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Abstract 

The amount of integrated solar power generation capacity 

within the UK distribution networks is expected to continue to 

increase within the next few years. However, the grid has a 

fixed power transfer capacity, and to avoid the extra cost of 

power system upgrade or curtailment of renewable power, it 

would be necessary to store the surplus power from such non-

dispatchable renewable resources using appropriate energy 

storage technologies. In this work, a novel control strategy 

based on extended optimal power flow is introduced to control 

the charging of electric vehicles located at car parks to increase 

the solar power generation capacity within a radial distribution 

network while satisfying the power system constraints and 

electric vehicle user requirements.  

1 Introduction 

The number of electric vehicles (EVs) in the UK is increasing 

to satisfy carbon emission targets in the transport sector. On 

average, EVs are parked a significant amount of time during a 

typical day and usually have an energy storage capacity more 

than the regular requirement of their users, so there exists the 

possibility to utilise them as responsive loads to improve the 

performance and efficiency of the power system. 

Transmission networks in the UK are already operating close 

to their capacity constraints, and adding renewable power 

generators at transmission level would require upgrading these 

networks with significant investment, hence connecting 

generation to distribution networks has become popular. 

Current distribution networks have been designed on a ‘fit and 

forget’ basis, so some technical issues could arise as a result of 

adding more distributed renewable generation within the 

network. Such issues include voltage rises due to the 

connection of generators or reverse power flows, which could 

result in the violation of network constraints. Therefore, there 

is a need to make distribution networks active by inclusion of 

responsive distributed generators (DGs) or controllable 

demands [1].  

Intermittent renewable resources such as solar farms only 

generate a fraction of their maximum output during most of 

their operational life, so the distribution networks are 

underutilised most of the time [1]. To reduce electricity costs 

for consumers, the utilisation of the existing distribution assets 

should be maximised [1]. Active Network Management 

(ANM) techniques operate the network closer to its constraints 

by real time monitoring and control of network parameters, 

such as currents, voltages, DG outputs and responsive or non-

responsive load demands. Thus their utilisation will allow 

more renewable power resources to be connected to the 

existing distribution networks by maximising the utilisation of 

network assets [2]. 

EV car parks, which are also connected to the distribution 

level, can participate in such ANM schemes. It is possible to 

take advantage of the broad complementarity between the daily 

population profile of EVs in such car parks and the generation 

output profile of nearby solar farms by designing a control 

strategy to charge these EVs to maintain the grid parameters 

within their acceptable constraints. In this way, the controlled 

variable demand of EV car parks can help to increase the 

integrated solar power capacity within the network. 

Non-optimal connection of EVs within the power system can 

potentially affect the quality of energy supply and damage 

power system equipment. In addition, it can also result in 

violation of the power system constraints, so an optimal 

integration of EVs in the network should be implemented to 

make sure that they can improve the power system operation.  

The aim of Optimal Power Flow (OPF), which is a technique 

for optimal operation and planning of power systems [3], is to 

optimise objective functions such as the amount of losses on 

the power system by setting some control variables in an 

optimal way while satisfying load demand and grid operating 

constraints [3]. The extended OPF formulation is a modified 

version of the standard OPF formulation, which includes 

additional variables, costs and/or equality and inequality 

constraints [4].  

In this work, a novel extended OPF algorithm for control of 

EVs in car parks operating within radial distribution networks 

is proposed and its performance is assessed using a simulator 

developed within the MATLAB environment. The objective of 

the control strategy is to increase the capacity of solar power 

generation within the network while avoiding the cost of grid 

upgrade. The control strategy considers the EV capacity, 
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Battery State of Charge (SoC), EV movements and the 

requirement of EV users and power system operator. 

2 Methodology 

In this work, a number of EV car parks and solar farms are 

added to a feeder of a radial distribution network. The 

controller tries to inject some of the surplus power from these 

solar farms to the EV car parks. The following steps are 

proposed to control these EVs within a feeder of a radial 

distribution network so as to maximise the utilisation of grid 

assets while respecting the power system constraints. The aim 

is to increase the local solar penetration whilst charging the 

EVs with green energy. 

1) A number of solar farms will be added to a feeder of a radial 

distribution network without any storage until they breach 

the power system constraints during the simulation period 

or require curtailment to meet the constraints. 

2) A number of EV car parks will be added to the same feeder 

of the network. They will have a reasonable distance from 

each other and will not be placed on the same buses as solar 

farms in order to reflect locational constraints. It is assumed 

that all car parks will have the same total EV capacity. The 

aggregate rating of filling stations will be chosen to be close 

to the aggregate maximum solar power generation during 

the simulation to make sure that the car parks are able to 

accept the maximum surplus of the feeder. 

3) An extended Optimal Power Flow (OPF) controller with a 

cost function will be used to maximise the electricity 

demand of the EV car parks and minimise the distribution 

losses at each time step while satisfying the power system 

constraints and respecting the requirements of EV users. 

The reason to maximise the demand of each station is to 

increase the amount of electricity being sold to EVs through 

car parks and consequently maximise the profit of car park 

owners. The electricity demand of each car park will be 

determined from the optimisation results. 

Figure 1 shows the algorithm used at each time interval of the 

simulation to find the charging demand of EVs within the 

network. 

3 Modelling details 

The United Kingdom Generic Distribution System (UKGDS) 

is a resource for simulation and analysis of the impact of 

distributed generation on the UK power network. The models 

represent the most common architectures used by the UK 

Distribution Network Operators (DNOs), but they are slightly 

altered to facilitate testing and evaluation of new concepts [5].  

As shown in Figure 2, a High Voltage (HV) Underground (UG) 

UKGDS is used as a case study in this work. A MATLAB GUI 

simulator, which uses the MATPOWER power flow engine [4], 

is developed to assess the performance of the proposed control 

strategy. 

The electricity demand profile for the United Kingdom [6] is 

scaled down to the level acceptable by the UKGDS system, and 

then it is used in the simulation process to represent the non-

EV demand on each node of the network. The share of the non-

EV loads on each bus is equal to the proportion of loads defined 

in the UKGDS standard load profile [6].  

In this work, the EV car parks and solar farms are modelled on 

only one feeder of the system (feeder number 8, which is the 

last one) to assess the performance of the proposed control 

strategy. Table 1 shows the details of car parks and solar farms. 

The car parks are added on three buses, and the solar farms are 

also added at bus 58 and 63 of the UKGDS model. To scale the 

solar farms to the UKGDS model and cause a violation of 

power system constraints without utilisation of EVs, their 

nominal generation capacity was selected to be 35 MW.  

 

 
Figure 1: The algorithm used at each time interval to control 

the demand of car parks 

 

 
Figure 2: UKGDS HV UG network with solar farms and EV 

car parks 

 

To simulate the solar power generation, the power output data 

from two solar sites in the UK was obtained from Microgen 
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Database provided by Sheffield Solar group located at the 

University of Sheffield [7]. The output power from each site 

was scaled up to represent the solar power generation capacity 

in Table 1.  

 

Name Bus number Nominal 

Number of 

EVs 

Rating 

(MW) 

Solar farm 1 

Solar farm 2 

Car park 1 

Car park 2 

Car park 3 

58 

63 

55 

61 

66 

- 

- 

2000 EVs 

2000 EVs 

2000 EVs 

35 

35 

6 

6 

6 

Table 1: Details of car parks and solar farms 

 

To carry out the analysis for the system under investigation, the 

following assumptions were made by the authors. It is assumed 

that each car park can accommodate 2000 EVs, and each EV 

will be charged with a 3kW charger, so the total power capacity 

of each car park is 6MW. The nominal capacities of all EVs are 

assumed to be equal at a capacity selected by the simulator user 

in units of kWh.  

All of the parked EVs are assumed to be connected to the grid 

and are able to be instructed by the control centre to be charged 

if required. This means that there exists a robust and reliable 

communication system between the Distribution Network 

Operator (DNO) control centre and each parked vehicle. This 

system sends some information about each EV to the control 

centre and receives an instruction from the control centre to 

adjust the demand of each EV within the system. 

It is assumed that the EVs inside car parks belong to people 

who are working in nearby commercial or business centres. 

The simulator allocates the same travel pattern with the same 

timings to each EV for all simulation days, but different 

vehicles have different start and duration times for their daily 

journey. It is assumed that EVs move into the car parks in the 

morning at a random but constant time between 7am to 11am 

every day, and then they leave the car parks at a random time 

between 4pm to 6pm with 10 minute resolution. The travel 

duration of each EV is a random time between 10 minutes to 

1.5 hours with a resolution of 10 minutes.  

The simulator does not change the SoC of the EV battery when 

the EV is parked and not instructed by the control centre to be 

charged. The simulator user can input a minimum and 

maximum SoC limit for the EV batteries. When each car gets 

to a car park, the software allocates a random initial SoC 

between the minimum and maximum SoC limits to each 

battery. The minimum SoC limit selected by the user is the 

absolute minimum value which should not be reached even at 

the end of a journey, and it is the same for all of the EVs within 

the system. Therefore, the simulator has to find another 

secondary minimum SoC limit for each EV based on the 

amount of energy it consumes during its next journey to make 

sure that the EV batteries do not reach this limit. In the control 

strategy, the simulator uses this secondary limit which is not 

necessarily the same value for all EVs. 

The vehicles are assumed to have constant weight, speed and 

route in their journeys, so the energy (kWh) spent by each EV 

in its journey back home are assumed to be the same each day. 

To find this energy consumption the simulator assumes that 

each EV travels with the average speed of 20 miles/h [8] during 

a commute, and on average it consumes 0.25 kWh energy per 

mile it travels [9]. All of batteries in an EV are modelled with 

one battery in this work. Therefore, when an EV is moving the 

SoC of its battery reduces according to the following equation 

after each simulation time step: 

𝑆𝑜𝐶𝐸𝑉𝑖

𝑘+1 = 𝑆𝑜𝐶𝐸𝑉𝑖

𝑘 −
�̅�×�̅�

𝐶
× δ × 100   (1) 

where 

‘k’ is the time interval number in the simulation (each one 

represents 10 minutes) 

𝑆𝑜𝐶𝐸𝑉𝑖

𝑘  is the SoC of the battery of the 𝑖𝑡ℎ EV in percentage at 

the time interval k. 

�̅� is the average energy consumed by each vehicle in 

kWh/mile. 

�̅� is the average speed of each vehicle in mile/hour. 

‘C’ is the capacity of the battery in each EV in kWh. 

δ is the time interval of the simulation which is 1/6 of an hour. 

In addition, when an EV is parked and being charged, the 

simulator uses the following equation to calculate the change 

in the SoC of its battery after each time step: 

𝑆𝑜𝐶𝐸𝑉𝑖

𝑘+1 = 𝑆𝑜𝐶𝐸𝑉𝑖

𝑘 +
𝑅

𝐶
× δ × 100   (2) 

where  

‘R’ is the rate of charge of the EVs in kW. 

Table 2 shows some inputs entered into the simulator before 

starting the simulation. 

Name Value 

Nominal capacity of each EV (C ) 

Minimum SoC limit (𝑀𝑖𝑛_𝑆𝑜𝐶) of each EV 

Maximum SoC limit (𝑀𝑎𝑥_𝑆𝑜𝐶) of each EV 

60 (kWh) 

20% 

95% 

Table 2: Simulator inputs 

 

Two scenarios are considered in the simulations. In the first 

scenario, the system only has two solar farms without any EV 

car parks, and the fluctuation in the difference between the 

local generation and demand must as far as possible be 

compensated by import/export of power from the distribution 

substation. In the second scenario, EV car parks are also 

operating in the system to capture some of the surplus solar 

power generated within the feeder to alleviate the problems 

caused by the distributed solar generation within the network.  

A cost function (𝐶𝑜𝑠𝑡(k)) is defined to maximise the electricity 

demand from car parks while minimising the losses within the 

distribution system. The objective of the optimisation is to find 

the optimal demand of each station to minimise 𝐶𝑜𝑠𝑡 (£) at 

each simulation time step. 

𝐶𝑜𝑠𝑡(𝑘) = 𝐶1 ∗ δ ∗ ∑ 𝑃𝐿𝑜𝑠𝑠𝑖

𝑘𝑁𝐵
𝑖=1 − 𝐶2 ∗ δ ∗ ∑ 𝐶𝐷𝑖

𝑘𝑁𝐶
𝑖=1  (3) 

where 

𝐶𝑖 are the cost function coefficients. 

𝑁𝐵 is the number of branches on the power system. 

𝑃𝐿𝑜𝑠𝑠𝑖

𝑘  is the amount of power loss on branch ‘i’ of the power 

system at the time interval ‘k’ in MW. 

𝑁𝐶 is the number of car parks on the feeder. 

𝐶𝐷𝑖
𝑘 is the demand from car park ‘i’ during the current time 

interval of ‘k’ in MW. 
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𝐶1 is the cost of electricity loss and selected to be £35/MWh 

[10], and 𝐶2 is the price of electricity sold to EVs via car parks 

and is equal to 70 £/MWh. 

It is assumed that the EVs, which have low SoC and are not 

able to finish their next journey without being charged, will be 

charged immediately when they reach a car park irrespective 

of the result of the optimisation process. This type of charging 

is referred to as ‘compulsory charging’ in this work. After 

running the extended optimal power flow the demand of each 

car park will be known, and the number of cars that can be 

charged, in addition to the above mandatory charging ones, 

will be determined. The EVs with lower SoC have priority for 

being charged at each car park. 

There are some limits on the demand of car parks and also 

power system constraints that should be respected during the 

optimisation process. Before detailing those limits, some 

additional variables are defined here. 

The surplus solar power on the last feeder of the network can 

be calculated from the following equation. The controller 

needs to know the amount of solar generation and non-EV 

demand on each bus of the feeder at each time step in order to 

calculate the surplus solar generation. 

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(k) =  ∑ 𝑆𝑜𝑙𝑎𝑟𝑖
𝑘𝑁𝑆

𝑖=1 − ∑ 𝐷𝑖
𝑘77

𝑖=53   (4) 

where  

𝑆𝑜𝑙𝑎𝑟𝑖
𝑘 is the output of solar farm ‘i’ in MW at the current time 

step k. 

𝑁𝑆 is the number of solar farms on the considered feeder. 

𝐷𝑖
𝑘  is the amount of demand (excluding the demand of EVs) in 

MW on bus ‘i’ of the last feeder (from bus 53 to bus 77) at the 

current time step k. 

The ‘𝑆𝑢𝑟𝑝𝑙𝑢𝑠’ value could become negative at some points 

when the aggregate solar power generation is below the 

aggregate local non-EV demand. In addition, there is a 

possibility that the aggregate demand from the EVs, which 

need compulsory charging might become higher than the 

surplus power on the feeder. Therefore, another variable called 

‘Aggregate Non Compulsory Car park Demand Limit’ 

(𝐴𝑁𝐶𝐶𝐷𝐿) is defined to be used as the limit in the simulations 

to make sure the that the EVs, which do not need compulsory 

charging, will be changed in the case that there is surplus solar 

power left on the feeder after satisfying non-EV demand and 

the demand of EVs that require compulsory charging. In other 

words, the EVs which do not need compulsory charging will 

only get charged with renewable power, and when the 

‘𝑆𝑢𝑟𝑝𝑙𝑢𝑠’ value is negative, only the EVs which need 

compulsory charging will be charged. This decision is made to 

ensure that EVs will be charged with renewable power 

available on the system rather than the power from 

conventional power plants, which result in the production of 

significant amount of carbon dioxide. 

𝐴𝑁𝐶𝐶𝐷𝐿(k) = max (𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑘) − ∑ 𝐶𝐶𝐷𝑖
𝑘𝑁𝐶

𝑖=1 , 0) (5) 

where 

𝐶𝐶𝐷𝑖
𝑘  is the compulsory charging demand from car park ‘i’ 

during the current time interval of ‘k’ in MW. 

𝐴𝑁𝐶𝐶𝐷𝐿 will always have a non-negative value. This means 

that if there is no surplus power left on the feeder after 

satisfying compulsory charging, then 𝐴𝑁𝐶𝐶𝐷𝐿(k) will be 

equal to zero. 

The limits for the aggregate demand of the car parks are 

defined by the following equation. 

0 ≤ ∑ (𝐶𝐷𝑖
𝑘 − 𝐶𝐶𝐷𝑖

𝑘)𝑁𝐶
𝑖=1 ≤ 𝐴𝑁𝐶𝐶𝐷𝐿(k)  (6) 

In the cases where the aggregate surplus power becomes 

negative or zero, the demand of the EVs (excluding the ones 

which must be charged) will be zero to avoid the case of 

charging EVs with non-renewable power. In such cases, some 

limited power will also be imported from the substation to 

supply some of the local non-EV or compulsory EV charging 

demands which were not fully supplied due to lack of local 

solar power generation. 

The thermal and voltage constraints of the power system are 

also applied in the optimisation control strategy.  

4 Simulation results and discussions  

In this section, the results of the simulated scenarios for a 

duration of 24 hours are presented and discussed. 

Figure 3 shows the demand from the three EV car parks within 

the network during the simulation. The result show that the 

energy delivered to car park 2, which is located at bus 61, is 

higher than the one delivered to other stations. This means that 

the location of this particular car park makes it more suitable 

to help alleviate the problems created on the network as a result 

of adding solar farms to the feeder. 

In addition, by applying the proposed control strategy, different 

amount of energy is delivered to different car parks, which 

means that the income from individual car parks will not be the 

same. 

 
Figure 3: Electric demand of car parks during the simulation 

 

Figure 4 shows the aggregate surplus solar power on feeder 8 

and also the aggregate demand from all car parks. As specified 

in the control strategy in inequality (6), the aggregate demand 

of car parks should stay below the surplus solar power within 

the system unless the demand for compulsory charging of some 

EVs is above the surplus power on the feeder. The total amount 

of solar energy absorbed by the network during one day was 

equal to 104.1 MWh, and about 77.9 MWh of energy was used 

by EVs in car parks.  

With the introduction of the EVs to the system, the voltages on 

different system nodes change. For example, the voltage on bus 

63, which has a nominal voltage of 11KV, is shown in Figure 
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5. This bus was selected because it had the maximum voltage 

rise as a result of adding solar farms without the utilisation of 

EV car parks. After utilisation of smart EV charging system, 

the voltage of the bus remained within the acceptable limits.  

The simulation results show that the voltage limit on many 

buses were breached at least once during the simulation in the 

system without EVs, and that all of them are driven back within 

the limits as the result of utilisation of the control strategy with 

EV car parks. 

 
Figure 4: Aggregate surplus solar power and aggregate demand 

of car parks 

 

 
Figure 5: The voltage on bus 63 before and after adding EV 

car parks to the system 

 

Figure 6 shows the amount of apparent power on the branch of 

power system which has the maximum peak value, in 

percentage terms, without using EVs during the simulation. It 

is obvious that the after using the EV car parks within the 

system the apparent power of this branch was controlled to 

remain within the acceptable limits. The simulation results 

show that the apparent power limit on some branches (from 53 

to 63) were breached at least once during the 24 hour 

simulation in the system with solar farms but without EVs, and 

all of them were driven back within the limits as the result of 

utilisation of the control strategy with EV car parks. 

On the other hand, there were some branches of the power 

system which were underutilised in the system without EVs 

and their apparent power peak was only a fraction of the 

nominal capacity limit of the branch. Figure 7 shows the 

apparent power of branch 64 with and without utilisation of EV 

car parks within the network. It has reached a much higher 

average apparent power while operating with EV car parks.  

The one day simulation results show that the probability of 

voltage constraint violation and thermal limit violations [11] 

were 22.9% and 20.8%, respectively, before adding EV car 

parks to the power system. However, after smart charging of 

EVs, those values were found to be zero due to successful 

enforcement of the constraint limits by the system central 

controller. This shows the effectiveness of the control strategy 

to increase the utilisation of network assets and to remove the 

need for grid upgrades and associated costs while respecting 

the power system constraints and charging EVs with carbon 

free electricity. 

 

 
Figure 6: Apparent power on a branch of power system with 

the biggest peak percentage during the simulation  

 

 
Figure 7: Apparent power on an underutilised branch of the 

power system during the simulation 

 

The energy flow from the network to the EV car parks caused 

a reduction of 4.1 MWh in the total energy loss of the 

distribution network. This is around 72.2% less than the 

distribution loss on the system without EVs. Despite the fact 

that the EVs act as additional demand on the electrical network, 

they reduced the distribution losses significantly in this study. 

The reduction in distribution losses is due to consumption of 

power generated by solar farms with local EV demand rather 

than exporting all of the surplus power to the other feeders. 
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One of the advantages of the presented control strategy used in 

this work is that there is no need to forecast the solar power 

availability within the system, and it is assumed that the grid 

control centre can just use the real-time data from the solar 

power generation units, the local non-EV demand and each EV 

requirement and SoC to calculate the set-point for the demand 

of each car park. 

Obviously, the system operator cannot add unlimited capacity 

of solar farms and EV demand to the system expecting that the 

controller should achieve the power system constraint limits. If 

more solar farms were added to the system, then they would 

generate more power, and more EVs could be added to the 

network to absorb this extra energy. However, the power 

system operator should make sure that the network limits will 

not be violated as a result of adding extra solar power capacity 

or EV demand in the scenarios using demand side management 

techniques. 

Such smart charging techniques can help in increasing the 

amount of renewable power generation within the power 

system and consequently decrease carbon dioxide emission in 

electricity sector while avoiding the costs of grid upgrade. The 

system operator might also offer some incentives such as 

electricity cost reduction to the EV car park owners to 

participate in such schemes, which could eventually lead to a 

decrease in cost of EV charging, further encourage their 

adoption.  

 

5 Conclusions 

In this paper, a novel approach that uses an extended OPF was 

proposed to control the demand of EV car parks to increase the 

amount of solar power generation capacity within a radial 

distribution network while satisfying the power system 

constraints and EV user requirements. The effectiveness of the 

strategy has been proved through formulation of the problem 

and then simulation in MATLAB using a UKGDS case study. 

The control strategy was able to increase the network asset 

utilisation while considering the EV user requirements and 

completely satisfying the voltage and thermal limit constraints 

during the simulation. The energy flow from the network to the 

EVs caused a significant reduction in the total energy loss of 

the distribution network during the simulation. Despite the fact 

that the EVs act as additional demand on the electrical network, 

they reduced the distribution losses significantly in this study. 

The reduction in distribution losses is due to the consumption 

of some of the surplus power generated by solar farms by the 

EVs on the local feeder, instead of exporting all of the surplus 

power to other parts of the network. 
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