UNIVERSITY OF

Southampton

Automated finite difference modelling
on structured grids, and a variety of
compute architectures

Satya P Jammy, Christian T Jacobs and Neil D Sandham

S.p.Jammy@soton.ac.uk

UK Fluids Conference, September, 2016

UNIVERSITY OF

Motivation Southampton

* SBLI is a legacy CFD code developed at the
University of Southampton

* Written in Fortran90, for solving the compressible
Navier-Stokes equations on block structured grids

* Fourth order central differencing for spatial
discretisation

* Currently capable of running on CPU clusters
* However, the architectures are evolving rapidly.

UNIVERSITY OF

Motivation Southampton

 Current architectures include, Multi-core CPU's,
GPU's, XeonPhi cards

* Future architectures: Energy efficient systems from
ARM and others

* Porting existing SBLI code on these architectures
requires a complete rewrite and challenging

* Newer architecture might arrive while we are still
porting to the current architectures

Ways to future proof codes?

UNIVERSITY OF

Southampton

Approach

* Key components of numerical solution are
* Problem description
* Numerical method
* Writing code
* One way to address future proofing is through

separation of concerns using high level
abstractions

UNIVERSITY OF

Southampton

Approach

Problem

Numerical User

method
framework -

Numerical Algorithm
developer

UNIVERSITY OF

Southampton

Approach

Problem

User

Numerical
method
framework -

OpenSBLI
framework

UNIVERSITY OF
Southampton

OpenSBLI

* Written in Python and uses SymPy for the
numerical method

* User specifies
* Equations in Einstein notation

* Order of accuracy of the spatial scheme
(central finite differences)

* Time stepping scheme
* Boundary conditions
* |nitial conditions

* Qutput is C code that can be compiled on various
architectures

UNIVERSITY OF

OpenSBLI Southampton

USER Einstein

Scheme y Jexpansion
g_,Spatiau Problem

Disc

Temporal
Grid Disc »Kernel — = OPSC

Boundary
conditions

Initial
conditions
> 1/0

UNIVERSITY OF
Southampton

OpenSBLI

* The OpenSBLI framework has the following
additional advantages

— Flexible choice of equations
— Spatial order can be easily varied

— Models need not require a rewrite for new
architectures

* For eqg, a 50 line high-level problem definition, for
the 3D compressible N-S equations, results in 20K
lines of generated code for MPI and CUDA

* Details of OpenSBLI framework can be found in
http://arxiv.org/abs/1609.01277

UNIVERSITY OF

OpenSBLI Southampton

Example

Number of dimensions for the problem
ndim = 3

Define the compresible Navier-S5tokes equations in Einstein notation.

mass = "Eq(Der(rho,t), - Conservative(rho*u j,x j))"

momentum = "Eq(Der(rhou i,t}) , -Conservative(rhou i*u j + KD(i, j)*p ,x j) + Der(tau i j,x j))"
energy = "Eq(Der(rhoE,t), - Conservative((p+rhoE)*u j,x j) + Der(g_j,x j) + Der(u i*tau i j ,x j))"
equations = [mass, momentum, energy]

Substitutions

stress tensor = "Eq(tau i j, (1.0/Re)*(Der(u i,x j)+ Der(u j,x 1)- (2/3)* KD(i, j)* Der(u k,x k)))"
heat flux = "Eq(g j, (1. @f{{gama 1)*Minf*Minf*Pr*Re))*Der(T, x_]))

substitutions = [stress tensor, heat flux]

Define all the constants in the equations
constants = ["Re", "Pr","gama", "Minf"]

Define coordinate direction symbol (x) this will be x i, x j, x K

coordinate symbol = "x

Formulas for the variables used in the equations
velocity = "Eq(u i, rhou i/rho)"

pressure = "Eq(p, (gama-1)*(rhoE - rho*{(1/2)*(u j*u j)))"
temperature = "Eq(T, p*gama*Minft*Minf/(rho))"

formulas = [velocity, pressure, temperature]

UNIVERSITY OF

int iter range6d[] = {0, nxd, B, nxl, 8, nx2}; I

ops par loop{taylor green vortex block® 69 kernel, “"Residual of eguation®, taylor green vortex bleck, 3, iter rangeg9,
ops arg dat({wk20, 1, stencil@, "double”, OPS READ),
ops arg dat(wkd47, 1, stencil®, "double", OPS READ]).,
ops_arg dat{wk2l, 1, stencil®, “"double”, OPS READ),
ops_arg dat(wk28, 1, stencil®, “"double”, OPS READ),
ops_arg dat{ul, 1, stencil®, "double", OPS READ),
ops arg dat{wk29, 1, stencil®, "double", OPS READ),
ops arg dat{wkl%, 1, stencil®, "double", OPS READ),
ops arg dat(wk8, 1, stencil®, "double", OPS READ),
ops_arg dat{wkl5, 1, stencil®, “double”, OPS READ),
ops_arg dat(wk35, 1, stencil®, “"double”, OPS READ),
ops_arg dat(wkl®, 1, stencil®, “"double”, OPS READ),
ops_arg dat{wkll, 1, stencil®, "double", OPS READ),
ops arg dat{wkl2, 1, stencil®, "double", OPS READ),
ops arg dat{wk3il, 1, stencil®, “double”, OPS READ), Exa mple Of
ops arg dat(wk8, 1, stencil®, "double", OPS READ),
ops_arg dat{wk3d7, 1, stencil®, “"double”, OPS READ), t - t d
ops_arg dat{wk34, 1, stencil®, “"double”, OPS READ), au O genera e
ops_arg dat{wkl®, 1, stencil®, "double", OPS READ),
ops arg dat{wki®, 1, stencil®, "double", OPS READ), k(I II
ops arg dat{wki%, 1, stencil®, "double", OPS READ), erne Ca
ops arg dat(wkd44, 1, stencil@, "double", OPS READ]), Or Com in
ops_arg dat{uf, 1, stencil®, “"double”, OPS READ). f p t g
ops_arg dat(wk4®, 1, stencil®, “"double”, OPS READ), LJ
ops_arg dat(wk46, 1, stencil®, “"double”, OPS READ),
1,

ops_arg dat(wkd45, stencil®, "double", OPS READ), right ha nd Side Of

ops arg dat{wkd4l, 1, stencil®, "double", OPS READ),

ops arg dat(wk25, 1, stencil®, “double”, OPS READ), : !
ops_arg dat{wkl, 1, stencil®, "deouble", OPS READ). CompreSSIbIe NaVIer-
ops_arg dat{wky, 1, stencil®, “double", OPS READ), .
ops_arg dat{wkl, 1, stencil®, "double", OPS READ), St k I t
ops_arg dat{wk2, 1, stencil®, "double", OPS READ), 0 eS SO u Ion
ops arg dat{wki3, 1, stencil®, "double", OPS READ),

ops arg dat{wké, 1, stencil®, "double", OPS READ),

ops arg dat(wk32, 1, stencil@, "double"”, OPS READ]),

ops arg dat{wk38, 1, stencil®, “double”, OPS READ),

ops_arg dat{wkl4, 1, stencil®, “"double”, OPS READ),

ops_arg dat{wk42, 1, stencil®, “"double”, OPS READ),

ops_arg dat{wk26, 1, stencil®, "double", OPS READ),

ops arg dat{wk43, 1, stencil®, "double", OPS READ),

ops arg dat{u2, 1, stencil®, "double", OPS READ),

ops arg dat(wk22, 1, stencil@, "double", OPS READ]),

ops_arg dat(wk24, 1, stencil®, “"double”, OPS READ),

ops_arg dat{wk27, 1, stencil®, “"double”, OPS READ),

ops_arg dat{wk5, 1, stencil®, "double", OPS READ),

ops arg dat{wk23, 1, stencil®, "double", OPS READ),

ops arg dat{wk®, 1, stencil®, "double", OPS READ),

ops arg dat(wkd, 1, stencil®, "double", 0OPS READ),

ops_arg dat{wkl7, 1, stencil®, “double”, OPS READ),

ops_arg dat{wkl3, 1, stencil®, “"double”, OPS READ),

ops_arg dat{wk36, 1, stencil®, “"double”, OPS READ),

ops_arg dat{wklé, 1, stencil®, "double", OPS READ),

ops arg dat{wkd49, 1, stencil@, "double", OPS WRITE),

ops arg dat{wk48, 1, stencil®, "double", OPS WRITE),

ops arg dat(wk58, 1, stencil@, "double", OPS WRITE),

ops_arg dat({wk51, 1, stencil@®, "decuble”, OPS WRITE),

ops_arg dat(wk52, 1, stencil®, "deouble”, OPS WRITE)):

void taylor green vortex block@ 63 kernel(const double *wk28 , const double *wk47 , const double *wk2l , const double
*wk2B8 ., const double *ul , const double *wkZ9 , const double *wkl9 , const double *wk@ , const double *wkl5 . const

jouble *wk35 , const double *wklB , const double *wkll , const double *wkl2 , const double *wk3l , const double *wk& ,

const double *wk37 , const double *wk34 , const double *wkl® , const double *wk38 , const double *wk3% , const double
*wkd4 , const double *uB , const double *wk48 , const double *wkdt , const deuble *wk45 , const double *wkd4l , const
jouble *wk25 , const double *wk3 , const double *wk7 , const double *wkl , censt double *wk2 , const double *wk33 ,
const double *wkb , const double *wk32 , const double *wk38 , const double *wkld4 , censt double *wkd42 , const double
*wk2b , const double *wk43 , const double *uZ , const double *wk22 , const double *wk24 , const double *wk27 , censt
double *wk5 , const double *wk23 , const double *wk9 , const double *wk4 , censt double *wkl7 , const double *wkl3 ,
const double *wk36 , const double *wkl6 , double *wkd43 , double *wkdd , double *wk58 , double *wk51 , double *wk52)

wka8[0P5_ACC52(0,08,0)] = -wk11[OP5_ACC11(9,0,0)] - wkl4[OPS ACC35(0,0,8)] - wk2[OP5_ACC30(0,0,0)];

whkd9[0P5_ACC51(0,0,0)] = rinvl1*(wk@[0OPS_ACCT(0,0,0)] + wkdd[OPS_ACC20(0,0,8)]) +
rinvl11*{wk3[0PS_ACC27(0,0,0)] + wk47[OPS_ACC1(6,0,0)]) + rinvll*({rc4)*wkl16[OPS_ACC50(0,0,0)] -
rce*wk44[0PS_ACC20(6,0,0)] - rc6*wkd47[0PS_ACC1(6,0,8)]) - wk1B[OPS ACC18(0,8,8)] - wk2B[0OPS_ACCE(©,0,8)] -
wk29[0PS_ACC5(8,0,0)] - wk33[OPS ACC19(0,0,0)];

wk5B[0PS_ACC53(0,08,8)] = rinvl1*{wk13[0PS ACC4B(0,0,0)] + wkd2[0OPS_ACC3I6(0,0.8)]1) +
rinvll*(wk43[0PS ACC38(0,0,0)] + wk5[0PS ACC43(0,8,0)]) + rinvll*{({rcd)*wk26[0P5 ACC37(0,0,8)] -
rcb*wkd42[0PS_ACC36(0,0,0)] - rob*wk43[0PS ACC38(0,0,0)]1) - wk21[0OPS ACC2(0,0,0)] - wk27[0PS ACC42(0,0,8)] -
wk31[0P5 ACC13(0.0.0)] - wk4l[OPS ACC25(0,.0.0)]:

wkSL1[OPS ACC54(0,08,8)] = rinvl1*(wk22[0PS ACC48(0,0,0)] + wk45[0PS ACC24(0,0.8)]1) +
rinvll*(wk46[0PS ACC23(0,0,8)] + wk7[0OPS ACCZE(0.8,8)]) + rinvll*{({rcd)*wk4[0PS ACC46(8,0,8)] -
rcb*wikd5[0PS_ACC24(0,0,0)] - roé*wkd46[0PS ACC23(0,0,0)]) - wkZB[OPS ACC3(0,0,8)] - wk32[0P5 ACC33(0,0,8)] -
wk3B[0PS ACC49(0.8,8)] - wk3[OPS ACC45(0.8.8)]:

wk52[0PS ACCS5(0,8,8)] = rinvl1*rimv12*rinv13*rinv14*wk19[0PS ACCR(B,0,8)] +
rinvl1*rinv12*rinv13*rinv14*wk30[0P5 ACC18(0,0,8)] + rinvll*rinv12*rinv13*rinv14*wk35[0PS_ACCH(0,0,0)] +
rinv1l*(wkB[0PS_ACCT(B,8,8)] + wk44[0OPS_ACC28(0,0,8)])*uB[0PS_ACC21(0.0.8)] +
rinv11*(wk1[0P5 ACC29(0,0,08)] + wk23[0P5_ACC44(0,0,0)])*wk1[0PS_ACC29(6,0,0)] +
rinv11*(wk1[0P5 ACC29(0,0,0)] + wk23[0P5_ACC44(0,0,0)])*wk23[0PS ACC44(0,0,08)] +
rinvl1*(wk12[0PS_ACC12(0,08,8)] + wk37[OP5_ACC15(0,8,0)])*wk12[0P5_ACC12(E, 1+
rinvl1*(wk12[0PS_ACC12(0,08,8)] + wk37[OP5_ACC15(0,8,0)])*wk37[0PS_ACC15(E, 1+
rinv11*(wk13[0PS_ACC48(0,0,0)] + wk42[0P5_ACC36(0,0,0)])*ul[0P5_ACCA(6,0,0
rinvl1*(wk15[0PS_ACC8(0,0,8)] + wk8[0P5_ACC14(0,0,08)])*wkl5[0P5_ACCE(0,0,0
rinvl1*(wk15[0PS_ACC8(0,0,8)] + wk8[0P5_ACC14(0,0,0)])*wkB[0P5_ACCl4(0,0,0
rinvl1*{wk22[0PS_ACC4B(0,0,0)] + wk45[0PS_ACC24(0,08,0)])*u2[0PS_ACC39(0,8,0)] +
rinvl11*(wk3[0PS ACC27(0,0,0)] + wk47[0OPS_ACC1(8,0,0)])*ud[0PS ACC21(0,0,8)] +
rinv11*{wk43[OPS_ACC3B(0,0,0)] + wk5[0OPS_ACC43(0,0,0)]1)*ul[0PS ACC4(0,0,8)] +
rinv11*(wk4G[OPS ACC23(0,0,0)] + wk7[0PS_ACC2Z8(0,0,8)])*u2[0PS_ACC33(0.0.8
rinvll*{{rc4)*wkl6[0P5 ACC58(0,0.0)] - rcb*wk44[0OPS ACC28(0.0.8)] -
rcb*wkd7[0PS ACCL{0,0,0)])*ud[0PS ACC21(0,0,8)] + rinvll*(-rc6*wkl7[0PS ACCAT7(0.0.0)] -
rcb*wk25[0PS ACC26(0.0,8)] + (rcd)*wk34[0PS_ACC16(08,0,08)])*wk34[0PS ACCIG(8,0,08)] +
rinvll*{-rc6*wk17[0P5 ACCA7(0,08,8)] + (rcd)*wk25[0PS ACC26(0,0.,0)] -
rcb*wk34[0PS ACCL6(0,.0,8)])*wk25[0PS ACC26(0.0,8)] + rinvl1l*(({rcd4)*wk17[0PS ACC47(0,0.8)] -
rcE*wk25[0PS ACC26(0,0,0)] - rc6*wk34[0PS_ACC16(0,0,0)])*wkl17[0PS ACC47(0,0,0)] +
rinvll*{{rc4)*wk26[0PS ACC37(0,0.8)] - rcb*wk42[0PS ACC36(E,.0.8)] -
rcb*wk43[0PS ACC3E(0,0,8)])*ul[0PS ACCA(D0,08,8)] + rimvl1*({{rcd)*wk4[OPS ACC46(0,.0,8)] -
rcb*wk45[0PS ACC24(0,8,8)] - rcb*wk46[0PS ACC23(0,8,0)])*u2[0PS ACC3Z(E,0,8)] - wklB[OPS ACC17(8.8,8)] -
wk24[0PS_ACC41(0.8,8)] - wk33[OPS_ACC31(0,.0,8)] - wk3B[OPS ACC34(0,8,8)] - wk4B[OPS_ACC2Z(0.8.8)] -
wkB[OPS_ACC32(0,0,8)];:

1]
a)
a)
]+
]+
]+
)

8,
8,
)
)
)
B
]
]
)

]+

UNIVERSITY OF

Southampton

Example of
auto-generated
kernel for computing
residual of
Compressible Navier-
Stokes solution

UNIVERSITY OF

Results Southampton

1001 —@ Order=2 ||
e MMS tests for 02| Ce omass |
the 2D E 104 -2- gig:z?o_
q -@ Order=12
. - 6|]
advection- z 10
. . = 1078 |
diffusion :
. £ 10 |
equation :
wn _
10 14 |
10-16 L |
102 10

Grid spacing Ax (m)

Figure 7: The absolute error (in the L2 norm) between the numerical solution ¢ and
the exact/manufactured solution @,,, from the suite of MMS simulations. The solid lines
represent the expected convergence rate for each order.

Demonstration of solution convergence. Considering up to
order 12. Image by Jacobs et al. (Submitted):
http://arxiv.org/abs/1609.01277

Results Southampton

 Compressible Navier-
Stokes equations

* 3D Taylor-Green vortex
problem

* Up to 1 billion grid

points
* Re = 1600
* Architectures
« CPU (ARCHER) Vorticity (z component) Vorticity (z component)
2 0 2 4 2 0 5
¢ GPU (K40) L I e o

5-3 3

Figure 8: Visualisations of the non-dimensional vorticity (z-component) iso-contours, from
the Taylor-Green vortex test case with a 2562 grid, at various non-dimensional times. Top
left to bottom right: non-dimensional tune ¢t = 0, 2.5, 10, 20.

Results from a Taylor-Green vortex test case. Image by Jacobs et al.
(Submitted): http://arxiv.org/abs/1609.01277

Conclusions

A new framework for the automated solution of
finite difference methods on various architectures
Is developed and validated

For easy debugging the framework writes the
computations in Latex

A 50 line high-level problem definition, for the
compressible N-S equations, results in 20K lines
of generated code for MPl and CUDA

Separation of concerns enables better model
maintainability, and future proofs the code as
newer architectures arrive

New algorithms and numerical methods can be
readily implemented using the framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

