating the primitive variables
(p, ui, T), spatial derivatives, the residual for each equation and
advancing the solution in time. This is achieved by iterating over
the solution points of the grid, referred to as the grid loop in the
rest of the paper. Various algorithms used for the evaluation of
the residual of the equations are presented herein. Starting with
a memory-intensive algorithm representing a typical handwritten
CFD solver, the amount of memory used and the computational
intensity are varied, either by re-evaluating the derivatives on-the-
fly or evaluating the derivatives using process-local variables. In all
the algorithms presented, the primitive variables are evaluated and
stored in memory.

Baseline algorithm (BL). This algorithm incorporates features
similar to a typical handwritten static algorithm (i.e. the deriva-
tives in the residual of each equation are evaluated and stored in
memory as arrays of grid point values; these are referred to as work
arrays in the rest of the paper) on CPUs, to run as a sequential or par-
allel using MPI  or OpenMP. For multi-threaded parallel programs,

this requires the algorithm to be thread-safe in order to avoid race
conditions; these occur when a variable is updated in the grid loop
and the updated variable is used to update another variable in the
same loop. For example, in the evaluation of the primitive vari-
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Fig. 2. Pseudo-code for residual evaluation using SN algorithm.
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are replaced by their respective finite difference formulas in the
residual. The evaluation of primitive variables follows the same
bles from the conservative variables, the equation for pressure (6)
s dependent on the evaluated velocity components, and the equa-
ion for temperature (7) is dependant on the evaluated pressure.

hen running on threaded architectures, this potentially results in
ace conditions. This means that temperature could be evaluated
efore evaluating the pressure, and pressure could be evaluated
efore the velocity components are evaluated. Similar candidates
or race conditions exist in the update equations (which advance
he conservative variables forward in time) of the RK scheme.

To remove the race conditions, the code is generated such that
o variable is updated and used in the same loop. This is achieved by
eparating the evaluations into multiple loops over grid points. For
xample, in the evaluation of primitive variables, the velocity com-
onents (u0, u1, u2) are grouped into a single loop as the evaluations
re independent, but the pressure and temperature are evaluated
n different loops.

When generating the code that implements the BL algorithm,
he first and second derivatives in the equations are evaluated
nd stored in work arrays in order to compute the RHS residual.
he evaluation of the derivative of a combination of variables (e.g.
(�u0u0) /∂x0) is achieved in two stages. In the first stage the func-

ion �u0u0 is evaluated and stored in a work array. In the second
tage the derivative of the work array is evaluated using the cen-
ral finite difference formula, and this result is stored in a new work
rray. The work array used in the first stage is not freed in memory,
ut is overwritten/reused when evaluating other quantities.

The baseline algorithm is optimised such that computationally-
xpensive divisions are minimised. Rational numbers (e.g. finite
ifference stencil weights) and all the negative powers of con-
tants in the equations are evaluated and stored at the start of the
imulation. Typically, these are �−1, Pr−1, Re−1, and so on.

A sample setup file used to generate an implementation of this
lgorithm in OpenSBLI is shown in Listing 1. All the algorithms
resented next are also optimised to reduce computationally
xpensive divisions. The setup file for other algorithms is similar to

he BL algorithm with extra attributes to control the combinations
f memory used and computational intensity.

Fig. 3. Left: Evolution of the integral of kinetic energy
 of Computational Science 36 (2019) 100565 3

Recompute All algorithm (RA). In contrast to the BL algorithm, the
evaluation of pressure and temperature are first rewritten using the
conservative variables,

p = (� − 1)

(
�E − 1

2
�
(�uj

�

)2
)

, (9)

and

T = �M2p

�
=

� (�  − 1) M2

(
�E − 1

2 �
(

�uj
�

)2
)

�
, (10)

within the code to avoid race condition errors while fusing loops
for the evaluation of the primitive variables. Then, to evaluate the
residual of the equation, all the continuous spatial derivatives in the
residual are replaced by their respective finite difference formulas
in the code generation stage. This differs from the BL algorithm in
that, instead of evaluating the derivatives to work arrays and using
them to compute the RHS residual, the code generation process
directly replaces the derivatives by their respective finite difference
formulas such that they are recomputed every time.

This algorithm results in a code in which no work arrays are used
for storing the derivatives. The memory required for this algorithm
is therefore the least of all algorithms and the computational inten-
sity is the highest of all. The control parameters to generate code
for this algorithm are shown in Listing 2.

Store None algorithm (SN). This algorithm is similar to the RA
algorithm. The difference is that, in the loop over grid points where
the residuals are evaluated, each derivative in the RHS is evaluated
to a single thread- or process-local variable. These variables are
then used to update the residuals on a point-by-point basis, rather
than storing all evaluations in a global-scope, grid-sized work array.
To generate the code that implements this algorithm in OpenS-
BLI, the grid attribute local variables should be set to True
along with the control parameters given in Listing 2. The pseudo-
code for the residual evaluation as described here is provided in
Fig. 2.

The memory footprint of this algorithm is similar to that of the
RA algorithm, but is slightly less computationally-intensive. This is
because, for example, if a derivative is evaluated to a process-local
variable then it can be reused if that derivative appears in any of
the equations more than once.

Recompute Some algorithm (RS). In this algorithm, some of the
derivatives (in this case, the first derivatives of the velocity com-
ponents) are stored in work arrays and the remaining derivatives
procedure as the RA algorithm. Listing 3 shows the control parame-
ters used to generate code for the RS algorithm. The memory usage

. Right: Evolution of the integral of enstrophy.
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Listing 1. Key lines of the setup file for obtaining the BL algorithm.

Listing 2. Control parameters to generate the code for RA algorithm.
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Listing 3. Control parameters to generate the code for the RS algorithm.

Listing 4. Control parameters in setup file to generate the code for the SS algorithm.

peed-up of algorithms normalised with the BL algorithm.
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Table 1
Total run-time in seconds for different grid sizes for all algorithms on ARCHER using
24 MPI  processes.

Nx Ny Nz BL RA RS SN SS

64 64 64 16.21 9.29 10.76 8.44 9.78
128  128 128 182.55 98.18 97.36 90.72 88.95
256  256 256 1561.52 765.42 802.76 693.66 685.25
Fig. 4. Left: Figure showing data in Table 1. Right: S

or this algorithm is moderate, i.e. it is more than the RA algorithm
ut less than the BL algorithm.

Store Some algorithm (SS). This algorithm is a fusion of the RS
nd SN algorithms, such that the derivatives that are not stored in
he RS algorithm are evaluated and stored in thread- or process-
ocal variables as per the SN algorithm. Listing 4 shows the control
arameters used to generate code for this algorithm. Compared to
he SN algorithm, an additional nine work arrays would be required
or the SS algorithm for the 3D cases, and an additional four work
rrays for 2D cases, since the first derivatives of the velocity com-
onents are now stored.

. Validation

The baseline (BL) algorithm is validated for a 3D compress-
ble Taylor–Green vortex problem, to check the correctness of the
olver. The initial conditions and the post-processing procedure
re described in [4]. The simulations are performed in a cube of
on-dimensional length 2�, with periodic boundary conditions in
ll three directions for grids containing 643, 1283, 2563 and 5123

olution points. The Mach number, Prandtl number and Reynolds
umber of the flow are taken as 0.1, 0.71 and 1600, respectively.
he non-dimensional time-step for the 643 grid size was  set to
.385 × 10−3, and was halved for each increase in the grid size by

 factor of 23. Double-precision is used throughout all simulations
resented in this paper.

Fig. 3 shows the evolution of kinetic energy and enstrophy
ompared with the reference data [15]. The results from the BL algo-

ithm agree very well with the reference data for the 5123 case. For
omputational expedience, the other algorithms are validated on
he 1283 grid. For each one, the results relative to the BL algorithm
re found to be the same up to machine precision.
4. Performance evaluation

After checking that the results from the various algorithms
match, the performance of the different algorithms were evaluated
using the same Taylor–Green vortex test case described in Sec-
tion 3. All simulations are performed on ARCHER (the UK National
Supercomputing Service) and the code that implements the various
algorithms is compiled using the Cray C compiler (version 2.4.2)
with the -O3 optimisation flag. Each ARCHER node comprises 24
cores, with each MPI  process being mapped to its own  individual
core. All simulations for performance evaluation purposes are run
in parallel using 24 MPI  processes/cores (one ARCHER node). The
run-time of the time iteration loop was  recorded for 500 iterations
and is summarised in Table 1 for a range of grid sizes.

The data in Table 1 is plotted in Fig. 4; from this figure it can be
inferred that when the amount of memory access is reduced, the
current CPU-based architectures perform better, even though the
computational intensity of such algorithms is higher. The baseline
algorithm is a factor of ∼2 slower than all the other algorithms

presented in this paper. For larger grid sizes the benefit of the SS
algorithm becomes more pronounced.
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Fig. 5. Strong scaling of the SS algorithm on ARCHER up to 73,728 cores using
1.07  × 109 grid points. The run-time has been normalised by that of the 120-process
case.

Fig. 6. Weak scaling of the SS algorithm on ARCHER with 643 grid points per MPI
process, up to 65,856 processes. The results have been normalised by the run-time
f
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rom the 192-process case.

.1. Scaling

Strong scaling tests were performed for the best performing
lgorithm (i.e. the SS algorithm) on ARCHER for the test prob-
em with a total of 1.07 × 109 grid points and the runtime of the
ime iteration loop was recorded for 10 iterations. Fig. 5 shows the
trong scaling results on ARCHER up to 73,728 MPI  processes/cores
i.e. 3072 ARCHER nodes). The minimum number of processes
equired for running the problem is 120. The algorithm shows a
ear-linear scaling (speed-up of 2) until 36,864 MPI  processes (i.e.
536 ARCHER nodes) and thereafter the speed-up is ∼1.5 as the
rocess count doubles.

Weak scaling tests were also performed for the SS algo-
ithm. Here, the number of MPI  processes was varied from 192
o 65,856 (i.e. 8 to 2744 ARCHER nodes), while the number

f grid points per MPI  process was kept fixed at 643 and the
untime of the time iteration loop was recorded for 10 iter-
tions. The largest grid size considered comprises ∼17 billion
 of Computational Science 36 (2019) 100565

solution points. Fig. 6 demonstrates that the normalised run-time is
near-ideal.

5. Conclusion

In this paper the automated code generation capabilities of
the OpenSBLI framework have been extended to easily modify
the memory usage and computational intensity of the solution
algorithm. It was found that the baseline (BL) algorithm featured
in traditional CFD codes, in which all derivatives are evaluated
and stored in work arrays, is not the best algorithm in terms
of performance on current multi-core CPU-based architectures.
Recomputing all or some of the derivatives performs better than the
baseline algorithm. The best algorithm found here for the solution
of the compressible Navier–Stokes equations is to store only the
first derivatives of velocity components in work arrays, and com-
pute the remaining spatial derivatives and store them in thread-
or process-local variables. The run-time of such an algorithm has
been shown to be ∼2 times smaller than the BL algorithm. Through
the use of modern code generation techniques in the OpenSBLI
framework, it has been demonstrated that by changing just a few
attributes (three in this case) in the problem setup file, different
algorithms with varying degrees of memory and computational
intensity can be readily generated automatically. The methodology
presented in this paper can also be used to find the best possi-
ble algorithm for other existing architectures such as GPUs or Intel
Xeon Phi coprocessors. Moreover, existing numerical models that
use finite difference methods for the solution of any governing
equations can be optimised for the current CPU-based architec-
tures. When exascale systems become available, depending on their
architecture and amount of available memory, users can readily
tune the memory and computational intensity in the OpenSBLI
framework to determine the best performing algorithm on such
systems.
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