The University of Southampton
University of Southampton Institutional Repository

Plasticity & adaptations of the coral-zooxanthellae symbiosis: responses to nutrient availability & insight into inherent thermal tolerance

Plasticity & adaptations of the coral-zooxanthellae symbiosis: responses to nutrient availability & insight into inherent thermal tolerance
Plasticity & adaptations of the coral-zooxanthellae symbiosis: responses to nutrient availability & insight into inherent thermal tolerance
Sustaining an environment which conveys a high resilience to reef corals is critical in order to mitigate the immediate threat of climate change to reef ecosystems. The nutrient environment plays a significant role in sustaining the stability of the coral-zooxanthellae symbiosis, making anthropogenic nutrient pollution as well as the climate change driven nutrient impoverishment of oceanic waters pressing threats to coral reef persistence. Yet, many aspects of coral nutrient biology remain poorly understood, impeding science driven management strategies. This thesis aimed to advance our knowledge on how different nutrient environments affect the functioning of the coral-algal symbiosis by teasing apart the interacting effects of two principal nutrient sources (dissolved inorganic nutrient uptake and heterotrophic feeding), as well as of the two essential nutrients, nitrogen and phosphorus, both in dissolved inorganic and particulate organic forms. This was achieved through long-term exposure (up to 1.5 years) of the Euphyllia paradivisa-clade C1 Symbiodinium association to replete (+N+P), limited (-N-P), or imbalanced (+N-P/-N+P) dissolved inorganic nutrient availabilities in combination with targeted host feeding with balanced or nitrogen enriched prey items. Thereby, this work stood apart from past investigations by yielding definitive phenotypes representative of different nutrient availabilities. Moreover, the importance of food quality when considering the benefit of heterotrophy to reef corals had previously been overlooked. Findings suggest that heterotrophy provides a greater benefit to the coral host than to the symbiont and is unable to compensate for diminished dissolved inorganic nutrient availability, demonstrating a significantly greater dependence of the symbiosis to the latter nutrient source. A balanced N/P ratio, both in dissolved inorganic and particulate organic form, was shown to be essential for the stability of the symbiosis and for the nutritional benefit provided by heterotrophy. Particularly nitrogen enrichment resulted in severe nutrient stress and compromised thermal stress resilience, implying a vital reliance on a continued supply of phosphorus and emphasising the necessity of managing nitrogen pollution and monitoring N/P ratios. Zooxanthellae ultrastructural biomarkers established in this thesis (cell size, lipid body, starch granule and uric acid crystal accumulation, accumulation body fragmentation) hold potential for the aid in the identification of, and discrimination between different forms of nutrient stress in reef corals. Yet, ultimately corals need to adapt to warmer oceans. Diverse Symbiodinium genotypes convey varied thermal tolerance to their coral host. Yet, the mechanisms underpinning their thermal sensitivity remain largely elusive. The second aim of this thesis was to examine the role played by the algal membrane composition. The intact polar lipid biochemistry of a thermally-sensitive (clade C) and -tolerant (clade D) type were characterised by HPLC-ESI tandem mass spectrometry. Distinctions in chloroplast membrane composition could be related to differential inherent thermal tolerance. Moreover, vast differences in the lipid biochemistry of extraplastidic membranes were identified, exemplifying unprecedented metabolic differences among Symbiodinium clades. Biochemical markers of a thermally tolerant phenotype (MGDG/DGDG ratio, glycolipid saturation) could advance our understanding and projections of the potential of reef corals to acclimate and adapt to future climate change scenarios.
Rosset, Sabrina Laura
22555676-237a-498b-8252-c8c7cb9dca08
Rosset, Sabrina Laura
22555676-237a-498b-8252-c8c7cb9dca08
Wiedenmann, Joerg
ad445af2-680f-4927-90b3-589ac9d538f7

Rosset, Sabrina Laura (2016) Plasticity & adaptations of the coral-zooxanthellae symbiosis: responses to nutrient availability & insight into inherent thermal tolerance. University of Southampton, Ocean & Earth Science, Doctoral Thesis, 207pp.

Record type: Thesis (Doctoral)

Abstract

Sustaining an environment which conveys a high resilience to reef corals is critical in order to mitigate the immediate threat of climate change to reef ecosystems. The nutrient environment plays a significant role in sustaining the stability of the coral-zooxanthellae symbiosis, making anthropogenic nutrient pollution as well as the climate change driven nutrient impoverishment of oceanic waters pressing threats to coral reef persistence. Yet, many aspects of coral nutrient biology remain poorly understood, impeding science driven management strategies. This thesis aimed to advance our knowledge on how different nutrient environments affect the functioning of the coral-algal symbiosis by teasing apart the interacting effects of two principal nutrient sources (dissolved inorganic nutrient uptake and heterotrophic feeding), as well as of the two essential nutrients, nitrogen and phosphorus, both in dissolved inorganic and particulate organic forms. This was achieved through long-term exposure (up to 1.5 years) of the Euphyllia paradivisa-clade C1 Symbiodinium association to replete (+N+P), limited (-N-P), or imbalanced (+N-P/-N+P) dissolved inorganic nutrient availabilities in combination with targeted host feeding with balanced or nitrogen enriched prey items. Thereby, this work stood apart from past investigations by yielding definitive phenotypes representative of different nutrient availabilities. Moreover, the importance of food quality when considering the benefit of heterotrophy to reef corals had previously been overlooked. Findings suggest that heterotrophy provides a greater benefit to the coral host than to the symbiont and is unable to compensate for diminished dissolved inorganic nutrient availability, demonstrating a significantly greater dependence of the symbiosis to the latter nutrient source. A balanced N/P ratio, both in dissolved inorganic and particulate organic form, was shown to be essential for the stability of the symbiosis and for the nutritional benefit provided by heterotrophy. Particularly nitrogen enrichment resulted in severe nutrient stress and compromised thermal stress resilience, implying a vital reliance on a continued supply of phosphorus and emphasising the necessity of managing nitrogen pollution and monitoring N/P ratios. Zooxanthellae ultrastructural biomarkers established in this thesis (cell size, lipid body, starch granule and uric acid crystal accumulation, accumulation body fragmentation) hold potential for the aid in the identification of, and discrimination between different forms of nutrient stress in reef corals. Yet, ultimately corals need to adapt to warmer oceans. Diverse Symbiodinium genotypes convey varied thermal tolerance to their coral host. Yet, the mechanisms underpinning their thermal sensitivity remain largely elusive. The second aim of this thesis was to examine the role played by the algal membrane composition. The intact polar lipid biochemistry of a thermally-sensitive (clade C) and -tolerant (clade D) type were characterised by HPLC-ESI tandem mass spectrometry. Distinctions in chloroplast membrane composition could be related to differential inherent thermal tolerance. Moreover, vast differences in the lipid biochemistry of extraplastidic membranes were identified, exemplifying unprecedented metabolic differences among Symbiodinium clades. Biochemical markers of a thermally tolerant phenotype (MGDG/DGDG ratio, glycolipid saturation) could advance our understanding and projections of the potential of reef corals to acclimate and adapt to future climate change scenarios.

Text
SRosset PhD Thesis 2016.pdf - Other
Download (8MB)

More information

Accepted/In Press date: 24 October 2016
Organisations: University of Southampton, Ocean and Earth Science

Identifiers

Local EPrints ID: 402319
URI: http://eprints.soton.ac.uk/id/eprint/402319
PURE UUID: b68844a4-b2de-4d63-9289-b974021434eb
ORCID for Joerg Wiedenmann: ORCID iD orcid.org/0000-0003-2128-2943

Catalogue record

Date deposited: 15 Nov 2016 15:46
Last modified: 15 Mar 2024 06:02

Export record

Contributors

Author: Sabrina Laura Rosset
Thesis advisor: Joerg Wiedenmann ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×