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Using a model for the insert chemistry developed by the authors and based on the 
knowledge of the BaO – CaO – Al2O3 ternary system the ELT discharge cathode insert from 
the Deep Space 1 life test has been simulated. The computed data show a good agreement 
with the experimental one; the agreement increase with the imposition of boundary 
conditions closer to the experimental evidence. Tungsten deposition effect have been 
introduced into the model using experimental data and further improving the agreement 
between computed and measured data. The deposition trend found suggests the possibility of 
a link between barium depletion and tungsten deposition.  

Nomenclature 
A = Al2O3 
B = BaO 
BC =  boundary conditions 
C = CaO 
Da = diffusion coefficient 
EDa = activation energy of the diffusion process 
IDS = inner diameter surface of the insert 
k = Boltzman constant 
ODS = outer diameter surface of the insert 
OP = orifice plate surface of the insert 
q = electron charge 
s.s. = solid solution 
T = temperature 
t = time 
US = upstream surface of the insert 
Δw = length of the insert covered by tungsten deposition starting from the OP 
Π = insert porosity 
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I. Introduction 
OLLOW cathodes are one of the most important components in the field of electric propulsion. They are used 
as electron sources and neutralizers inside ion thrusters and Hall effect thrusters and in the future probably as 

stand alone microthrusters1-4 hence their lifetime is a key factor in all the application mentioned above. 
 One of the most important life limiting mechanism in hollow cathodes is depletion of low work function 
compounds from the insert. In a paper recently presented by the authors5 a model to predict barium depletion from a 
hollow cathode’s insert has been developed. 
 In this paper the model will be used to simulate barium depletion from the ELT discharge cathode and the 
numerical result will be compared to the experimental evidence collected during the Deep Space 1 Ion Engine 
30,000 Hrs Life Test6. 

II. The chemical model5 
 Barium oxide diffusion and evaporation from the insert has been numerically modelled5 starting from the 
knowledge of the behavior of the ternary system BaO – CaO – Al2O3 7-9. 

                                             (a)                                                                

dfg                                 (b) 
Figure 1.  BaO-CaO-Al2O3 ternary diagram.  (a) the whole diagram at 1250 °C, (b) particular of the diagram 
 

Each point of the diagram in Fig. 1 (a) represents a state of the system where the concentration of A, B and C are 
inversely proportional to the distance of the point from each corner. Each area in the diagram represents a different 
state of the system hence which compounds are present. 

The list of compounds present in each area is reported below9, 10 

 

 

 

 
 

H 



 
The 30th International Electric Propulsion Conference, Florence, Italy  

September 17-20, 2007 
 
 

3

Table 1 Compounds present in each area of the ternary diagram. The up lined formulas refers to a well 
define composition of the corresponding solid solution 

Area N° Compounds Area N° Compounds 
1 AB3 s.s. and AB4  s.s. 8 B, C and AB4 s.s. 

2 AB3  s.s., AB4  s.s. and CAB3  9 C and AB4 s.s. 

3 B3A s.s. and B3CA s.s. 10 C, AB4 s.s. and CAB3 s.s. 

4 C, AB3 s.s. and B3CA s.s. 11 C and CAB3  s.s 
5 B4A s.s. and B8A s.s. 12 C, B3A and BA 
6 B and B8A s.s. 13 C, BA and C3A 
7 B, AB4  s.s. and AB8 s.s. 14 AB, C3A and CA 

 
From the knowledge of the compounds present it is possible to calculate the evaporation rate of barium oxide 

from the insert surface6,9,10. This evaporation creates a barium oxide concentration gradient generating a BaO motion 
from the insert core to the insert surface. 

The motion of barium oxide from the interior part of the insert to the surface is the result of various processes: 
Knudsen flow of gaseous Ba and BaO through the pores, solid diffusion of BaO inside the BaO-CaO-Al2O3 
impregnate, solid diffusion of BaO inside tungsten and surface diffusion of BaO along the pores surfaces. 

These processes, being too complicated to be modelled separately, were represented globally with a single 
diffusion coefficient reducing the BaO depletion problem to a diffusion problem where the evaporation rate 
represents one of the boundary conditions. 

The diffusion coefficient trend with temperature and insert porosities has been derived by comparison with 
experimental data11. The diffusion coefficient formula is reported below 
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III. Numerical analysis 
In Ref. 6 by means of EDX scanning the Ba/W ratio has been measured in various point of the insert after 30372 

hours of operation (Fig 2). 
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Figure 2. Ba/W ratio value for different radial and axial position6 
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The barium-over-tungsten ratio has been also measured before the beginning of the test as shown by the black 
points in Fig 2. Looking at these data two hypotheses relative to the initial barium content in the insert have been 
made. 

The first hypothesis is that at the beginning of the test the insert is completely filled with the impregnate, hence 
the initial BaO profile is flat (dashed line in Fig. 3) with a value that is the average of the measured values. 

The second hypothesis is that due to the impregnation process the BaO profile is not flat; in this case its trend has 
been derived interpolating the measurements (solid line in Fig. 3). 

The two profiles are represented below 
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Figure 3. Different initial BaO profile. 

 
During the destructive test of the ELT cathode6 barium oxide deposits were found on the internal surface of the 

cathode tube and on the external surface of the insert showing how BaO evaporation occurs also from the outer 
diameter surface. 

The insert chemistry has been simulated using the temperature profiles given in Ref 12 and with both the flat and 
the interpolated initial BaO profile. 

Evaporation has been assumed to occur always from the inner diameter and from the upstream surface while 
different simulation have been done regarding the conditions of the outer diameter and orifice plate surface. 

The complete set of boundary conditions used is reported in Table 2 where with “open” we indicate a surface 
where evaporation occurs and with “closed” a surface where it does not. 

 
Table 2.  Different set of boundary conditions 

 Boundary 
Conditions set 1 

Boundary 
Conditions set 2 

Boundary 
Conditions set 3 

Boundary 
Conditions set 4 

Flat BaO 
profile 

IDS = open 
US = open 

ODS = closed 
OP = closed 

IDS = open 
US = open 

ODS = open 
OP = closed 

IDS = open 
US = open 

ODS = closed 
OP = open 

IDS = open 
US = open 

ODS = open 
OP = open 

Interpolated 
BaO profile 

IDS = open 
US = open 

ODS = closed 
OP = closed 

IDS = open 
US = open 

ODS = open 
OP = closed 

IDS = open 
US = open 

ODS = closed 
OP = open 

IDS = open 
US = open 

ODS = open 
OP = open 
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Figure 4. Comparison between numerical and experimental results 
BC set 1. solid line = flat profile, dashed line = interpolated profile 
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Figure 5. Comparison between numerical and experimental results 
BC set 2. solid line = flat profile, dashed line = interpolated profile 

 
The best results were obtained with BC set 1 and 2 where the orifice plate surface is “closed”. Comparing Fig. 4 

and 5 it can be seen how imposing that the external surface of the insert is “open” improve the results accuracy, as 
could be expected from the experimental evidence6. 

Looking at Fig. 5 (b) and particularly to the data relative to 13.5 mm from the OP we can see how the 
interpolated profile gives better results than the flat one producing data that are much closer to the trend of the 
experimental point. 
 The data presented in Fig. 5 (a) show a poor agreement with the experimental points. In particular the predicted 
barium content is much lower than the measured one. 
 This can be explained noting that in the middle of the insert the effect of the upstream and orifice boundaries are 
weaker hence this part of the insert is the easiest to simulate, and that, as reported in Ref. 13 (Fig 6), close to the 
orifice plate there is a region of insert completely cover by tungsten deposition that, occluding the pores, prevent 
barium oxide evaporation. 
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Figure 6. Tungsten deposition thickness along the insert13  

 
 An attempt has been done to include the tungsten deposition inside the model: to do so some hypotheses 

must be developed. 
The first one is relative to the tungsten deposition trend on the IDS. Using the data computed before with the 

interpolated profile and BC set 2 the time evolution of the barium oxide content inside the insert at 1.5 mm from the 
OP has been analyzed. It can be noted that between 3000 and 5000 hours of operation the computed profile is quite 
close to the measured one after ca 31000 hours. 
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Figure 7. Ba/W ratio trend with time at 1.5 mm from the OP 

 
It can be then assumed that during this time tungsten deposition has reached this point of the insert occluding the 

pores and consequently stopping BaO evaporation from this site of the insert. 
Hence assuming that tungsten deposition starts from the downstream end of the insert, that at 4000 hours it has 

reached 1.5 mm from the orifice plate and that at 30352 hours it covers 3.5 mm from the OP the deposition trend is 

 42.02106783.4 tw
−⋅=Δ  (2) 

Where ΔW is the length in millimetres covered by tungsten starting from the orifice plate and t is the time in 
hours. 

Noting that the barium depletion depth has been found to scale as the square root of time11, the trend in Eq. 2, 
(also if derived from numerical data), is quite interesting because it shows a possible relation between barium 
depletion from the insert and tungsten deposition. 
 The second hypothesis is relative to BaO deposition on the cathode tube. The barium oxide evaporated from the 
external surface of the insert creates deposits on the cathode tube as observed in Ref 6. If these deposits are big 
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enough to fill completely the gap between the insert and the cathode tube they will occlude the insert pores 
preventing BaO evaporation. 
 Several numerical simulations have been run using the deposition trend in Eq. 2 and assuming different gap size 
between the insert and the cathode tube. 
 The gap sizes used are 25, 50, 75 and 100 μm. The best results were obtained with 75 and 100 μm. 
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Figure 8. Comparison between numerical and experimental results 
IDS deposition Eq. 2, ODS – cathode tube gap = 75 μm 
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Figure 9. Comparison between numerical and experimental results 
IDS deposition Eq. 2, ODS – cathode tube gap = 100 μm 

 
 The numerical results relative to 1.5 mm in Fig 8, 9 show a flat profile with a value close to the average of the 
measured values. The fact that the computed profile does not remain “frozen” as the one after 4000 hrs can be 
explained noting that in this point of the insert the diffusion motion (that is fast due to the high local value of the 
temperature, and hence of the diffusion coefficient) tends to move barium oxide upstream where it can evaporate 
and to smoothen the profile producing the flat profile computed. 
 Regarding the data relative to 6.5 mm from the OP it can be noted that the experimental trend is quite unusual 
showing a peak of barium content at one quarter of the insert thickness. 
 If we neglect the point relative to 6.5 mm from the OP and 200 μm from the IDS the computed data are in good 
agreement with the experimental ones. 
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 Looking at the data relative to 13.5 and 23.5 mm from the OP we can note that these are not influenced by the 
introduction of deposition effect hence showing the same good agreement with the experimental data shown in Fig 2 
by the data relative to the interpolated profile and BC set 2. 

IV. Conclusions and future work 
The insert chemistry of the ELT discharge cathode from the Deep Space 1 Ion Engine 30,000 Hours Life Test 

has been simulated using as input data the initial barium oxide content and the insert temperatures. The computed 
data show a good agreement with the experiments improving the agreement when the imposed boundary conditions 
are closer to the real functioning of the insert. 

Tungsten deposition effects on the IDS and barium oxide deposition on the cathode tube were added to the 
model starting from the experimental measurement. This improves the model prediction accuracy producing results 
that are in qualitative and quantitative agreement with the measurements except the data relative to 1.5 mm from the 
OP where the computed results give a flat profile with a value close to the average value of the measured data. 

The tungsten deposition length is found to scale with a power of the time. This trend is quite close to the trend 
followed by barium depletion depth hence showing the possibility of a link between these two phenomena. 

Future work will consist in the development of a low work function model deposition to be added to the 
chemical model that will be hopefully presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit in Reno. 
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