
Tool Support for Model-Based Database Design
with Event-B

Ahmed Al-Brashdi, Michael Butler, Abdolbaghi Rezazadeh, and Colin Snook

University of Southampton, Southampton, UK
{azab1g14,mjb,ra3,cfs}@ecs.soton.ac.uk

Abstract. UML-B provides a graphical notation for Event-B that en-
ables formal development in a UML style. UB2DB is a tool that trans-
lates UML-B models to relational database implementations in SQL. The
UB2DB tool is implemented as a plugin for Rodin, an extensible toolkit
for Event-B. This paper presents the current version of UB2DB that
translates the main components of UML-B class diagrams to SQL code.
The generated SQL code defines a database and provides procedures that
manipulate it. The UB2DB tool exploits the Eclipse Modeling Frame-
work (EMF) to realise the required model transformation. The current
tool provides the basis for a more comprehensive tool that will provide
support for a broader range of UML-B features and support a variety of
database components and constraints.

Keywords: Event-B, UML-B, Database design, Model-driven design

1 Introduction

The design of database systems is an important field in software engineering,
and therefore it requires a verifiable and rigorous design approach. Event-B is a
formal method for rigorous specification and verification of digital systems [1].
It is supported by an open platform called Rodin [2]. UML-B is a graphical
notation for formal modeling in Event-B that is based on UML [10]. A tool,
called iUML-B, is provided which supports building UML-B diagrams in Rodin
and is integrated in an Event-B machine or context. The iUML-B tool is based
on the Eclipse Modelling Framework (EMF) for Event-B [11]. The Eclipse Mod-
eling Framework (EMF) is a framework for tools development which provides
modeling and code generation facilities [12].

The UB2DB (UML-B to DataBase) tool enables developers to rigorously
model their database or database intensive application in UML-B for verification
and translate the model to SQL code. SQL is a relational database definition and
manipulation language [7]. The UB2DB provides an automatic generation of SQL
code from a model defined in UML-B in the Rodin platform. The generated SQL
will create the relational database structure using create and alter commands
and provide procedures that populate and manipulate the data.

Developers will model a database system in UML-B and verify it in the Rodin
platform to detect any inconsistency or ambiguity. Then they will use UB2DB
to translate the verified model to SQL code.

2 Tool Support for Model-Based Database Design with Event-B

When modelling databases in UML-B, different refinement levels might be
introduced so that the model of database can be built gradually. In the first
abstraction level, an abstract view of the database is modelled and can be trans-
lated to SQL. In every refinement level, a more concrete view of the database is
modelled which adds more details to the preceding one.

UB2DB translates directly from UML-B and not from Event-B. Since UML-
B uses class diagrams, it is more aligned with the database as class diagrams are
commonly used to describe databases. Developers will benefit from being able to
generate Event-B from UML-B using the existing UML-B tool, allowing them to
apply formal analysis to their UML-B models. While the UML-B class diagram
clearly adds attributes to each class directly, Event-B list all variables together
without clear distinction of each class’s attribute. This makes it easier and more
straightforward to translate from UML-B to database than from Event-B to
database, and without compromising the model verification.

2 Translation process and approach

To translate from UML-B to a relational database, we designed our own meta-
model for relational databases in EMF. Figure 1 shows a part of the defined
meta-model. Each database is composed of tables, and each table may have
many attributes. Each element has a name associated with it. Along with the
name, attributes have types and constraints that specify if an attribute is not
null, unique or has a default value.

The first step in UB2DB is to translate the EMF representation of UML-B to
the EMF representation of the database such as translating a class in UML-B to
a table, or a class diagram to a database. A second step is to generate the textual
SQL code from the database EMF representation. For each UML-B model, there
are two translations done, one to SQL by UB2DB, and another to Event-B by
UML-B as in Figure 2. These two translations are separate from each other.

Fig. 1. Part of defined database meta-model

Each element in UML-B such as class diagram or class has a unique name.
Classes may have associations between them that relate each class to another.
UB2DB generates the SQL statements that create a database whose name is
given by the class diagram name, and generates a table for each class in the

Tool Support for Model-Based Database Design with Event-B 3

Fig. 2. Translation from UML-B model to Event-B and database

model. The associations between classes are translated to relations between ta-
bles. Each class attribute in the UML-B model will result in an attribute in the
corresponding table. Each component such as association or attribute is trans-
lated into a separate statement in the generated SQL. This way, dealing with
refinement will be easier as adding a new attribute for a class in a refined model
will correspond to adding only one SQL statement that adds that attribute to
the table instead of going through the whole process of creating a table again.

For each attribute in the model, there are some defined properties like total
function, injective function and initial value. These properties are translated
into constraints in the generated SQL. A class invariant might be added to
constrain an attribute value such as a ∈ 1..100. Such an invariant is translated
to a constraint in the generated SQL.

If an association between two classes is set as functional, it will be translated
to an attribute of one of the tables. If the association is non functional (n:n
association), it will be translated to a separate table with references to both
classes/tables. An example of that is the association member pod between Mem-
ber class and Pod class in Figure 3. The UB2DB tool will generate a new table
called member pod with two references, one to Member table and another to
Pod table. The following SQL statement is generated automatically by UB2DB
which creates a table with the association name, member pod. The table has two
attributes: member id and pod id that reference Member and Pod tables.

CREATE TABLE member pod (
Member id INT,
Pod id INT,
PRIMARYKEY (Member id , Pod id) ,
FOREIGN KEY (Member id) REFERENCES Member(Member id) ,
FOREIGN KEY (Pod id) REFERENCES Pod(Pod id)

) ;

UML-B provides three kinds of events; constructor, destructor and normal.
A constructor event should be selected for events that aim to create an instance
of a class. Destructor is used for the opposite. For other operations, the normal

4 Tool Support for Model-Based Database Design with Event-B

event is selected where it adds a guard automatically to check that the instance to
select or update is an element of that class set. Each constructor event in UML-B
is translated by UB2DB into a procedure with the insert into table statement
in SQL. The procedure takes all class attributes and associations as parameters
for the insertion. Destructor events are translated into procedure with the delete
from table statement in SQL. Normal events are translated into procedures with
an update table statement if the event has an override operator, or to a select
from statement if the event does not have an action.

UB2DB generates SQL code in which class invariants are translated to con-
straints in the generated code. Event guards are also maintained by the transla-
tion to ensure correct implementations of the UML-B models. Also, the generated
code ensures the atomicity of an event by translating all actions to one atomic
transaction.

The UB2DB translation is implemented using a generic EMF translation
plugin which is provided by University of Southampton. Translation and rules
are contributed using the Eclipse extension mechanism. For each component in
the database meta-model such as table or attribute, there is a rule defined by a
Java class to translate or map UML-B to it. Each rule in UB2DB has fire and
dependencyOk methods. The fire method does the mapping between UML-B
elements to database elements. In the translation process, dependencies must
be checked by the dependencyOk method before proceeding to the translation.
A table is dependant on a database which means it cannot be generated before
the database, and an attribute is dependant on a table. This also ensures an
ordering of the translation of different components.

3 Case study and evaluation

Two cases were built to study various components and relations of database
systems and to help identify good practice in modelling databases in Event-
B with levels of refinements. The first case study is a student enrollment and
registration system while the other is a car sharing system. After having these
two cases modelled in UML-B, we ran UB2DB on different abstraction levels to
generate the database for them.

Starting from an abstract model, as in Figure 3 for the car sharing case study,
where classes have associations but no attributes, the tool generates the tables
with one attribute as a key for each table. Then the associations are added to the
source tables as attributes that references the target table. As the same classes
will appear in another refinement level, the create table if not exists command
will create a table only if it does not already exist.

Further refinement of the model might include adding attributes to different
classes as in Figure 4 for the student enrollment case study. Another refinement
could add more detail to the model by introducing new classes and associate
them to classes in the abstract model such as the Booking class for car sharing
in Figure 5. Attributes and relations added in later refinements are translated to
the alter table command so that we can build on the previous generated database

Tool Support for Model-Based Database Design with Event-B 5

without rebuilding it. The alter command can be used to modify the structure
of a table by adding, modifying or deleting attributes or relations.

Fig. 3. Abstract model for car sharing case study

Fig. 4. Refinement by adding attributes in Program and Student classes

Fig. 5. New classes in refinement model

The generated SQL code was successfully imported in the database man-
agement system and all the supported database structures and constraints were
successfully generated. This includes generating intermediate tables and assign-
ing different constraints such as primary key, foreign key, not null, uniqueness,
default value and basic check constraints. Events were translated to procedures
for constructors, destructor or normal events. For any constructor event, the
tool generated a procedure with a name as the event name and took the class

6 Tool Support for Model-Based Database Design with Event-B

attributes and associations as parameters for the procedure. Destructor events
were translated to procedures with one parameter corresponding to a key for the
record to be deleted. Normal events were translated to either update or select
procedures. However, UB2DB does not yet deal with complex queries in normal
events in UML-B.

4 Related Work

Much work has been done in the area of formalizing databases or translating
formal methods to database applications. Barros in [4] translates Z notation
to relational databases with support for different operations and transactions.
In [8], Khalafinejad and Mirian-Hosseinabadi present a method for translating
Z notation to SQL and the Delphi programming language with no tool imple-
mentation.

Laleau and Mammar in [9] present a tool that refines a UML specification
into a B model and then to a database application. While their work is close to
ours, they do not translate to update and read operations or deal with trans-
action management. Our work will provide extra features than theirs such as
normalizations, design patterns, database security and translation to database
views.

Davies et al. in [6] use a model-driven approach to automatically generate
object-oriented databases with an extended version of B method and Object
Constraint Language [14]. We are interested mainly in the relational model of
database design.

Wang and Wahls in [13] developed a Rodin plug-in that translates Event-B
to Java and JDBC code to create and query a database. While, to the best of
our knowledge, this is the only work that translates Event-B to database appli-
cations, it has some limitations. The results in [5] identify major performance
issues as well as the issues with preserving database integrity as in [3].

5 Conclusion and future work

UB2DB is a tool that translate UML-B models to relational databases by gen-
erating SQL statements that build the database and structure its tables and
relations. The UML-B model is translated by the UML-B tool to Event-B for
verification. UB2DB provides support to translate different components in UML-
B model into code that can be easily imported in MySQL database and reserves
the constraints such as not null and unique. It also provides support for events
that create new instances of classes, delete an existing one, update its attributes
or select from one or more classes.

In future, full support for events will be provided which might translate one
event in UML-B to different statements in one procedures such as delete and
insert when moving a record from one class to another. As the current imple-
mentation of the tool translate an abstract level without looking to preceding

Tool Support for Model-Based Database Design with Event-B 7

abstraction level, the future plan is to make the tool look for the the specifica-
tion of a model and all of its preceding abstractions. The tool will extend the
support for class invariants. The future work includes looking at preserving nor-
malization when modelling in UML-B and defining design patterns for database
systems and supporting them by our tool.

References

1. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International journal on
software tools for technology transfer 12(6), 447–466 (2010)

3. Al-Brashdi, A.: Translating Event-B to Database Application. Master’s thesis, Uni-
versity of Southampton (2015)

4. Barros, R.S.M.: On the formal specification and derivation of relational database
applications. Electronic Notes in Theoretical Computer Science 14, 3–29 (1998)

5. Catano, N., Wahls, T.: A case study on code generation of an ERP system from
Event-B. In: Software Quality, Reliability and Security (QRS), 2015 IEEE Inter-
national Conference on. pp. 183–188. IEEE (2015)

6. Davies, J., Welch, J., Cavarra, A., Crichton, E.: On the generation of object
databases using Booster. In: Engineering of Complex Computer Systems, 2006.
ICECCS 2006. 11th IEEE International Conference on. pp. 10–pp. IEEE (2006)

7. Garcia-Molina, H.: Database systems: the complete book. Pearson Education India
(2008)

8. Khalafinejad, S., Mirian-Hosseinabadi, S.H.: Translation of Z specifications to exe-
cutable code: Application to the database domain. Information and Software Tech-
nology 55(6), 1017–1044 (2013)

9. Mammar, A., Laleau, R.: UB2SQL: a tool for building database applications using
UML and B formal method. Journal of Database Management 17(4), 70 (2006)

10. Snook, C., Butler, M.: UML-B and Event-B: An integration of languages and tools.
In: Proceedings of the IASTED International Conference on Software Engineering.
pp. 336–341. SE ’08, ACTA Press, Anaheim, CA, USA (2008)

11. Snook, C., Fritz, F., Illisaov, A.: An EMF framework for Event-B. In: Workshop
on Tool Building in Formal Methods - ABZ Conference, Orford, Canada (2010)

12. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)

13. Wang, Q., Wahls, T.: Translating Event-B machines to database applications. In:
Software Engineering and Formal Methods, pp. 265–270. Springer (2014)

14. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

