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ABSTRACT 

The effects of electronic polarization in biomolecular interactions will differ depending on the 

local dielectric constant of the environment, such as in solvent, DNA, proteins and membranes. 

Here the performance of the AMOEBA polarizable force field is evaluated under non-aqueous 

conditions by calculating the solvation free energies of small molecules in four common organic 

solvents. Results are compared with experimental data and equivalent simulations performed 

with the GAFF pairwise-additive force field. Although AMOEBA results give mean errors close to 

‘chemical accuracy’, GAFF performs surprisingly well, with statistically significantly more 

accurate results than AMOEBA in some solvents. However, for both models, free energies 

calculated in chloroform show worst agreement to experiment and individual solutes are 

consistently poor performers, suggesting non-potential-specific errors also contribute to 

inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high 

quality experimental data across multiple solvents, particularly those of high dielectric constant. 

Introduction 
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Much effort has been devoted to advancing computational techniques to predict free energies 

in biomolecular systems, ranging from more theoretically rigorous (e.g. alchemical free energy 

calculations) to less rigorous (e.g. continuum solvation, docking and scoring) methods.1 As with 

any computational approach, accuracy in predicting experiment requires a synergy of sufficient 

conformational sampling with an accurate molecular mechanics potential energy function 

describing the intermolecular interactions.2 Many sampling issues have been dealt with by using 

intensive enhanced sampling methods coupled to molecular dynamics (MD)3–5 or Monte Carlo 

methods.6,7 However, the issues associated with potential energy function or force field 

accuracy are substantially more problematic and remain a major challenge in force field 

development and molecular recognition applications.8,9  

Within the range of fixed-point-charge, pairwise additive MM force fields available for 

molecular simulation,8,10–17 a number of philosophies exist for the derivation of atomic partial 

charges and calculation of electrostatic interactions. These models often take account of 

polarization implicitly in the derivation of charges, and are mainly parameterized to recreate 

interactions in the aqueous phase. This limits their ability to fully adapt to changes in 

environment. To improve the accuracy of interatomic potentials for biomolecular interactions, 

the AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Application) force field 

has been introduced.18 AMOEBA is an advanced potential energy function including a polarizable 

molecular mechanics model,18–20 designed to directly treat polarization effects by incorporating 

an explicit response of induced atomic dipoles to the instantaneous molecular environment. The 

ability of the AMOEBA force field to capture these effects may be expected to result in 

parameters with greater transferability than standard fixed-point-charge models, and thereby 

give accurate predictions of interaction energetics across a variety of systems  
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Consequently, an evaluation of potential energy function accuracy is needed to determine the 

quality of their performance, particularly given the added computational cost of explicit 

polarizable potentials. Commonly, solvation free energy calculation approaches20–26 have been 

performed to assess force field properties. This is thanks to the availability of high accuracy 

experimental data, and the straightforward computational methodologies for free energy 

prediction. As such, evaluating the accuracy of solvation free energy prediction is often a crucial 

step for force field validation.  

Water has been used as the solvent to assess the accuracy of physical models in solvation free 

energy approaches (as opposed to organic solvents) in most studies,23,26–31 due to the extensive 

experimental data available for the interaction between a solute and water and its significant 

biological relevance. However, to investigate the effect of electronic polarization in 

biomolecular systems, solvation free energies in solvents other than water are worthy of 

consideration due to the changes in dielectric environment that may occur in a biomolecular 

situation, e.g. the difference between a protein interface and bulk solvent, or between a 

membrane surface and the interior of a bilayer.  

 Compared to the extensive studies performed with water, there are comparatively few 

large-scale studies of organic solvents. Recently, Caleman et al. evaluated the performance of 

GAFF32 and OPLS/AA33 in organic solvents.34 They benchmarked the force fields by computing 

liquid properties such as density, enthalpy of vaporization, heat capacity, surface tension, 

isothermal compressibility, volumetric expansion coefficient, and dielectric constant of ~150 

organic liquids. A more recent paper by Genheden has calculated solvation free energies for 

approximately 150 small organic molecules, derived from the Minnesota solvation database, 

using a simple all-atom/coarse-grained hybrid model (AA/ELBA). This study showed good 
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agreement (< 1.0 kcal mol-1) of solvation free energies with experiment, albeit in four related 

polar solvents and three related non-polar solvents.35 In a larger study, Zhang et al. compared 

the performance of GAFF with three different prediction methodologies for solvation free 

energies (thermodynamic integration, a quantitative structure-property relationship (QSPR) and 

the conductor-like screening model for realistic solvation (COSMO-RS)), employing a wide range 

of organic solvents.36 These studies involved the evaluation of Gibbs solvation free energies for 

228 organic molecules in organic solvents compared against experimental data. Based on their 

analysis, no significant difference in correlation was shown between different prediction models 

with the GAFF force field. However, the authors also highlighted the fact that it is difficult for a 

fixed-point-charge force field such as GAFF to accurately reproduce both liquid properties and 

solvation properties simultaneously across a large number of solvents due to the absence of 

explicit electronic polarization to take into account changes in molecular environment.  

To determine whether the explicit inclusion of polarization in a potential energy function is 

able to improve the accuracy of its free energy calculations over a much simpler and cheaper 

energy function, here we evaluate the performance of the AMOEBA model. Previously, AMOEBA 

performance has been tested for hydration free energy predictions,20,22,37,38 but the additional 

computational cost of the AMOEBA potential over pairwise additive models has meant that 

large scale studies, and free energies in solvents other than water, have not traditionally been 

performed. In this paper, we evaluate AMOEBA performance by calculating the solvation free 

energies of a set of small molecule solutes across a range of four common organic solvents, 

giving a total of 54 solute-solvent systems, each evaluated in triplicate. The test was carried out 

using solvents of different dielectric constants representing a variety of electrostatic 

environments to investigate the transferability of parameters between diverse systems. Manual 

parameterization was performed for each solute following the recommendations in a previous 
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AMOEBA parameterization.39 Computational solvation free energies were then validated against 

experimental data. In addition, we also compare AMOEBA with solvation free energies 

generated using the GAFF fixed charge model, to measure any improvements arising by 

incorporating an explicit polarization term. Ultimately, statistical error analysis was carried out 

to validate the significance of observed differences between calculated solvation free energies 

for both force fields. 

Methods  

Dataset 

A total of 21 small molecules (Figure 1) with a variety of functional groups were selected in this 

study: six molecules had experimental solvation free energies for all four non-aqueous solvents 

(Figure 1a), and 15 further molecules had experimental solvation free energies for only toluene 

and chloroform solvent (Figure 1b). This choice of small molecules was taken from the 

Minnesota solvation database40–42 and Abraham et al., 1999.43 Although the Minnesota solvation 

database contains in excess of 3000 data points, our dataset for this study was limited to 

molecules for which a) experimental solvation free energies were available in multiple organic 

solvents, and b) these multiple organic solvents had parameters available in the amoeba09 or 

chloroalkane AMOEBA force fields.39,44 Solvent models in both force fields have previously 

undergone limited validation including the calculation of liquid density and enthalpy of 

vaporization to assess their suitability.39,44 

Non-aqueous Solvents  

Considering the availability of experimental solvation free energies for a variety of different 

molecules, four common organic solvents with a range of dielectric constants were chosen: 
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toluene ( = 2.38), chloroform ( = 4.81), acetonitrile ( = 36.64) and dimethylsulfoxide (DMSO, 

 = 47.24).45 Here, all the AMOEBA solvent models were prepared using the parameters taken 

from amoeba09.prm39 except for chloroform.44 The most recent AMOEBA chloroform 

parameters published by Ren and coworkers,44 which made use of the ForceBalance parameter 

optimization protocol, were used.46 For fixed-charge simulations, solvent parameters were 

taken from Cieplak et al. (chloroform),47 Grabuleda et al. (actetonitrile)48 and Dupradeau et al. 

(toluene and DMSO).49 For consistency, the set up of solvated systems was identical for both 

force fields, as explained in the solvent box preparation section below. 

Parameterization 

Manual parameterization was performed to improve the consistency and accuracy of the small 

molecule parameters for AMOEBA. In manual parameterization, the parameters were generated 

by following the standard AMOEBA parameterization protocol39 defined by Ponder and 

coworkers, using the TINKER 6.3.3 package50 and GAUSSIAN09 program.51 Where valence 

parameters (bond, angle, stretch-bend, out-of-plane and torsion), van der Waals parameters 

and atomic polarizabilities for the small molecules were already available, they were taken 

directly from the TINKER amoeba09.prm force field.39 For small molecules that had not already 

been parameterized in amoeba09, the multipole coordinate frames and polarization groups 

were manually defined and the valence parameters assigned according to the suggested 

parameters using the TINKER valence program, refined by comparison with parameters for 

similar atom types in amoeba09. In all cases, atomic multipole parameters for molecules were 

derived from QM calculations performed with GAUSSIAN0951 using three steps.52 Essentially, the 

AMOEBA parameterization procedure requires only the initial coordinates of a molecule to 

assign the entire AMOEBA potential for that molecule. First, the initial structure of each 
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molecule was optimized quantum mechanically at the HF/6-31G* level using GAUSSIAN09.51 A 

single-point energy calculation was carried out subsequently at the MP2/6-311G(1d, 1p) level of 

theory followed by a Distributed Multipole Analysis facilitated by the Gaussian Distributed 

Multipole Analysis (GDMA) program53 of Stone to compute an initial set of atomic multipoles, 

using the original DMA procedure.54 This was continued by a further single point calculation of 

the molecular electrostatic potential using a larger basis set (MP2/aug-cc-pVTZ). Finally, the 

AMOEBA dipole and quadrupole parameters were optimized by fitting to the QM electrostatic 

potential from the latter single point calculation. 

At the same time, the small molecules were also parameterized for the GAFF fixed-point 

charge force field as a comparison. All the parameterization for the small molecules was 

performed following the standard GAFF fixed-point-charge parameterization procedures. The 

ANTECHAMBER program55 from the AMBER 14 package was used to derive the 

fixed-point-charge parameters of small molecules for the MD simulations, implementing 

AM1-BCC  atomic charges.56,57 Generated parameters for all solutes are available freely as an 

online dataset.58 

Free Energy Calculations 

The solvation free energies of small molecules in four different solvents were calculated by 

adopting the protocol for hydration free energy calculations from Shi et al.37 The estimated 

solvation free energies of each molecule were computed based on the thermodynamic cycle 

(Figure 2) for solvation free energy in explicit non-aqueous solvent molecular dynamics 

simulations. The overall solvation free energy is denoted by: 

∆Gsolv = -∆Gdecoupling,sol - ∆Gdischarging,sol + ∆Gdischarging,vac (1) 
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Three sets of calculations were required: i) the discharging of molecule in solvent, ii) the 

decoupling of van der Waals (vdW) interactions between solute and environment in solvent and 

iii) the discharging of solute in vacuum. For the evaluation of ∆Gsolv for molecules in each 

solvent, MD simulations were run for both AMOEBA and GAFF force fields by applying a similar 

system setup. Finally, Bennett’s Acceptance Ratio (BAR)4,59 was used to compute free energy 

differences for each perturbation.  

Non-aqueous Solvent Box Preparation 

A cubic box of solvent with approximately ~ 40 Å dimension on each side, containing ~ 400 to 

800 molecules, was first prepared for each solvent using TINKER utilities.50 The number of 

solvent molecules inserted in the box varied depending on the size of solvent molecule and the 

experimental density required. The solvent box was then minimized with the steepest descent 

algorithm for 2500 steps and heated to 300 K at constant volume using NVT MD over a 50 ps 

time period, followed by 200 ps equilibration to 1 atm at constant pressure in the NPT 

ensemble. A Berendsen barostat was applied to constrain the pressure with coupling time set at 

2 ps.60 This simulation was run with 1 fs time steps using the Velocity Verlet integrator in 

TINKER. A Nosé-Hoover thermostat61,62 was employed to constrain the temperature to 300 K 

with a coupling time parameter, from which the Nosé-Hoover chain masses are set in TINKER, of 

0.2 ps. Final temperature and density equilibrated structures were used as solvent box inputs 

for the following series of solvation free energy calculations.  

Production Simulation Details 

AMOEBA MD simulations for solvation free energy calculations utilized either the AMBER 1463 or 

TINKER 6.3.3 packages50 depending on the solute/solvent system under investigation. All 

systems were initially prepared in TINKER50 by soaking each molecule in a periodic box of pre-
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equilibrated solvent, generated as above, using the XYZEDIT utility of TINKER. Initial structures 

and parameters were then converted to AMBER format for subsequent minimization, 

equilibration and simulation, using the tinker_to_amber utility of AMBER 14. However, solutes 

or solvents that included a ‘Z-Bisector’ multipole local frame (DMSO, Acetonitrile, Methylamine, 

Trimethylamine) could not be converted as the ’Z-Bisector’ frame is not implemented in AMBER 

14. Instead, these simulations were performed with an equivalent procedure in TINKER 6.3.3. 

Details of both protocols are provided below. All simulations were performed in triplicate, using 

the same starting structure but a different random number seed for the thermostat. 

Solution phase simulations in AMBER used the pmemd.amoeba program and were performed 

as follows. Initially, the systems underwent minimization for 2500 steps, of which the first 1000 

steps were run with a steepest descent algorithm, and the next 1500 steps with a conjugate 

gradient algorithm. For each system, simulations were then performed in the NVT ensemble, 

heated slowly to 300 K over 50 ps, followed by another 100 ps of pressure equilibration using 

NPT at 300 K and 1 atm. A timestep of 1 fs and a velocity Verlet integrator was used to 

propagate dynamics. To maintain the temperature and pressure, the systems were treated 

using a Langevin thermostat and Berendsen barostat respectively.60,64 A different random seed 

for the Langevin thermostat was applied for each independent repeat simulation. van der Waals 

(vdW) interactions were evaluated explicitly up to a 9 Å cutoff with an analytical long-range 

correction. Long-range electrostatic interactions for all the systems were treated using a Particle 

Mesh Ewald (PME) summation,65 with a real-space cutoff of 8 Å. The PME calculation used fifth 

order B-spline interpolation. At each step the atomic induced dipoles were converged until the 

root-mean square change was below 0.01 D/atom. Finally, the last configuration of the NPT 

simulation was used as the starting point for equilibration in all the intermediate λ states with 

AMOEBA.   



 10 

A total of 11 intermediate state simulations with λ = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 

and 0.0 were applied to electrostatic interactions for discharging the solute in vacuum and in 

solvent.37 λ = 1 refers to a fully interacting solute and λ = 0 to a noninteracting solute. However, 

for calculating the free energies of decoupling solute vdW interactions in the solvent, a different 

spacing of intermediate states was used with λ = 1.0, 0.9, 0.8, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.2 

and 0.0.37 Furthermore, to allow the potential to disappear smoothly as the intermediate 

simulations progressed to zero, a soft-core Halgren buffered 14-7 van der Waals term66 as 

previously described by Shi et al.37 was applied. For each value of λ, 2 ns of constant pressure 

molecular dynamics were performed, using an identical protocol to the NPT pressure 

equilibration step. Atomic coordinates of the system were saved every 1 ps and the first 200 ps 

of each window were discarded as equilibration. 

Solution phase simulations in TINKER50 were performed identically to those in AMBER except 

for the following minor changes. Minimization in TINKER was performed using a default 

minimization algorithm, limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-

Newton optimization67 for 2500 steps. Additionally, the Nosé-Hoover thermostat61,62 was 

employed during MD simulations instead of the Langevin thermostat64 of AMBER 14. All the 

other protocol options, including the λ windows applied, were identical. 

All the gas phase simulations were performed in TINKER.50 In this simulation, a single solute 

molecule only was simulated for 200 ps using a stochastic integrator with a time step of 0.1 fs 

and a temperature of 300 K. The induced dipoles were converged to 1x10-6 D/atom. Coordinates 

were saved every 0.1 ps. For free energy analysis, the first 20 ps were discarded. In all case, BAR 

was used to evaluate the free energy changes between the neighboring states (λi and λi + 1).  
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For the GAFF simulations an identical protocol was implemented except that an 8 Å direct 

vdW cutoff was used rather than 9 Å. Importantly, the PMEMD and SANDER modules included 

in AMBER 14 were used for the GAFF simulations with identical λ windows employed 

throughout for both force fields. For free energy calculations, BAR was used as implemented in 

the PYMBAR PYTHON package68 for GAFF fixed-point-charge results, while an in-house script, 

BAR-amber69 was used to analyze the results for the AMOEBA simulations. 

Statistical Error Analysis 

The error analysis and significance testing suggested by Mobley et al.21 was employed to 

evaluate the calculated solvation free energies in four solvents simulated with both the 

AMOEBA and GAFF force fields. The agreement of estimated solvation free energies with 

experiment was evaluated using mean unsigned error (MUE), mean signed error (MSE), Pearson 

correlation coefficient (R), coefficient of determination (R2) and Kendall’s tau coefficient () 

across three replicates. In addition, 1000 iterations of bootstrapping with replacement were 

performed to estimate the 95% confidence intervals on these values. Finally, a Student’s paired 

t-test was applied to determine the significance of differences between MSE errors generated 

with AMOEBA and GAFF assuming both are normally distributed. A Wilcoxon signed-rank test 

was used to similarly compare MUE since they are severely non-normally distributed. These 

tests will indicate whether the errors of our predictions are substantially different between 

different force fields. 

Results and Discussion 

Solvent Comparison 
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The calculated solvation free energies of each solute in all four solvents, with the associated 

standard error and unsigned error to experiment, are provided in Table S1-S4 in the supporting 

information. The error in each estimated value of ∆Gsolv  corresponds to the standard error in 

the mean across three repeats. The small standard error for AMOEBA and GAFF simulations in 

all data sets (~0.1 kcal mol-1) provides no evidence to indicate inadequate conformational 

sampling and hence we assessed the simulations to be of appropriate length. Figure 3 compares 

AMOEBA and GAFF solvation free energy results across all four solvents directly with those of 

experiment, while Table 1 provides summary metrics of the same results.  

The mean unsigned error to experiment for calculated solvation free energies across all 

solvents is approximately 1.22 kcal mol-1 for AMOEBA and 0.66 kcal mol-1 for GAFF (Tables S1-

S4). The largest MUE is in chloroform solvent for both force fields as shown in Table 1. In terms 

of MSE both force fields underestimate solvation free energies (i.e. show positive MSE) 

particularly for the ammonia solute simulated with AMOEBA in toluene and chloroform (Table 

S1 and Table S2). Predominantly, the AMOEBA MSE in all solvents is slightly larger than that of 

GAFF, as shown in Table 1.  

Interestingly, the results of solvation free energies with GAFF often give better correlation to 

experimental data based on comparison of the four solvents in Figure 3 and Table 1. The best 

agreement was given in toluene with R2 0.90 (Figure 3a) while the worst R2 of 0.53 was observed 

in acetonitrile (Figure 3d). Similarly to the MUE metrics above, chloroform solvation free 

energies for small molecules using AMOEBA showed the worst correlation to experimental 

values with R2 0.26 (Figure 3c). The best R2 for AMOEBA of 0.84 was in DMSO, and may be due to 

a consistent underestimation of solvation free energy calculated across the whole data set, as 

suggested by the linear regression line observed in Figure 3d.  
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To allow performance comparison of AMOEBA and GAFF in different environments, the results 

of each solvent were also compared using their Kendall  coefficients, which examined 

agreement in ranking of solvation free energies between theory and experiment. Kendall  

allowed the determination of a clear order of performance for all solvents in the two different 

force fields. With AMOEBA, toluene, DMSO and acetonitrile perform well (overall  values of 

0.74, 0.73 and 0.73 respectively), while chloroform again performs worst with only 0.23. For 

GAFF,  value for toluene indicates the best agreement in predicted rankings ( = 0.87) followed 

by chloroform (0.77), acetonitrile (0.73) and DMSO (0.47). It should be borne in mind that the 

small dataset sizes for acetonitrile and toluene (n = 6) may lead to large fluctuations in  and R 

with small changes in results, as demonstrated by the broader confidence intervals for these 

measures. 

Statistical Error Analysis 

Since the available experimental data set is very small, it is difficult to assess the performance of 

the force field based on the comparison of mean metrics. Statistical confidence intervals 

estimated via bootstrapping allow a more relevant comparison between metrics to be made. 

Bootstrapping with replacement was performed for 1000 iterations, and the 95% confidence 

intervals in all metrics were calculated from the underlying distributions. Additionally a 

Student’s paired t-test and Wilcoxon signed-rank test were performed using the original signed 

and unsigned error distributions (respectively) for AMOEBA and GAFF, to assess whether 

differences between force fields were statistically significant. Table 1 shows the ranges in these 

metrics computed in all solvents for both AMOEBA and GAFF. Looking at the results for MUE 

and MSE of solvation free energies provided in all solvents, the magnitude of the associated 



 14 

ranges remains similar between AMOEBA and GAFF, suggesting that the performance across 

solvents is consistent in terms of error.  

Regarding the t-test and Wilcoxon signed-rank test results (Table 2), evaluating AMOEBA and 

GAFF differences in MSE and MUE, there is a significant difference between AMOEBA and GAFF 

MSE for all solvents except chloroform (significance threshold of p = 0.05). However, analysis of 

MUE distributions showed significant differences only in chloroform and toluene. DMSO and 

acetonitrile yield no significant difference between their very similar range of MUE.  

Analysis of the Performance 

Generally, the examination of results in Table 1 reveals that overall the AMOEBA polarizable 

force field performs well, but slightly worse than GAFF when compared to the experimental 

data. There are a number of molecules found to give the largest errors to experiment across all 

the solvents. Ammonia has a consistently underestimated (too positive) ∆Gsolv in both solvents 

for which its solvation free energy was evaluated. This trend was observed for both AMOEBA 

and GAFF force fields, suggesting a non-potential-specific systematic error. This may therefore 

suggest a doubt in the accuracy of the experimental data. The experimental free energies of 

solvation for our solutes were calculated in one of two ways: i) using direct partition coefficients 

between gas phase and liquid phase, or ii) using partition coefficients between water and 

non-aqueous solvents, combined with hydration free energies. However, predominantly the 

latter approach was used - experimental measurements were determined by combining both 

experimental values for aqueous hydration free energies and partition coefficients measured 

between water and non-aqueous liquids.40 The average uncertainty in experimental values of 

solvation free energies reported by the authors of the Minnesota solvation database is 

~ 0.2 kcal mol-1 for the subset used in this study.40,70,71 However, this uncertainty is likely to be 
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non-normally distributed amongst the members of the database, such that individual molecules 

may have larger or smaller errors in their experimental ∆G estimates. The experimental errors 

for specific molecules are not provided by the Minnesota solvation database, but the 

consistently poor performance of a molecule across solvents and force fields studied, such as in 

the case of ammonia, may suggest a larger than average experimental error for that solute. 

Apart from this, one of the areas that may have an impact on the accuracy of solvation free 

energy calculation is the parameterization. Both solute and solvents need to be well 

parameterized to give the correct solvation free energy estimates. For AMOEBA, we have shown 

elsewhere how small changes in parameterization methodology can give significant differences 

in hydration free energies.38 However, owing to the simplicity of the molecules constituting the 

data set used here, it is difficult to introduce further systematic modifications to the solute 

parameterization protocol without fundamental change to the underlying parameterization 

philosophy (for example, by fitting to solvent-solute interaction energies). Our aim here has 

been to follow the optimum AMOEBA parameterization protocols closely. In particular, 

multipole coordinate frames and polarization groups were manually defined, valence 

parameters were taken from the established amoeba09 parameter set, and atomic multipoles 

were fitted to molecular ESP calculated using the recommended large basis set (aug-cc-pVTZ). 

Thus, parameterization on the whole was performed as per well-established guidelines.37–39 

There may also be occasions where parameterization remains challenging. In our case, the 

largest errors to experiment for AMOEBA solvation free energy predictions are mostly from 

ammonia, n-octane and hexanoic acid molecules. The simplest of the molecules studied, such as 

ammonia, may be highly sensitive to small parameter changes. If the potential of each atom 

interacting with the solvent is even slightly overestimated, this may contribute to the significant 
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overestimation of the solvation free energies for ammonia in chloroform and toluene. 

Additionally, parameters for n-octane or hexanoic acid may be affected by the conformation or 

conformations used in the multipole generation process. For these molecules with extended 

chains there are many conformations that are low in energy and visited during the MD 

simulation. It is challenging to select the correct low energy conformation for multipole 

assignment for those molecules. Unlike other studies, we did not attempt to include multiple 

conformations in the ESP fitting process, as the majority of molecules studied had single, fairly 

rigid, well-defined low energy conformations. Beyond solute parameters, as results for small 

molecules in chloroform were consistently the worst compared to other solvents, the AMOEBA 

solvent models also needed to be considered. Liquid phase tests do exist in the paper describing 

the chloroform potential, including density and heat of vaporization, but they are fairly simple.44 

These properties have also been evaluated for other solvent models used here.39,47–49 

Nevertheless, it should be noted that these measures only validate solvent-solvent interactions 

and do not assess the accuracy of solute-solvent interactions, as would be necessary for 

accuracy in our solvation free energy calculations. 

Sampling is also a common issue when running molecular dynamics simulations. Considering 

the molecules are fairly small, it is not surprising that they quickly converge, as demonstrated by 

the small uncertainties observed for the majority of molecules.  Notably n-octane and hexanoic 

acid may be exceptions to this rule, as demonstrated by the higher than average standard errors 

observed in their estimates, particularly in chloroform (Table S2). The sampling of different 

conformations to reach equilibrium may have been problematic during the short timescales 

simulated here. However, variance in estimates due to differential sampling between repeats 

did not increase the error systematically between solvents. Moreover the increased uncertainty 
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in predictions it caused was not the predominant driver of poor agreement in chloroform, 

where other solutes had equal or greater error to experiment. 

As noted above, GAFF typically performed well for most functional groups with better 

accuracy to experiment compared to AMOEBA. This improvement spanned both polar and 

non-polar solvents, and solutes containing a multitude of functional groups. There was also no 

clear consistency in observed errors for particular solute functional groups, however, given its 

size, the current dataset is limited in its ability to discern trends in functional groups. The largest 

functional group subset, amines, consisted of five compounds (Ammonia, aniline, methylamine, 

diethylamine and trimethylamine), for which experimental data was only available in the 

non-polar solvents toluene and chloroform. An extended study on a broader data set would be 

required to investigate functional group trends further.  

The solvent models used in fixed-point-charge simulations with GAFF solute parameters had 

not been optimized for solvation free energy calculations during their respective 

parameterizations.47–49 It is somewhat surprising, therefore, that all solvents showed 

consistently reasonable agreement with experiment. In general therefore, these results may 

suggest that explicit electronic polarization may not be crucial for good agreement with 

experiment. Here, all non-aqueous solvents investigated have dielectric constants smaller than 

water. In this type of environment, the effect of molecular polarization on solvation free 

energies may be less, and a fixed-point-charge model of electrostatic interaction may be 

sufficient. Evaluation with a non-aqueous solvent with higher dielectric constant than water, 

such as formamide (dielectric constant = 111),45 would provide further information on the effect 

of an explicit treatment of polarization in different environments. However, computational 

non-aqueous solvation free energy studies are hampered by the scarcity of suitable 
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experimental data for multiple solutes across multiple solvents. Therefore, while it remains 

unknown if an explicit representation of polarization may be required for accuracy in more 

complex electrostatic environments, the simple systems studied here perhaps are better 

represented by simple force fields rather than a thorough application of polarization terms as 

incorporated in the AMOEBA force field. 

Conclusions 

Overall, both force fields estimated non-aqueous solvation free energies well, with only the 

AMOEBA chloroform and DMSO results exhibiting MUE above the 1.0 kcal mol-1 limit often 

considered as ‘chemical accuracy’ in free energy calculations. Our findings that chloroform 

solvation free energies have the largest errors to experiment, despite reasonable correlation for 

GAFF, are consistent with the recent results of Zhang et al.36  

GAFF showed statistically significant improvements in unsigned error over AMOEBA for the 

21-solute datasets of toluene and chloroform, and in signed error for all but chloroform. This 

improvement is likely a combination of two factors. First, the GAFF force field, first established 

in 2004,32 is now a well developed and well understood small molecule force field, whose solute 

parameters (beyond the independently-derived point charges) have undergone multiple rounds 

of refinement and been used in multiple other free energy investigations and blind 

challenges.21,27,31,72,73 This extensive history of testing and development is clearly beneficial for 

GAFF performance, as demonstrated here and in the other recent solvation free energy studies 

described above. In contrast AMOEBA parameters, both solvent and solute, have not been 

tested as extensively or empirically adjusted to recreate thermodynamic properties. This is 

particularly highlighted by the relatively poor AMOEBA performance in chloroform. While 

AMOEBA parameters provide an excellent description of the electrostatic environment 
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surrounding the chloroalkanes, including -hole effects, bulk phase thermodynamic properties 

were not included as targets in the parameter optimization process.44 

Second, as discussed, the low dielectric solvents (and often simple solutes) tested here may 

not require the additional rigor of a polarizable force field for accurate free energy estimates. 

AMOEBA has previously been shown to recreate instantaneous fluctuations in electric fields in 

nonpolar solvents, and the resulting shifts in the vibrational spectroscopy of probe groups, far 

more accurately than a fixed-charge model.74 Nevertheless, from our work it appears that the 

simpler electrostatics representation used by GAFF and many other force fields may be 

sufficient for standard thermodynamic metrics (such as solvation free energies) in low polarity 

environments. 

Evaluation of more challenging solutes and solvents is, however, extremely limited by a lack of 

relevant experimental data for comparison. The Minnesota solvation database is a well-curated 

resource and has been used in the development of multiple solvation schemes. However, its 

data set of > 3000 entries does not include any solvation free energies in solvents of higher 

dielectric than water.40 Additionally, only a limited number of neutral solutes have their 

solvation free energies measured in multiple solvents. These difficulties in the curating of 

solvation free energies for force field evaluation are well known and have led to the use of 

alternate metrics with more abundant experimental data, such as solubility or distribution 

coefficient calculations, in recent tests.75,76 These metrics provide promising ways of evaluating 

multiple protocols in blind tests, but, as demonstrated here, there remains a role for 

computationally more straightforward absolute free energy calculations. Despite these 

challenges, our broad comparison of potential functions across a range of systems identifies 

clear opportunities for force field improvements, and we believe further work should ideally 



 20 

focus on the context of high field environments, where requirements for polarization may be 

more apparent.  
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Figure captions 

 

Figure 1. The structures of small molecules selected in this study. a) Data set of small molecules 

for toluene, chloroform, acetonitrile and DMSO solvent. b) Data set of additional small 

molecules for toluene and chloroform solvent. 
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Figure 2. Thermodynamic cycle37 adopted for calculating the solvation free energy of small 

molecules in four different non-aqueous solvents. The simulations involve three sets of 

calculations run in vacuum and in solvent (square box). Black circles represent a fully charged 

solute interacting with its environment, while the circle with no fill denotes a discharged and 

completely decoupled system, the gas phase intermolecular interactions (vdW decoupling) do 

not need to be evaluated because there is no interaction between the solute and the 

environment in vacuum. 

 

Figure 3. AMOEBA (blue) and GAFF (black) calculated ∆Gsolv for small molecules in toluene, 

chloroform, acetonitrile and DMSO against experimental ∆Gsolv. Line of perfect agreement, y = x, 

shown as dashed line. Linear regression in each solvent plot gives the following equations: 
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a) AMOEBA ( y = 0.752 x - 0.4375 ), GAFF ( y = 1.012 x + 0.153 )  b) AMOEBA ( y = 0.571 x  -

  1.435 ) , GAFF ( y = 1.217 x + 1.722 )  c) AMOEBA ( y = 1.169 x + 1.452 ), GAFF 

( y = 0.822 x - 0.813 ) and d) AMOEBA ( y = 1.436 x + 2.986 ), GAFF ( y =  1.164 x +  0.907 ). 
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Table captions 

Table 1. Summary of performance metrics for calculated solvation free energies with the 

AMOEBA polarizable force field and the GAFF fixed-point-charge force field in all four solvents. 

Upper and lower bounds estimated as 95% confidence intervals in the mean using 

bootstrapping for 1000 iterations with replacement. 

Table 1: 

 
AMOEBA Force Field 

Solvent 

Metrics Toluene Chloroform Acetonitrile DMSO 

MUE 
(kcal mol-1) 

0.67 ≤ 0.92 ≤1.30 1.23 ≤ 1.68 ≤ 2.09 0.48 ≤ 0.73 ≤ 0.88 0.74 ≤ 1.12 ≤ 1.46 

MSE 
(kcal mol-1) 

0.37 ≤ 0.73 ≤ 1.14 0.12 ≤ 0.90 ≤ 1.57 0.10 ≤ 0.65 ≤ 0.88 0.20 ≤ 0.99 ≤ 1.4 

R 0.74 ≤ 0.86 ≤ 0.92 0.18 ≤ 0.51 ≤ 0.79 -1.00 ≤ 0.89 ≤ 0.99 -0.63 ≤ 0.91 ≤ 1.00 

R2 0.53 ≤ 0.74 ≤ 0.85 0.03 ≤ 0.26 ≤ 0.62 0.15 ≤ 0.79 ≤ 0.97 0.17 ≤ 0.84 ≤ 1.00 

Kendall  0.53 ≤ 0.74 ≤ 0.88 -0.12 ≤ 0.23 ≤ 0.51 0.33 ≤ 0.73 ≤ 1.00 -0.09 ≤ 0.73 ≤ 1.00 

 
GAFF Force Field 

MUE 
(kcal mol-1) 

0.32 ≤ 0.48 ≤ 0.68 0.68 ≤ 0.92 ≤ 1.23 0.21 ≤ 0.43 ≤ 0.67  0.27 ≤ 0.61 ≤ 0.98 

MSE 
(kcal mol-1) 

-0.14 ≤ 0.10 ≤ 0.40 0.18 ≤ 0.56 ≤ 1.01 -0.44 ≤ 0.03 ≤ 0.41 -0.68 ≤ 0.16 ≤ 0.58 

R 0.89 ≤ 0.95 ≤ 0.98 0.78 ≤ 0.91 ≤ 0.96 -1.00 ≤ 0.73 ≤ 0.93 -0.05 ≤ 0.82 ≤ 0.99 

R2 0.80 ≤ 0.90 ≤ 0.95 0.60 ≤ 0.83 ≤ 0.92 0.00 ≤ 0.53 ≤ 0.85 0.00 ≤ 0.68 ≤ 0.97 

Kendall  0.72 ≤ 0.87 ≤ 0.96 0.59 ≤ 0.77 ≤ 0.88 -0.09 ≤ 0.73 ≤ 1.00 -0.23 ≤ 0.47 ≤ 1.00 
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Table 2. Calculated p-values of statistical tests between mean signed (Student’s paired t-test) 

and unsigned error (Wilcoxon signed-ranked test) distributions for AMOEBA and GAFF. 

Significant differences (p < 0.05) denoted in bold. GAFF and AMOEBA perform identically in 

terms of MUE for acetonitrile and DMSO, and in terms of MSE in chloroform. For all other 

metrics GAFF performed better. 

Table 2: 

 Solvent 

p-value Toluene Chloroform Acetonitrile DMSO 

Unsigned 

Error 
0.0071 0.0087 0.2489 0.1730 

Signed 

Error 
0.0015 0.4363 0.0098  0.0028 

 

 

 

 


