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We analyse a concept for the detection of Potentially Hazardous Asteroids (PHAs) from a 

space-based network of telescopes on retrograde distant periodic orbits. Planar periodic orbits 

are designed in the Sun-Earth circular restricted three-body problem, starting from initial 

conditions in the Hill’s problem available from the literature. A family of retrograde orbits 

centred at the Earth is selected as baseline, based on their maximum distance from Earth, 

larger than the Earth-L2 distance. Indeed, spacecraft on such orbits can detect PHAs incoming 

from the Sun direction, which could not otherwise be monitored from current Earth-based 

systems. A trade-off on the orbit amplitude, asteroid diameter to be detected, and the 

constellation size is performed considering current visible sensor telescope technology. The 

Chelyabinsk meteor scenario is studied and the potential warning time that could be gained 

with a space-based survey system with respect to an Earth based-survey system is shown.  

1 Introduction 

The international interest towards Near Earth Objects (NEOs) is growing because of the increased awareness of 

the danger some asteroids or comets pose to the Earth. Potentially Hazardous Asteroids (PHAs) have the potential to 

make a close approach to the Earth and a size large enough to cause significant regional or global damage in the event 

of an impact (Belton, 2004). Telescopes’ ability to detect NEOs depends on their distance from the observer, size, 
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albedo and their position relative to the Sun. Ground-based telescopes, operating in various ranges of the 

electromagnetic spectrum, can span about 2 steradians (sr) portion of the celestial sphere (Stokes, 2003, Stokes et al., 

2002). The opposition region has proven to be the most profitable area of the sky to search for NEOs, because of 

objects relative position with respect to the Sun. Since they have a smaller solar phase angle, it is very easy 

discriminating NEOs from other asteroids; moreover, astrometry observations are most powerful due to small 

geocentric distances (Michelsen, 2004). Because the sky regions next to the Sun direction are difficult to observe, it 

may be important to have two or more ground-based telescopes widely spaced in latitude. From the ground, the near 

Sun regions are only observable for a small fraction of the night. Several search programs (Stokes et al., 2002, Perna 

et al., 2013, Vereš et al., 2009) have been undertaken to map the entire population of NEOs, among them the 

Spaceguard Survey catalogued 90% of NEOs with diameter larger than 1 km. 

However, if a Tunguska-class or smaller NEO approaches the Earth from the Sun direction, its observation from 

ground is very difficult or even impossible, this was the case of the meteorite fall in Chelyabinsk, Russia, in February 

2013 (Zuluaga and Ferrin, 2013, Andronikov et al., 2014). Because the sky region next to the Sun direction is difficult 

to observe, space-based systems can integrate ground-based observation for monitoring NEOs from a location in 

between the Sun and the Earth (Stokes, 2003, Perna et al., 2013). Space-based systems can access a larger portion of 

the sky with respect to ground-based systems and background noise is reduced due to the lack of atmosphere. This at 

higher mission cost for launch of large telescopes, orbit injection, maintenance, cost for ensuring appropriate thermal 

and pointing conditions for observations, data processing and down-link to Earth. 

Current and future projects for NEO space-based observation are the Near-Earth Object Surveillance Satellite in 

an Earth-centred sun-synchronous orbit (Stokes, 2003) and the Sentinel mission in a Venus-like orbit2. A constellation 

on sun-synchronous 800 km altitude orbits can cover 2 sr of the total sky at any time, but in opposite hemi-spheres 

during each half orbit. The Sun exclusion zone is about 40 degrees half angle from the Sun–Earth line and the telescope 

must also avoid pointing too close to the Earth. LEO-based observation is the lowest cost space mission, because it 

does not need on-board propulsion to get into the final orbit and it enables high downlink data rates with a low power 

communication sub-system; however, orbit maintenance manoeuvres are required. Alternatively, spacecraft at the 

Sun–Earth Libration point L2 can view the full sky except for the approximately 40 degree half angle cone centred at 

the Sun. It needs a capable launch vehicle, on-board propulsion and large Deep Space Network antennas for tracking 
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and data downlink (Stokes, 2003). Spacecraft at the Sun-Earth Libration point L1 can view a smaller sky portion with 

respect to spacecraft at L2, as there are two exclusion zones due to the Earth and Sun’s position; however, L1 is an 

excellent position because all approaching asteroids may be viewed repeatedly with a good phase angle and hence 

with a good visual magnitude (Stokes, 2003, Dunham et al., 2013). Recently, the Sentinel mission was proposed on a 

heliocentric Venus-like orbit with semi-major axis of 0.7 AU, from where NEOs could be observed with a smaller 

solar phase angle near opposition. From this orbit, Aten asteroids can be discovered that spend most of their time 

inside 1 AU. The major drawback of this Venus-like orbit solution is the great difference in heliocentric longitude 

between the spacecraft and the Earth. In fact, the heliocentric longitude goes from 0 to 180 degrees, making 

communication difficult and hence impairing the ability to communicate imminent hazardous objects. 

An alternative solution is to place a space telescope on a Distant Retrograde Orbit (DRO). DROs is a family of 

periodic orbits that arise from the numerical exploration of the Hill’s limiting case of the Circular Restricted Three 

Body Problem (CR3BP) (Hénon, 1969, Mingotti et al., 2010). Valsecchi et al. (Valsecchi et al., 2012) firstly proposed 

to place a 3-spacecraft constellation on DROs, however no further study was performed on assessing the detection 

capabilities from such orbits and investigating the relation between the orbit amplitude and the size of the constellation 

in terms of number of spacecraft and coverage area.  

In this article, the feasibility of a spacecraft constellation for NEOs detection from a family of Distant Retrograde 

Orbits in the Sun – (Earth + Moon) system is studied. DROs can reach a minimum distance from the Earth larger than 

the Earth–L2 distance. DROs belong to the larger family of Distant Period Orbits (DPOs), studied by Hénon (Hénon, 

1997, Hénon, 1969) in the Hill’s problem, the particular case of the CR3BP where the mass parameter tends to zero 

(Meyer et al., 2009). These orbits received the attention of the astrodynamics community(Demeyer and Gurfil, 2007, 

Woolley and Scheeres, 2010, Xue and Junfeng, 2013, Mingotti et al., 2010) because they are ideal for space-based 

telescopes that need to be far from the Earth to avoid the near Earth environmental effects, yet need to remain bounded 

within some pre-defined distance for communication purposes. Moreover, DPOs are ideal for solar storm warning 

systems that can provide longer warning times than those available from a similar system at the interior Libration 

points of the Sun – (Earth + Moon) system (Kechichian et al., 2005, Demeyer and Gurfil, 2007). 

In this work, we are interested in families of periodic orbits around the secondary body. Due to the large distance 

they reach from Earth, larger than the Earth–L2 distance, DPOs can be selected as operational orbits for space 

observation of PHAs. Indeed, from these orbits, spacecraft carrying visible band telescopes can monitor and protect 
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the space surrounding the Earth. In particular, since part of the orbit is spent in between the Earth and the Sun, it is 

possible to cover a region of space that is usually forbidden using ground-based telescopes (being in the direction of 

the Sun, therefore not observable with optical instruments). This allows monitoring asteroids that may intersect the 

Earth on a trajectory that comes from the Sun-Earth direction and thus increasing the warning time before a possible 

re-entry in the Earth’s atmosphere (Valsecchi et al., 2012). 

Starting from the initial conditions in the Hill’s model, four families of simple periodic orbits around the second 

primary and the L1 and L2 Libration points (Hénon, 1969) are analysed. A differential correction algorithm (Koon et 

al., 2011, Bernelli Zazzera et al., 2004, Scott and Spencer, 2010), coupled with numerical continuation method (Koon 

et al., 2011), is employed to refine the orbits in the Sun – (Earth + Moon) planar CR3BP. The complete map of periodic 

orbits in the energy–amplitude plane is built to classify them in terms of distance and velocity from the second primary 

and orbit period. Based on this, the family-f of retrograde orbits, Distant Retrograde Orbits, is selected as operational 

orbits for space observation of PHAs. 

An analytical model for asteroid detection (Binzel et al., 1989, Belton, 2004, Michelsen, 2004, Buchheim, 2010, 

Sanchez and Colombo, 2013) is used to assess the observation capabilities of spacecraft on DROs in terms of smallest 

asteroid size from a given orbit as function of distance, solar phase angle, asteroid albedo, for a fixed visual magnitude. 

A set of heart-shaped contour curves are computed to identify the minimum asteroid size that can be observed from a 

given orbit and the geometric coverage of the sky region, in particular the added domain within the exclusion zone of 

current Earth-based systems, when the spacecraft is at the inferior conjunction position. Then, if more than one 

spacecraft are placed on an orbit, the spatial envelope coverage area can be numerically computed. A trade-off on the 

number of spacecraft within the constellation and the orbit amplitude for a certain asteroid size to be detected is 

performed. The orbit selection is then made through an optimisation process to assure for each orbital spacecraft 

configuration the spatial envelope feasibility (i.e., spatial envelope without blind zone), considering the asteroid 

diameter and constellation size as input parameters. Finally, the Chelyabinsk asteroid’s is considered as a test scenario, 

to show the warning time that could be gained with a space based survey system respect to an Earth survey system. 

The results show that the warning time is affected by the relative geometry between the asteroid trajectory and the 

spacecraft configuration. Moreover, the spacecraft configuration is influenced by the constellation size, which in turn 

affects the mission cost. 
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The paper is organised as follows: Section 2 summarises the dynamical models of the CR3BP and the Hill’s 

problem used for the orbit selection and design in Section 3. Section 4 analyses the feasibility of a telescope network 

for NEO detection. To this aim, the astronomical model used is first introduced and the metrics to assess the feasibility 

of the constellation are defined and calculated. The sensitivity of these metrics to the orbit size, spacecraft number for 

the space-based survey system is presented. Finally, the mission case for the detection of the Chelyabinsk meteoroid 

is shown in Section 5 and some conclusion are drafted in Section 6. 

2 Dynamical models 

The dynamical models used for the orbit and trajectory design are the CR3BP of the Sun and the Earth-Moon 

barycentre, in its Planar form (PCR3BP) (Szebehely, 1967, Vinti et al., 1998, Battin, 1999, Murray and Dermott, 1999, 

Koon et al., 2011, Meyer et al., 2009), and the Hill’s model (Szebehely, 1967, Hénon, 1969). 

2.1  Planar Circular Restricted Three-Body Problem 

The CR3BP models the motion of a spacecraft (i.e., massless particle) under the gravitational attraction of two 

point masses 1m  and 2m  revolving around their common centre of mass on circular orbits. We further restrict the 

motion of the spacecraft to be in the orbital plane defined by the two primaries (PCR3BP). In what follows, we will 

consider three different reference systems, the synodic, the sidereal and Hill’ system. The synodic system is centred 

at the centre of mass of 1m  and 2m , and rotates with constant angular velocity around it. Figure 1 shows the geometry 

of the problem (Murray and Dermott, 1999, Koon et al., 2011): x and y are the coordinates in the synodic rotating 

system (i.e., black system), whereas X and Y represent the position in the inertial or sidereal system (i.e., grey system). 

The synodic system is adimensionalised with units of length equal to 0 1 AUr = , unit of time equal to

( )3
0 Sun Earth MoonAUτ µ µ µ= + + , and unit of velocity equal to 0 0 0v r τ= . If we introduce the mass parameter for the 

planetary system ( )2 1 2m m mµ = + 3, the normalised position of the primary bodies in the synodic system can be 

defined as 1x µ= −  and 2 1x µ= − . Table 1 summarises the characteristic values of the Sun – (Earth + Moon) system 

that combines the Earth and Moon into the second primary.  

                                                           
3 Note that Sunµ , Earthµ , and Moonµ are the standard gravitational parameter of Sun, Earth and Moon respectively, used 

in the two-body problem and measured in 3 2m s−  (i.e. the product of the gravitational constant G  and the mass M
of the celestial body), while µ  is the dimensionless mass parameter used in the three-body problem. 
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Figure 1. Geometry for the PCR3BP. 

 

Table 1. Characteristic values for the Sun – (Earth + Moon) planetary system. 

μ r0 [km] v0 [km] 0τ  
[rad/s] 

3.04014735e-6 1.496e8 29.784 5.0086e6 

The equations of motion for the spacecraft in the field of PCR3BP are well known (Murray and Dermott, 1999, Koon 

et al., 2011, Szebehely, 1967): 
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2
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where 1n =  is the normalised angular velocity for the synodic system with respect to the sidereal system and ( ),Ω x y  

is the pseudo-potential composed by the centrifugal potential and gravitational potential as: 

 ( ) ( )2 2 2

1 2

1 1,
2

x y n x y
r r
µ µ−

Ω = + + +  (2) 

with r1 and r2 the distances of the spacecraft from m1 and m2 respectively. The scalar field in Eq. (2) influences the 

equations of motion through its gradient, so we can introduce in its expression a constant term that allows obtaining a 

more symmetric form for the pseudo-potential (Szebehely, 1967)4: 

 ( ) ( ) ( )1, , 1
2

x y x y µ µΩ = Ω + −  (3) 

                                                           

4 Note that the advantage of adding the symmetric term ( )1 1
2

µ µ−  in Eq. (3) and (4) is that, in this way, the value of 

J calculated at the Libration points L4 and L5 becomes independent from the mass parameter µ , that is, from the 
planetary system under analysis: ( ) ( )4 5 3= =J L J L . This allows a simplified comparison among different planetary 
systems. 
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Eqs. (1) have an integral of motion, the Jacobi integral, which expresses the conservation of energy in the relative 

motion of the spacecraft: 

 ( ) ( ) ( ) ( )2 2 2 2 2

1 2

1, , , 2 1J x y x y x y n x y
r r
µ µ µ µ

 −
= − + + + + + + − 

 
     (4) 

2.2  Hill’s problem 

 Hill’s problem is a special case of the CR3BP and is appropriate for spacecraft orbits near the secondary mass and 

for planetary systems with a small μ (Szebehely, 1967, Hénon, 1997, Hénon, 1969, Meyer et al., 2009). The CR3BP 

is characterised by the mass parameter μ, and when μ = 0 the problem reduces to the Keplerian model as viewed in a 

rotating system. If now we consider μ that tends to zero, it is possible to derive a simplified system of equations 

(Hénon, 1997, Hénon, 1969). Formulation of Hill’s problem differs from the CR3BP in that the centre of the new 

synodic system ξ η−  (from now on Hill’ system), is now at 2m , and 1m  acting as a perturbing body at negative 

infinity on the ξ  axis. Figure 2 shows the geometry of the Hill’s problem where ρ is the distance of the spacecraft 

from the Earth in the Hill’ system, the non-inertial system centred at m2. Note that, with respect to the convention 

adopted by Szebehely (see (Szebehely, 1967), p. 697) we retain here the convention for the direction of the reference 

system with the x and ξ  axis in the direction m1 to m2, (Stramacchia, 2013). Starting with the equations of the PCR3BP 

in dimensionless form Eqs. (1), a translation along the x-axis is performed to centre the system at m2: 

1
.

x
y

ξ µ
η
= − +
=

 

 This translation locates the primary body at 1ξ = − , 0η =  in the Hill’ system, and the secondary body at 0ξ = , 

0η = . Then, by introducing a scale factor αµ , function of the mass parameter of the planetary system under study, 

we can change the normalised distances ( αξ µ ξ= , αη µ η= ) and the order of the gravitational force of m2. In fact, if 

we set as Szebehely (Szebehely, 1967) 1 3α = , the terms of the Coriolis force, the centrifugal force and the 

gravitational force of the secondary body are of the same order. 
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Figure 2. Geometry for the sidereal system, the synodic system and the Hill system. 

Now, we can proceed with the mathematical limit process with 0µ →  (so that the distance between m1 and m2 

goes to infinity) and, immediately, we find the equations of motion for the Hill’s problem  
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with the associated pseudo-potential function 
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while the Jacobi integral for the Hill’ system is  

 ( ) ( )
( )

2 2 2
1 22 2

2, , , 3ξ η ξ η ξ η ξ
ξ η

Γ = − + + +
+

 
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which is related to J  by (Hénon, 1997)    

  

 
22 33 4J µ µ µ= − + + Γ   (6) 

  

In this model we have only two collinear equilibrium points located at 1 3
1 3 , 0L − = −   and 1 3

2 3 , 0L − = +  , 

associated to the Jacobi integral for the Hill’s system 4.32674871Γ = . 

3 Orbit families in the PCRTBP 

The work by Hénon (Hénon, 1997, Hénon, 1969) identified four typologies of simple-periodic planar orbits (i.e., 

crossing the ξ -axis only twice in each orbital period); these families, following Hénon’s notation, are:  
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 Family-f: stable distant retrograde orbits around the second body (i.e. Distant Retrograde Orbits, DROs) (Hénon, 

1997, Hénon, 1969, Xue and Junfeng, 2013, Dutt and Sharma, 2012, Demeyer and Gurfil, 2007, Lam and Whiffen, 

2005); 

 Family-g: stable/unstable distant prograde orbits around the second body with a double close approach to the 

second body (i.e. Distant Periodic Orbits, DPOs)5(Hénon, 1997, Hénon, 1969, Mingotti, 2010, Mingotti et al., 

2010); 

 Family-a: unstable-retrograde orbits around the Libration point L2 with a close approach to the second body 

(Demeyer and Gurfil, 2007); 

 Family-c: unstable-retrograde orbits around the Libration point L1 with a close approach to the second body 

(Demeyer and Gurfil, 2007); 

3.1  Numerical computation of periodic orbits 

Starting from the initial conditions found by Hénon for the Hill’s problem (Hénon, 1969), see page 230, it is 

convenient to represent each periodic orbit with a point in the ( )0,ξΓ  plane, where 0ξ  is the abscissa of the point 

where the orbit crosses the ξ -axis in the positive direction, with η  increasing. The symmetry of the orbit implies that, 

for each point in the ( )0,ξΓ  plane, we have 0η =  and 0ξ = ; hence, once ξ  is known, η  can be determined from Eq. 

(5). Of the two solutions only the one with 0η >  must be chosen in order to cross the ξ -axis in the positive direction. 

The initial conditions for the periodic orbits in the Hill’s dynamics by Hénon (Hénon, 1969) are here refined with a 

differential correction method coupled with a continuation method (Koon et al., 2011, Scott and Spencer, 2010, 

Thurman and Worfolk, 1996). Each orbit family is then reproduced in the PCR3BP dynamic using the same numerical 

procedure, which is described in Appendix A. 

Figure 3 shows a map of the single-periodic orbits in the ( )0,ξΓ -plane, taking into account the Hill’s dynamics, 

where each periodic orbit is represented by a marker considering Hénon data (Hénon, 1969), while continuous curves 

represent the new numerical data found by a numerical continuation method. 

                                                           
5 Family-g orbits are prograde orbits; for Γ→ +∞  the orbits become very small, quasi-circular curves around the 
second body. They are stable if their dimension is not too large, i.e. 4.5Γ >  for the Sun – (Earth + Moon) planetary 
system, otherwise they become unstable. 
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Figure 3. Map of the single-periodic orbits in the ( , )ξΓ  plane considering Hill’s dynamics. Dotted lines bound 
the forbidden regions where the velocities become imaginary, L1 and L2 are the Libration points, while 

1 2(L ,L )Γ  is the value of the Jacobi integral for the Hill’s system at the Libration points. 

3.2  General orbital taxonomy 

Figure 4 represents the orbits of family-f (i), family-g (ii), family-a (iii), and family-c (iv), for the Sun – (Earth + 

Moon) PCR3BP respectively. 
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(i): family-f 

 
(ii): family-g 

 
(iii): family-a 

 
(iv): family-c 

Figure 4. Simple periodic orbital families in Earth-centred synodic system. The three markers in the plot are 
L1, Earth and L2 (from left to right). (i) Family-f, (ii) family-g, (iii) family-a and (iv) family-c. 

 
Each of these families can be extended to Γ→ ±∞  (families f, and g) or Γ→ −∞  (families a and c). However, 

for families a, c, and g, the minimum distance from Earth goes to zero as this limit is approached, so the minimum 

distance from the Earth is limited to 6478 kmminr ≥ , which corresponds in the ( )0,ξΓ -plane to 0 0.003ξ ≥  for family-

g and family-a, and to 0 4.12ξ ≥ −  for family-c considering the Sun – (Earth + Moon) PCR3BP. Orbits of family-f with 

a maximum distance from Earth greater than 75 10⋅  km will increasingly feel the gravitational effect of the other 

planets (e.g., Jupiter and Venus). For this reason, in the following, we will restrict our analysis to orbits reaching a 

maximum distance from Earth below 75 10⋅  km, which corresponds to 72.6 10⋅  km along the x-axis, or 0 12ξ ≥ −  in 

the ( )0,ξΓ  plane for family-f. Future work will extend this family beyond this distance by implementing an n-body 

dynamics model. Set these constraints, it is possible to generate, for each family, the orbit with the highest feasible 

energy, presented in Table 2. It is clear that, taking into account the distance constraints, the most favourable orbit 
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family to obtain large distances from Earth, and consequently, good and different conditions for observation and 

monitoring of PHAs, is the family-f as some of these orbits have a characteristic dimension (i.e., minimum distance 

from the Earth) that is larger than the Earth-L2 distance. Family-f orbits are stable, planar, and retrograde around the 

Earth. These characteristics of family-f are of some practical interest, since they mean that spacecraft can orbit at a 

very large distance from the second body, much further than the collinear Libration point L1 and L2, and, as we will 

see in Section 4.3, the sky-coverage performances of a space-based survey system are related to the orbital distance 

achievable by the spacecraft. In Section 3.3, we will discuss the orbital characteristics of family-f.  

Table 2. Orbital values for the four families taking into account the distance constraints. (T: orbital period; 
Vmin and Vmax: min and max orbital velocity; rmin and rmax: min and max orbital distance to the Earth; J: Jacobi 
integral). Values in Earth-centred synodic system considering the larger orbit within each family. 

Orbit family T [days] Vmin [km/s] Vmax [km/s] rmin [km] rmax [km] J [km2/s2] 

family-f 365.10 5.2514 11.013 2.6264·107 5.2447·107 2.9689 

family-g 494.11 1.3558 11.159 6.5756·103 1.8705·107 2.9980 

family-c 499.49 1.2040 11.194 6.5127·103 1.6863·107 2.9984 

family-a 669.86 0.82322 11.072 6.6163·103 1.6093·107 2.9993 

3.3  Orbital taxonomy of family-f 

This section presents the taxonomy of family-f, in terms of maximum and minimum orbital distance from the Earth 

and the orbit stability index. Table 3 (in Section 4.3.2) contains the minimum and maximum distance of the orbits 

from the Earth. For an orbital period of more than around 150 days, the orbit distance from the Earth is larger than the 

distance from L2. The orbital period has an asymptotic behaviour towards the Earth orbital period, as the distances 

increase. The orbital stability index (see Appendix A for its definition) is always in the range 2  2− < <k , confirming 

the stability of the orbits (Hénon, 1997, Hénon, 1969, Koon et al., 2011, Perko, 2013). Given the numerical results for 

the Sun – (Earth + Moon) system in Figure 4, in Figure 5 the evolution of the family-f in the PCR3BP for a number 

of planetary systems, real and hypothetical, with mass parameter varying from the mass parameter for the Sun – (Earth 

+ Moon) system to the mass parameter for the Earth–Moon system is studied. Each curve has a monotone decreasing 

behaviour, and each point on these curves represent a stable retrograde periodic orbit. This result is of some practical 

interest, since it corroborate the fact that retrograde spacecraft can exist at a very large distance from the second body, 

much further than the associated Libration points, a matter of interest in relation to asteroid detection. However, this 

is true only in so far as the PCR3BP is a good approximation of the planetary system considered. More precisely, 

starting from the refined data computed in Section 3.1, the first curve computed is that for the Sun – (Earth + Moon) 
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planetary system. These new initial conditions are then used as first guess in order to compute the next curve, 

characterised by a new larger mass parameter (i.e. 510µ −= ). The process is then repeated for the remaining curves. 

Note that, even if we are representing the periodic orbits in the PCR3BP, we prefer to keep their characterisation in 

the ( )0,ξΓ  plane (typical of the Hill’s problem) because it allows a better comparison between different planetary 

systems. For each of the curve in Figure 5, the distance constraint on 0ξ  could be computed as ( )1 2 max

1
3

0 m m x axisL Lξ µ − −≤

, once the value of the mass parameter is associated to the correct planetary system. Therefore, the characteristic 

distance between the primary and secondary body 
1 2m mL −

, and the maximum orbital distance reachable from the 

secondary body, ( )maxx axisL − , can be computed. While 
1 2m mL −

is a data characteristic of a specific planetary system, the 

maximum orbital distance reachable can be computed considering the third-body perturbation, or more precisely the 

n-body dynamic. The maximum orbital distance reachable dictates the orbital choice within the family-f. For a given 

energy (i.e., Γ  in the Hill’ system), orbits with a smaller mass parameter move closer to the secondary body in the 

adimensional synodic system, because the ξ coordinate in the Hill’ system increases in modulus as the mass parameter 

decrease, while orbits with a large mass parameter move away from the secondary body. In fact, reminding that 

1 3ξ µ ξ=  and considering for example the Sun – (Earth + Moon) and the Earth – Moon systems, the ξ  coordinate 

for the Sun – (Earth + Moon) is larger in modulus than that for the Earth – Moon system. The reason is that, if the 

mass parameter is small, then the region of the gravitational influence of the secondary body is also smaller in 

comparison to the gravitational influence of the primary, which makes the dynamical region moving closer to the 

secondary body for a given energy (Dutt and Sharma, 2012, Meyer et al., 2009).  
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Figure 5. Evolution of the family-f map in the ( )0Γ,ξ  plane, taking into account the PCRTBP for a 
number of planetary systems, actual and hypothetical, with mass parameter lying between 

( )Sun Earth Moonµ − +  and Earth Moonµ − . The plot does not take into account the 0ξ distance constraints. 

4 NEOs detection from distant retrograde orbits 

In this section, we analyse the potentialities of DROs for asteroid and comets detection. As noted by Valsecchi et al. 

(Valsecchi et al., 2012), a spacecraft on one orbit of family-f travels around the Sun, in formation with the Earth, such 

that the orbit in a Sun-centred inertial system looks as a quasi-ellipse around the Sun (see Figure 6). Figure 7 shows 

the trend of the pseudo-semi-major axis and pseudo-eccentricity for all the orbit of family-f considered in this paper 

(see Table 3). Note that we refer to pseudo-semi-major axis and pseudo-eccentricity in stress that these two quantities 

are computed using the equations of the two-body problem, but considering the state vector obtained with the 

PCRTBP. Their trend is not constant along the orbital period, however the differences are very small (i.e., 

max min 28803 km− ≈a a  and 3
max min 0.051 10−− ≈ ⋅e e  for orbit f-4 in Table 3). As it can be seen from Figure 7, while 

the orbital eccentricity increases, the pseudo semi-major axis decreases and tends to 1 AU, measured in the Sun-

centred inertial system, and the orbital period asymptotically converges to the Earth orbital period. Moreover, as the 

eccentricity increases, the orbits move further and further away from the Earth’s orbit (Valsecchi et al., 2012). 
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Figure 6. Family-f orbits in the Sun-centred sidereal system (black solid line). f-1 and f-4 orbits are in dashed 
lines , while the relative orbits’ parameters are reported in Table 3 (Section 4.3.2). For comparison, Venus and 
Earth orbits are shown. 

 

 
(i) 

 
(ii) 

Figure 7. Trend of the pseudo-semi-major axis (i) and pseudo-eccentricity (ii) for family-f orbits in the Sun-
centred sidereal system. The four star markers are for the orbits summarised in Table 3 (Section 4.3.2). 
 
 On a DRO the spacecraft travels in retrograde direction, as seen from Earth, with its minimum geocentric distance 

minr  corresponding to the inferior conjunction, and maximum geocentric distance maxr  at quadrature (see Figure 8). The 

minimum and maximum geocentric distances can be approximated as function of the orbit eccentricity expressed in 

AU computed with respect to the Sun-centred inertial system as derived by Valsecchi (Valsecchi et al., 2012). Taking 

into account a four spacecraft constellation, the particular positions along the orbit f-3 in Table 3 are show in Figure 

8. Each spacecraft of the constellation is characterised by the same orbital trend in term of distances and velocities, 

what change are only the initial values of distances and velocities of each spacecraft, because they start at different 

orbital positions. These initial positions are equally spaced in time, considering the dynamics in Eq. (1), and just for 
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the four spacecraft constellation they correspond to the characteristic orbital positions (i.e. inferior and superior 

conjunction and quadrature).  

 

Figure 8. Spacecraft particular positions for a four spacecraft constellation on f-3 orbit in Table 3 (Section 
4.3.2), with minimum and maximum geocentric distance at inferior conjunction and quadrature respectively. 
The three markers in the middle of the plot are L1, the Earth, and L2 from left to right respectively, while the 
four square markers are the spacecraft (values in Earth synodic system). 

4.1  H-G astronomical model to compute asteroid size 

In order to assess PHAs detection capabilities from a given orbit and to compare it with the capabilities from Earth-

based detection, it is useful to compute the minimum asteroid diameter that can be observed from a given point in 

space, considering current telescope technologies. One of the challenges when observing asteroids is their rapid and 

drastic variations in magnitude. The magnitude of asteroids does not only depend on physical parameters, such as the 

size and the albedo, but also on its rotational state, the distances to the Sun ( )1R t , the observer ( )2R t , and the phase 

angle ( )tκ , which is the angle between the light incident onto the observed object and the light reflected from the 

object (in the context of astronomical observations this is usually the angle illuminator-object-observer). The apparent 

magnitude or visual magnitude V is a measure of the object brightness as seen by an observer, adjusted to the value it 

would be in the absence of the atmosphere. V can be computed as (Binzel et al., 1989, Buchheim, 2010, Michelsen et 

al., 2003, Dymock, 2010). 

 ( ) ( )( ) ( ) ( )( ) ( )( )( )10 1 2 10 1 25log 2.5log 1 Φ ΦV H R t R t G t G tκ κ= + − − +    (7) 

where H is the object absolute magnitude, a measure of the intrinsic brightness of a celestial body. H is defined as the 

apparent magnitude that the asteroid would have if it were at 1 AU from both the Sun and the observer (in our case 
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the observer can be at the Earth or at the spacecraft) at zero solar phase angle. ( )( )1Φ tκ  and ( )( )2Φ tκ  are two 

phase functions that describe the single and multiple scattering of the asteroid’s surface (Dymock, 2010): 
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  (8) 

In Eq.(7), ( )1R t  and ( )2R t  are expressed in AU. Measurements of the asteroid’s position (i.e., astrometry data) 

can be used to calculate the orbit of the asteroid and thus ( )1R t  and ( )2R t  at the time of the observation. The phase 

slope parameter G , a value between 0 and 1, describes how the asteroid brightness falls with increasing solar phase 

angle. In this work G  = 0.15 was considered, corresponding to a low-albedo for C-type asteroids (Luu and Jewitt, 

1989, Veeder et al., 1992). The model in Eq. (7) was previously used by Sanchez and Colombo (Sanchez and Colombo, 

2013) to assess the time required for detecting PHAs from an Earth and near-Earth telescope network. 

Figure 9 shows the geometrical configuration for the two survey systems considered. 

 
Figure 9. Geometry configuration for ground-based survey system, and space-based survey system, in the 
synodic system with Earth at the origin. 

 

Eq. (7) gives the variation of the visual magnitude with time, as the asteroid moves around the Sun. If we assume 

a limiting visual magnitude limV  below which asteroids can be detected, the limiting absolute magnitude limH  at 

each time can be obtained from Eq. (7). As the asteroid moves around the Sun, the smallest asteroid size minD  that 

can be detected from a given orbit (i.e., the orbit of the Earth for ground-based survey or the spacecraft’s orbit for 
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space-based survey) as a function of time can be obtained as in (Sanchez and Colombo, 2013, Michelsen, 2004, Perna 

et al., 2013, Werner et al., 2002).  

 [ ]5
min

1 1329 10     km
limH

v

D
p

−

= ⋅ ⋅   (9) 

where vp  is the asteroid’s albedo. Care is needed when evaluating the size of the smallest asteroids (i.e. sub-kilometre 

size), as the actual albedo vp  of these objects is currently not known. However in the present analysis 0.154vp =  is 

considered as an average value for the asteroid’s albedo (Veeder et al., 1992). The apparent magnitude V in Eq.(7) 

takes into account a full sky coverage, but in reality the sky coverage of an asteroid survey by ground telescopes is 

limited to the night side of the Earth, and to relatively large solar elongation (i.e., the angle between ( )2R t and ( )3R t  

in Figure 9). In fact, the asteroids cannot be observed from ground if their direction is close to the direction of the Sun. 

Eq. (7), via the phase functions ( )1Φ t  and ( )2Φ t , has the effect of increasing the apparent magnitude and so 

decreasing the brightness of the asteroid. If the phase angle ( )tκ  increases and approaches 180°, the visual magnitude 

V increases towards infinity and so this decreases the brightness of the asteroid. In the following, Eq. (9) is used to 

assess the capabilities of an Earth-based or a space-based PHAs detection system. Depending on the definition of the 

observer, the phase angle ( )κ t  is the Sun-asteroid-Earth or Sun-asteroid-spacecraft angle; ( )2R t  is the distance in 

AU of the asteroid to the Earth, for ground-based survey systems, or to the spacecraft, for space-based survey systems. 

23 limV =  was set as the limiting visual magnitude for space-based survey as in (Sanchez and Colombo, 2013), while 

24 limV =  as the limiting visual magnitude for ground-based survey, which corresponds to the capability of the Pan-

STARRS, the Panoramic Survey Telescope & Rapid Response System developed at the University of Hawaii’s 

Institute for Astronomy (Vereš et al., 2009, Stokes et al., 2002, Todd et al., 2011, Todd et al., 2012). 

4.2  Ground-based survey systems 

The observing capabilities of a ground-based survey system are determined by the atmospheric conditions. The 

duty cycle for these survey systems is limited by daylight and weather. They have access to a bit less than 2 sr of the 

total sky at any time, and furthermore, much of this area of the sky is at zenith angles and so unfavourable due to 

atmospheric effects. The part of the sky observable further narrows during winter nights (Stokes, 2003). On the 

contrary, space-based survey systems are not limited by these effects and have a greater duty cycle. These space 

systems can have access to more than 3 sr. This depends on the Sun exclusion zone of the spacecraft sensor and so 
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they allow surveying a larger portion of the sky. The Sun exclusion zone is approximately 40 degrees half angle from 

the sunlight direction (Stokes, 2003). In the following, we assume also for the ground telescope the same exclusion 

zone of the space systems. In this way, we adopt conservative conditions and we can compare the observational 

potentialities of the two different survey systems. Using Eqs. (7) and (9) the minimum observable diameter as function 

of the distance can be computed; this produces a family of “heart-shaped” curves (Stokes et al., 2002, Sanchez and 

Colombo, 2013). These curves represent the minimum asteroid size that can be observed if we have a precise 

geometrical configuration between the Earth (i.e., observer), the Sun and the asteroids (for a ground-based system), 

or between the spacecraft (i.e., observer), the Sun and the asteroids (for a space-based system). As previously done in 

(Sanchez and Colombo, 2013), a search grid in the Earth-centred synodic system is considered with boundaries of 

1 AU± , with Earth at the origin of this reference frame and the Sun at 1−  AU. Set a 1000 point on the grid ( ),x y , 

which represents a generic PHA, the vector position of the asteroid respect to the Sun in dimensionless units can be 

defined as: 

 ( )1

1x
t

y
+ 

=  
 

R   

The vector position of the asteroid respect to the Earth based observer is: 

 ( )2, Earth

x
t

y
 

=  
 

R   

The phase angle ( )tκ  is then computed from the Carnot theorem as: 

  

 ( ) ( ) ( ) ( )( ) ( ) ( )( )22 2
2, Earth 3 2, Earthcos 2t t t t t tκ = + −1 1R R R R R   (10) 

  

where ( )3 tR  is the vector position of the observer respect to the Sun (where the observer is the Earth telescope in this 

case, see Figure 9). 

For each point of the grid, the minimum detectable size diameter from Earth ( )min, Earth ,D x y  is computed from Eq. 

(9). Figure 10 represents the capabilities of current NEOs discovery search programs in terms of minimum diameter 

of the asteroid to be detected: BISEI with lim 19.0V = , SPACEWATCH with lim 21.7V = , and Pan-STARRS with 

lim 24.0V =  (Stokes et al., 2002). The contour plot in Figure 10 shows that, as expected, a ground telescope with a 

greater limV  is able to observe a wider portion of sky for a given diameter of the asteroid ( min 80d =  m in this case); 
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therefore, the probability to detect an asteroid grows considerably. However, some boundaries need to be defined 

beyond which no asteroid can be observed. Indeed, as per spacecraft-based survey systems, the Earth-based systems 

have a Sun exclusion zone of about 40 degrees half angle from the Sun–Earth line. For this reason, if the asteroid is 

within such region, the detectable diameter is set to zero.  

 
Figure 10. Comparison of three current NEOs search programs for detection of asteroids with minimum 
diameter Dmin of 80 m (Earth centred synodic system). 

 
4.2.1 Numerical computation of Acoverage, Earth 

Now, fixing the minimum asteroid size we want to detect, mind , the capabilities of an Earth-based survey system 

can be measured by computing the area of the region of space which is enclosed by the level curve at mind  defined as 

the sky coverage area coverage-EarthA  measured in AU2. First, we define a grid in ( ),x y  to represent the generic position 

of a virtual asteroid at any distance from the Earth. Each point of the ( ),x y  grid represents a virtual asteroid; for each 

point of the grid (i.e., a given distance from the Earth) the minimum diameter that can be detected at that distance is 

computed based on Eq. (9) and it is stored in a matrix min, coverage-EarthD . Then, given the required target diameter mind

, the boundaries of the coverage areas are defined as the contour line min, coverage-Earthd  associated to mind . min, coverage-Earthd  

is numerically found computing the isolines of matrix min, coverage-EarthD  using the contour function implemented in 
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Matlab. Then, the area inside the polygons defined by the contour line matrix min, coverage-Earthd  is computed to get

coverage-EarthA in AU2.  

Figure 11 shows the coverage-EarthA as function of the minimum asteroid diameter that can be detected, considering limV  

values for four different ground-based survey systems. Each of these limV  values is used in Eq. (7) in order to compute 

the new values of limH , therefore using Eq. (9) the new surfaces matrix 
limH−min, coverage EarthD  can be computed, along 

with 
limH−min, coverage Earthd . For a fixed asteroid diameter, coverage-EarthA  increases as the limV increases, and this trend 

grows more for large asteroid diameters. However, ground-based survey systems fail in the case of PHAs incoming 

from the Sun direction, because the exclusion zone cannot be monitored.  

The fundamental steps for the numerical computation of coverage-EarthA  are summarised in Algorithm 1 in Appendix B. 

 

 
Figure 11. Evolution of the coverage-EarthA  taking into account the limV  values for four different ground-based 
survey systems. 

 

4.3  Space-based survey systems 

In this section, the orbital dynamics in Eqs. (1) is coupled with the H-G astronomical model in Eqs. (7) and (9), to 

investigate the advantages of a space-based system over a ground-based system in terms of sky coverage area 

coverage-spaceA  measured in AU2. As said, the attractive feature of the family-f orbits is the large distance that they reach 

from Earth. Therefore, from these orbits, spacecraft carrying a telescope can potentially monitor a larger portion of 
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the space surrounding the Earth, and detecting PHAs with better figures of merit, in comparison to the ground-based 

system. The expression of ( )1 tR  still holds, while the vector position of the asteroid respect to the space observer, 

based at ( ) ( )s/c s/c
T

x t y t    to Earth, is 

  ( ) ( )
( )

s/c
2, space

s/c

x x t
t

y y t
 − 

=  − 
R   

while the vector position of the observer respect to the Sun is 
 

 ( ) ( )
( )

s/c
3, space

s/c

Sun

Sun

x x t
t

y y t
 − 

=  − 
R   

from which ( )tκ  can be again computed from the Carnot theorem. 
 

As an initial consistency analysis, we can compare the minimum asteroid diameter that can be observed with just 

one spacecraft at inferior conjunction (i.e., spacecraft in between the Sun and the Earth) for several f-orbits, 

considering a predefined circular warning zone constraint with a radius wzR  of 0.1 AU from the centre of the Earth 

(i.e., black circle in Figure 12). We here set the requirement that the asteroid is visible in the warning zone , considering 

asteroids with a geocentric mean velocity equal to , PHAgeoV =15 km/s (Belton, 2004, Valsecchi et al., 2012) and 

consequently an 11.5-days warning time prior to a close approach to the Earth from the warning zone, computed in 

first analysis as  

 , PHAw wz geot R V=   (11) 

 
To ensure that the asteroid is visible from space also in the case it is coming from the direction away from the Sun 

(i.e., from the +x-axis), the minimum asteroid diameter was computed at x equal to the radius of the warning zone, 

identifying the warning distance. In this case, the vector positions, used to compute the minimum asteroid diameter 

are 1 0
Sun wzx R+ 

=  
 

R  , s/c
2, space 0

wzR x− 
=  
 

R  , and s/c
3, space

Sun

Sun

x x
y
− 
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 

R  , therefore 0  because 1R and 2, spaceR

are aligned. In this case, only 2, spaceR  is changing, because we are considering spacecraft at the inferior conjunction 

of different orbits (i.e. /s cx  changes), and asteroids placed at the warning zone, along the +x-axis (i.e., asteroid 

coordinates equal to wzx R , 0y  ). The phase functions are equal to one, and the asteroid absolute magnitude at 

the warning zone is  2, splim, lim 1 a0 ce5logwzH V  1R R . The minimum asteroid diameter detectable at the warning 
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zone, min, wzd  is then computed with Eq. (9), using lim,wzH  (and reported in Table 3). Therefore, the surface matrices 

for both the survey systems, computed with Algorithm 1 and 2 in Appendix B, are used to extract the two contour line 

matrix associated to min, wzd . This information is then used to compute the heart-shaped curves for both the survey-

systems, and the results are illustrated in Figure 12. 

 

Figure 12. Graphical comparison of Earth and space-based survey systems, considering the minimum 
asteroid diameter detectable with 11.5-day warning time (Sun at -1 AU along x-axis). The space-based 
survey systems is characterised by only one spacecraft at the inferior conjunction. The two black circle 
markers represent the spacecraft for orbits f-1 and f-4 in Table 3 (values in Earth synodic system). 

 
In this figure, for clarity, only the f-1 and f-2 orbits of family-f in Table 3 are shown, together with the corresponding 

spacecraft position at the inferior conjunction. For each orbit contained within the family-f, the minimum diameter of 

the asteroid detectable at the warning distance was computed as explained above, and graphically compared with the 

coverage area of the ground-based telescope, considering the same min, wzd . As an initial consistency check, ground-

based survey systems offer higher values of coverage-EarthA , in comparison to a single space telescope, characterised by 

lower values of coverage-spaceA  . However, Earth systems prove to be unable to detect asteroid incoming from the Sun-

Earth direction. Consistent with intuition, we can note in Figure 12 that spacecraft at inferior conjunction assure a 
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maximum coverage inside the exclusion zone, in comparison to the others orbital positions, and this coverage 

improves considering orbits with high energy. Moreover, since we desire at the same time a good coverage of the 

space surrounding the Earth, and an adequate warning time prior the asteroid close approach with the Earth 

atmosphere, a potential solution is to match the two survey systems, assuring at least the warning zone coverage. We 

can argue that the size and position respect to Earth and Sun, of each space heart-shaped curve, should have a strong 

impact on warning time and space coverage inside the exclusion zone. 

 Nevertheless, we must consider that the minimum detectable diameter and coverage area from space-based 

observation depends on the instantaneous position of the spacecraft on its orbit. For this reason, the temporal evolution 

of the space-based coverage area will be now computed, by creating the spatial envelope of a multi-spacecraft 

constellation for different time instant from 0 to T (i.e., the orbit period). The spatial envelope, coverage-spaceA , covered 

by the spacecraft in the constellation, is a function of the constellation size /s cN , and the spacecraft orbital positions. 

The contour line matrix associated to each spatial envelope, is then used together with the exclusion zone constraint, 

to compute exclusion zone, spaceA  measured in AU2.  

4.3.1 Numerical computation of Acoverage, space and Aexclusion zone, space 

The only difference respect to Earth detection model is that this time the surface matrix min, coverage-spaceD  is computed 

for each spacecraft in the constellation. Therefore, /s cN  contour line matrices min, coverage-spaced  are constructed, 

considering the desired value of the asteroid diameter mind , and the geometrical envelope is searched. The feasibility 

of this envelope is strictly related to the orbital size (i.e., the value of minr ), to the size of the constellation (i.e., the 

value of /s cN ) and to the spacecraft geometrical configurations along the orbit. When the feasibility is satisfied, it 

means that the envelope does not shows blind region (see Figure 13 and Figure 14).  

The spacecraft configuration is a function of time, because the spacecraft are moving and therefore their relative 

positions are changing. The rate of changing of the relative positions is high for a constellation with low number of 

spacecraft. /s cN  has also a great impact on the orbital trend of exclusion zone, spaceA  and less on coverage-spaceA . Moreover, taking 

into account the symmetrical property of family-f, the spacecraft configurations obtained within the first half-period 

can be obtained in reverse order in the second half of the orbit period. Hence, the evolution of the spatial envelope 

will be symmetric with respect to the orbital period. This symmetry can also be exploited to reduce the cost for 
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computing min, coverage-spaceD . The fundamental steps for the numerical computation of coverage-spaceA  and exclusion zone, spaceA  

are summarised in Algorithm 2 in Appendix B. 

4.3.2 Family-f orbits selection 

In Table 3 we have summarised the data for five characteristics orbits used throughout this work. More precisely 

f-1 and f-4 represent the boundary orbits of the entire family-f analysed in Figure 6 and Figure 7. These characteristic 

orbits are optimised taking into account the full envelope feasibility used to compute coverage-spaceA , and exclusion zone, spaceA

for a space-based survey system. In other words, each of these orbits were selected through an optimisation process, 

considering a predefined constellation size and using, as a first guess the relative value of min, wzd  in Table 3. The 

optimisation process first checks the feasibility of the full envelope for the initial configuration (i.e., unique envelope); 

if feasible, it moves to the second spacecraft configuration and checks again. In the case of an unfeasible full envelope, 

the algorithm freezes the current spacecraft configuration and increases the asteroid diameter by d∆ . Therefore, 

checks for the full envelope, if feasible move to the new spacecraft configuration, otherwise freezes again and increase 

the asteroid diameter as before. This process is repeated until the spacecraft configurations are exhausted. The number 

of spacecraft configuration is equal to 360 in each orbital period, and min, fulld  represents the minimum asteroid 

diameter detectable in each spacecraft configuration with a feasible full envelope. 

Table 3. Family-f orbits analysed (f-1 and f-4 are the first and last orbit of the family, f-2 and f-0 are the orbits 
used for Chelyabinsk detection in Section 5, f-3 is the orbit used for the constellation analysis in Section 4.3.3). 
(T: orbital period; rmin and rmax: min and max distance spacecraft-Earth in the synodic system; e: pseudo-
eccentricity; a: pseudo-semi-major axis; J: Jacobi integral; min, wzd : minimum asteroid diameter observable 

from the orbit in order to cover the warning zone from the inferior conjunction position; min, fulld : minimum 
asteroid diameter observable from the orbit in order to have a full envelope for each spacecraft configuration, 
considering a 4-spacecraft constellation size).  

Orbit ID T [days] rmin [AU] rmax [AU] e [-] a [AU] J [-] [ ]min, wz md
 [ ]min, full md

 

f-0 357.54048 0.04586458 0.09017932 0.04731 1.0015176 2.9978839 13 17 

f-1 362.80133 0.06762312 0.13450745 0.06829 1.0007154 2.9954105 15 26 

f-2 363.37367 0.07395897 0.14729024 0.07452 1.0006020 2.9945112 16 28 

f-3 363.74734 0.07969226 0.15883077 0.08017 1.0005215 2.9936277 17 45 

f-4 365.10272 0.17556456 0.35058794 0.17566 1.0001160 2.9689252 25 68 
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4.3.3 Impact of orbit size, orbital dynamics and constellation size 

As noted in Figure 12, the orbit size has a very strong impact on the coverage area inside the exclusion zone, even 

if considering one spacecraft positioned at the optimal orbital configuration (i.e., the inferior conjunction). These 

preliminary results show that the exclusion zone, spaceA  increases as minr increases, and this is consistent with the choice of 

family-f, because this family in the only one that increase the distances from Earth along both the axis. Therefore, the 

orbits belonging to this family are the most favourable in term of distances from Earth, and consequently they offer 

good conditions for observation and monitoring of PHAs. 

However, the results so far have been obtained disregarding the orbital dynamics of the spacecraft. In order to 

study the impact of the spacecraft dynamics, a spacecraft constellation is now introduced. More precisely, this 

constellation can be interpreted as a group of /s cN  formation-flying spacecraft, moving in identical f-orbit in a trailing 

formation. Each spacecraft follows the previous one separated by a specific time interval T , to view a portion of 

sky surrounding the Earth at different times. T  is a fraction of the orbital period computed as /s cT T N  . 

Similarly to the Earth-based system, the coverage area of the space based system, coverage, spaceA , can be computed.  

Figure 13 clarifies the definition of the spatial envelope (grey area + dark grey area) and shows the gained 

monitoring area within the exclusion zone, exclusion zone, spaceA , for space-based systems (dark grey area). The orbital 

dynamics has some impact on the geometry of the space envelope, and therefore on the value of coverage-spaceA . Looking 

at the space coverage inside the exclusion zone, for the initial configuration, one spacecraft is inside the exclusion 

zone at the inferior conjunction, see Figure 13 (i), while for the other configuration three spacecraft are outside the 

exclusion zone, while the fourth is on the boundary of the exclusion zone, see Figure 13 (ii). The value of 

exclusion zone, spaceA seem to be strictly related to the geometry of the spacecraft position and therefore to the orbital 

dynamics, and this is clearly illustrated in Figure 13 where the geometry of the coverage area within the exclusion 

zone is symmetric for the initial configuration, and distorted in the other case. In the Introduction of this paper, we 

highlighted a correlation between the geometry of the coverage area within the exclusion zone and the asteroid’s 

trajectory, and their influence over the warning time. Asteroids performing close encounters with the Earth within the 

exclusion zone cannot be tracked from Earth. Therefore, a spacecraft constellation prove to be useful, and in what 

follow the impact of orbit size, orbital dynamic, and constellation size is investigated, considering an asteroid diameter 

of 45 m, a 4-spacecraft constellation, and for the orbital dynamic orbit f-1 and f-4 in Table 3 are used. 
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(i) 

 
(ii) 

Figure 13. coverage, spaceA  and exclusion zone, spaceA  for space-based system: (i) 4-spacecraft constellation considering the 
initial configuration; (ii) 4-spacecraft constellation after 20 days. Constellation analysed considering the f-3 
orbit in Table 3, with min 45md = . 

 
Figure 14(i) shows the spatial envelope from f-1 orbit, for a detection of minimum asteroid diameter of 45 m. Two 

different configurations of a 4-spacecraft constellation are shown for two times along the natural evolution when the 

worse (dashed line) and best (solid line) coverage area are obtained. The spacecraft positions for the maximum and 

minimum coverage are also shown with triangle and square markers, respectively. Note that, the selection of the 

minimum asteroid diameter to be detected drives the choice of the orbit size (i.e., the value of minr ). For a constellation, 

this choice is more challenging, because the envelope feasibility has to be taken into account. The envelope feasibility 

must be guaranteed for each instant of time throughout the orbital dynamics. Figure 14(ii) shows the spatial envelope 

obtained at the initial configuration on the f-1 orbit (grey dashed line) and f-4 orbit (black solid line) considering a 

minimum asteroid diameter of 45 m and a 4-spacecraft constellation. As we can see the spatial envelope is symmetric 

respect to the x-axis in both cases, but the topology is completely different. In the first case, the f-1 orbit is a better 

choice as it allows a continuous coverage (i.e., full spatial envelope). In the second case, the coverage from the f-4 

orbit presents some “blind” zones (i.e., the spatial envelope is disconnected). In this case, only two spacecraft form a 

connected coverage area, while the area covered by the other two members of the constellation is disconnected. This 

may be improved by increasing the number of spacecraft in the constellation or by increasing limV  (i.e., increasing 

the performance of the telescopes). It is indeed clear that a correlation exists between the full spatial envelope for each 

time instant, the size of the constellation and the orbit amplitude, therefore a trade-off of these parameters is essential. 
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(i) 

 
(ii) 

Figure 14. Spatial envelope for a 4-spacecraft constellation. (i) Evolution of the spatial envelope in time for the 
f-1 orbit in Table 3, together with the spacecraft positions (each number represents a different spacecraft). Two 
different instant of time are considered, the best configuration (solid line, triangle markers), and the worse 
configuration (dashed line, square markers). (ii) Spatial envelope at the initial configuration on f-1 (grey dashed 
line) and f-4 (solid black line) orbits in Table 3, considering the same spacecraft constellation. The numbers 
indicate the spacecraft order, and is the same in both the orbits. 

 
Now, considering different constellation sizes (i.e., composed by 3 up to 12 spacecraft), we can compute the orbital 

trend of total coverage area coverage-spaceA  and the orbital trend of the coverage area within the exclusion zone 

exclusion zone, spaceA . The latter region is the main advantage of space-based observation versus Earth-based observation. 

A minimum diameter of 45 m is chosen in order to obtain a full envelope for each constellation and spacecraft 

configuration, considering the f-3 orbital dynamics.  

Figure 15(i) shows the evolution of the global coverage area coverage-spaceA , while Figure 15(ii) shows the area within 

the exclusion zone exclusion zone, spaceA , measured in AU2 for different constellation sizes. The evolution for both 

coverage-spaceA , and exclusion zone, spaceA is characterised by a sinusoidal trend. This is due to the orbital dynamics and therefore 

on the evolution of the geometrical configuration of the spacecraft on the orbit. As an initial consistency check, we 

note that coverage-spaceA  improves as the constellation size increases, and the amplitude of the sinusoidal trend decrease. 

The amplitude trend is consistent with intuition as the distortion of the orbital spacecraft configuration decreases as 

the constellation size increases; therefore, the difference between the worse configuration and the best configuration 

decreases. In the case of 3-spacecraft constellation, the trend of coverage-spaceA  is sinusoidal with an amplitude modulation. 

These oscillations in time are probably due to the fact that the spacecraft are so distant from each other on the orbit, 

that consequently, their relative configuration geometry gets more distorted during the orbit evolution. We can argue 
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that this distortion could have a very strong impact on the warning time, because the probability to detect an asteroid 

in the case of a poor spacecraft geometry configuration increases.  

The orbital trend of the maximum of exclusion zone, spaceA  considering the different constellation sizes is similar, while 

the minimum increases with the number of spacecraft in the constellation. Regarding this trend it appears that the 

maximum value of exclusion zone, spaceA is less affected by the orbital dynamics and constellation size. However, as the 

constellation size increase, the number of times in which exclusion zone, spaceA  is maximised in one orbital period increases. 

If we compare the trend obtained with a 3 and 6 spacecraft constellation, we can see that in the first case 

exclusion zone, spaceA  reaches its maximum value four times, while a 6-spacecraft constellation seven times. Therefore, the 

probability to detect an asteroid within the exclusion zone with a good spacecraft geometry configuration (i.e., good 

warning time) increases as the constellation size increases. Moreover, it should be stressed that the warning time is 

also influenced by how the exclusion zone, spaceA  is spread inside the exclusion zone. 

 

(i) 

 

(ii) 

Figure 15 (i) Orbital trend of coverage-spaceA , where five different constellation are considered (3, 4, 5, 6, 
and 8-spacecraft constellation); (ii) orbital trend of exclusion zone, spaceA  where only three different 
constellation are considered for better visibility (3, 4, and 6-spacecraft constellation). In both figures 
the orbital dynamics is based on f-3 orbit in Table 3, and min 45 md = . 

 

In Figure 16, we show the extreme values of coverage-spaceA  and exclusion zone, spaceA  as a function of the constellation size. 

In the case of coverage-spaceA , as the constellation size increases, the minimum and maximum values tend asymptotically 

to the mean value. The extreme values of exclusion zone, spaceA  have a different trend; here the minimum and mean values 
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tend asymptotically to the maximum value, reinforcing the fact that the constellation size has a strong impact on the 

min value of exclusion zone, spaceA  and a less noticeable effect on the maximum value. 

The evolution of exclusion zone, spaceA  and coverage-spaceA  can be extended to a higher number of spaceraft in the 

constellation to show their asymptotic behaviour, disregarding for now both the feasibility and cost of the overall 

mission (see Figure 17). In this case, only the initial orbital spacecraft configuration is considered, because as stated 

before, the impact of the orbital dynamics is less noticeable as the constellation size increase. For the orbit considered, 

coverage-spaceA  has the major increment for 3 up to 15-spacecraft constellation, while exclusion zone, spaceA  has the major 

increment for 3 up to 21-spacecraft constellation. As the constellation size increase, the detection area within the 

exclusion zone became less distorted, approaching a triangular shape, as we can see in the small plot inside Figure 17, 

while the space envelope area become more and more smooth. 

In general, increasing the size of the constellation gives a more robust PHA detection system especially in terms 

of coverage of the exclusion zone, which should be always guaranteed. However, it should be stressed that various 

factors may influence the numerical results found within these plots; namely, the parameters used in the H-G 

astronomical model (i.e., the phase slope parameter and the asteroid’s albedo). Moreover, even if these results are 

strongly correlated with the selection of the orbit amplitude and asteroid diameter, we can argue that the qualitative 

trend would be similar and just the quantitative trend would change in the case of different minr  and mind . 

 

(i) 

 

(ii) 

Figure 16. (i) Max, mean and min values for coverage-spaceA ; (ii) max, mean and min values for exclusion zone, spaceA . 

Constellation analysed considering f-3 orbit in Table 3 with min 45 md = . 
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Figure 17. Asymptotic behaviour of coverage-spaceA  and exclusion zone, spaceA  considering the initial spacecraft 
configuration. The small plot in the right bottom corner is a graphical comparison of 3 constellations size from 
which we can see the shape evolution of coverage-spaceA  and exclusion zone, spaceA . The constellation have been analysed 

considering f-3 orbit in Table 3 with min 45 md = . 

5 Application to real scenario 

Finally, in order to take into account a real asteroid trajectory, in the following as an example, we consider the 

case of the Chelyabinsk meteoroid. On 15 February 2013, a small asteroid entered Earth's atmosphere over Russia 

with an estimated speed of 18 km/s, an estimated initial mass of 11,000 tonnes and measuring approximately 17 to 30 

meters across (Andronikov et al., 2014). The object exploded in an airburst over Chelyabinsk at a height of about 15 

to 25 km with the generation of a bright flash, small fragmentary meteorites and a powerful shock wave. The 

Chelyabinsk meteor is the largest known object to have entered the Earth's atmosphere since the 1908 Tunguska event 

(Zuluaga and Ferrin, 2013, Andronikov et al., 2014). The object was not detected before atmospheric entry, because 

it came from the wrong direction for ground-based observations. In the following, we will study the potential of a 

space-based survey system exploiting the dynamics of DROs, to detect the trajectory of Chelyabinsk meteor. Table 4 

summarises the orbital parameters of first determination of the orbit of the Chelyabinsk meteor (Zuluaga and Ferrin, 

2013). 

We can compute the warning time considering the intersection between the asteroid trajectory and the space 

coverage envelope. More precisely, the asteroid dynamics (orbital elements in Table 4) is simulated backward in time 

for a time span period of 100 days from the impact day. At the beginning of the simulation, the spacecraft constellation 
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starts at the nominal configuration, and the space envelope is computed with one-day step and is searched in order to 

find the intersection with the asteroid trajectory. The orbits chosen for the simulation assure the feasibility of the space 

envelope for each spacecraft configuration. Therefore, from the intersection position, the time at the intersection is 

computed and used to evaluate the best and worse detection in term of days.  

In order to show the impact of the orbit amplitude and asteroid diameter over the warning time, two different cases 

has been analysed. In the first case, the Chelyabinsk diameter was set to min 30 md ≥ , while in the second case

min 17 md ≥ . To have a connected spatial envelope along the orbital period, the f-2 orbit in Table 3 was selected for

min 30 md ≥ . In this way, Chelyabinsk trajectory could be monitored, and the most favourable conditions happening 

when the space envelop geometry intersects the Chelyabinsk trajectory as much as possible away from the Earth. For 

min 17 md ≥ a smaller orbit than f-1 in Table 3 was selected, in order to guarantee a connected spatial envelope along 

the entire orbital period, namely f-0 in Table 3. Figure 18 shows the orbital trend of exclusion zone, spaceA  and warning time 

considering both the cases described earlier (i.e. two orbit amplitude and two asteroid diameters). As we can see, 

despite some irregularities, the warning time trend follows the exclusion zone, spaceA  trend, disregarding the orbit amplitude 

and the value of mind . These irregularities are primarily due to the distribution of exclusion zone, spaceA  over the x-y plane, 

respect to the asteroid’s trajectory. More precisely, even if the exclusion zone, spaceA  is increasing, for some spacecraft orbital 

configuration this area is spread inside the exclusion zone but far away from the incoming asteroid trajectory. This 

could jeopardise the detection capability in terms of warning time, because the intersection between the asteroid 

trajectory and the space envelope move to the Earth proximity. A potential solution able to minimise these 

irregularities, is increasing the constellation size, however at higher mission cost.  

 Figure 19 illustrates the heart-shape curve for the ground-based survey system and the best and worse coverage 

for space-based survey system considering two different mind  as before. The black circles show the position of the 

asteroid every five days along the orbital trajectory. As a first check, we can see that with a ground telescope it is 

impossible to detect the asteroid, because its orbital trajectory lie within the exclusion zone. Conversely, with a space-

based system it is possible to detect the asteroid with a 15.52 days warning time, for the best spacecraft configuration, 

and with a 3.67 days, for the worst spacecraft configuration, considering an estimated minimum diameter of

min 30 md ≥ . In the case of min 17 md ≥ , the warning time decrease to 8.62 days for the best spacecraft configuration, 
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and 36 minutes for the worse. Therefore, in the case of min 17 md ≥  a 4-spacecraft constellation gives a marginal 

warning time for the worse spacecraft configuration. In order to increase the warning time, a potential solution is to 

increase the size of the constellation. Figure 20 illustrates the orbital trend of exclusion zone, spaceA  and warning time, using 

a 5-spacecraft constellation and f-0 orbit. As a consistency check, we can see that the warning time for the best 

configuration is less sensible to the change in the constellation size, while the warning time for the worse spacecraft 

configuration improve noticeably, increasing from 36 minutes to 4.52 days. This improvement is related to the 

increment in the minimum value of exclusion zone, spaceA  and to the fact that a 5-spacecraft constellation give a less distorted 

coverage area within the exclusion zone, in comparison to a 4-spacecraft constellation. 

In conclusion, a small constellation of four spacecraft properly spaced in time along the same DRO, could be quite 

effective for asteroid detection, like Chelyabinsk, with a reasonable warning time, in the case of min 30 md ≥ . 

Otherwise, for asteroid diameter around 20 m, a large constellation prove to be quite effective in order to increase the 

warning time of the worse spacecraft configuration, as per the Chelyabinsk meteoroid. This would give the possibility 

to take protective measures against small meteoroid approaching from the line of sight to the Sun. Furthermore, such 

DROs constellation could be effective to complete the catalogue of NEOs down to diameter smaller than 1 km. 

 

(i) (ii) 

Figure 18. (i) exclusion zone, spaceA and warning time orbital trend considering f-0 orbit and min 17 md ≥ ; (ii) 

exclusion zone, spaceA and warning time orbital trend considering f-2 orbit and min 30 md ≥ . In both cases a 4-
spacecraft constellation is used. 
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Figure 19. Representation of Chelyabinsk detection from f-0 and f-2 orbit for a 4-spacecraft constellation, 
considering min 17 md ≥ and min 30 md ≥ respectively. Earth detection area is coverage-EarthA for ground telescope. 
The black circle markers indicate the Chelyabinsk position along its trajectory every 5 days. The warning time 
computation is based on the intersection between the asteroid trajectory and the space envelope, which is 
strictly related to the size of the constellation and the spacecraft configuration (this intersection is indicated 
with the black asterisk markers). The four warning times are, best detection from f-2: 15.52 days, worse 
detection from f-2: 3.67 days, best detection from f-0: 8.62 days, worse detection from f-0: 36 minutes. 

 



35 
 

 

Figure 20. exclusion zone, spaceA and warning time orbital trend considering f-0 orbit and min 17 md ≥ , for a 5-
spacecraft constellation. The warning times are, best detection from f-0: 8.63 days, worse detection from f-0: 
4.52 days. 

 

Table 4. Chelyabinsk orbit data. 

 Symbol (units) min value max value mean value 

Semi-major axis a [AU] 1.40 2.21 1.69 

Eccentricity e [ ] 0.37 0.65 0.51 

Inclination i [°] 0.03 6.98 3.30 

Longitude of ascending node Ω 326.50 331.87 326.51 

Argument of periapsis ω 116.06 125.25 120.75 

Perihelion distance rp [AU] 0.77 0.88 0.82 

Aphelion distance ra [AU] 1.93 3.64 2.55 

6 Conclusions 

This paper proposes a concept for the space-based monitoring of PHAs from retrograde distant periodic orbits in 

the Sun – (Earth + Moon) system. Starting from initial conditions in Hill’s problem, family of simple-periodic orbits 

are built in the Planar Circular Restricted Three Body Problem and their characterisation is performed according to 

the maximum and minimum distance they reach from the Earth. Distant Retrograde Orbits in the Sun – (Earth + Moon) 

systems are selected as they ensure increasing the warning time with respect to conventional Earth-based observation. 

Indeed the increase of coverage area and gained visibility in the Earth exclusion zone are demonstrated. Based on the 

analysis performed, a small constellation of four spacecraft properly spaced in time along the same DRO, could be 
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quite effective at detecting asteroids with a reasonable warning time. In the case of Chelyabinsk, the numerical results 

show that, with a space-based system composed of a 4-spacecraft constellation, it is possible to detect the asteroid 

with a 15.52 days warning time for the best spacecraft configuration, and with a 3.67 days for the worst spacecraft 

configuration (considering the capabilities of H-G model, min 30 md ≥  and space telescopes with a limiting visual 

magnitude as 23). Moreover, in the case of the lower estimation diameter min 17 md ≥ , the results are less encouraging, 

with 8.62 days and 36 minutes, for the best and worse spacecraft configuration, respectively. A potential solution in 

order to improve the worse warning time, has been the use of a 5-spacecraft constellation, able to increase the worse 

warning time from 36 minutes to 4.52 days, rather than the approximately two minutes interval time between the flash 

and the shock wave arrival on the Earth, in the case of Chelyabinsk impact. In future, it will be possible have telescopes 

with a higher limV  and consequently the figure of merit used to measure the space-based detection capabilities will 

improve and also for a given DRO it will be possible to detect objects with a smaller diameter or for a given diameter 

gain higher warning time. Although we believe that such DRO constellation could be effective to complete the 

catalogue of NEOs down to diameter smaller than 1 km, and could be employed in space weather applications to 

improve the warning time of solar storms, it still has a long way to go for practical applications. Additional follow-up 

work is required in the near future, such as the extension to three-dimensional orbits and optimisation of their injection 

parameters in the Sun – (Earth + Moon) planetary system should be investigated. Furthermore, such studies should be 

examined in a high-fidelity model, based on an n-body dynamic coupled with a Station-keeping control, needed for 

long-term missions. The method proposed would allow for a quick and hopefully accurate first-guess choice of the 

baseline orbit and warning time evaluation, considering a predefined asteroid diameter, which can undoubtedly 

considered a very important computational tool.  

Appendix A. Numerical computation of periodic orbits 

Starting from the initial conditions refined from (Hénon, 1969), the new initial state vector for each orbit is computed 

in the Sun – (Earth + Moon) PCR3BP, considering this time a finite mass parameter μ. The differential correction 

method coupled with a continuation method on the orbit amplitude (i.e., energy) is used to build a complete map of 

periodic orbits in the ( )0,ξΓ  plane, for a specific mass parameter (Koon et al., 2011, Scott and Spencer, 2010, 

Thurman and Worfolk, 1996). Considering the PCR3BP, the numerical algorithm used in the differential correction 
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method, adjust the y-velocity, yv in Eq. (1), of the periodic orbit, starting from the initial condition given by Hénon 

data. This initial condition is integrated until the next x-axis crossing, where the x  value may not be zero, or in general 

less than a predefined tolerance, e.g. 810−=toll . The state transition matrix after one half-orbital period, ( ),0Φ halfT , 

is used to adjust yv , by 
( )
( ) ( )
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y T
, with Φij the i-j component of the state transition matrix, 

in order to cancel out ( ) halfx T . This process converges to ( ) < halfx T toll  within a few iterations typically. The state 

transition matrix is computed solving a linear, non-autonomous system of differential equations in 16 dimensions. 

These equations are called the first variational equations, and can be solved simultaneously with the equations of 

motion (i.e. of the PCRTBP, or Hill’s model). The resulting 20 dimensional initial value problem is 
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with initial conditions ( ) 00 =X X , ( ),0 =Φ X I , where X  is the state vector, [ ]( )∂ ∂f X X is the Jacobian matrix, and 

I is an ( )4 4×  identity matrix. The solution of the state transition matrix computed at a time equal to the orbital period, 

T , is defined as monodromy matrix, ( )( ),
=

= ∂Φ ∂
t T

tM X X  . The stability of a periodic orbit is typically deduced 

from M , which can be decomposed in four eigenvalues λi  with 1,...,4=i  and their associated eigenvectors (Perko, 

2013, Koon et al., 2011). Two of the eigenvalues, 1 2,λ λ  are equal to unity due to the periodicity, while the other two, 

3 4,λ λ  may be real, complex, or imaginary. Due to the symplectic properties of the state transition matrix (i.e. the 

equations of motion are an autonomous Hamiltonian system), they appear as reciprocal pairs, hence 3 41λ λ= , and 

from the Lyapunov stability, a periodic orbit that exhibits stability is characterised by a pair of complex or imaginary 

eigenvalues, with a stability index, k , between 2= −k  and 2=k . The stability index can be defined by ( ) 2= −k tr M

, or by 3 4λ λ= +k . Note that the differential correction method described above is used for both the Hill’s and PCR3BP 

dynamics.  

 The numerical continuation method is used to compute orbit of arbitrary large amplitude, to generate a family of 

orbits that reaches the desired energy level. Starting from two small nearby periodic orbit initial conditions, namely 
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(1) (1) (1)
0 0 00 0 =  

T
x yX  and (2) (2) (2)

0 0 00 0 =  

T
x yX , correct to within the tolerance toll , and computed with 

the differential correction procedure described above, an initial guess for (3)
0X  can be extrapolated via 
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where (2) (1)
0 0Δ X X= − and subscript g indicate first guess. Keeping (3)

0,gx  fixed, the continuation method uses the 

differential correction to compute an accurate solution (3)
0X  from the initial guess (3)

0,gX  and repeats the process until 

a family of periodic orbits is obtained. 

Appendix B. Algorithm for computation of sky coverage area 

Algorithm 1 Earth detection model 

Inputs:  

1) H-G astronomical model parameters, vp , limV , G , and asteroid diameter mind  for which coverage-EarthA  need to 
be computed. 

2) Lower and upper boundaries l ux x x  , l uy y y   for the 2-dimensional asteroid grid in AU, and 
number of points in the grid, (e.g. 1000gridN  ). The boundary values can be chosen taking into account the 
maximum asteroid diameter allowed in the simulation (e.g., 1 1x   , 1 1y    for asteroid diameters 
below 200 m),  

3) Half angle for the triangle exclusion zone constraint centred at the origin of the Earth synodic system (i.e., 
the same half angle has been used for both the detection models, which is 40 degrees). 

4) Reference system (i.e., in both the detection model, Earth-based and space-based, the Earth synodic system 
is used, with the Earth at the origin and the Sun at coordinates 1Sunx   and 0Suny  ). 

Outputs: The surface matrix −min, coverage EarthD , the contour line matrix min, coverage-Earthd  and coverage-EarthA . 
Step 1 – Compute the asteroid grid. Considering the lower and upper boundaries, and gridN , compute a square grid 
with dimensions grid gridN N . Each point in this grid represents the coordinates of a virtual asteroid. 
Step 2 – For loop.  
For j = 1:1: 2

gridN  select the asteroid coordinates ( ),x y  and perform the following steps. 
Step 3 – Evaluate the geometry of the system. Compute the vectors 1R , 2, EarthR , 3, EarthR , the angle   
between 1R and 2, EarthR  (in this detection model 3, EarthR does not change and its modulus is equal to one). 
Step 4 – Evaluate the H-G astronomical model Eqs. (7), and (8). Compute the phase functions 1Φ , 2Φ , 
and limH . 
Step 5 – Evaluate Eq. (9) and apply the exclusion zone constraint. Evaluate Eq. (9), change the dimension 
of minD  from kilometres to meters, and verify the solution feasibility. More precisely, if the exclusion zone 
constraint is satisfied store minD in matrix −min, coverage EarthD , otherwise set −min, coverage EarthD  as NaN. 

End. 
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Step 6 – Evaluate Acoverage-Earth. Once the matrix min, coverage-EarthD  is computed, extract the coordinates of the 

contour line associated to the asteroid with diameter mind . These coordinates are collected in matrix −min, coverage Earthd
, and after a reordering procedure of the coordinates, a polygon is constructed and the associated area in AU2 is the 
value of coverage-EarthA . 
 

Algorithm 2 Space constellation detection model 

Inputs:  

1) H-G astronomical model parameters, vp , limV , G , and the asteroid diameter mind  for which coverage-spaceA  need 
to be computed. 

2) Lower and upper boundaries l ux x x  , l uy y y   for the 2-dimensional asteroid grid in AU, and 
number of points in the grid, (e.g. 1000gridN  ). The boundary values can be chosen taking into account the 
maximum asteroid diameter allowed in the simulation (e.g., 1 1x   , 1 1y    for asteroid diameters 
below 200 m), the orbital size (i.e., the value of minr ), and the constellation size (i.e., the value of /s cN ). 

3) Half angle for the triangle exclusion zone constraint centred at the origin of the Earth synodic system (i.e., 
the same half angle has been used for both the detection models, which is 40 degrees). 

4) Reference system (i.e., in both the detection model, Earth-based and space-based systems, the Earth synodic 
system has been used, with the Earth at the origin and the Sun at coordinates 1Sunx   and 0Suny  ). 

5) Number of spacecraft in the constellation, /s cN , number of envelopes along the orbital period, envelopeN . 
Outputs: The surface matrix min, coverage-spaceD  with dimensions /grid grid s cN N N  , the contour line matrix 

min, coverage-spaced , coverage-spaceA , and exclusion zone, spaceA . 
 
Step 1 – Select an orbit within family-f.  
Step 2 – Compute the asteroid grid. Considering the lower and upper boundaries, and gridN , compute a square grid 
with dimensions grid gridN N . Each point in this grid represents the coordinates of a virtual asteroid. 
Step 3 – Setup envelope. Considering /s cN , and envelopeN  the interval time between each envelope is computed, and 
is used to compute the spacecraft configuration.  
Step 4 – For loop  
 
for jenvelope = 1:1:Nenvelope, compute the spacecraft positions (i.e. geometry of the constellation). 

for jspacecraft = 1:1:Ns/c 

for jgrid = 1:1: 2
gridN , select the asteroid coordinates ( ),x y  and perform the following steps 

 
Step 5 – Evaluate the geometry of the system. Compute the vectors 1R , 2, spaceR , 

3, spaceR , the angle   between 1R and 2, spaceR , the angle   between 1R and 3, spaceR . 
Step 6 – Evaluate the geometry in the correct system of reference. Computation of 
the Sun and asteroid coordinates in the new reference system centred at the spacecraft 
position, and aligned with the Sun-spacecraft direction. The spacecraft position is used 
for the translation, while the angle   is used for the plane rotation. 
Step 7 – Evaluate the H-G astronomical model Eqs. (7), and (8). Compute the phase 
functions 1Φ , 2Φ , and limH . 
Step 8 – Evaluate Eq. (9) and apply the exclusion zone constraint. Evaluate Eq. (9), 
change the dimension of minD  from kilometres to meters, and verify the solution 
feasibility. More precisely, if the exclusion zone constraint is satisfied store minD  in 
matrix min, coverage-spaceD , otherwise set min, coverage-spaceD  as NaN. 
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end 
end 

Step 9 – Evaluate the envelope feasibility. Once the matrix min, coverage-spaceD  is computed for all the 
asteroids in the grid and for all the spacecraft in the constellation, it is searched in order to extract the 
coordinates of the contour line associated to the asteroid with diameter mind . After a reordering 
procedure of the coordinates, /s cN  polygons are constructed, and then the algorithm checks for the 
envelope feasibility, computing the number of envelope , eN , considering the intersection between /s cN  
polygons. 
if 1eN   

these coordinates are collected in matrix min, coverage-spaced , and coverage-spaceA , exclusion zone, spaceA  are 
computed. 
In the case of exclusion zone, spaceA , the intersection between min, coverage-spaced  and the triangle exclusion 
zone is computed, and a new polygon is obtained. The area of this polygon is exclusion zone, spaceA . 

else 
the algorithm exit from the loop and choose a smaller orbit (in this case the algorithm restarts 
from Step 1), or increase the constellation size (in this case the algorithm restarts from Step 3). 
The user predefines this choice. 

end 
end 
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