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Abstract 

We present blind predictions submitted to the SAMPL5 challenge on calculating 

distribution coefficients. The predictions were based on estimating the solvation free 

energies in water and cyclohexane of the 53 compounds in the challenge. These free 

energies were computed using alchemical free energy simulations based on a hybrid 

all-atom/coarse-grained model. The compounds were treated with the general Amber 

force field, whereas the solvent molecules were treated with the Elba coarse-grained 

model. Considering the simplicity of the solvent model and that we approximate the 

distribution coefficient with the partition coefficient of the neutral species, the 

predictions are of good accuracy. The correlation coefficient, R is 0.64, 82% of the 

predictions have the correct sign and the mean absolute deviation is 1.8 log units. This 

is on a par with or better than the other simulation-based predictions in the challenge. 

We present an analysis of the deviations to experiments and compare the predictions 

to another submission that used all-atom solvent.  

 

Introduction 

Simulations with molecular dynamics (MD) or Monte Carlo provide structural and 

dynamic information of chemical systems at high resolution and thus are essential 

complements to wet-lab experiments [1,2]. The usefulness of such simulations is to a 

large extent determined by the underlying molecular mechanics force fields, and it is 

therefore essential to quantify the accuracy of the force field. A basic requirement is 

that the force field should correctly describe the solvation thermodynamics of small 
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molecules, such as amino-acid analogues or drug-fragments.  This has been the 

strategy to benchmark force fields in numerous publications [3,4,5,6,7,8]. The ability 

to truly predict solvation free energies has been assessed by several blind challenges 

under the SAMPL label [9,10,11,12]. The previous four challenges have consisted of 

a set of hydration free energies, whereas the current challenge is the first one to 

consider the partitioning between two phases, viz. water and cyclohexane [13].  

 Molecular simulations are not only limited by the accuracy of the force field, 

but also the timescales that can be reached [14]. An all-atom (AA) force field, 

describing each atom individually cannot reach the long time-scales relevant for many 

biochemical applications unless acceleration techniques [15,16] or special-purpose 

hardware [17] is employed. A popular solution to reach longer time-scales is coarse-

graining (CG), i.e. grouping atoms into pseudo-particles or beads [18 ,19]. This 

reduces the number of particles that need to be simulated and increases the diffusion 

rate of the molecules. The CG models are inherently less accurate than AA models: 

especially CG models of proteins and small molecules currently have a limited 

usefulness [20]. To remedy this, a hybrid all-atom/coarse-grained model was recently 

developed, where the most essential part of the system, e.g. a protein or a small 

molecule, is described with an AA model and the rest of the system, e.g. solvent 

molecules, are described with a CG model [21]. This model has been used to study 

small molecules and proteins in water and membrane environments [21, 22]. It has 

also been used to estimate water/hexane and water/octanol partition coefficients [23]. 

In this paper, we describe the performance of this hybrid model in the SAMPL5 

distribution coefficient challenge.  

 

Methods 

Solvent models. The solvents, water and cyclohexane, were described with the Elba 

coarse-grained (CG) model [24]. The Elba water model has been described and 

extensively benchmarked previously [ 25 ]. In Elba, a single water molecule is 

modelled as a point dipole attached to a Lennard-Jones site (see Figure S1), i.e. a 

Stockmayer model. The cyclohexane model was developed for the SAMPL5 

challenge, with a similar approach to the models of hexane and octane described 

previously [23]. A single cyclohexane molecule is described by three connected, 

uncharged, Lennard-Jones sites as shown in Figure S1. The beads have the same 

parameters as the non-polar bead used to describe lipid tails, except that σ and ε are 
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multiplied by a factor of 0.9. This is a similar reduction applied to ring beads in the 

MARTINI force field [26]. Therefore, σ = 0.41 nm and ε = 3.19 kJ mol-1. The bond 

length and bond force constant are 0.405 nm and 1269 kJ mol-1 nm-2, respectively. 

The validation of this model is discussed further in the Supplementary Material.  

 

Compound setup. The inputs provided by the organisers for LAMMPS were used as a 

starting point. The general Amber force field [ 27 , 28 ] and coordinates of the 

compounds were retained, whereas the all-atom solvent molecules were coarse-

grained using in-house scripts; the all-atom water molecules were replaced by Elba 

water beads which were positioned at the respective oxygen atom, and the 

cyclohexane molecules were replaced by Elba cyclohexane molecules with beads 

placed on the first, third and fifth carbon atom. The system was minimized with 1000 

steps of steepest descent and equilibrated for 1.2 ns in the NPT ensemble. A multiple 

timestep integrator was used [21], propagating the CG–CG non-bonded forces with a 

6 fs timestep and all other forces with a 2 fs timestep. The CG–CG non-bonded 

interactions are a combination of a shifted-force dipole–dipole potential and Lennard-

Jones potential. The CG beads interact with the atoms through shifted-force charge–

dipole and Lennard-Jones potentials [21]. The cut-off was in all cases 12 Å. The 

atom–atom non-bonded interactions combine a Lennard-Jones potential with a cut-off 

at 12 Å and particle-particle particle-mesh Ewald [29] with a 12 Å real-space cut-off. 

SHAKE [30] was used to constrain covalent bonds involving hydrogen atoms in the 

compounds. The solvent and compound were coupled to two different Langevin 

thermostats [31] with a 6 ps coupling constant, keeping the temperature fixed at 298 

K. The pressure was kept at 1 atm with a weak-coupling algorithm [32] and a 6 ps 

coupling constant.  

 

Free energy simulations. The free energy simulations follow to a large extent a 

previously outlined method [23]. The Gibbs free energy of solvation was estimated 

using thermodynamic integration (TI) [33], by coupling the system energy, U to a 

parameter λ. At λ = 0, the compound is fully interacting with the solvent, and at λ = 1, 

it is completely decoupled, i.e. behaves as a gas-phase molecule. U is scaled with a 

fourth-power function  and twenty-five equally spaced values of λ 

from 0 to 0.96 were simulated, whereas λ = 1 was estimated by linear extrapolation. 

f (l) = (1- l)4
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The integration was carried out using the trapezium rule. One long simulation was 

carried out and the value of λ was changed step-wise every 4.8 ns and the initial 1.2 

ns at each step was discarded as equilibration. The sampling frequency of the energies 

for TI was 0.6 ps. In some cases, each value of λ was simulated for 3.6 with 1.2 ns 

discarded as equilibration, further discussed in the text. For the simulations in water, 

ten independent repeats were initiated by assigning different starting velocities. For 

the simulations in cyclohexane, only five independent repeats were used.  

 

Quality analysis. The quality of the predictions was quantified by the mean absolute 

deviation (MAD), mean signed deviation (MSD), root-mean-squared deviation 

(RMSD), Pearson’s correlation coefficient (R) and the percentage of correctly 

predicted signs.  

 Systematic deviations due to the presence of specific chemical groups were 

analysed using an established procedure [4]. The BEDROC (Boltzmann-enhanced 

discrimination of receiver-operating characteristic) metric [34] was computed for the 

different chemical groups as described previously. The checkmol program [ 35 ] 

(version 0.5) was used to identify the chemical groups, and the BEDROC analysis 

was performed with the CROC python package [36] (version 1.1). The uncertainty of 

the BEDROC metric was estimated by 500 bootstrap iterations. A Student’s t-test was 

performed on the absolute deviation for the different groups compared to the entire 

population of absolute errors. 

 

Table 1 – Submitted estimates of log D as well as solvation free energies in kJ/mol in 

water and cyclohexane 

Compound DGsolv(water) DGsolv(cyclohexane) log D log D (exp) 

2 -55.2 ±0.1 -63.8 ±0.1 1.51 ±0.02 1.40 ±0.30 

3 -47.9 ±0.1 -55.3 ±0.2 1.29 ±0.03 1.90 ±0.10 

4 -55.7 ±0.1 -70.5 ±0.1 2.60 ±0.03 2.20 ±0.30 

5 -73.7 ±0.2 -74.1 ±0.1 0.07 ±0.04 -0.86 ±0.09 

6 -55.8 ±0.1 -50.5 ±0.1 -0.93 ±0.03 -1.02 ±0.09 

7 -57.3 ±0.3 -69.3 ±0.2 2.11 ±0.06 1.40 ±0.30 

10 -82.9 ±0.1 -58.8 ±0.2 -4.23 ±0.03 -1.70 ±0.40 

11 -66.9 ±0.1 -63.2 ±0.1 -0.65 ±0.02 -2.96 ±0.08 

13 -99.8 ±0.1 -89.4 ±0.1 -1.83 ±0.02 -1.50 ±0.40 

15 -77.4 ±0.2 -59.3 ±0.1 -3.17 ±0.04 -2.20 ±0.30 

17 -55.7 ±0.3 -77.6 ±0.1 3.85 ±0.06 2.50 ±0.30 

19 -79.7 ±0.1 -76.4 ±0.1 -0.58 ±0.03 1.20 ±0.40 
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20 -79.5 ±1.9 -63.9 ±0.2 -2.74 ±0.33 1.60 ±0.30 

21 -49.4 ±0.1 -62.2 ±0.1 2.26 ±0.02 1.20 ±0.30 

24 -84.8 ±0.2 -85.1 ±0.2 0.05 ±0.04 1.00 ±0.40 

26 -76.4 ±0.5 -52.5 ±0.2 -4.19 ±0.09 -2.60 ±0.10 

27 -87.8 ±0.1 -57.3 ±0.1 -5.36 ±0.03 -1.87 ±0.07 

33 -56.8 ±0.2 -73.6 ±0.2 2.95 ±0.04 1.80 ±0.20 

37 -67.9 ±0.4 -52.3 ±0.2 -2.74 ±0.08 -1.50 ±0.10 

42 -98.3 ±0.1 -69.9 ±0.2 -4.98 ±0.03 -1.10 ±0.30 

44 -76.0 ±0.1 -81.3 ±0.1 0.93 ±0.02 1.00 ±0.40 

45 -62.4 ±0.1 -50.6 ±0.1 -2.07 ±0.02 -2.10 ±0.20 

46 -72.3 ±0.1 -71.3 ±0.1 -0.19 ±0.03 0.20 ±0.30 

47 -65.5 ±0.1 -71.0 ±0.2 0.96 ±0.04 -0.40 ±0.30 

48 -85.3 ±0.1 -80.2 ±0.1 -0.89 ±0.02 0.90 ±0.40 

49 -53.5 ±0.1 -53.9 ±0.0 0.08 ±0.02 1.30 ±0.10 

50 -65.3 ±0.1 -59.8 ±0.1 -0.96 ±0.02 -3.20 ±0.60 

55 -53.3 ±0.1 -46.6 ±0.1 -1.17 ±0.02 -1.50 ±0.10 

56 -59.4 ±0.1 -60.3 ±0.1 0.16 ±0.03 -2.50 ±0.10 

58 -49.9 ±0.1 -54.7 ±0.1 0.84 ±0.02 0.80 ±0.10 

59 -61.2 ±0.1 -43.5 ±0.1 -3.12 ±0.03 -1.30 ±0.30 

60 -90.7 ±0.1 -56.2 ±0.1 -6.05 ±0.03 -3.90 ±0.20 

61 -39.4 ±0.2 -51.7 ±0.1 2.15 ±0.04 -1.45 ±0.09 

63 -71.2 ±0.4 -59.2 ±0.1 -2.10 ±0.07 -3.00 ±0.40 

65 -140.5 ±0.2 -143.4 ±0.2 0.50 ±0.04 0.70 ±0.20 

67 -50.3 ±1.0 -59.6 ±0.4 1.63 ±0.19 -1.30 ±0.30 

68 -57.1 ±0.3 -73.2 ±0.2 2.83 ±0.07 1.40 ±0.30 

69 -82.2 ±0.2 -81.9 ±0.3 -0.06 ±0.06 -1.30 ±0.30 

70 -32.1 ±0.1 -62.4 ±0.2 5.31 ±0.03 1.60 ±0.30 

71 -68.0 ±0.2 -66.3 ±0.1 -0.29 ±0.04 -0.10 ±0.50 

72 -32.2 ±0.1 -57.1 ±0.1 4.36 ±0.03 0.60 ±0.30 

74 -132.8 ±0.2 -75.8 ±0.2 -10.00 ±0.05 -1.90 ±0.30 

75 -51.6 ±0.5 -66.1 ±0.3 2.56 ±0.11 -2.80 ±0.30 

80 -71.1 ±0.1 -58.9 ±0.1 -2.14 ±0.02 -2.20 ±0.20 

81 -80.1 ±1.4 -66.5 ±0.7 -2.39 ±0.28 -2.20 ±0.30 

82 -37.5 ±0.3 -77.0 ±0.2 6.94 ±0.06 2.50 ±0.40 

83 -165.1 ±1.9 -162.2 ±0.6 -0.50 ±0.35 -1.90 ±0.40 

84 -67.4 ±0.9 -79.2 ±0.6 2.08 ±0.19 0.00 ±0.20 

85 -83.8 ±0.1 -60.3 ±0.0 -4.12 ±0.02 -2.20 ±0.40 

86 -58.1 ±0.6 -84.8 ±0.4 4.68 ±0.13 0.70 ±0.20 

88 -64.2 ±0.2 -62.1 ±0.2 -0.36 ±0.05 -1.90 ±0.30 

90 -53.8 ±0.1 -75.4 ±0.2 3.78 ±0.04 0.80 ±0.20 

92 -107.3 ±2.1 -117.1 ±1.0 1.71 ±0.41 -0.40 ±0.30 

MAD     1.81    

MSD     0.31    

RMSD     2.42    

R     0.64    
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Results and discussion 

We present predictions for the SAMPL5 distribution coefficient challenge. The 

predictions were produced by computing the solvation free energy, ΔGsolv, in water 

and cyclohexane, using molecular dynamics employing an inexpensive hybrid all-

atom/coarse-grained (AA/CG) model. The solvent was described with the Elba CG 

model and the compounds with the general Amber force field. We did not attempt to 

estimate the solvation free energy of each possible protonation state of the 

compounds, or even the most likely; rather we computed the solvation free energy of 

the neutral compound in the tautomeric state given by the organizers and thus 

approximate the distribution coefficient with the partition coefficient 

 

 logD » logP =
DGsolv(water)-DGsolv(cyclohexane)

2.3RT
  (1) 

    

where R is the gas constant and T the absolute temperature. This is motivated by two 

considerations: 1) the accurate prediction of ΔG for multiple tautomers of a 

compound would probably be prohibitively expensive, and 2) the estimation of the 

solvation free energy of ionic compounds is challenging with molecular dynamics 

simulations. The second consideration is especially true with CG models, which 

generally do not employ long-range electrostatics.  

 

 

Figure 1 – A) Experimental vs. predicted log D and B) Boxplot of absolute deviations 

compared to experiments. The vertical line in the middle of the box shows the median 
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and the box covers the interquartile range. The whiskers extend to 1.5 of the 

interquartile range and the cross outside is considered an outlier. 

 

Submitted predictions. The ΔGsolv as well as log D are listed in Table 1 for the 53 

compounds in the challenge. The standard error of the ΔGsolv estimates is generally 

good, between 0.02 and 1.0 kJ/mol for the estimates in cyclohexane and 0.06 and 2.1 

kJ/mol for the estimates in water. We used five and ten independent repeats for the 

cyclohexane and water estimates, respectively, which was deemed necessary after 

computing estimates for all compounds using only two repeats and only 3.6 ns 

sampling at each value of λ. It would be prohibitively expensive to reduce the 

standard error further for some of the estimates in water. The larger standard error of 

the estimates in water stems from the need to decouple electrostatic interactions 

(charge–dipole) in this phase, whereas the cyclohexane CG model is uncharged. The 

submitted predictions were based on 4.8 ns sampling at each value of λ, with 1.2 ns 

discarded as equilibration. To check that the simulations were converged, we also 

computed free energies for all compounds in both water and cyclohexane with only 

3.6 ns sampling. These estimates are given in the Supplementary Material. The 

solvation free energies in cyclohexane changed by at most 2.5 kJ/mol when increasing 

sampling by 1.2 ns, but by only 0.3 kJ/mol on average over all compounds. For only 

three compounds (63, 83 and 92) the estimate of the solvation free energy changes by 

more than 1 kJ/mol, and therefore, we submitted the predictions based on 4.8 ns 

sampling. The solvation free energies in water changed by at most 1.8 kJ/mol when 

increasing the sampling by 1.2 ns, and by 0.3 kJ/mol on average. For only four 

compounds (37, 67, 83, and 84), the free energy changed by more than 1.0 kJ/mol 

when increasing the sampling, and thus we consider these estimates to be converged 

and we submitted the predictions based on 4.8 ns sampling. 

 The correlation between the predictions and experiments is fair as seen in 

Figure 1a, with a correlation coefficient, R of 0.64, which is statistically significant 

(p-value < 0.001). For 77% of the compounds the prediction of log D has the correct 

sign, and if we exclude predictions or experiments where log D is not significantly 

different from zero (determined by a t-test with a 95% confidence level), the 

percentage of correctly predicted signs is 82%. The correlation with experiment and 

percentage of correctly predicted signs are on a par with previously published 

predictions of water/hexane partition coefficients but slightly worse than predictions 
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of water/octanol partition coefficients [23]. The deviations of the predictions range 

from 0.0 to 8.1 log units; the largest deviation is observed for compound 74. This is 

also the only outlier in the error distribution as seen in the boxplot in Figure 1b. The 

second largest deviation, 5.4 log units is observed for compound 75. The mean 

absolute deviation (MAD) is 1.8 log units, which contains only a small systematic 

component, as the mean signed deviation (MSD) is only 0.3 log units. The root-mean-

squared deviation (RMSD) is 2.4 log units. Compared to previous estimates of 

partition coefficients with the hybrid model [23], the MAD is significantly larger. For 

instance, hexane/water and octanol/water partition coefficients were predicted with 

MADs of 0.86 and 0.66 log units, respectively, i.e. about 1 log unit better than the 

cyclohexane log D values. There are of course many possible reasons for this, but two 

of the arguably most significant factors are the larger size of compounds in the 

SAMPL5 set and the fact that we are here trying reproduce experimental log D values 

rather than comparing to log P values as in the previous study. However we still 

compute log P values, and hence neglect the effects of tautomers and ionization.  

 

Table 2 – Analysis of deviation between hybrid predictions and experiment for 

different chemical groups1 

Group N BEDROC p-value MSD 

  Uniform Observed   

alcohol 8 0.44 0.57 ±0.13 0.39 0.64 

amine 27 0.50 0.65 ±0.08 0.30 0.74 

aromatic amine 13 0.46 0.45 ±0.10 0.78 -0.92 

carboxylic acid 5 0.43 0.53 ±0.09 0.79 -0.99 

carboxylic acid amide 18 0.47 0.35 ±0.08 0.33 -0.03 

ether 17 0.47 0.54 ±0.09 0.62 1.94 

halogen derivative 7 0.44 0.26 ±0.08 0.08 0.62 

heterocyclic compound 47 0.56 0.24 ±0.14 0.52 -0.07 

oxo(het)arene 6 0.44 0.18 ±0.13 0.18 -0.80 

phenol 5 0.43 0.48 ±0.09 0.93 1.78 
1 Both the expected BEDROC value from a uniform distribution and the observed value are shown. 

The p-value is of a test of the unsigned deviation of the group compared to the entire population and 

MSD is the mean signed deviation. 

 

 To analyze the predictions further, we divided the compounds based on the 

chemical groups they contain. The objective is to see if compounds with specific 

moieties lead to significantly worse estimates than the other compounds. We used the 
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checkmol program [35] to classify the compounds and could identify ten groups that 

contained at least five compounds and at most 47. All of them are listed in Table 2. 

The largest group is heterocyclic compounds, to which 47 compounds belong. The 

group of carboxylic acids and phenols only contains five compounds each. For these 

ten groups, we list in Table 2 the BEDROC metric, the p-value for a t-test of the 

absolute deviations for the group compared to the total population and the MSD. The 

analytical BEDROC value, assuming a uniform predictive power of all chemical 

groups, is listed as well, and serves as a yardstick to determine if the observed 

BEDROC value of a chemical group indicates a systematic deviation.  We observe 

some BEDROC values that are larger than that expected from a uniform distribution, 

e.g. amines have an observed value of 0.65 compared to 0.50 for a uniform 

distribution. However, none of the differences between observed and uniform 

BEDROC value are significant at the 95% confidence level, indicating that no 

particular chemical group is producing worse predictions than the other groups. This 

is also confirmed by the p-value of the absolute deviations that is larger than 0.05 for 

all groups; the smallest p-value is found for halogen derivatives, 0.08. Finally, the 

MSD for many groups is less than 1 log unit, also indicating a lack of systematic 

error. The largest MSDs are found for ethers, 1.9 log units and phenols, 1.8 log units. 

Thus, we can conclude that the deviations of the predictions compared to experiments 

are most likely random in nature.  

 

Table 3 – Statistics on the deviation between hybrid and all-atom estimates1 

 

ΔGsolv (water) ΔGsolv (cyclohexane) log D 

MAD            12.7 4.8 1.7 

MSD 12.2 4.8 1.3 

MAX2 41.2 13.2 6.2 

R         0.94 1.00 0.86 

slope 0.80 0.92 0.76 
1 Solvation free energies in kJ/mol 2MAX is the maximum absolute deviation 

 

Comparison with all-atom predictions. Arguably the main approximation of the 

submitted predictions lies in the simple CG model of the solvent molecules. 

Fortunately, we can make a rough quantification of the effect of this approximation 

by comparing to submissions that utilized all-atom solvents. There were several such 

submissions, but here we will only compare to a submission from the Mobley lab 
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[37]. They used the same force field for the compounds and the same starting 

conformations as we used. There are some differences in the free energy 

methodology, but the length of the simulations is largely similar. Therefore, we 

consider this to be the closest all-atom submission to the hybrid AA/CG submission 

presented herein. The Mobley lab was also kind enough to provide the individual 

solvation free energies, which enables further analysis.   

 There are clear differences between the AA and AA/CG predictions as seen in 

Table 3. For ΔGsolv in water the absolute deviations range from 0.2 to 41.2 kJ/mol, 

with a MAD of 12.7 kJ/mol. The differences are systematic as the MAD is almost as 

large as the MSD, and in general the hybrid estimates of the hydration free energies 

are more negative than AA. The same holds true for the estimates in cyclohexane, but 

in this medium the deviations are smaller; the absolute deviations range from 0.8 to 

13.5 kJ/mol with a MAD of 4.8 kJ/mol. For log D the deviations range from 0.1 to 6.2 

log units, with a MAD of 1.7 log units. Thus it is clear that the deviations between the 

AA/CG and AA log D values are of similar magnitude as the deviations between the 

hybrid predictions and experiments (see Table 1). However, the correlation between 

the AA and hybrid predictions, R = 0.86 is stronger than the correlation between the 

hybrid predictions and experiment, R = 0.64. In fact, the correlation between an AA 

and AA/CG is stronger for the estimates of ΔGsolv, but because the slope is different in 

the two media this correlation does not translate to log D. 

 The predictions of ΔGsolv for compound 74 differ by 41.2 and 5.6 kJ/mol in 

water and cyclohexane, respectively.  Thus, it is clear that the difference between the 

AA and AA/CG models is manifested differently in the two media. We investigated 

this further by computing the BEDROC metric of the same ten groups used above, but 

here we analyze the difference between the AA and AA/CG estimates of DGsolv
and 

log D. For the predictions of ΔGsolv in water, we observe a BEDROC metric that is 

significantly larger than expected from a uniform distribution for aromatic amines, 

carboxylic acids, heterocyclic compounds and phenols (see Table 4). For all of these 

groups, except phenols, the significantly larger BEDROC values are also observed 

with log D. For the predictions in cyclohexane, we only observe significantly larger 

BEDROC values for amines and ethers, which is not translated to the log D estimates. 

Thus, we see that compounds with some chemical groups give large differences in 

water, and compounds with other groups give large differences in cyclohexane. 
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Whether these differences also give large differences in log D depends on the 

individual compounds. It is also striking that there is no apparent trend among the 

groups that show large differences. For instance, it is not immediately clear why we 

observe a significantly larger BEDROC value for aromatic amines in water, but not 

for all amines, whereas the opposite is true in cyclohexane.  

 

Table 4 – BEDROC metric of deviation between hybrid and all-atom predictions for 

different chemical groups1 

Group ΔGsolv (water) ΔGsolv (cyclohexane) log D 

alcohol 0.48 ±0.11 0.69 ±0.13 0.34 ±0.12 

amine 0.58 ±0.08 0.80 ±0.06 0.56 ±0.08 

aromatic amine 0.76 ±0.08 0.41 ±0.09 0.76 ±0.08 

carboxylic acid 0.70 ±0.07 0.23 ±0.06 0.74 ±0.07 

carboxylic acid amide 0.39 ±0.08 0.52 ±0.09 0.38 ±0.09 

ether 0.42 ±0.09 0.76 ±0.08 0.33 ±0.08 

halogen derivative 0.36 ±0.08 0.15 ±0.11 0.43 ±0.11 

heterocyclic compound 0.86 ±0.06 0.33 ±0.10 0.91 ±0.04 

oxo(het)arene 0.44 ±0.17 0.48 ±0.13 0.47 ±0.17 

phenol  0.83 ±0.07 0.69 ±0.13 0.69 ±0.10 
1The observed values that are significantly larger than BEDROC metrics for a uniform 

distribution (see Table 2) are shown in bold. 

 

Conclusion 

We have presented a submission to the SAMPL5 challenge on distribution 

coefficients. Our methodology is simple and efficient: we approximate the 

distribution coefficient by the partition coefficient through the estimation of solvation 

free energies in water and cyclohexane, employing a hybrid all-atom/coarse-grained 

model. Such an approach is at least ten times faster than a corresponding all-atom 

approach [21,22]; a solvation free energy in water and cyclohexane is computed in 13 

and 7 CPU hours on average, respectively on 12 cores of a Cray XC30 machine.  We 

have previously used this hybrid model to produce hexane/water and octanol/water 

predictions with high accuracy both in comparison to experiment and to a more 

expensive all-atom solvent model [23]. The SAMPL5 predictions presented herein are 

a further testament to the accuracy and robustness of this computationally inexpensive 

model. We obtain a mean absolute deviation of 1.8 log units and a significant 

correlation coefficient, R of 0.64. In addition, 84% of the predictions had the correct 

sign, which is arguably the most important quality for a model predicting partitioning. 
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The estimates seem to be without any systematic bias, and neither is the model more 

sensitive to a particular chemical group. This observed quality of the AA/CG 

predictions is on a par with or better than the other submissions employing a 

simulation approach with a fixed-charged atomistic force field [37]. However, the 

deviations to experiments are larger than what was expected from previous estimates 

of log P [23] and there are several possible reasons for this: The compounds in the 

SAMPL5 challenge are larger, which is also seen in the increased uncertainty of the 

estimates. Furthermore, we compare to experimental log D, and hence neglect the 

contribution from all but one tautomer and the possible ionization in the water phase. 

The much better quality of cyclohexane/water log P values for 79 compounds from 

the Minnesota database [38] presented in the Supplementary Material, is a clear 

indication of this. Thus, it seems that the logical place to start on improvements is to 

add corrections to the log P estimates accounting for different tautomers and 

ionization effects. However, such corrections are far from accurate or complete [37], 

and therefore we argue that corrections have to be the subject of future investigations. 

Other possible error sources include the neglect of a finite water concentration in the 

cyclohexane phase, compound dimerization, and experimental setup. Even so, the 

results herein clearly show that a majority of the physics involved in the partitioning 

of small molecules between water and cyclohexane is captured with a simple CG 

solvent model.   
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