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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Department of Mathematics

Doctor of Philosophy

MODELLING AND PREDICTING DECOMPRESSION SICKNESS: AN

INVESTIGATION

by Jotham P. K. Gaudoin

In this thesis, we shall consider the mathematical modelling of Decom-

pression Sickness (DCS), more commonly known as ‘the bends’, and, in

particular, we shall consider the probability of its occurrence on escaping

from a damaged submarine.

We shall begin by outlining the history of DCS modelling, before choosing

one particular model-type - that originally considered by Thalmann et al.

(1997) - upon which to focus our attention. This model combines tissues in

the body sharing similar characteristics, in particular the rate at which ni-

trogen is absorbed into or eliminated from the tissues in question, terming

such combinations ‘compartments’. We shall derive some previously un-

known analytical results for the single compartment model, which we shall

then use to assist us in using Markov Chain Monte Carlo (MCMC) meth-

ods to find estimates for the model’s parameters using data provided by

QinetiQ. These data concerned various tests on a range of subjects, who

were exposed to various decompression conditions from a range of depths

and at a range of breathing pressures. Next, we shall consider the multiple

compartment model, making use of Reversible Jump MCMC to determine

the ‘best’ number of compartments to use.
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We shall then move on to a slightly different problem, concerning a second

dataset from QinetiQ that consists of subjective measurements on an or-

dinal scale of the number of bubbles passing the subjects’ hearts (known

as the Kisman-Masurel bubble score), for a different set of subjects. This

dataset contains quite a number of gaps, and we shall seek to impute these

before making use of our imputed datasets to identify logistic regression

models that provide an alternative DCS probability.

Finally, we shall combine these two approaches using a model averaging

technique to improve upon previously generated predictions, thereby of-

fering additional practical advice to submariners and those rescuing them

following an incident.
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Chapter 1

Introduction

1.1 Motivation

Decompression Sickness, henceforth referred to as DCS and more com-

monly known as ‘the bends’, is an ailment that is believed (see, for exam-

ple, Brubakk and Neuman (2002), Chapter 9) to be caused by nitrogen

bubbles forming in the bloodstream and tissues of the body. The precise

mechanism of this process is a highly complex one and we shall not at-

tempt to describe the aetiology of the condition in detail. In divers, the

bubbles occur when moving from a region of higher breathed air pressure

to one of lower breathed air pressure - i.e. from deep water to the surface

- in too short a space of time. Symptoms occur soon after the dive has

finished and, because the nitrogen bubbles can form in different parts of

the body, vary from individual to individual. The diver may complain of

headache or vertigo, abnormal tiredness or fatigue. They may have a rash,

pain in one or more joints, tingling in the arms or legs, muscular weakness

or paralysis. Less commonly, breathing difficulties, shock, unconsciousness

or death may occur. Immediate treatment is 100 per cent oxygen on site

and during transportation, followed by a period of time in a hyperbaric

chamber that recompresses the diver and forces the nitrogen bubbles back

1



Chapter 1 Introduction 2

into solution, followed by a gradual ‘ascent’ in the chamber. DCS affects

not only divers and submariners, who are the main focus of this thesis, but

also caisson workers - a caisson being a watertight retaining structure used,

for example, to work on the foundations of bridge piers, tunnels, concrete

dams or for the repair of ships. Caissons are constructed such that the

water can be pumped out, keeping the working environment dry. Here, the

difference between breathing the compressed atmosphere within the cais-

son and rapidly re-entering normal (uncompressed) atmospheric conditions

causes DCS. Moreover, airmen and astronauts moving from areas of stan-

dard sea-level pressure to regions of lower pressure in the upper atmosphere

and beyond can also suffer from the same deleterious effects.

To date, all models for the decompression process itself have been deter-

ministic and the parameters of such models have been either empirically

estimated or, more recently, estimated using maximum likelihood methods.

Models for DCS have then built on these deterministic models by attempt-

ing to evaluate the probability of contracting DCS using these deterministic

models as a basis for survival analysis methods. However, the uncertainty

in the models themselves has not been accounted for. In particular, in mod-

elling the decompression process, the lack of a stochastic element is clearly

unrealistic as, given the same environmental, atmospheric and biological

conditions, a given subject may on one occasion experience DCS while not

experiencing it on another. Further, each model is very much standalone

from any other so that any information not included in the model under

consideration is lost when making predictions. This is an undesirable state

of affairs as it is quite possible that information gained about DCS through

one model may not be incorporated in another and we are therefore not

making use of all possible information from our data. To alleviate this, we

seek to use Bayesian methodology to improve the inference available for

these models and also to obtain measures of uncertainty regarding their

estimation and usage. Our goal is to provide improved inference and mea-

sures of uncertainty so as to be able to make more informed predictions
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about DCS for a given dive, as well as trying to use information from more

than one model at a time so that we might further improve such predictions.

Thus, we seek to make use of both decompression theory and Bayesian the-

ory to provide more accurate predictions and measures of uncertainty that

can be used when making predictions for particular dives.

In this chapter, we introduce the basic concepts of Bayesian theory that

we will use throughout the thesis while in the following chapter we will

consider the various physical and physiological elements of decompression

theory that we draw upon. Rather than referencing each section separately,

we note here instead that we have drawn on amalgamation of Lee (2004)

in Section 1.2, O’Hagan and Forster (2004) in Section 1.3, 1.4 and 1.5,

Robert and Casella (2004) in 1.4 and Ando (2010) in Section 1.6 within

this introduction.

1.2 Bayesian Theory

It is important to note first that, under the Bayesian view of probability, we

consider the observed data as being fixed, while any parameters in a given

model are unknown variables with their own probability distributions. This

is to be contrasted with the frequentist perspective on probability where the

data are seen to be drawn from probability distributions conditional on any

covariates, with any parameters being fixed and simply unknown (so that

they do not possess a distribution but have a single ‘true’ underlying value).

To illustrate Bayes’ Theorem, suppose that y = (y1, y2, . . . , yn) is a vector

of observations from some process with a sampling density f(y|θ). Here,

θ is a vector of model parameters that are both unknown and possesses

a distribution, the sample space of which we designate Θ. Equivalently,

f(y|θ) is often called the likelihood for θ and this is written l(θ|y). We

must also place a prior distribution f(θ) on θ. Here we may incorporate
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any information on θ that we have from, for example, expert opinions,

judgements or practical experience if we have any. In particular, some of

the parameters in the models we shall consider have physical interpretations

that allow us to put sensible limits on their possible values. Alternatively,

we may use a diffuse prior that allows a wide range of values for θ. This

can lead to some difficulties, however, as we shall discuss later.

By using our likelihood f(y|θ) together with our prior f(θ) we may write

the joint probability density function (pdf) of y and θ as

f(y,θ) = f(y|θ)f(θ). (1.1)

Now, we ideally want an expression for f(θ|y) as we have observed the data

y and, given this information, we wish to find the posterior distribution

f(θ|y) using the likelihood f(y|θ). The key to doing this is Bayes’ theorem,

which states that

f(θ|y) =
f(y,θ)

f(y)
=
f(y|θ)f(θ)

f(y)
,

where the last equality is obtained using (1.1). Further, the quantity f(y)

is termed the marginal likelihood and is obtained as

f(y) =

∫
f(y|θ)f(θ) dθ.

1.3 Making Use of Posterior Distributions

As mentioned in the previous section, we wish to consider the posterior

distribution of the parameters θ given the data y, which we label f(θ|y).
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Unless the likelihood and prior are drawn from particular conjugate dis-

tributions (so that their distribution is of some known, tractable form),

it is highly unlikely that we will be able to obtain a closed form for this

posterior distribution. We must therefore make use of simulation methods

to simulate draws from the desired posterior distribution and this requires

a large amount of computation. Using these draws, we may then approxi-

mate to a reasonable degree of accuracy suitable summaries of the posterior

distribution, such as its mean and median. In the case of the mean, for

example, supposing we have N samples θ1, θ2, . . . , θN from our posterior,

then we may approximate the mean of our posterior by

E[θ|y] ≈ 1

N

N∑
i=1

θi.

We can also use estimation techniques (such as kernel density estimation)

to interpolate our draws from f(θ|y) in some way into a smooth estimate

of the posterior density f(θ|y). Using this density estimate, we can subse-

quently find the approximate mode(s) of f(θ|y) which may then be used as

point estimate(s) of θ if required. Also, we might calculate a 100(1− α)%

credible region for θ. This is a region in which θ lies with probability

100(1 − α)%. Such an interval, which we might label A, can be obtained

by finding a suitable set A such that

P (θ ∈ A|y) =

∫
A

f(θ|y) dθ = 1− α.

Setting α = 0.05 would, for example, yield a 95% credible interval.

Alternatively, we could calculate a Highest Posterior Density (HPD) region

for θ. A 100(1−α)% HPD region is one with posterior probability 100(1−
α)% such that the minimum density of any point within the region is at

least as large as the density of any point outside the region. Note that HPD
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regions may not be continuous single intervals but are unique providing that

the posterior is not uniform on any given neighbourhood within the support

of the posterior (see Zellner (1971) for further details).

1.4 Simulation Methods

As noted in the previous section, we are likely to require draws from our

posterior distributions to obtain suitable summaries as we are not likely

to have available a closed form of these posteriors, particularly given the

forms of models that we shall be using. We shall therefore require methods

to simulate from our posterior distributions in some way. Such simulation

can be difficult, particularly if these distributions are of high dimension.

One oft-used technique that we shall be employing extensively is that of

Markov Chain Monte Carlo (MCMC). MCMC methods allow us to create

a sequence of dependent samples from the desired posterior distribution by

creating a Markov chain whose steps form a dependent sample from our

posterior f(θ|y).

1.4.1 The Metropolis-Hastings Method

Originally proposed by Metropolis et al. (1953) and subsequently expanded

upon by Hastings (1970), the Metropolis-Hastings method allows us to draw

dependent samples from our posterior distribution f(θ|y) as we desire,

providing that we can compute some function proportional to the desired

density. That is, we need not calculate the normalizing constant of the

posterior, which is given by

f(y) =

∫
f(y|θ)f(θ) dθ,
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but rather need only be able to compute f(y|θ)f(θ), which is much easier to

obtain given that it is simply the likelihood of θ given the data y multiplied

by our desired prior distribution.

To outline the algorithm, suppose that we have a Markov chain for θ which,

at the ith state, we label θ(i). We require a proposal distribution q(., .)

which, ideally, is similar in shape to the desired target (i.e. posterior)

distribution. The level of similarity between the proposal and target dis-

tributions is a key factor in how quickly the algorithm converges. Given a

proposal distribution q, we generate a proposed value for the chain from

q(., .) and label this θ∗. With probability α, where

α = min

{
f(y|θ∗)f(θ∗)q(θ∗|θ(i))
f(y|θ(i))f(θ(i))q(θ(i)|θ∗)

, 1

}
(1.2)

we accept the proposal and set the new value of the chain (i.e. its value in

the i+ 1th state) to θ∗ while with probability 1−α we reject the proposal

and set its value in the i+1th state to be equal to the value in its ith state.

Note that in computing (1.2) we do not need to evaluate the normalizing

constant of our posterior distribution as this has been cancelled by taking a

quotient - a most helpful state of affairs when calculating as this constant is

difficult to compute. Note that if the proposal is chosen to be a symmetric

distribution then our expression for α may be simplified to

α = min

{
f(y|θ∗)f(θ∗)

f(y|θ(i))f(θ(i))
, 1

}
as with a symmetric proposal distribution we will have that q(θ∗|θ(i)) =

q(θ(i)|θ∗) so that the ratio q(θ∗|θ(i))/q(θ(i)|θ∗) is 1 for all θ(i),θ∗.
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1.4.2 Convergence

In order to be drawing samples from the desired posterior distributions,

we require that the Markov chains in question have converged to their

respective stationary distributions. It is not necessarily easy to determine

when this occurs and indeed Cowles and Carlin (1996) note that ‘many

of the [available] diagnostics produce results that are difficult to interpret,

and [are] potentially misleading even in (...) idealized settings’. Thus,

to determine whether convergence to a stationary distribution has been

achieved is difficult. Informally, we often examine the trace plot of the chain

- that is, a time series plot of the various states of the chain. This allows us

to identify the burn in of the chain, or the number of iterations that should

be discarded as the chain has not yet settled to its stationary distribution.

This will usually depend on the starting point of the chain. If we start

far from regions of high posterior probability for our posterior distribution

then we are liable to have a longer burn in period. Such trace plots will also

help us to gauge whether convergence to the desired stationary distribution

has indeed been achieved and several such trace plots are given in this work

to illustrate (non-)convergence to desired stationary distributions.

Once we have obtained a chain that converges successfully to the desired

stationary distribution for our parameters θ, we may then make use of

the samples as outlined in the Section 1.3. Before making use of these

samples, however, it may be wise to thin the chain. Here, we take only

every nth iteration, where n is to be determined by looking at trace plots

containing only every nth iteration of our Markov chain, and seeing whether

the chain appears to mix well (that is, whether we have autocorrelation in

the chain or not) or by looking at autocorrelation functions for the chain.

We expect that thinning to every nth iteration will be appropriate if we

have an autocorrelation close to 0 at lag n. For some of our chains, we

shall see that there is a high degree of autocorrelation between subsequent
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states of the chain and we must take, for example, every 50th iteration so

as to obtain approximately independent samples from the desired posterior

distributions. We would hope that at lag 1 for our final thinned chain

there is a low autocorrelation so that we have approximately independent

samples from our posterior.

1.5 Kernel Density Estimation

In order to estimate the shape of the posterior density given an MCMC

sample, we need some way in which to smooth our points to provide a

smooth curve given our sampler datapoints. To this end, we employ Kernel

Density Estimation - for full details see Wand and Jones (1995). We provide

an outline below.

Suppose that x1, x2, . . . , xn are n datapoints drawn from a given distribu-

tion, but one for which no closed form is available. Then we may estimate

this distribution by a function fh

fh(x1, x2, . . . , xn) =
1

nh

n∑
i=1

K

(
x− xi
h

)
,

where K is a (non-negative) function with mean 0 that integrates to 1 with

respect to x over the real line and h > 0 is a parameter termed the ‘band-

width’. In fact, Wand and Jones note that the biggest factor in controlling

the approximation is not the kernel K, but rather the bandwidth h. This

parameter controls the relative smoothness of the estimate. For a large

value of h, there is oversmoothing, whereby it is impossible to see features

in the desired distribution clearly as they have been ‘levelled out’. On the

other hand, small values of h may produce undersmoothing, resulting in a

very ‘bumpy’ and awkward posterior approximation that is overly affected

by individual data values and tries to fit these too closely.
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We select a Gaussian kernel. To select a bandwidth, we note that Silverman

(1986) suggests the use of

h = 0.9×min

(√
Var(x),

IQR(x)

1.34

)
× n−1/5,

where x is our vector of data observations, Var(x) the variance of the

observations, IQR(x) the interquartile range of the observations and n

the number of observations. Silverman demonstrates that this proves to be

optimal in the sense of producing the least possible mean square error in the

approximation. For that reason, we adopt this as our standard bandwidth

function given for our posterior kernel density estimates.

1.6 Model Comparison and Model Averag-

ing

Suppose that, rather than a single model, we have several models - a total

of M models, say - to deal with. Then, we find that we must often choose

between the M models or, better still, somehow use the information from

all M models to obtain the inference that is in some sense ‘best possible’.

To do this, we first assign a prior probability to each model. These prior

probabilities are often taken to be equal for each model, unless we have

some reason to believe a priori that this is not the case. Then, using the

standard laws of conditional and joint probabilities, and designating the

parameters in model m as θm, we may obtain the expression

f(y,θm,m) = f(y|θm,m)f(θm)f(m).
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The posterior distribution of the mth model given our data y is then, by

application of Bayes’ Theorem,

f(θm,m|y) =
f(y|θm,m)f(θm|m)f(m)

f(y)

and further decomposition gives

f(θm,m|y) = f(θm|m,y)f(m|y)

=
f(y|θm,m)f(θm,m)

f(y|m)
× f(y|m)f(m)

f(y)
,

where f(y|m) is known as the marginal likelihood under model m.

Note that using Bayes’ Theorem we also have that

f(m|y) =
f(y|m)f(m)

f(y)
=

f(y|m)f(m)∑M
m=1 f(y|m)f(m)

,

which is the posterior probability of the mth model given the data and will

be useful when we wish to calculate the probability of the mth model being

(in some sense) the ‘best’ model given our data.

Given the above, it is also possible to average over all the models (a proce-

dure known as model averaging) by using as weights their posterior prob-

abilities given any data. This avoids the need to select an optimal model

and may allow the inclusion of information that would otherwise be lost

and thereby improve any predictions we may wish to make. Thus, if we

have some parameter β, say, then its posterior distribution given the data

under this model averaging procedure would be

f(β|y) =
M∑
m=1

f(β|m,y)f(m|y).
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1.7 AIC, BIC and DIC

In the course of this thesis, we shall require some way to select a model

which is in some way ‘best’ from among a group of models. In order to do

this, we shall at various points make use of what are termed Information

Criteria. These information criteria effectively compare likelihoods between

different models while also introducing some form of penalty for decreasing

parsimony of model and are designed so that we should select the model

with the lowest value of the given criterion as the ‘best’ model. We shall

make use of three standard information criteria: AIC (Akaike’s Informa-

tion Criterion), BIC (the Bayesian Information Criterion) and DIC (the

Deviance Information Criterion). We shall briefly outline each of these

here.

AIC was originally proposed by Akaike (1974) and is defined as

AIC = 2k − 2L,

where k is the number of model parameters and L is the log-likelihood

of the model. We can see that both likelihood and parsimony of model

will affect the value of the criterion - the former providing a positive (and

thus undesirable) contribution with increasing k, and the latter a negative

(and thus desirable) contribution with increasing likelihood. However, it

was found by various researchers (see, for example, McQuarrie and Tsai

(1998) and Burnham and Anderson (2002)) that AIC has a tendency to

overfit models. That is, it has a tendency to select overly complex models,

rather than to select the true model (in those cases where the true model is

known). In order to counteract this, Hurvich and Tsai (1989) suggested a

small sample size modification to AIC - denoted by AICc and termed the
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corrected AIC - which is defined as

AICc = AIC +
2k(k + 1)

n− k − 1
,

where k andAIC are as defined above while n is the number of datapoints in

the given dataset. This corrected AIC, as noted by Burnham and Anderson

(2002), is much less likely to overfit, particularly in those cases where n is

small and/or k is large, and tends to the standard AIC as the number of

available datapoints increases (for k fixed). It is this corrected AIC that

we use throughout.

Next, we consider BIC which was proposed in Schwarz (1978). With no-

tation as used above for AIC, we have

BIC = −2L+ k(lnn− ln(2π)).

Again we see that increased model dimension is penalised while improved

likelihood is encouraged. It is noted by Burnham and Anderson (2004) that

BIC is less prone to overfitting than AIC but does often produce similar

results to AICc.

We shall also have use for the Deviance Information Criterion or DIC.

Noting that the likelihood is a function of the parameters θ of a model

given data y, we have

DIC = pD +D = D(θ) + 2pD,

where D is the deviance of the model defined as D = −2L(θ|y), D is

the expectation of the deviance with respect to θ, D(θ) is the deviance

evaluated at the posterior mean of the parameters and pD is a measure of

the effective number of parameters in the model given by pD = v̂ar(θ)/2

(as suggested in Gelman et al. (2003)). Here, v̂ar(θ) is an estimate of the

variance of the posterior distribution of θ.
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1.8 Generalised Linear Models and Logistic

Regression

Since we will be dealing with the prediction of probabilities for events oc-

curring or not occurring in this thesis, we shall have cause to make use

of the Generalised Linear Model framework first introduced by Nelder and

Wedderburn (1972). In this framework, there is a dependence of the data

of some function of the linear predictor, the latter being defined asXTβ for

some covariate vector X and some coefficients β. That is, if Y represents

our response distribution, and µ its mean then we have

E[Y ] = µ = g−1(XTβ),

where g is known as the link function, as it links the linear predictor with

our response vector. In particular, if we take our link function to be the

logit function given by

g(x) = log

(
x

1− x

)
then if our response vector lies between 0 and 1 being, say, a probability,

then g maps this probability one-one onto the real-line. Using such a link

is termed logistic regression and enables us to model the probability of

an event occurring given covariates. We shall have several uses for this

procedure in this thesis, as we shall be dealing with binary events and thus

the modelling probabilities shall occur frequently.

Note that when using logistic regression, it is difficult to check for goodness

of fit as there are few distinct residual values given by the procedure, since

we are estimating not for binomial proportions but individual Bernoulli 0−1

observations. Further, the deviance (defined as being twice the difference

between the likelihood of the model in question and the likelihood under

a fully saturated model) is not helpful to us in the binary case as it may
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be shown that the data do not appear at all in the expression for this

model’s deviance, meaning that the estimated probabilities of success or

failure cannot be compared with the data easily.

To ameliorate this problem, Hosmer and Lemeshow (1980) suggest grouping

the data by predicted success probability (into, for example, deciles) and

then using a binomial regression (for which the deviance may be analysed

as having approximately a χ2
n−p distribution for n datapoints and p model

parameters) to analyse the goodness of fit of the model for the grouped

data. We shall make use of this technique later in the thesis, where we

shall have cause to check the goodness of fit of some logistic regression

models.

1.9 Survival Analysis

In this thesis, we are concerned with the occurrence (or otherwise) of a

particular event - DCS. To this end, we shall require some useful results on

modelling data of this type. We draw from Davison (2008).

Suppose, then, that T be a random variable indicating the time at which

DCS occurs. We define the survivor function, S, as being

S(t) = P (T ≥ t) = 1− F (t),

where F is the cdf of T .

We also define a general hazard function, h say, as being the risk of DCS

occurring at some time t and is the instantaneous failure (i.e. DCS inci-

dence) rate at time t, conditional on DCS taking place at or after t. If f is
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the pdf of T then for a small time interval [t, t+ δt), we have

h(t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t)

δt
= lim

δt→0

F (t+ δt)− F (t)

S(t)δt
=
f(t)

S(t)
,

where the conditioning in the second equality is evaluated using the defi-

nition of the survivor function itself. Note that h can be any non-negative

function but if limt→∞ S(t) is strictly positive then this indicates that there

will be long term survivors who never experience the event in question.

Next, there is a further useful form of the hazard function to be noted.

Since we have S(t) = 1− F (t), we may also write

h(t) =
f(t)

S(t)

=
f(t)

1− F (t)

= − d

dt
log(1− F (t))

= − d

dt
logS(t),

so that we may write the hazard function in terms of the derivative of the

logged survivor function. Alternatively, integrating and rearranging, we

have

logS(t) = −
∫ t

0

h(u) du

or, more usefully,

S(t) = exp

(
−
∫ t

0

h(u) du

)
.

In particular, for a binary event where we do not know at what time the

event occurs, but only whether or not it does in fact occur, we find that
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the probability of event occurrence is given by

S = exp

(
−
∫ ∞
0

h(u) du

)
and we have cause to use this result in particular in what follows in Chapters

3 and 4.

1.10 Missing Data

1.10.1 Ordinal Data Imputation

In Chapter 5, we shall have cause to deal with a dataset comprised of or-

dinal variables with missing data and we shall need to make imputations

to form a completed dataset. Van buuren et al. (2006) note that there are

two primary means to achieve this: joint modelling, whereby a distribution

(often a multivariate normal distribution) is specified for a latent variable

that is supposed to underlie all observations. Its parameters are then es-

timated either by a maximum likelihood procedure or a Bayesian method.

The other method involves specifying a full conditional distribution for each

missing covariate for each datapoint (conditional on the observed covari-

ates). The parameters of these conditional distributions are then estimated

using a Gibbs Sampler.

In our case, we shall wish to make predictions in a time-critical situation,

and the latter approach would involve running our Gibbs Sampler for each

new observation found. For that reason, we shall instead use the joint mod-

elling approach whereby we shall consider the idea of an underlying latent

variable and use a model involving the multivariate normal distribution.

Details on this approach will follow in Section 5.3.
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1.10.2 Multiple Imputation

We note that there is inaccuracy in any single imputation and, in order to

take account of this imputation inaccuracy, Rubin (1987) suggested that

we should carry out several imputation runs and aggregate over these in

a particular fashion. This led him to the process of Multiple Imputation

whereby we impute the missing values multiple times to generate multiple

imputed datasets, analyse these separately and then combine our results

according to a set of rules which are now popularly known as Rubin’s rules,

which we outline in the next subsection. By creating multiple imputed

data sets, we may gauge the variability both within and between imputed

datasets for the parameters of interest in our regression models.

Now, while Rubin suggested that three to five imputations were likely to

be sufficient to have the desired effect of providing more stable parameter

estimates than a single imputation, more recent work (see, for example,

Graham et al. (2007)) has shown that the number of imputations required

is a function of the amount of data that are missing. In particular, they

recommend that 40 imputations is a reasonable number of imputations to

use when there is no more than 70% missing data, which is the case for

our dataset. We thus accept this recommendation and make use of 40

imputations to reach our conclusions in this section.

1.10.3 Rubin’s Rules

As promised above, we now outline Rubin’s rules as given in Rubin (1987)

for combining the results of analyses on several different imputed datasets

to obtain overall parameter estimates and appropriate standard errors.
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Suppose we perform m imputations, yielding m datasets, and m results for

whatever analysis it is we wish to perform. Suppose that we are interested

in making inferences about some parameter Q, say. Then, we treat each

imputed data set as if it were the original fully observed data and obtain

the usual point and variance estimates for the parameter in each imputed

data set, which we denote by Q̂j and Uj respectively, in data set j. Then if

Q̂j estimates the desired result of interest (such as a regression coefficient)

for the jth dataset, and Uj is its standard error, then Rubin’s rules given

that the overall average may be obtained as expected as

Q =
1

m

m∑
j=1

Q̂j.

Further, the mean within imputation variance is given by

U =
1

m

m∑
j=1

Uj

and the between imputation variance is

B =
1

m− 1

m∑
j=1

(
Q̂j −Q

)2
.

This gives a total variance of

T = U +

(
1 +

1

m

)
B,

where the additional term
(
1 + 1

m

)
B represents the additional variability

due to the presence of missing values.
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Our estimate for Q is then distributed as a tq-distribution on

q = (m− 1)

(
1 +

mU

(m+ 1)B

)2

degrees of freedom, so that we may test the hypothesis that Q = 0 by

comparing this tq distribution with the observed t-value t = Q/
√
T .

1.11 The Problem

In this thesis, as initially mentioned in Section 1.1, we are interested in

models for the occurrence of DCS, as well as its prediction. This is par-

ticularly important in military and commercial applications. For example,

submariners, in the case of emergency, must quickly choose whether to at-

tempt to escape from their submarine or wait for help to arrive. Where

possible, it is preferable to wait for rescue to arrive. However, if the sit-

uation in the submarine is deteriorating and escape is possible with a low

DCS risk, then the submariners must weigh the choices of remaining on

the submarine that is in poor condition against that of contracting DCS.

Submariners must be able to make a rapid, informed decision and must be

given easy, clear guidance on the matter that can be used in an operational

situation. Only recently has any indication of probability of DCS been

given as operational information - prior to this there was a simple depth

and pressure at which submariners were told that escape was either safe or

unsafe. Clearly, however, this is not the case as the process is a random one

with many factors needing to be accounted for. Not everyone even with

identical height, weight and so on will contract DCS even in identical diving

conditions. Indeed, the same individual may not even contract DCS for a

second time under such identical dive conditions. Thus, we must provide
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the best possible prediction of the probability of this occurring, so that the

submariners may make informed decisions as to whether or not to surface.

We now require the idea of a dive profile. A dive profile gives the depth

of a diver at any given time during a dive. One important point about

submarine escape dives is that they have a rather particular dive profile.

In the case of such dives, the diver will likely have no (or very little) time

for stopping while ascending during the dive, so the dive profile will indi-

cate a (near-)linear ascent. This means that our results will generally be

inapplicable to more general type of dives, as these would require a rather

different ascent strategy and thus would require different data from which

to work. Further, we do not aim to produce safe decompression schedules

(which is the aim of most decompression modelling). Rather, we seek to

give a clear indication of how dangerous a particular ascent may or may not

be with respect to the likelihood of contracting DCS while undergoing this

given ascent. This will then further the ability of military or commercial

submariners to make informed decisions during emergencies. These models

could easily be integrated into onboard computers (such as those currently

used to decide when to make safe decompression stops) for use in emer-

gencies. The work in finding such parameters, as set out here, requires

considerable computational effort. However, once the parameters in the

models have been obtained, finding the probability of DCS for a given dive

is a quick procedure that does not require great computational power.

1.12 The Data

There are two datasets available to us. The first is provided by QinetiQ

and gives information on various tests performed at QinetiQ between 1990

and 2005. The subjects were subjected to decompression from various

depths, and at various breathing-air pressures. In this dataset, the data
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provided include covariates as follows: the date of the dive, the identity

of the subject in question (some subjects were used more than once), the

saturation depth used (i.e. the partial pressure of nitrogen with which

the subjects’ bodies were saturated), the depth from which subjects were

exposed to escape conditions (where this was the type of pressure exposure

undertaken) and the subject’s body mass. Also included was the binary

response variable indicating whether the subject was observed to have any

signs of DCS. It should be noted that subjects were left to rest for at least

a month between dives, and it is thought that there are no carryover effects

between experiments after such a long period between successive trials on

the same subject. For this dataset, no detailed pressure data are given -

that is, we do not know the precise profiles over the course of the dives. We

call this dataset, which consists of 4396 observations and has no missing

covariate or response observations, the first QinetiQ dataset. Of these, 2411

are standard, non-saturation or bounce dives, 995 are sub-saturation dives

and 990 are saturation dives (these terms will be explained in Chapter 2).

The second dataset is also provided by QinetiQ and gives information on

various tests performed at QinetiQ. These subjects were also exposed to

decompression from various depths, and at various breathing-air pressures.

In this dataset, the data provided include covariates as follows: the identity

of the subject in question (some subjects were used more than once), the

saturation depth used (i.e. the pressure of nitrogen with which the subjects’

bodies were saturated), the depth from which subjects were subjected to

escape conditions (where this was the type of dive undertaken), and a vector

of length 25 giving the Kisman-Masurel (KM) bubble scores (effectively a

subjective measure of the number of bubbles heard passing the heart) at

each of the following numbers of minutes following the start of the ascent

from the dive: 2, 5, 15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240, 270,

300, 330, 360, 390, 420, 450, 480, 540, 600 and 1440. More information on

these bubble scores is given in Section 4.1. Also included in the dataset is

the binary response variable indicating whether the subject was observed
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to have any signs of DCS, together with the time of onset of DCS after

the start of the ascent for those dives where DCS occurred. It should be

noted that subjects were again left to rest for at least a month between

dives (Loveman, Personal Communication, 2010). There are a total of 986

dives in this dataset, which we call the second QinetiQ dataset.

1.13 Computational Resources

All computations were performed on a machine with an Intel Core i7 920

processor (stock clock 2.66 GHz, overclocked to 3.7 GHz) with 6 GB of

DDR3 Memory clocked at 1480 MHz. All code for the models in Chapters

3, 4 and 6 was written in C. Extensive use was also made of the R language,

particularly in Chapters 3 and 5, and the outputs from all MCMC runs

were analysed using the R coda package. The analytic solutions derived in

Chapter 3 were obtained with the help of the MAPLE Computer Algebra

System.

1.14 The Thesis: An Outline

We now proceed to outline the structure of the thesis. In Chapter 1, we

have provided a general introduction to Bayesian theory and to the problem

at hand.

In Chapter 2 we shall give a brief account of the biological background to

the problem and the decompression models available to date.

In Chapter 3 we shall focus on one class of model in particular and will

derive some previously unknown analytic results for this class of model. We
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shall then use these new analytic results to enable us to employ Bayesian

methods in a problem that has previously only been tackled in a frequentist

manner. Furthermore, we shall attempt to ascertain whether there is a

considerable increase in the usefulness of the data obtained when a survival

time is provided, rather than just a binary output variable. This knowledge

would be useful to experimenters as, if there is no value to be gained by

collecting these, then some experimental effort can be saved. Here, we will

use the first QinetiQ dataset.

In Chapter 4 we shall expand upon the model class examined in Chapter 3

and again make use of Bayesian methods, which have not previously been

used in the area of this problem, to find parameter estimates for models of

this type. In addition, we shall use a reversible jump sampler to help us to

estimate what might be a reasonable number of components for this model

class and to quantify the uncertainty of our knowledge of which model is

‘best’. Again, we shall use the first QinetiQ dataset here.

In Chapter 5 we shall move on to a different but related problem but

this time using the second, previously unanalysed, QinetiQ dataset. Here,

we shall use a Gibbs sampling method to impute missing response values

(bubble scores) into the dataset. We shall then use the imputed bubble

scores as predictors for DCS using a logistic regression model.

In Chapter 6 we shall make predictions from our model obtained in Chapter

4. Firstly, we shall use model averaging to account for our uncertainty in

both our parameter estimates and also which model is most appropriate

from our given model class. Secondly, we shall combine the two types of

model from Chapters 4 and 5 so as to form a better prediction of DCS than

would be possible using either model alone. We shall provide demonstrably

improved DCS predictions compared with the models currently in use.
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Finally, in Chapter 7 we shall outline some possible directions for future

work.



Chapter 2

More on the Problem, its Bio-

logical Background and Previ-

ous Work

2.1 The Problem Continued

Having provided some mathematical background in Chapter 1, we now give

a more detailed explanation of the problem here.

First, note that the standard air pressure at sea-level is 101325 Pascals.

Suppose now that at time t = 0 a submarine is damaged in some way and

becomes stranded at a depth of E > 0 metres. We term this the escape

depth. We also define the saturation depth, S say, as being the internal

air pressure within the submarine. If damage has caused the submarine to

become flooded to some extent then this will cause it to have an internal

air pressure of S > 101325 Pascals, otherwise the submarine is pressurised

to standard pressure and we have S = 101325 Pascals.

The submariners now have a number of choices available to them depending

26



Chapter 2 More on the Problem, its Biological Background and Previous
Work 27

on their tactical situation and the chance of DCS occurring for an ascent

at this level of breathing-air pressure and current depth. If the submarine

is in a safe state then rescue is the preferred option as then neither DCS

risk nor issues on surfacing - survival on the surface being very difficult due

to the likelihood of drowning or hypothermia - apply. If the submarine is

in a somewhat safe but deteriorating state then, then, if DCS is extremely

likely to occur, then the submariners will also likely elect to remain aboard

the submarine and try to await rescue. Conversely, if it is highly unlikely

then they may well choose to escape.

The submariners’ decision becomes considerably more difficult if the prob-

ability of DCS occurring is not close to 0 or 1. In this case, they must

weigh up the possible plans based on their situation and the probability of

DCS and make a decision based on this information. Thus, we see that a

good assessment of DCS probability for a range of E and S values will be

useful in helping to decide on what course of action the submariners are

advised to take. Producing such an assessment is the first problem we shall

tackle in this thesis. In the following sections in this Chapter, we outline

the models that have already been used to model decompression and we

shall go into more detail of one particular model that might be used to help

us produce the desired probabilistic assessment in Chapters 3 and 4.

The second problem is of a related but slightly different nature. Suppose

that the submariners have already escaped from the submarine. Depending

on the size of the submarine, there may be quite a number of submariners

for any rescuers to treat for injuries and, importantly, some of them may

need to be treated for DCS.

Most importantly, however, DCS may take some time to become estab-

lished in a possible patient. Further, there are only a limited number of

treatment spaces available as DCS can only be treated by recompression

in a hyperbaric chamber, followed by a more controlled ascent with stops
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made in an attempt to prevent bubbles forming in the body . Treatment

in these chambers is not only expensive but is also restricted by available

space in the chamber. It is very useful, therefore, to be able to predict

who is likely to be susceptible to DCS based on whatever data are readily

available post-surfacing. We shall concentrate on this problem in Chapter

5 of the thesis.

2.2 Some Biological Background

In this chapter, we outline the models that have been used to date in

decompression modelling, together with the methods that were used for

their analysis. First, we observe that DCS is an ailment that may affect

divers either upon ascent from a dive, or when changing breathing gases

during a dive. It is thought to be caused by bubbles forming in the tissues

and subsequently moving into the bloodstream (Brubakk and Neuman,

Chapter 9). The severity of the condition varies widely, depending upon

how extreme the dive is with respect to depth and ascent rate. Symptoms

may range from a mere tingling sensation, often called the ‘niggles’, to a

loss of blood flow to the brain and subsequent death. In order to avert such

consequences, divers usually make stops at various points in their ascent to

allow any excess of gas to be exhaled without forming bubbles, although it

is not universally agreed whether the bubbles are a symptom of DCS or its

actual cause.

Modellers such as Boycott, Damant and Haldane (1908) and Thalmann

et al. (1997), then, seek to consider the process of absorption (or uptake)

and elimination (or off-gassing) of nitrogen in the blood that is respectively

caused by descending and ascending while diving. On diving, the higher

external pressure outside the body, due to the weight of the water (which

differs between fresh and salt water), forces additional nitrogen into the
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breathing mix and the lungs take in this additional nitrogen. This leads to

a subsequent build-up of dissolved nitrogen within the tissues. This process

is not dangerous in and of itself while the nitrogen remains dissolved in the

tissues. The nitrogen tension in the tissues will continue to build until it

equals the partial pressure of nitrogen in the lungs. At this point, the tissues

are said to be saturated with nitrogen. Further, since it is the difference

between the partial pressure of nitrogen in the lungs and that in the tissues

that results in a net movement of nitrogen into the tissues, then as this

difference is reduced, the net rate of absorption of nitrogen into the tissues

falls following exponential kinetics. If the diver ascends too quickly then

the excess nitrogen will leave the tissues by diffusion as the tissues will now

have a higher nitrogen partial pressure than the the hydrostatic pressure,

which will have been reduced due to ascent, but will not be able to do so in

a slow and regulated manner and simply be absorbed into them. Instead,

there will be the forced formation of bubbles in the bloodstream and/or

tissues of the body themselves. These bubbles can, for example, form in

the joints (causing pain), or, more dangerously, in the spine or brain.

Something that we should bear in mind at all times is that of course a

small amount of excess nitrogen in the tissues due to the force of water -

which we term the nitrogen supersaturation - may apparently be tolerated

without any danger at all, after all, one does not contract the bends from

going swimming in a swimming pool! Thus, there is likely to be a difference

between the amount of nitrogen that is actually present in the tissues and

the amount of that which is dangerous. We refer to the level of nitrogen

in the tissues as the nitrogen partial pressure in the tissues, while we call

the excess amount above the safe limit the (nitrogen) gas burden. Note

that we refer to the nitrogen partial pressure in the previous sentence as

there are also other gases (such as oxygen and carbon dioxide) present in

the tissues. We refer to the amount of oxygen present in the tissues as the

oxygen partial pressure while we refer to the sum total of all gases present

as the total tissue gas pressure.



Chapter 2 More on the Problem, its Biological Background and Previous
Work 30

There are then two major types of decompression model: firstly, those that

focus on the amount of (excess) nitrogen present in the body’s tissues, such

as Boycott, Damant and Haldane (1908) and Thalmann et al. (1997) as

previously mentioned, and secondly those that focus on the actual forma-

tion of (idealised) nitrogen bubbles within the tissues, such as Yount and

Hoffmann (1986) and Wienke (1990). Both of these approaches have their

merits and difficulties. In this thesis, we focus our attention on the models

that deal with the excess nitrogen in the tissues as these are faster to com-

pute and, once we have seen how these methods respond to our Bayesian

analysis, our parameter estimation methods may then be applied to the

bubble-based models as well (these having similar numbers of parameters).

In all cases, the models used to date have all been deterministic. That is,

for any given input, the models will always produce the same output with

regard to the amount of nitrogen in the tissues at the time, or the number

and/or size of bubbles in question. This would seem to be somewhat un-

reasonable as the same subject, even under identical conditions, has often

been found not to have identical results at each trial. Thus, it seems that

in the future there may well be room to introduce a stochastic element

into the physical models themselves. For example, the level of nitrogen in

each compartment could be modelled in part with the aid of a Brownian

Motion with drift whose level is dependent on the depth at a given time in

the dive, resulting in Stochastic Differential Equations (SDEs) rather than

the ODEs in the current models. In the case of the early, Haldane type

models, the models were fully deterministic in their overall outcome. The

postulation here relied on the number and depth of stops during ascent (or

lack thereof) together with ones rate of ascent. Thus, one either did or did

not contract DCS. In the later models, while the level of nitrogen or bub-

bles in the tissues was deterministic, the actual outcome of the model (i.e.

whether DCS was or was not contracted) is probabilistic (i.e. we obtain a

probability for DCS occurring, given the dive parameters).

The key to all the models in question is the consideration of different bodily
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‘compartments’ in which nitrogen is caused to behave differently by the at-

tributes of those compartments. By ‘compartment’ we mean a grouping of

tissues that behave similarly with respect to their uptake and elimination of

nitrogen. As the gas is taken up at and expelled at different rates in dissim-

ilar tissues, the compartments have different levels of tolerance for change

in ambient pressure. It should be noted that even though the various tis-

sues in the body itself do have a wide range of properties, such as poorly

perfused adipose tissues being slow to become saturated with nitrogen and

highly blood perfused brain-tissue being becoming quickly saturated, there

exists no one-one correspondence between these compartments and actual

tissues in the body. Each of these compartments is assumed to only receive

nitrogen by the active passing of nitrogen from the blood into the tissue via

the capillaries. It is assumed that the diffusion rate (i.e. rate of movement

of nitrogen from a region of a higher concentration of nitrogen into a re-

gion with a lower concentration by thermal energy) is very high relative

to the perfusion rate, due to the very short diffusion distances involved,

though Goldman (2007) relaxed this requirement. We do not consider this

as there is a substantially increased computational requirement associated

with this method, as it requires the solution of a set of several coupled

differential equations. Further, the easier-to-handle standard differential

equations that we discuss in Chapter 3 become considerably more difficult

partial differential equations if we include diffusion, due to such diffusion-

based motion occurring in both time and space. We shall consider the

specifics for the single compartment model in Chapter 3, particularly Sec-

tion 3.3, and the multiple compartment approach of Chapter 4 will then

simply apply ‘in series’ as it were. In Chapter 4, we shall see there that,

when considering the risk of DCS due to several compartments, we simply

find the total hazard across all compartments by summing.
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2.3 A Brief History of Decompression Mod-

elling

Attempts to model the effects of decompression on the body began in 1908,

when Boycott, Damant and Haldane (1908) observed that many caisson

tunnel workers were suffering from, at that time, an unidentified sickness

whose symptoms involved aching and pains in the joints, back and limbs.

This illness was termed the bends, a label which was derived from the bod-

ily contortions its sufferers undergo when atmospheric pressure is abruptly

changed from high to low. In their model, which we term the Haldanean

model, this group supposed that the body was comprised of five separate

‘tissues’ - which we now, in modern decompression terminology, term com-

partments. This classification came about because, as noted before, there

is not a one-one correspondence with body tissues. Previous experiments

by exponents such as Heller, Mager and von Schrötter (1900), which were

unsupported by any modelling, had concluded that ”perfectly uniform de-

compression at the rate of 20 minutes an atmosphere would always be safe.”

Boycott et al., however, claimed that ‘it is evidently a mistake to assume

that a given rate of uniform decompression, such as 20 minutes per atmo-

sphere, is either necessary for safety in all cases, or would be actually safe

except from some limit of pressure. From a pressure below this limit the

rate will be unnecessarily slow, and from above it dangerously fast.’ The

Haldanean model in Boycott et al. (1908), then, uses the idea of nitrogen

half-times of 5, 10, 20, 40 and 75 minutes in a process of staged decom-

pression. However, beyond the idea of half-times, they did not make use of

any further direct mathematical modelling and all tissues were assumed to

have an equal tolerance for nitrogen. Nevertheless, this was a significant

step forward from the work of Heller et. al.

Essentially, to use the model of Boycott et al., suppose one starts at a tissue
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partial pressure of u Pa. If descending from a depth of d1 metres to a depth

of d2 metres (so that d2 > d1), then it requires 20 minutes to make the 20-

minute compartment half-saturated with nitrogen, giving a new, increased

tissue partial pressure of u+(d2−d1)/2 after this 20 minutes. Alternatively,

if d2 < d1 so that ascent is occurring then it takes 20 minutes to lose half

of the difference between the nitrogen partial pressures at the old and new

depths. Therefore, after 20 minutes one again has a new tissue partial

pressure of u+ (d2 − d1)/2 but this time d2 − d1 will be negative, so there

is a decrease in partial pressure in the tissue. Now, at each discrete stage

of pressure adjustment, we recalculate the current internal tissue partial

pressure for all tissues based on the time spent at the new depth. They

then hypothesised that providing the nitrogen partial pressure in all the

tissues was never more than double that in the external environment then

DCS would not occur.

Two substantial improvements to this model were made by Workman (1965).

Firstly, Workman realised that there were not enough compartments with

sufficiently long half-times to represent what happens during the latter por-

tion of any given ascent and that DCS was occurring more than would be

expected from the Haldanean model in deep saturation dives, where the

slower compartments would take longer to release all of their stored nitro-

gen. To this end, Workman added additional compartments with half-times

of 120, 160, 200 and 240 minutes. Secondly, Workman observed that DCS

was occurring less than expected under the Haldanean model for short,

shallow dives. He therefore proposed that the ratio of 2 : 1 of internal

compartment nitrogen partial pressure to external pressure was not appro-

priate, but that instead the allowable ratio Mj : 1, say, for j = 1, . . . , 9 of

internal compartment nitrogen partial pressure to external pressure should

be allowed to vary linearly with depth and by compartment, so that the

faster compartments had higher allowable ratios and the slower compart-

ments had smaller allowable ratios. Workman showed that this improved

the performance of the model and termed these adjusted ratios ‘Maximum
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Values’ or M -values (though they are in fact linear functions, rather than

single values), and allocated one to each compartment.

A further notable improvement came in 1984 when Bühlmann, building

on Workman’s findings, updated the number of compartments to 16 and

considered the effects of diving at altitude (notably in the lakes in the Swiss

Alps). He collected these new conclusions together with previous results

and published them as a book, Bühlmann (1984).

Following this, modelling continued in two different directions. In the first

instance, some modellers began to work with more than simple half-times

and extended the compartment-by-compartment modelling to allow for a

richer compartmental model, in which uptake and release of nitrogen did

not necessarily follow the same archetype. This approach was started by

Thalmann in Thalmann (1984), and we shall explore it in more detail in

Chapter 3. It is well-suited for our purposes as, while being a more realistic

model than the previous models, it is amenable to the identification of

exact solutions and relies only on ordinary differential equations to reach

its conclusions. In the second instance, other modellers such as Yount

and Hoffman (1986) took a more physiologically oriented approach to the

problem. Having used Doppler ultrasound to detect venous gas emboli

(bubbles) in the blood flowing through the hearts of subjects following

pressure exposures, they suspected that it was in fact these bubbles that

caused DCS (though of course it is the bubbles that are not detected that

cause the actual damage as they are trapped). To that end, they used

partial differential equations to explicitly model bubble radius development

over the time course of each dive on a compartment-by-compartment basis.

However, this approach did not allow gas transfer between bubbles and

supposed that gas transfer into or out of a bubble was possible only during

those times when some cut-off pressure was reached. Wienke then extended

this with his Reduced Gradient Bubble Model (usually termed RGBM) in

Wienke (1990). This model does allow for transfer of gas between bubbles
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and also allows for a more nuanced consideration of when nitrogen transfer

into or out of each bubble is possible, by allowing this possibility to vary

based on the current bubble surface tension. We do not pursue this avenue

of modelling further, as the use of partial differential equations that do

not admit analytic solutions in these models makes them unsuitable for

our purposes, given that the currently used iterative approach to their

solution would demand far too much computational time compared to the

possibilities offered by a Thalmann-type model.



Chapter 3

Exploratory Data Analysis and

the Single Compartment Super-

saturation Model

3.1 Exploratory Data Analysis

It is instructive to consider the basics of the data with which we shall be

working over the course of this thesis. As the response variable is binary,

scatterplots are not especially useful to achieve this. However, we can use

some boxplots to show a few key features of the data. Note that the 0.1 re-

sponses are indicative of a ‘partial DCS’ case where the the subject suffered

very minor symptoms but these resolved themselves before a treatment de-

cision could be made.

We see from Figure 3.1 that DCS is considerably more common in dives

with longer bottom times (these being saturation dives where the tissues in

the divers’ bodies have been ‘filled’ with nitrogen that has been forced out

of gaseous form into the tissues). This is reassuring and is most definitely

as expected as, anecdotally, deeper, longer dives have been associated with

36
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Figure 3.1: Bottom time (minutes) against DCS outcome

a higher proportion of DCS. On the other hand, Figure 3.2 would seem

to indicate that DCS is less common at higher maximum dive depths. In

fact, this is somewhat misleading, as most of the saturation dives with long

bottom times were conducted with lower maximum dive depths, and the

bottom-time is more readily associated with positive DCS outcomes than

is maximum dive depth (where the maximum depth may only be sustained

for a very short time).

In what follows in this chapter, it may not be immediately evident why

we need to consider the possible models for our different data types (i.e.

saturation, sub-saturation and bounce dives) separately. However, consider

that the different dive-types are unlikely to be homogeneous in nature.
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Figure 3.2: Maximum dive depth (metres) against DCS outcome

Indeed, we would be most surprised if they were! If this were the case then

a single model would give optimum parameter estimates for any particular

dive profile as in our model there is no allowance for an ‘interaction’ type

effect. Furthermore, on accounting for maximum dive depth, we would

expect similar proportions of DCS across the various groups of dive-types.

But consider Figure 3.3 in which each row relates to a particular dive-

type (being saturation, sub-saturation and bounce respectively), where we

have binned the data into four different subsets depending on whether the

maximum dive depth falls below the first quartile of maximum dive depths

(16.5 m) for our total dataset (first column), between the first (16.5 m)

and second (30.5 m) quartiles (second column), between the second (30.5

m) and third (50.9 m) quartiles (third column) or above the third quartile



Chapter 3 Exploratory Data Analysis and the Single Compartment
Supersaturation Model 39

(fourth column) in which we show the proportion of that type of dive for

which DCS occurred.

Figure 3.3: DCS incidence as a proportion of total incidence in each
bin by dive-type and depth. Rows signify dive-types bounce, sub-
saturation and saturation respectively. Columns signify maximum
dive depth: maximum dive depth below first quartile of maximum
dive depths, between first and median, between median and upper
quartile and above upper quartile respectively.

From this diagram (Figure 3.3), it is plain to see that the distribution of

decompression sickness for each of the different dive-types is quite differ-

ent. There is a considerably higher proportion of DCS cases within the

saturation dives than in the sub-saturation or bounce cases. Further, DCS

incidence clearly increases with maximum dive depth. It follows that a

single model is unlikely to be suitable for all three dive-types as the dives

as a whole certainly do not form an iid sample from a single population

and there is systematic variation between them. We need to account for

this somehow when making our predictions. However, our data will often

not include specific bottom times, so that (a) estimates of these must be
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made and (b) they will not be accounted for as a covariate, when in fact

they clearly should be as there is variation across the different dive-types.

To this end, we allow for three sets of parameter estimates for each model

- one representing the parameters when considering saturation dives, one

for sub-saturation dives and one for bounce dives. This will allow us to

take into account the possibility of different parameters being needed for

different types of dive without requiring any further covariates in our model.

3.2 Baseline Models for Comparison

In what follows in this subsection, we bin the ‘marginal’ DCS cases with the

no-DCS cases as they are incompatible with the logistic model framework

which only allows for binary successes and failures and are considered by

experts (Howle et al., 2009) to be near to non-events.

There are two baseline models that we might use to compare our models

against. The first is the basic null model whereby we simply model the

probability of DCS as a constant - the mean incidence of DCS within the

dataset. This assumes that the covariates have no effect on the incidence

or otherwise of DCS. We should expect that this model will provide a very

poor fit, given our observations in Section 3.1, but it is still useful to use as

a comparator. This model gives the estimated probability of DCS occurring

on any dive as being 0.1344 and has an AICc of approximately 3473.

The other, less näıve but still basic, model we can use as a comparator is

that given by a logistic regression of DCS outcome using maximum dive

depth and saturation depth as covariates. This model is less simplistic than

the null model (as is to be expected given that it takes into account what

we fully expect to be useful covariates) but, as we shall see later, is still

not as good as the models that we shall consider subsequently. We do not
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include an interaction term here as this is the current ‘default’ model used

by QinetiQ and they do not include an interaction term. We do include

one in the models below that are separated by dive-type as these are new

models. The linear predictor for this particular model, then, is given by

−2.3148886 + 0.1379169x1 − 0.0034904x2,

where x1 is the dive saturation pressure (in Pascals) and x2 is the maxi-

mum dive depth (also in Pascals). These estimates are provided with their

standard errors in Table 3.1.

We may obtain an estimate of P (DCS) by applying the inverse logit func-

tion

invlogit(x) =
1

1 + e−x

to this linear predictor. This model has an AICc of approximately 2923 -

a considerable improvement on the null model, but still not as good as the

later models that we shall use.

Estimate Std. Error z-value p-value
Intercept -2.3149 0.0751 -30.176 < 2× 10−16

Saturation Depth 0.1379 0.0077 18.210 < 2× 10−16

Escape Depth -0.0035 0.0008 -4.845 1.27× 10−6

Table 3.1: Estimates for regression model using saturation pressure
and maximum dive depth as covariates

Suppose we now split the data into the three dive-types and estimate a

full factorial regression model incorporating dive-type, saturation depth

and escape depth. This model has an overall AICc of 2444 - a further

improvement on our previous models. The parameter estimates for this full

model are included in Table 3.2 (in this model, note that the saturation

dive-type is taken to be the reference level).
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Estimate Std. Error z-value p-value
Intercept -1.97176 0.2252 -8.605 < 2× 10−16

Saturation Depth 0.13934 0.0199 7.229 4.85× 10−13

Escape Depth -0.01365 0.0037 -3.682 0.000232
dive-type=Bounce -4.39094 0.26624 -16.492 < 2× 10−16

dive-type=Sub.Saturation -2.02869 0.66224 -3.063 0.001096
Saturation Depth:Escape Depth 0.00117 0.00042 2.655 0.007929

Saturation Depth:(Bounce) 1.82256 0.0875 20.8292 < 2× 10−16

Saturation Depth:(Sub.Saturation) 0.216382 0.032066 6.7480 7.49× 10−12

Escape Depth:(Bounce) 0.020827 0.00392 5.313 5.39× 10−8

Escape Depth:(Sub.Saturation) 0.093402 0.02465 3.789 7.56× 10−5

Saturation Depth:Escape Depth:
dive-type=Bounce

0.065101 0.00131 49.695 < 2× 10−16

Saturation Depth:Escape Depth:
dive-type=Sub.Saturation

-0.006929 0.002651 2.614 0.004474

Table 3.2: Estimates for regression model for saturation dives using
saturation, maximum dive depth and dive-type as covariates with
all interactions

3.3 The Basic Supersaturation Model

The compartmental model for DCS is based on work by Thalmann (1984)

and was subsequently further investigated in Thalmann et al. (1997). This

model splits the body into a number, n say, of compartments that share

similar characteristics such as blood flow rate. It should be noted, how-

ever, that such compartments do not correspond to any particular parts

of the body. We consider the case here when n = 1 so that there is a

single compartment to be considered. Thalmann then considers the inert

(i.e. non-metabolised) gas (normally nitrogen or helium) in the breathing

mix, which is the gas most likely to form bubbles, as it is not metabolised

by the body. He hypothesises that inert gas is taken into the tissue at

an exponential rate and is expelled at either a linear or an exponential

rate (depending on a threshold parameter), with all transport occurring by
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perfusion, rather than by diffusion. He then derives an expression for the

amount by which a diver at a given depth is overpressurised relative to the

current external pressure and terms this the supersaturation ratio. Note

that we always take the inert gas to be nitrogen as this is the inert gas used

in the tests whose results are provided in the QinetiQ datasets (because the

air breathed in the submarine and during escape is air, which is comprised

of oxygen and nitrogen, rather than helium).

In what follows, the necessary notation for which is summarised in Table

3.3, Pa represents the ambient pressure outside the body, Pb the inert gas

burden (i.e. the gas partial pressure that would exist if any extant gas

bubbles were forced back into the tissue, combined with actual gas partial

pressure within the tissue), T some threshold of supersaturation that the

tissue can tolerate without any risk of DCS and Pm the constant pressure of

metabolic gases such as oxygen and carbon dioxide that are always present

in the body (Tikuisis and Gerth (2002)). Here, Pa is known and given in our

dataset at multiple timepoints, as is Pm, which takes a very similar constant

value for each individual. He then finds that a suitable supersaturation

ratio, R, is given by

R =
Pb − Pa − T + Pm

Pa
.

Here, the numerator represents the difference in pressure in the tissue and

the ambient environment less the threshold gas pressure that the tissue

can tolerate (we do not, for example, experience DCS after swimming in a

pool). The whole expression then gives the relative over (or under-)pressure

of the internal tissues compared with the ambient external pressure. This

is an important ratio as DCS is much more likely to occur when this ratio is

large, since bubbles are likely to be created in the more highly pressurised

internal tissues.
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Identifier Type Definition

Q̇
Parameter (but
subsumed by τ)

The rate of blood flow to the compartment
per unit of compartment volume (min−1)

αt
Parameter (but
subsumed by τ)

Tissue-nitrogen solubility coefficient (ml/Pa)

T Parameter
Amount of nitrogen that compartment

can safely tolerate (Pa)

τ Parameter
Rate of exchange of nitrogen into

and out of compartment (min)

g Parameter
A dimensionless scaling parameter

for the hazard function h
PL Parameter Kinetics switching parameter (Pa)
x1 Covariate The saturation depth (Pa)
x2 Covariate The pressure at the escape depth (Pa)
x3 Covariate The bottom time (minutes)

Pa
Derived Covariate
(Derived from x2)

The arterial nitrogen partial pressure (Pa)

Pb Function The compartment nitrogen burden (Pa)

Pg
Function (a

function of Pb)
The compartment nitrogen tension (Pa)

m Constant The number of datapoints
Pm Constant The total partial pressures of all metabolic gases (Pa)
αb Constant Blood-nitrogen solubility coefficient (ml/Pa)
t Variable The time after decompression begins (minutes)
R Function The supersaturation ratio
h Function The derived hazard function
L Function The derived likelihood
S Function The derived survivor function

Table 3.3: Functions, parameters, covariates, variables and con-
stants used in Chapter 3, together with their definitions
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Now, in Thalmann et al. (1997), it is found that Pb is the solution of the

differential equation

dPb
dt

=
αb
αt
Q̇ (Pi − Pg(Pb)) , (3.1)

subject to the initial condition Pb(0) = PS, where PS is the saturation

pressure for a particular set of parameters, which will be described shortly,

and where ascent begins at time t = 0. That is, initially, the compartment’s

Nitrogen partial pressure will be equal to that at the relevant saturation

pressure.

Now, in (3.1), Pg is the inert tissue gas tension (i.e. the actual inert gas

partial pressure present in the tissue), given by

Pg(Pb) =

Pb for Pb < Pa + PL − Pm
Pa + PL − Pm for Pb ≥ Pa + PL − Pm,

(3.2)

where PL is the excess inert gas partial pressure at which linear expulsion

kinetics begins to apply. That is, once the threshold pressure PL is reached,

slow, linear offgassing will occur. Once sufficient offgassing has taken place,

the kinetics will become exponential as in the gas-uptake phase. The ap-

propriate Pg must be substituted into (3.1) before we attempt to solve (3.1)

itself. Furthermore, Pi is the arterial inert gas pressure, Q̇ is the rate of

blood flow to the tissue per unit of tissue volume, αb is the blood inert

gas solubility coefficient (this is a constant known fairly accurately for each

inert gas used in diving) and αt is the tissue inert gas solubility coeffi-

cient. As noted in Tikuisis and Gerth (2002), αt varies for different tissues

and, given that the tissues in the model do not correspond to physiological

tissues, may be difficult to determine.

Before we continue, observe that by considering the covariate x2, which is

the pressure (in Pa) at the escape depth for the dive, and supposing a linear
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rate of rise of the subject of 3 ms−1 and consequent decrease of 30,000 Pa

per second in the ambient pressure as suggested by Waters et al. (2007),

we may write that the arterial (external) nitrogen partial pressure at time

t is given by

Pa(t|x2) =

x2 − 30000t for 0 ≤ t < x2/30000

0 t ≥ x2/30000,
(3.3)

with the case for t ≥ x2/30000 corresponding to the subject having sur-

faced, and this is approximately equal to the nitrogen partial pressure in

the lungs (though, in fact, it is marginally less due to the increased level of

water vapour in the lungs).

Parameter estimation is then achieved by making use of the data to deter-

mine suitable parameter values for the model in question. Thalmann et al.

(1997) do this by rewriting (3.1) as

dPb
dt

=
1

τ
(Pi − Pg) , (3.4)

substituting for Pg using (3.2) as appropriate, where τ is defined by

1

τ
=
αb
αt
Q̇

and then solving (3.4) subject to the initial condition Pb(0) = x1.

In order to proceed, we shall need some analytic results not derived in the

original papers by Thalmann and Thalmann et al. There, it was possible

to solve the differential equations for tissue gas burden at time t using it-

erative (step-based) methods and continue to compute in small increments

as was suggested by Thalmann et al. Unfortunately, we now need so many

likelihood evaluations that that approach - while previously merely slow

(Loveman, Personal Communication, 2009) - is now untenable. Thalmann
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et al. note that the required equations for switching to and from linear

kinetics ‘can only be solved for t if there is no depth change or the pressure

of O2 [not merely its rate of change] is constant’. However, for the types of

dives in which we are interested, we can provide such solutions by consid-

ering what happens at each stage of our dive. This will be essential to gain

sufficient likelihood evaluations and reduces the time required for a single

likelihood evaluation to approximately one second.

To begin with, one problem with the saturation pressure (as opposed to

the saturation depth) is that it in fact depends on the parameter τ as well

as on covariates. Thus, we must solve (3.4) using the initial condition

Pb(0) = PS(τ |SD, D, ts, O2, tb) (3.5)

where PS is the initial saturation pressure. We shall find an expression for

this shortly. However, as this initial condition does not depend on t itself,

it is, given the dive parameters and the parameter τ , a constant. In all

cases below, pressures are absolute rather than gauge - that is, we include

the pressure imposed by the atmosphere.

To solve (3.4) subject to the initial condition (3.5), we observe that there

are two cases to consider, corresponding to which part of the piecewise

function Pg(Pb) given in (3.2) is to be applied (i.e. whether there is a

transition to Linear Kinetics). In the case where Pb < Pa + PL − Pm, so

that Pg = Pb, we find that the desired solution is (as a function of time)

given by

Pg(t) = Poe
−t/τ +(Pao−PH)(1−O2)(1−e−t/τ )+(1−O2)U(t+τ(e−t/τ−1)),

where PH is the (constant) partial pressure of water at 37◦C.

This gives the nitrogen level at time t, given that it was P0 at time 0, where

Pao is the ambient pressure at time 0 and that U = U(ta, SD) = SD/ta,
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which depends upon ta the time to ascend and SD the saturation depth, is

the rate of rise of the subject. Where data on ta and SD are missing, we

use the (physically observed) estimate suggested by Waters et al. (2007) of

30,000 Pa/sec.

Alternatively, in the case where Pb ≥ Pa + PL − Pm, we have that

Pg(t) = Po −
1

τ

(
t(O2(Pao − PH) + PH + PL − Pm) +

O2U

2
t2
)

(3.6)

Note that (3.6) may only ever apply during ascent as we only want the

slower linear kinetics to be possible during the offgassing ascent. Using

this observation, we note that the nitrogen pressure in the compartment

immediately after submerging may be found to be given by

PS1(τ |SD, tD, ts, ta, O2) = (1−O2)e
−ts/τ + (A− PH)(1−O2)(1− e−ts/τ )

+ UO2(ts + τ(e−ts/τ − 1))

where A is the (constant) surface pressure, O2 is the fraction of inspired

oxygen, ts is the time spent descending to the saturation depth, SD is the

maximum dive depth and D is the time taken to reach the maximum dive

depth. Note that we assume that the time to ascend and descend to a

given depth are the same, so that we may use U here as well. Barring

external forces, this is highly likely to be reasonable to within a good order

of accuracy.

Further, given that a time of tb is spent at the maximum depth, we find

that the initial saturation pressure, PS is given by

PS(τ |SD, tD, ts, O2, tb, ta) = PS1(τ |SD, D, ts, O2)e
−tb/τ

+ (SD − PH)(1−O2)(1− e−tb/τ ) (3.7)
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and we use the initial condition (3.5) to solve (3.4) with PS as given in

(3.7).

First, consider the case where no change to linear kinetics applies and

where the origin time is after saturation has occurred (to whatever degree

is applicable). In this case, we obtain the solution

N(t) =



PSe
−t/τ + (E − PH)(1−O2)(1− e−t/τ ) t ≤ E/U,

+(1−O2)U(t+ τ(e−t/τ − 1)),

(PSe
−E/(Uτ) + (E − PH)(1−O2)(1− e−E/(Uτ)) t > E/U,

+(1−O2)U(t+ τ(e−E/(Uτ))− 1))e−(t−E/U)/τ

+(A− PH)(1−O2)(1− e−t/τ ),

where we must split into the two cases where t < E/U and t ≥ E/U as at

time t = E/U the diver surfaces and there is no longer any change in the

ambient pressure.

Now, in order to determine the required solution for the whole dive in terms

of the covariates, we need to find the nitrogen level in the compartment

as a function of t, taking into account the possibility of a switch to linear

kinetics. We need to find when such a change may occur. Observe first that

the equation governing the linear kinetics is quadratic in t provided that the

surface has not yet been reached, for if the surface has been reached there

is no longer any change in the ambient pressure so that U = 0 and hence

the coefficient of the square term is 0. It follows that, in fact, if a change

to linear kinetics is to occur then it must occur before t = E/U . To see

this, suppose that this is not the case. As a change to linear kinetics would

occur when Pb = Pa + PL− Pm, we would first require a change into linear

kinetics when this level was first reached. But then, if we suppose that our

linear kinetics function is described by N2, we would have Pa(t)+PL−Pm =

N2(t). But as this is linear in t there could only be a transition into linear
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kinetics and not away from it. But this is impossible as we must finish

with exponential kinetics once the nitrogen level in our compartment has

dropped below the threshold level. Therefore, it must indeed be the case

that a change occurs before t = E/U .

Next, we have two possibilities to consider. There may be a switch to linear

kinetics before t = E/U , followed by a switch back to linear kinetics before

t = E/U . Alternatively, there may be a switch to linear kinetics before

t = E/U followed by a switch back to exponential kinetics after t = E/U .

We label the function for this first case Na and for the second Nb. Further,

we designate the time at which we switch to linear kinetics as t1 and the

time at which we switch away from this kinetics as t2. The equation that

must be satisfied by t1 in both cases is given by

PSe
−tL/τ + (E − PH)(1−O2)(1− e−tL/τ )

− (1−O2)U(tL + τ(e−tL/τ )− 1) = E − UtL + PL − Pm.
(3.8)

Note that the maximum amount of nitrogen in the compartment occurs at

time t = t∗ where

t∗ = τ ln

(
O2PH + Uτ + E −O2Uτ − EO2 − PH − S

(1−O2)Uτ

)

In solving (3.8), we shall have need of a special function - namely the

Lambert W -function (originally used by Corless et al. (1996)). This func-

tion is defined to be the (many-valued) function satisfying the equation

z = W (z) exp(W (z)). For real arguments z, it has one real-valued branch

for z > 0 and two real-valued branches for −1/e ≤ z < 0. We require the

principal branch as this branch is continuous at z = 0.
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The solution to (3.8) is then given by

tL =
1

O2U

(
W

(
1

O2Uτ

(
(−O2Uτ − EO2 +O2PH + Uτ + E − PH − S)

× exp

(
−O2Uτ − EO2 +O2PH + Uτ + Pm − PH − PL

O2Uτ

)))
O2Uτ

+O2Uτ + EO2 −O2PH − Uτ − Pm + PH + PL

)
.

To ensure that our condition that linear kinetics is only followed during

ascent and never during descent, we must set t1 = max(tL, t
∗).

While this may not seem to be an immediately useful solution, the Lambert

W -function may be evaluated efficiently using, for example, the routines

provided in the open source GNU Scientific Library and thus - while not

elementary - our solution is in fact useful.

Now, suppose we switch back to exponential kinetics at time t2 < E/U .

In this case, we obtain the following solution for the overall nitrogen level

N(t) in the compartment at time t

N(t) =



PSe
−t/τ + (E − PH)(1−O2)(1− e−t/τ ) t ≤ t1,

+(1−O2)U(t+ τ(e−t/τ − 1))

P1 − ((O2(E − Ut1 − PH) + PH + PL − Pm) t1 < t ≤ t2

×(t− t1) + 0.5O2U(t− t1)2)/τ,

P2 exp(−(t− t2)/τ) + (E − Ut2 − PH)(1−O2) t2 < t ≤ E/U

×(1− exp(−(t− t2)/τ)) + (1−O2)((t− t2)

+τ(exp(−(t− t2)/τ)− 1)),

P3 exp(−(t− E/U)/τ) + (Po − PH)(1−O2) t > E/U,

×(1− exp(−(t− E/U)/τ)),
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where Po is the pressure at the surface and P1 = N(t1), P2 = N(t2), P3 =

N(E/U). Here, t2 is the larger solution of the quadratic

E − Ut2 + PL − Pm = P1 −
1

τ
(O2(E − Ut − PH) + PH + PL − Pm)(t2 − t1)

+
O2U

2
(t2 − t1)2.

In the case where we switch back to exponential kinetics at time t2 > E/U

we instead obtain the following solution

N(t) =



PSe
−t/τ + (E − PH)(1−O2)(1− e−t/τ ) t ≤ t1,

+(1−O2)U(t+ τ(e−t/τ − 1))

P1 − ((O2(E − Ut1 − PH) + PH + PL − Pm) t1 < t ≤ E/U

×(t− t1) + 0.5O2U(t− t1)2)/τ,

P2 − (O2(Po − PH) + PH + PL − Pm)(t− E/U), E/U < t ≤ t2

P3 exp(−(t− t2)/τ) + (Po − PH)(1−O2) t > t2

×(1− exp(−(t− t2)/τ)),

where Po is again the pressure at the surface while P1 = N(t1), P2 =

N(E/U), P3 = N(t2). Here, t2 is the solution of

PL − Pm = P2 −
1

τ
(O2(Po − PH) + PH + PL − Pm)

(
t2 −

E

U

)
which is given by

t2 =
EO2PH − EO2Po − P2Uτ + PLUτ − PmUτ − EPH − EPL + EPm

U(O2PH −O2Po − PH − PL + Pm)

Note that in both cases we have ensured continuity of our solutions at each

of the crossover points between the piecewise continuous components of the

functions N .
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Having done this, a hazard for the compartment is now given by

h(T, τ,g, PL, t|x1, x2, x3) = g×

max

{
Pb(τ, PL, t|x1, x2, x3)− Pa(t|x2, x3)− T + Pm

Pa(t|x2, x3)
, 0

} (3.9)

so that the risk in the compartment is proportional to the relative super-

saturation of that compartment above the tolerable threshold (with the

constant of proportionality, g, being a parameter that is to be estimated

and is known as the ‘gain’).

Note that T is reasonably physically interpreted as the amount of nitrogen

that a compartment can tolerate without any risk of DCS being incurred

and that τ could be interpreted as the exponential time constant for gas

exchange in and out of the tissue. However, g and PL do not possess such

interpretations and are parameters that are merely useful for modelling

purposes, rather than being physically interpretable parameters.

3.4 Using the Single Compartment Model

3.4.1 The Likelihood Function

By using the standard survival analysis in Section 3.4.1, Weathersby, Homer

and Flynn (1984) show that the probability of not contracting DCS is given

by

S(T, τ, g, PL|x1, x2, x3) = exp

(
−
∫ ∞
0

h(T, τ, g, PL|x1, x2, x3, t) dt
)
,

(3.10)

which we term the survival probability.
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If there are m dives in the dataset then, by treating each dive j for j =

1, 2, ...,m as a Bernoulli trial with success probability Sj and taking the

product of the pdfs of all m dives, we arrive at the likelihood

l(T, τ, g, PL|x1, x2) =
m∏
j=1

S
1−δj
j (1− Sj)δj , (3.11)

where δj = 1 for the jth dive if DCS occurs and δj = 0 if DCS does not

occur. Note that in creating this likelihood, we assume that all dive obser-

vations are independent, which would seem to be a reasonable assumption

given that most of the dives are undertaken by separate subjects, while

where a subject is reused, there is at least a month’s gap between their tri-

als to avoid carryover effects (Loveman, Personal Communication, 2010).

3.4.2 Estimating integrals

The integral in the survivor function (3.10) (and thus the likelihood) is

costly to compute and may not be evaluated analytically, whence we require

a numerical approximation for it. We compute it by first transforming to

the interval [−1, 1] by using the transformation t = (1− u)/(1 + u). To see

how this gives the desired result, observe that for this transformation we

have
dt

du
=

−2

(1 + u)2

so that the integral becomes∫ ∞
0

h(t) dt =

∫ −1
1

h

(
1− u
1 + u

)
× −2

(1 + u)2
du

=

∫ 1

−1

2

(1 + u)2
h

(
1− u
1 + u

)
du.
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We then employ Gaussian Quadrature using Legendre polynomials to eval-

uate this integral. This method ensures that the integral approximation

∫ 1

−1
pk(t) dt =

k∑
i=1

wipk(xi),

where the weights wi are given constants and the xi, known as nodes, are

given by the roots of the kth Legendre polynomial, is exact for polynomials

pk of degree at most 2k − 1. This approximation generally provides good

approximations when pk is replaced by some other function f , say. For

details see, for instance, Powell (1981).

This evaluation was found to be more accurate than using quadrature on

the original interval, for which the approximation

∫ ∞
0

e−tpk(t) dt =
k∑
i=1

qipk(xi)

holds with weights qi, where the xi are the roots of the kth degree Laguerre

polynomials on the original interval [0,∞]. To obtain the integral of a

function f , we must write

∫ ∞
0

f(t) dt =

∫ ∞
0

e−tetf(t) dt =
k∑
i=1

qif(xi)e
xi

for this approximation to be applicable. However, as the exponential et is

large for large t, this approximation subsequently produced unstable numer-

ical evaluations. Moreover, attempting to use only a low degree quadrature

so that only small nodes were used also gave poor accuracy compared with

the previously mentioned Legendre quadrature.
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It should be noted that Thalmann et al. (1997) proposed an alternative

hazard function of the form∫ ∞
0

h(T, τ, g, PL, t|x1, x2) dt

to represent the fact that risk may be delayed and accumulate over time,

rather than decreasing monotonically as the original function h does. Clearly,

this will result in a double integral in the survivor function, which would

be still more costly to compute. Indeed, for a full dataset, Howle, Weber

and Vann (2007) note that full optimization requires a month of comput-

ing time with such a risk function. As they did not find any benefit in this

non-monotonic risk function over that which was originally proposed, we

shall not consider it further at this time, given the considerable increase in

computational time that would then be required.

3.4.3 Bayesian inference for the single compartment

model

We seek to implement a Bayesian approach to parameter estimation through

Markov Chain Monte Carlo (MCMC). That is, we consider the parameter

values to be random and seek to generate a dependent random sample from

the posterior distribution of the parameters, given the data that we have

observed. To achieve this, we place a prior distribution on the logarithm

of each of the parameters T , τ , g and PL. That is, we seek to move in the

space log T , log τ , log g, logPL. In this way, we may move in an unrestricted

parameter space (that of the logarithms of the desired positive parameters)

as, after running MCMC over the logged space followed by using exponen-

tiation, any of the parameters is guaranteed to be positive. In each case, a

highly diffuse prior was used so that few assumptions were made about the

possible parameter values. Note that we place independent priors on the



Chapter 3 Exploratory Data Analysis and the Single Compartment
Supersaturation Model 57

parameters in the original scale, rather than on the log scale. The reason

for this is exemplified in Gelman (2006), where the author notes that this

leads to less bias than placing priors on the parameters on the log scale.

We also observe that while a Jeffreys prior would be theoretically pleasing

in this context, obtaining it from this model would be possible only via

numerical computation and is not available analytically. While this might

be reasonable in the one compartment case with four parameters, in our

later work in Chapter 4, it would become unreasonably cumbersome. We

therefore take our priors as being T ∼ U(0, 106), τ ∼ U(0, 104), g ∼ U(0, 1),

PL ∼ U(0, 106).

We next seek to construct a Markov Chain Monte Carlo sampling scheme to

enable us to draw from the desired posterior distributions. In constructing

this sampling scheme, we have thus far restricted ourselves to a standard

Metropolis-Hastings transition scheme. We first choose a starting point.

We then suppose that the transition probability of moving from one point

in the parameter space θ = (log T, log τ, log g, logPL) to another proposal

point, θ∗ = (log T ∗, log τ ∗, log g∗, logP ∗L), say, is given by a Gaussian ran-

dom walk proposal centred at the current point. We have also used a small

variance as, with a large variance, the T parameter becomes rather harder

to estimate. Thus, under this proposal, the samples will tend to be rather

close together and highly correlated. We choose to modify each parameter

in turn, rather than moving all parameters simultaneously. Thus, we first

update log T followed by log τ , then log g and finally logPL. As such a

proposal is symmetric, we have that the probability of accepting such a

move at the (t + 1)th iteration is given by (see, for instance, Robert and

Casella (2004))

α = min

{
l(log τ ∗| log T (t+1), log g(t), logP

(t)
L )τ ∗

l(log τ (t)| log T (t+1), log g(t), logP
(t)
L )τ (t)

, 1

}
,
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for τ , say, where the factor τ ∗/τ (t) accounts for the fact that we are mak-

ing proposals on the log scale and subsequently exponentiating these for

insertion into our routine to obtain the log-likelihood, L - the requirement

for this factor being noted by Browne (2006). Hence, we propose a move

using the desired Gaussian distribution and then accept this move with

probability α. Note that α is generally better computed as

α = min

{
τ ∗

τ (t)
exp(L(log τ ∗| log T (t+1), log g(t), logP

(t)
L )

− L(log τ (t)| log T (t+1), log g(t), logP
(t)
L )), 1

}
,

where l = logL is the log-likelihood noted above so as to avoid underflow,

as L is generally very small. By generating samples in this way, we move

around the sample-space in a dependent manner and build up a picture of

the posterior distributions of the parameters and their behaviour.

3.5 Results

3.5.1 The First QinetiQ Dataset

In the case of the first QinetiQ dataset (as described in Section 1.7), we

first find the maximum likelihood estimates of the four parameters for our

model and these are given in Table 3.4.

Having obtained these, we can now give the results obtained by using

Bayesian computation. In this case, we selected a normal proposal dis-

tribution for the logged parameters and tuned the proposal variances for

each parameter so that the acceptance rates for the parameters were be-

tween around 0.1 and 0.4 per run, as is seen to be ideal by many (see, for
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Saturation Sub-Saturation Bounce

T 11041.71 (2667.33) 13935.04 (2981.27) 12521.17 (2879.74)

τ 985.14 (151.04) 718.61 (137.65) 498.11 (117.83)

g 0.004147 (0.00076) 0.002001 (0.00068) 0.002079 (0.00076)

PL 10114.89 (1079.03) 13159.18 (1216.09) 14601.12 (1246.18)

Table 3.4: Maximum likelihood estimates (standard errors) for the
single compartment model for the first QinetiQ dataset

example, Robert and Casella 2004, Chapter 7). Initially, we used a run

of 10,000 iterations but this was barely enough for the Markov chains in

question to converge to their stationary distributions. Instead, after initial

exploration, a run of 200,000 iterations was made, with the first 10,000

iterations being discarded as burn-in. This gave the trace plots and kernel

density estimates in Figure 3.4.

In order to provide these results, we need to consider how best to sum-

marise our posterior distributions. Clearly, their standard errors will need

to be given. However, we must then consider whether to summarise using

the mean, median or mode as our primary point estimator of the requi-

site parameters as these will be required for later computations. Given

the appearance of the posteriors below, it would seem that the mean is

an unsuitable measure as the posterior distributions of the parameters are

skew and so the mean will be a poor summary of the distribution. We

must therefore choose between the posterior median and posterior mode.

While the posterior median brings the advantage that is invariant to (legit-

imate, monotonic) transformations of the data, the posterior mode brings

the advantage that, firstly, it is perhaps more easily interpretable than the

posterior median. In addition, under a uniform prior, the posterior mode

will be directly comparable to the MLE. For the reason of ease of compar-

ison, then, we select the posterior mode as our summary measure of choice

but note that the posterior median would do equally well.
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Figure 3.4: Trace plots and kernel density estimates for the single
compartment model for the first QinetiQ dataset

In this case, we obtain the approximate estimates in Table 3.5 for the

posterior modes of the parameters.

Saturation Sub-Saturation Bounce

T 10872.59 (2631.18) 13732.08 (2902.56) 12733.61 (2885.01)

τ 939.55 (154.23) 714.83 (142.05) 513.36 (122.65)

g 0.004249 (0.00082) 0.002341 (0.00073) 0.002117 (0.00074)

PL 10138.02 (1080.22) 13657.18 (1227.76) 14533.69 (1265.20)

Table 3.5: Posterior modes (standard errors) for the single compart-
ment model for the first QinetiQ dataset using unthinned chains

We see here that there is a great deal of dependence between each of the
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states of the chain and the next state. That is, there is a very high level

of autocorrelation in the chain. To reduce this and obtain approximately

independent samples, we take every 50th iteration - that is, we consider the

effect of thinning the chains. This gives the trace plots and kernel density

estimates in Figure 3.5.

Figure 3.5: Thinned trace plots and kernel density estimates for
single compartment model for the first QinetiQ dataset

We now obtain the estimates in Table 3.6 for the means and standard

deviations of the parameters.

We now see that there is considerably better visible mixing within all the

chains and that the kernel density estimates look rather smoother. How-

ever, in what follows we shall nevertheless avoid thinning our chains. The
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Saturation Sub-Saturation Bounce

T 10865.51 (2622.32) 13735.01 (2891.37) 12712.61 (2880.83)

τ 940.12 (152.25) 711.48 (139.87) 513.174 (122.58)

g 0.004241 (0.00070) 0.00231487 (0.00072) 0.00204714 (0.00072)

PL 10187.98 (1065.60) 13645.64 (1212.72) 14556.42 (1250.83)

Table 3.6: Posterior modes (standard errors) for the single com-
partment model for the first QinetiQ dataset using thinned chains

reason for this is that we only reduce our effective sample size by removing

available samples - even if these samples are dependent. This suggestion

is supported by Link and Eaton (2012) who note that the only desirable

reason to thin is when storage of all iterates causes a computer memory

storage issue - something which will likely only be an issue in very high-

dimensional problems with large numbers of iterates. In this case, we may

store only every kth iteration in order to thin by a factor of k, thus reduc-

ing by a factor of k the amount of storage space required. In our case, we

shall not have an issue with this, even when considering higher-dimensional

models later on and we therefore choose to keep all of our samples at each

stage and avoid thinning.

Here, the AICc for the model for the bounce data is 1223, for the sub-

saturation data is 659 and for the saturation data is 949 (all to the nearest

integer). Now, while these figures are of course not directly comparable (as

the dataset for each is different), we can compare them with the results

from Section 3.3, where we found initial logistic regression models for each

sub-dataset. Indeed, we see that the logistic regression models perform

rather better than each of the individual single compartment models here.

Our single compartment model is clearly, then, not sufficiently good for

our purposes as we would have a better model fit using the simple logistic

regression model outlined earlier. We shall see in Chapter 6 that our more

detailed models there perform rather better than the logistic regression

models and far better than the single compartment model given in this
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subsection. However, these models have been useful as an introduction to

the type of model to be constructed and to our estimation procedure.

3.6 Some Validation

In order to validate the above results to some extent, we consider the satu-

ration dives and split these into a training dataset (80% of the total dataset)

and a test dataset (20% of the total dataset). We partition the data in this

ratio at random and then refit the one compartment model to the satura-

tion data using only the training dataset and then use the results to make

predictions for the test dataset.

It is helpful at this stage to consider a pseudo-R2, suggested in Tjur (2009).

This is a simple, but intuitive, summary measure found by calculating the

average predicted probability for each of the three possible outcomes (DCS,

no DCS, again counting marginal DCS as a no DCS outcome) and taking

the absolute difference between them. Essentially, this is rather sensible

as we would expect events with a negative outcome (i.e. no DCS) to have

predicted probabilities close to 0 and events with a positive outcome (i.e.

DCS does occur) to have predicted probabilities close to 1. Note that this

summary measure can only take values between 0 and 1 (inclusive), and

we term this pseudo-R2 R2
T .

We would hope to obtain similar parameter estimates as we did using the

whole dataset when using this restricted training dataset, as well as a sim-

ilar R2
T value for the predictions on the test dataset.

Fitting the model to the training dataset yields the parameter estimates in

Table 3.7 and Figure 3.6. We see that, as hoped, these parameter estimates

are quite similar to those obtained in Table 3.5 for the saturation dives
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(although oddly, the standard errors are rather less, with the exception of

g - this could be a peculiarity of the training dataset selected). In addition,

the R2
T value for the test dataset using these parameter values is 0.2449.

The value obtained for the whole dataset is 0.2631, and this similarity is

again reassuring (despite the fact that the value is quite low, indicating

that the model is not a good one).

Saturation

T 10872.59 (1431.18)

τ 939.55 (54.23)

g 0.004049 (0.00082)

PL 10138.02 (580.22)

Table 3.7: Posterior modes (standard errors) for the single com-
partment model for the simulated training dataset

3.7 Are survival times helpful?

Collecting detailed pressure data during a dive requires additional effort,

man-hours and expense compared with the time required during a standard

experiment, where the only covariates measured are body mass, saturation

pressure and saturation depth. It is therefore of interest to examine whether

anything is added by obtaining time-to-event data, rather than simple bi-

nary data (i.e. did DCS occur or did the subject remain healthy). In

this section, we therefore consider this question by making use of the First

QinetiQ dataset (as outlined in Section 1.7) and comparing our results with

and without use of time-to-event data, attempting to see if our model is

improved with the additional information provided by the time-to-event

data.

Firstly, note that interval censored time-to-event data are available for ap-

proximately 95% of data in the first QinetiQ dataset. By interval censored
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Figure 3.6: Trace plots and kernel density estimates for the single
compartment model for the training dataset

data, we mean that if DCS occurs then we do not observe exactly when

it occurs, but rather that it has not occurred by a time, t1, say, but has

occurred by some time t2 so that the event occurs in the interval (t1, t2).

The subjects for which these data are missing were not systematically bi-

ased in any way (in some cases, for example, experimenters were called

away and unable to observe the DCS time or sometimes made less frequent

observations as the trial progressed (Loveman, Personal Communication

(2009)).
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Our survivor function (3.10) remains the same in this case for dives where

no DCS occurs, but for those where it does occur, it becomes

S(T, τ, g, PL|x1, x2, x3, t1, t2) =

(
exp

(
−
∫ t1

0

h(T, τ, g, PL, t|x1, x2, x3) dt
))

×
(

1− exp

(
−
∫ t2

t1

h(T, τ, g, PL, t|x1, x2, x3) dt
))

,

with our likelihood remaining the same with this new survivor function

being used in cases where DCS occurs.

With this survivor function in place, we obtain the results in Table 3.8.

Saturation Sub-Saturation Bounce

T 9483.41 (2190.04) 11921.72 (2365.56) 10437.94 (2208.54)

τ 937.45 (158.66) 710.905 (141.20) 463.43 (131.74)

g 0.00150768 (0.00088) 0.00183061 (0.00075) 0.0013584 (0.00070)

PL 13475.66 (1191.01) 14078.72 (1198.07) 14872.16 (1236.40)

Table 3.8: Posterior modes (standard errors) for the single compart-
ment model for the first QinetiQ dataset using interval censored
survival times

We see that our parameter estimates are fairly similar to those obtained

without using the survival data. Of course, we cannot directly compare

the AICc values that we obtained previously to those obtained here, as

the dataset here has been slightly modified to remove those few points for

which we are missing the time-to-event data. Therefore, we recalculate the

parameter estimates the AICc values obtained when we omit these data

from our calculations. This gives us table 3.12.

This would seem to be paradoxical. By adding more information, we have

actually increased our AICc value. However, to see why this might happen,

consider the new form of the survivor function. It may well be that the
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Saturation Sub-saturation Bounce

AICc for binary data 949 659 1223

AICc for time-to-event data 1546 1241 1867

Table 3.9: AICc values (to the nearest integer) for single compart-
ment models for the first QinetiQ dataset with and without using
interval censored survival times

parameter values appropriate in (0, t1) are not appropriate in (t1, t2). Sup-

pose, then, that we allow the gain parameter g to vary separately in (0, t1)

and (t1, t2) so that we have parameters gl in the first interval and gu in the

second interval, say. We retain the same priors as before for the parameters

that we had previously and take priors gl ∼ U(0, 1) and gl ∼ U(0, 5000) for

the new parameters. Indeed, while we might anticipate that a U(0, 1) prior

would have been suitable for gu, in fact we find that this does not work and

that gu must be able to be much larger for this method to be successful. In

this case, we obtain the parameter estimates in Table 3.10 and the AICc

values in Table 3.11.

Saturation Sub-Saturation Bounce

T 9483.41 (2190.04) 11921.72 (2365.56) 14392.17 (2482.67)

τ 937.45 (158.66) 710.905 (141.20) 522.05 (133.54)

gl 0.00384992 (0.00099) 0.00121931 (0.00081) 0.00129032 (0.00069)

gu 1444.13 (112.43) 1204.97 (104.20) 1335.51 (105.44)

PL 10654.00 (1043.09) 13123.15 (1145.44) 12903.20 (1198.28)

Table 3.10: Posterior modes (standard errors) for the single com-
partment model with extra gain parameter for the first QinetiQ
dataset using interval censored survival times

These results are much more in line with what we might expect from in-

troducing new information and we have improved our AICc slightly, in

part due to the fact that the interval (0, t1) is generally rather longer than

(t1, t2), so that the hazard function requires a different scaling parameter.

In addition, it is very likely that the hazard will behave rather differently in
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Saturation Sub-saturation Bounce

AICc for binary data 949 659 1223

AICc for time-to-event data 841 611 1184

Table 3.11: AICc values (to the nearest integer) for single com-
partment models with extra gain parameter for the first QinetiQ
dataset with and without using interval censored survival times

the two intervals. Thus, in order to make full use of these data, we would

have to double the dimensionality of our parameter space. For the work

that follows in Chapter 4, this would be impractical as we already have tens

of parameters in the largest models that we consider and computation time

is already long. We therefore do not pursue this avenue of investigation

further, but note that it could be expanded on in future work.



Chapter 4

The Multiple Compartment Model

4.1 Introduction

Having previously considered the single compartment model, we now move

on to consider the multiple compartment model. Rather than having only

a single set of four parameters to be varied within the hazard function,

this model allows for multiple sets of four parameters to be involved in a

mixture to create the hazard function in a manner similar to the mixing of

normal distributions to provide a model for some situations where a single

normal distribution would not be appropriate. The reasoning for this in

our case is as follows: in the single compartment model, it is assumed that

all of the tissues in the body behave in the same way. That is, the inert

gas nitrogen (we are avoiding consideration of helium dives as this is not

applicable to the submarine escape scenario) is taken up in the body and

released at the same rate, regardless of which tissues in the body we might

be considering.

However, this is clearly not the case - brain tissue, for instance, is highly

perfused (see, for instance, Vann ed. (1989)) and will thus both absorb

and release gas quickly. On the other hand, adipose tissues are less well

69
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perfused and therefore very slow to be both permeated by our inert gas and

then subsequently release any such gas. That is to say, the body is clearly

not homogeneous in this respect and it is thus much more appropriate to

consider a possible mixture of compartments here which, while not directly

being representative of tissues within the body, will enable the modelling of

this inhomogeneity within our framework. Note that, while this framework

is not new and has been used before by, for example, Yount (1997) in his

Variable Permeability model and Wienke (2001) in his Reduced Gradient

Bubble Model, together with their own models for the hazard function, as

well as by Thalmann et al. (1997), several important questions have gone

unanswered in each of these. In particular, given our Bayesian framework,

what uncertainty is there in our parameters? More importantly, how many

compartments do we need in our model and how should we select the num-

ber of compartments to be used? In Section 4.2, we shall make an initial

consideration of the second of these points - just how many compartments

are useful in our model? Remember, of course, that the more parameters

we must estimate the more computational time will be needed and, further-

more, only so many parameters can be estimated from our data given the

sparsity of DCS events within the dataset, so this is an important question.

In Section 4.5, we will lay the groundwork for considering how many com-

partments (and thus parameters) are needed by outlining a reversible jump

algorithm (the idea of which was initially proposed by Green in his seminal

paper (Green 1995)). Here, we use MCMC with moves based on splitting

and merging somewhat similar to that in Richardson and Green (1997)

where a mixture of normal distributions with unknown parameters is con-

sidered. In this thesis, we are considering an unknown mixture of com-

partments used to form the hazard function for our model with an already

known simple likelihood (once given this hazard function) which is very

similar to that in Chapter 3. The reasons for this will be explained later

but are mainly due to properties of the key nitrogen exchange parameter

which effectively ‘defines’ each compartment to some extent.
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We shall also later consider Bayesian model averaging across models with

different numbers of compartments using posterior model probabilities as

weights - these being obtained from our reversible jump sampler - as well as

trying hazards with more standard forms (such as the Weibull or Gamma

distributions) for which conjugate priors are available to ease computation.

We shall see how these may then be incorporated into our model averaging

procedure as well and whether our predictive power is thus increased.

4.2 Initial observations

Here, we consider the initial observations we have made regarding the mul-

tiple compartment environment. First, observe that the hazard function is

now very similar to the hazard of Chapter 3’s single compartment setting,

but with an adjustment in the form of a summation to account for there be-

ing M compartments, rather than just one. Our variables and parameters

are given in Table 4.1.

Notice that this table is very similar to the table of parameters (Table

3.1) given in Chapter 3 but that each parameter has acquired an index

i = 1, 2, . . . ,M indicating to which compartment the given parameter cor-

responds as each compartment will have one of each parameter T , τ , g

and PL (whence these being vectors of parameters in the expressions that

follow). We now obtain the following form for the survivor function Sj of

a particular dive as being

Sj(T , τ ,g,PL|M,x1j, x2j, x3j) =

exp

(
−

M∑
i=1

∫ ∞
0

hi(Ti, τi, gi, PLi, t|x1j, x2j, x3j) dt

)
,



Chapter 4 The Multiple Compartment Model 72

Identifier Type Definition

Q̇i
Parameter (but

subsumed by τ)

The rate of blood flow to compartment i

per unit of compartment volume (min−1)

αti
Parameter (but

subsumed by τ)

Tissue-nitrogen solubility coefficient

for compartment i (ml/Pa)

Ti Parameter
Amount of nitrogen that compartment i

can safely tolerate (Pa)

τi Parameter
Rate of exchange of nitrogen into

and out of compartment i (min)

gi Parameter
A dimensionless scaling parameter for the weight of

the ith compartment within the hazard function

PLi Parameter Kinetics switching parameter for compartment i (Pa)

x1 Covariate The saturation pressure (Pa)

x2 Covariate The pressure at the escape depth (Pa)

x3 Covariate The bottom time (minutes)

Pa Function The arterial nitrogen partial pressure (Pa)

Pb Function The compartment nitrogen burden (Pa)

Pg
Function (a

function of Pb)
The compartment nitrogen tension (Pa)

n Constant The number of datapoints

Pm Constant The total partial pressures of all metabolic gases (Pa)

αb Constant Blood-nitrogen solubility coefficient (ml/Pa)

t Variable The time after decompression begins (minutes)

R Function The supersaturation ratio

h Function The derived hazard function

L Function The derived likelihood

S Function The derived survivor function

Table 4.1: Functions, parameters, covariates, variables and con-
stants used in Chapter 4, together with their definitions
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with likelihood given by

L(T , τ , g,PL|M,n,x1,x2,x3) =
n∏
j=1

S
1−δj
j (1− Sj)δj ,

where δj = 1 for the jth dive if DCS occurs and δj = 0 if DCS does not

occur. Note that hi is the hazard function defined in Chapter 3, Equation

3.9 as

hi(Ti, τi,gi, PLi, t|x1, x2, x3) = gi×

max

{
Pb(τi, PLi, t|x1, x2, x3)− Pa(t|x2, x3)− Ti + Pm

Pa(t|x2, x3)
, 0

}
,

but now includes the index i as there is a different function for each com-

partment. Note that while it would be useful to interchange the order of

summation and integration here, so as to avoid computing M integrals per

evaluation of the survivor function rather than just one, this is not pos-

sible as the expression for hi depends on the taking of a maximum on a

compartment-by-compartment basis.

As in Chapter 3, estimation of the parameters takes place using an MCMC

Metropolis-Hastings procedure with acceptance probability αw given by

αw = min

{
L(θ∗)f(θ∗)

L(θ(t))f(θ(t))

∣∣∣∣∂(ξ)

∂(θ)

∣∣∣∣ , 1} , (4.1)

where ξ is a vector of the parameters on their original scales while θ is

a vector containing all of the parameters on the scales to be used in the

procedure (i.e. on the log scale). The factor |∂(ξ)/∂(θ)| here is the Jacobian

of the transformation and represents the area factor required for our change

of variables in moving from ξ to θ . Also, f(θ) in the above is the prior

distribution for θ (of which more below).

We use a symmetric random walk Normal proposal q, whence q does not
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appear in the above ratio (1) as it will be cancelled in the numerator and

denominator of the acceptance probability due to the symmetry of q giving

q(θ∗|θ(t)) = q(θ(t)|θ∗). Note that we consider the aforementioned trans-

formations of the parameters in question to ensure that the parameters

themselves are all positive. This avoids our having to restrict our search

to only the positive real line and instead allows us to search the whole of

R4M (there being four parameters per compartment), which is considerably

more efficient.

As reasoned in Section 3.4, we again consider diffuse priors for the param-

eters on their original scales so we set i = 1, 2, . . . ,M , Ti ∼ U(0, 106),

gi ∼ U(0, 1), PLi ∼ U(0, 106). We employ three different priors for the τi as

we expect there to be a ‘short’ compartment, a ‘medium length’ compart-

ment and a ‘long’ compartment. To that end, we set τi ∼ U(0, 10i+4). We

make one further restriction on the joint prior of our parameters. This is

to require that τ1 < 1.2τ2 < 1.2τ3 < · · · < 1.2τM . This ensures that there

is at least some spacing between compartments so that the gas uptake rate

in each compartment is at least 20% greater than that in the previous com-

partment. The reason for imposing this latter constraint is perhaps not

immediately obvious. In fact, it is to help us to avoid the problem of label

switching. If we did not impose such a constraint then it would be unclear

(to the MCMC algorithm) which compartment was which and so in, for

instance, the two compartment case, it would not be clear which would

be the ‘fast’ and which the ‘slow’ compartment. This could well lead to

the algorithm switching seemingly randomly between the areas of the two

required values of τ for each of the faster and slower compartments. By im-

posing our constraint (and requiring some separation between each τi), we

avoid this problem as the labels on the compartments will be well defined.
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4.3 A Simulation

Before deploying the method described above on the true dataset, it is

sensible to consider a simulation to ensure that our method is working

appropriately. To do this, we shall first require some simulated data and

will need to select some parameter values for the model from which to

simulate. We choose to simulate from a three compartment model as Thal-

mann et al. (1997) already developed maximum likelihood estimates for

this model (for the original first QinetiQ dataset) and we therefore have

a reasonable idea of sensible parameter estimates to use. To that end,

unlike in the rest of the thesis, we do not separate the three different dive-

types here into separate models, in order that we can directly compare

with the maximum likelihood estimates obtained in the aforementioned

paper. Note that while it would be ideal to carry out more than one

simulation, these are quite time consuming to undertake and of course

we could never simulate for all possible parameter values in any case, so

it seems sensible to be guided some what by values that were previously

found to be reasonable and see if these can be recovered by our method.

The maximum likelihood estimates obtained therein were: T1 = 0, τ1 =

81.5393, g1 = 0.0000708745 = 7.08745 × 10−5, PL1 = ∞, T2 = 0, τ2 =

3139.0449, g2 = 0.0000018216 = 1.8216 × 10−6, PL2 = 7440.8616, T3 =

8780.26, τ3 = 29121.5146, g3 = 0.000016902 = 1.6902 × 10−5, PL3 = ∞.

Where they denoted a parameter value by ∞, this indicates that it took

very high values and effectively the parameter had no effect (as it is a

threshold parameter, and a high value indicates that the threshold is never

reached).

In order to have reasonable simulated data, it will be necessary to draw

from the full range of covariates (saturation and escape depths and dive-

type) employed there. Furthermore, we shall limit the size of the simulated
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dataset to reduce computation times. As the first QinetiQ dataset is com-

prised of approximately 4400 points, it would seem reasonable to take a

simulated dataset of size approximately 880 (which is 20% of the size of

the original dataset). To ensure coverage of the covariate ranges, we order

the covariate value pairs first by saturation depth and then by escape depth

and in each case take every 10th pair in each case for each dive-type. This

will ensure that the requisite range is covered reasonably.

We must now choose suitable parameter values. To ensure that these are

realistic, we shall choose values close to (but not exactly the same as)

the maximum likelihood estimates mentioned above. In particular, we set

T1 = 1000, τ1 = 70, g1 = 7 × 10−6, PL1 = 30000, T2 = 1000, τ2 = 3000,

g2 = 2 × 10−6, PL2 = 7000, T3 = 20000, τ3 = 30000, g3 = 1 × 10−6,

PL3 = 30000.

Doing this, we obtain the results summarised in Table 4.2 and Figures

4.1-4.3. We see that in general the simulated results are quite reasonable,

the posterior modes in general being at most two posterior standard errors

from their set values, and generally rather less than that. The exception to

this is the PLi
parameters. To understand why this might be the case, note

that these parameters are threshold parameters. That is, for any nitrogen

pressure value in the ith compartment above this threshold, linear kinetics

applies. However, it may be that linear kinetics is never appropriate for this

compartment, in which case any suitably large threshold value above the

maximum pressure reached will suffice. However, the value of the maximum

nitrogen pressure reached depends in a complex way on the values of the

other parameters for the compartment and also the particular dive profile

and cannot be determined analytically. In their original paper, Thalmann

et al. (1997) gave these thresholds a posteriori as being infinite where

this seemed to be the case. However, this belies the possibility that they

may not be and would not be suitable for our trans-dimensional method in

Section 4.6.
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Parameter Approximate posterior mode (standard error)

T1 850.23 (83.32)

τ1 64.43 (25.43)

g1 9.37× 10−6 (2.21× 10−6)

PL1 43739.47 (10601.33)

T2 657.09 (299.17)

τ2 3694.01 (735.01)

g2 1.81× 10−6 (4.90× 10−7)

PL2 8953.10 (2557.07)

T3 21073.39 (3579.59)

τ3 32968.89 (4293.28)

g3 9.77× 10−7 (4.21× 10−7)

PL3 55024.28 (7295.943)

Table 4.2: Estimated posterior modes (standard errors) of param-
eter distributions for simulated data

Figure 4.1: Trace plots and kernel density estimates for the first
compartment using simulated data
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Figure 4.2: Trace plots and kernel density estimates for the second
compartment using simulated data

Figure 4.3: Trace plots and kernel density estimates for the third
compartment using simulated data
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4.4 Some Initial Results

In Figures 4.4-4.6, we give the trace plots and kernel density estimates for

the parameter estimates in the three compartment case with bounce data

to check that our algorithm works well with multiple compartments. We

shall not proceed to evaluate multiple compartment models individually

after this - rather, we shall proceed to using a transdimensional reversible

jump algorithm in the next section and so we are not interested in the

parameter estimates themselves here, but rather in examining whether the

algorithm converges. 100,000 iterations were carried out and a burn-in of

10,000 iterations has been used.

Figure 4.4: Trace plots and kernel density estimates for the first
compartment using bounce data from the first QinetiQ dataset

We see in Figures 4.4-4.6 that although there is some reduction in mixing

rate after the first compartment and the mixing in general is less good
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Figure 4.5: Trace plots and kernel density estimates for the second
compartment using bounce data from the first QinetiQ dataset

than in our single compartment model or in our simulation, all the pa-

rameters for each compartment mix fairly well. This indicates that our

algorithm is performing quite well and should indeed be apposite (after

suitable modifications are made) for use in the transdimensional MCMC

algorithm outlined in Section 4.4 below, though we should be aware that we

are likely to require a good number of iterations for our MCMC procedure.

In addition, there is definite evidence of bimodality here in some of the

posterior distributions that was not found in the simulation run. Note that

the AICc for this 3-compartment model is 452 for the saturation model,

447 for the sub-saturation data and 812 for the bounce data (all to the

nearest integer). These figures all represent an improvement on those for
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Figure 4.6: Trace plots and kernel density estimates for the third
compartment using bounce data from the first QinetiQ dataset

the single compartment models found in Section 3.5.

4.5 Introduction to Reversible Jump MCMC

Essentially, the idea behind the Reversible Jump MCMC algorithm, as

introduced by Green (1995), is one of dimension matching. This allows us

to move between parameter spaces of different dimensions by eliminating

variables according to some chosen algorithm, or by adding them, while

all the time maintaining the same number of dimensions during the actual

move process through the use of auxiliary variables. Thus, if we seek to

move from a model of dimension m to one of dimension n then we must

introduce (or eliminate) |m − n| uniformly distributed random variables

depending on whether m or n is the greater. Initially, Green suggested
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birth and death type moves - moves where a parameter is simply introduced

or removed (with the assistance of an auxiliary variable u for dimension

matching). Subsequently, Richardson and Green (1997) suggested moves

of a split and merge nature, where parameters are split apart and merged

together, rather than simply being created and eliminated (i.e. one of the

new parameters is created above the initial parameter value and the other

is created below it). This has advantages in our case for the τ parameter, as

moving to a new number of compartments is unlikely to create τ rate values

that are wildly different from the previous model’s values. Furthermore, we

expect that the place of a single compartment will be taken by one ‘faster’

and one ‘slower’ compartment.

We now outline the algorithm proposed by Green, contextualising it for our

particular problem.

Suppose that the chain is currently in a state (k(t),θ
(t)

k(t)
), where θ

(t)

k(t)
is

to be understood as a vector containing all of the parameters for a k-

compartment model. Then, we first propose a new model k∗, say, with

probability v(k(t), k∗) where v is some pdf. We shall specify this function

in Section 4.4.

Now, our choice of v leaves the possibility that k∗ = k(t) so that we remain

in the same model. In this case, we may use the MCMC procedure outlined

in Section 4.2 for our move. If this is not the case and k∗ 6= k(t) then we

shall require a different approach.

Suppose, then, that k∗ 6= k(t). We first generate a vector u from a proposal

density q(u|θk, k, k∗). Next, set (θ∗,u∗) = wm,m∗(θ,u), where wm,m∗ is a

function whose inverse exists and which we shall specify in Section 4.6. To

ensure that the function gm,m∗ exists, Dellaportas et al. (2002) note that

it is sufficient that the dimension matching criterion dim(θk) + dim(u) =

dim(θk∗) + dim(u∗) hold and that, under this condition, wm,m∗ = w−1m∗,m.
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Finally, we accept the proposed move to the new model k∗ with probability

α = min

{
f(y|m∗,θ∗k∗)f(θ∗k∗|k∗)f(k∗)v(k∗, k)q(u∗|θk(t) , k∗, k)

f(y|m,θk(t))f(θ
(t)

k(t)
|k)f(k)v(k, k∗)q(u|θk∗ , k, k∗)

×
∣∣∣∣∂w(βk(t) ,u)

∂(βk(t) ,u)

∣∣∣∣ , 1}, (4.2)

where the final term here is the Jacobian of the transformation gm,m∗ .

In the next section, we shall elaborate on how to use this algorithm for our

particular situation.

4.6 Reversible Jump algorithm for our com-

partmental model

We first need to define the function v as introduced in Section 4.5. We

suppose that it is possible to jump to either one more compartments, remain

at the same number of compartments or jump to one fewer compartment

and that these possibilities are equiprobable. As this yields v(k(t), k∗) =

v(k∗, k(t)), no term in v will appear in our final acceptance probability,

as it will be cancelled out, being the same in both the numerator and

denominator.

We make use of a split and merge proposal as suggested in Section 4.5

above. In the case of a split move, consider the following possible scheme,

where we move from model k to model k + 1. We split the jth component

into the components j and j+1 and give each parameter a second subscript

so that gjk represents the gain for parameter j under model k. Note that

this will differ from the value of gj(k+1), which is the value of the gain for
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parameter j under model k + 1. Then, we consider the following proposal:

gjk =
1

2

(
gj(k+1) + g(j+1)(k+1)

)
τjk =

1

2

(
τj(k+1) + τ(j+1)(k+1)

)
.

This will ensure that the new τ parameters are centred at the previous

model’s τ value, while allocating some proportion of the weight g, which

was previously attached to just one compartment in the survivor function

S, to each of the new compartments. In addition, in general one expects

a higher gain value for shorter compartments (i.e. those with smaller τ

values) as these will have a more immediate effect on more of the datapoints

(given that some are non-saturation dives). It follows that a suitable split

condition might be given by

Tjk =
τj(k+1)

τjk
Tj(k+1) +

τ(j+1)(k+1)

τjk
T(j+1)(k+1).

Finally, there is no clear relation between PL and any other parameters, so

we take

PLjk
=

1

2

(
PLj(k+1)

+ PL(j+1)(k+1)

)
to centre our new PL values at the old PL value.

Note that the reverse (merge) move is obtained deterministically from the

above equations.

Now, to perform the split move outlined above, we generate auxiliary vari-

ables uk(k+1) as u1, u2, u3, u4 ∼ U(0, 1). This accounts for q in the algorithm

outlined in Section 4.3 and, as the distribution from which we have chosen

to draw is symmetric and not dependent on the model parameters or model

dimension, q will also not appear in our final acceptance probability as it

will be cancelled in the numerator and denominator there. For our split
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and merge proposal, therefore, we take

Tj(k+1) = u1Tjk T(j+1)(k+1) =
τjk − τj(k+1)u1
τjk − τj(k+1)

Tjk (4.3)

τj(k+1) = u2τjk τ(j+1)(k+1) = (1− u2)τjk (4.4)

gj(k+1) = u3gjk g(j+1)(k+1) = (1− u3)gjk (4.5)

PLj(k+1)
= u4PLjk

PL(j+1)(k+1)
= (1− u4)PLjk

. (4.6)

The required Jacobian for this transformation is given by

∣∣∣∣∂w(βk(t) ,u)

∂(βk(t) ,u)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1
τjk−τj(k+1)u1
τjk−τj(k+1)

. . . . . . . . . . . . . . . . . .

Tjk
−τj(k+1)Tjk
τjk−τj(k+1)

. . . . . . . . . . . . . . . . . .

0 0 u2 1− u2 . . . . . . . . . . . .

0 0 τjk −τjk . . . . . . . . . . . .

0 0 0 0 u3 1− u3 . . . . . .

0 0 0 0 gjk −gjk . . . . . .

0 0 0 0 0 0 u4 1− u4
0 0 0 0 0 0 PLjk

−PLjk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Evaluating the Jacobian gives∣∣∣∣∂w(βk(t) ,u)

∂(βk(t) ,u)

∣∣∣∣ =
Tjkτ

2
jkgjkPLjk

τjk − τj(k+1)

.

Given the above considerations, and supposing that the probability of each

model a priori is 1/8 (so that f(k) = f(k∗) = 1/8) and using the same

diffuse uniform priors as in Section 4.3 for our parameters, we find that the

acceptance probability (4.3) of moving between models is given by

αb = min

{
Tjkτ

2
jkgjkPLjk

l(θk+1)

(τjk − τj(k+1))l(θk)
, 1

}
, (4.7)
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where l(θk) is the likelihood for the k-compartment model with parameters

θk.

Having noted the required functions and inputs above, we can now use the

algorithm given in Section 4.3. Thus, we first set an initial model, k(0)

say, and initial state for the chain, θ(0), say. We then check whether there

is a move between models. If there is, then we update θ(0) to θ(1) using

the algorithm of Section 4.3. If there is not, then we update θ(0) to θ(1)

using the method of Section 4.2, remaining within the same model. We

now repeat the procedure but with the new model k(1) in place of model

k(0) and θ(1) in place of θ(0). We continue this process to create our desired

chain.

4.7 Another Simulation

Here, we make use of the same simulated dataset as was generated in Sec-

tion 4.3. We set 8 as the maximum number of compartments allowed and 1

as the minimum and then run 8 chains (one starting at each of the possible

numbers of compartments) for 100,000 iterations each, discarding the first

10,000 of each as burn-in. On averaging across the chains, this gives us the

estimated posterior model probabilities in Table 4.3 for our simulated data.

Here, we can see that the 3 compartment model is indeed selected as the

most likely model, though there is also a fair amount of posterior weight

on the 2 and (particularly) 4 compartment models. Having 8 chains also

allows us to estimate the between-chains standard error, and assessments

of this are also presented in Table 4.3. We see that there is (considered

relatively) quite a wide range of variation - particularly for the very small

and very large numbers of compartments - but that in terms of absolute

variation this is not too large.
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Number of compartments Approximate posterior model probability (standard error)

1 0.02156 (0.03144)

2 0.12800 (0.05796)

3 0.47321 (0.12270)

4 0.28347 (0.06927)

5 0.04578 (0.05219)

6 0.01956 (0.02661)

7 0.02145 (0.03413)

8 0.00697 (0.00985)

Table 4.3: Estimated posterior model probabilities (between chains
standard errors) for simulated data

4.8 Results

It is difficult to produce output plots for a transdimensional chain such

as this one. Clearly, all parameters represent different things in different

models, and so simply giving, say, the first set of parameters is unhelpful.

What we can provide, however, is the posterior model probabilities, which

are obtained by evaluating the proportion of time that the chain spends

in each model state after the burn-in period is removed. We ran 100,000

iterations and removed the first 10,000 as burn-in. By using these poste-

rior model probabilities, which are given in Table 4.2 below, together with

the MCMC output produced by running our chain, which provides a (de-

pendent) sample from our desired posterior distribution, we shall be able

to use a model averaging procedure to obtain samples from the posterior

predictive distribution of our model for predictive purposes.

We now give the table of posterior model probabilities for each dive-type.

Notice that there is a slight increase in the weighting of more complex

models with an increase in saturation pressure. This seems reasonable as on

the longer ascents, we would expect different information at different points
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in the dive. At the start of the ascent, it is the shorter, faster compartments

that control the DCS risk. Meanwhile, towards the end of the dive as the

surface is reached, the short compartments will have completed offgassing

and the longer compartments will be the ones still retaining nitrogen. In

the bounce-type dives, on the other hand, there will be no time for any

slower compartments to become saturated with nitrogen, and so these are

superfluous to requirements. We ran the chain 8 times (each chain taking

approximately a week to run), starting at 1, 2, . . . , 8 compartments. We set

8 as the maximum number of compartments allowed and 1 as the minimum.

Once all chains were run, we averaged the times spent in each model state

over the 8 chains to obtain the results in Table 4.4. We also obtained

between-chains standard errors and these are also reported in Table 4.4.

We can see that in general there is (relatively) more variation in the 1, 2,

7 and 8 compartment models, as we found in the simulation. In any case,

the absolute amount of time the chain spends in these states is small for

all the chains.

In Sections 6.2 and 6.3, we shall consider how to use the posterior model

probabilities in Table 4.4 together with the outputs from the chains them-

selves to predict the occurrence of DCS using a posterior predictive distri-

bution.
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Number of Compartments Bounce Sub-saturation Saturation

1 0.00153 (0.02375) 0.00110 (0.00890) 0.00093 (0.00897)

2 0.02840 (0.04225) 0.02951 (0.01495) 0.00874 (0.00830)

3 0.34457 (0.16702) 0.30179 (0.20214) 0.31478 (0.15853)

4 0.41757 (0.11347) 0.38858 (0.16539) 0.33314 (0.12362)

5 0.18644 (0.12507) 0.23425 (0.08163) 0.28622 (0.09323)

6 0.01487 (0.02382) 0.03374 (0.02290) 0.03987 (0.02469)

7 0.00541 (0.00166) 0.00893 (0.00471) 0.01245 (0.02034)

8 0.00121 (0.00060) 0.00212 (0.01590) 0.00387 (0.01907)

Table 4.4: Posterior model probabilities (between chains standard
errors) for Reversible Jump MCMC algorithm for the first QinetiQ
dataset



Chapter 5

Bubble Score Based Methods

5.1 Introduction and Description of Data

This chapter concerns a different empirical model of the decompression

process and subsequent prediction of DCS - as opposed to the more mech-

anistic, physical considerations of Chapter 3 - and makes use of the Second

QinetiQ dataset (as outlined in Section 1.7). Recall from Section 1.9 that

the data provided include: the identity of the subject in question (some

subjects were used more than once) and whether the subject was observed

to have any signs of DCS. In addition to this, the following key covariates

were also included: the saturation depth used (i.e. the pressure of oxygen

with which the subjects’ bodies were saturated) and the depth from which

subjects were subjected to escape conditions (where this was the type of

dive undertaken). Finally, the covariates of key interest in the analysis that

follows are the Kisman-Masurel (KM) bubble scores, given on a subjective

ordinal scale from 0 to 4 in increments of one third (excluding one third

itself, so that the scale is: 0,1-,1,1+,2-,2,2+,3-,3,3+,4-,4), indicating the

approximate frequency and number of bubbles passing the subject’s heart

at the 25 timepoints (2, 5, 15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210,

240, 270, 300, 330, 360, 390, 420, 450, 480, 540, 600 and 1440 minutes)

90
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after surfacing. It should be noted that some of these timepoints are ex-

tremely sparsely populated with bubble scores. For the purposes of our

analysis, we recode these bubble scores as being on a scale of 1-12, with 1

corresponding to a KM score of 0 and 12 corresponding to a KM score of

4. Also provided was the Kisman Integrated Bubble Score (KISS), which is

designed to be a weighted average of these various ordinal scores, account-

ing for the fact that the ordinal bubble score is in fact on a power-scale

(bubble grade not being linear in bubble quantity), and aims to provide a

continuous assessment of bubble severity, as noted by Tikuisis and Gerth

(2002). More information on this follows in Section 5.2.

Unfortunately, there are a considerable number of missing values in the

data set. Although the covariates are complete, so that we always know

the saturation and escape depths of any dive, we do not know every bubble

score for every timepoint. There are only very few observations present for

some timepoints (notably at each of 210, 270, 330, 390, 450, 540, 600, 1440

minutes there are fewer than 25 observations of bubble scores). Initially,

we will therefore discount these timepoints entirely as providing very little

useful data and only serving to complicate our analysis and increase the

computational time required considerably. For each of the remaining time-

points, there are at least 90 observations of bubble scores available and so

these are liable to contain at least some usable information. In order to

make the best use of the available information, we consider a method for

imputing (i.e. attempting to infer through statistical methods) the missing

values so as to provide one or more imputed datasets for further analysis.

We outline below the method by which this is achieved (being of course

only one such possible method), relying primarily on Anderson and Pem-

berton (1985). The method therein has the advantage of requiring only 1-

and 2-way margins of the joint distribution of bubble scores across time and

will also yield estimates of the correlation between pairs of bubble scores.

This is useful to us as, despite the relative sparsity of bubble scores at some

timepoints, the 1- and 2-way margins are still generally data-rich and thus
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estimation using these margins will be easier than requiring that each dat-

apoint have a complete set of bubble scores. We therefore make the best

use of such pairs of data where they are available.

We shall initially focus on the timepoints at 5, 15, 30 and 60 minutes as

the last three of these are especially well observed, with the timepoint at

5 minutes missing around half of its observations (see Table 5.1 for further

details). This would seem to provide a good basis for testing as we have

observed the vast majority of the responses here. We will see later (in

Section 5.4) that there are very sensible-looking correlations between the

bubble scores at the various points, indicating that more distant bubble

scores are less related to one another, while more proximate bubble scores

are more closely associated. This would seem to be to be apt as the number

of bubbles at nearby timepoints will reasonably be similar. We will then

proceed to consider more timepoints in our second analysis, which is to say

those at 5, 15, 30, 60, 90, 120, 180, 240, 300, 360, 420, 480 minutes. As noted

above, each of these 12 timepoints contains at least 90 observed bubble

score observations, while the omitted 13 timepoints contain rather fewer.

While it is difficult to see the missingness pattern for 12 timepoints (given

the sheer number of possible combinations), it is much easier to do so for

our initial 4 timepoints and these are presented in Table 5.2. It is also

useful to look at the proportion of missing data in each of the timepoints

with a reasonable number of observations by DCS outcome. This is pre-

sented in Table 5.3. We can see here that while both the DCS and no-DCS

groups have an increasing level of missingness as time progresses, there are

distinctly more datapoints missing when DCS occurred than when it did

not. This would seem to indicate that the data are Missing Not at Random

(i.e. that whether or not the datapoint is missing depends on the value of

the dependent variable) as it would seem to be more likely that data are

missing when DCS occurs than when it does not. In addition, there would
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seem to be a trend for an increasing proportion of missing data with in-

creasing time. Despite the fact that the data are perhaps Missing Not at

Random, Schafer and Graham (2002) indicate that it is not inappropriate

to proceed with an imputation procedure, providing a Bayesian or likeli-

hood based imputation method is used, and this is what we shall discuss

in Section 5.3.

Finally, we shall aim to see whether there is a link between bubble scores at

given timepoints and the occurrence or non-occurrence of DCS. We shall

also consider whether KISS is indeed a good summary of bubble scores

and whether this is any more useful as a predictor of DCS, or whether the

information provided by saturation depth and escape depth dwarfs these

effects. If this is the case, it may be that while bubble scores would be useful

if we could in fact measure all the bubbles in the body, some bubbles may

become trapped in various parts of the body, leading to their not being

accounted for in the bubble scores, as this only considers bubbles passing

the heart.

5.2 The Logistic Regression Model

We shall now seek to use a logistic regression model as outlined in Section

1.8 to model these data. In our case, the set of predictors will comprise what

we shall later term continuous bubble concentrations at various timepoints.

We will also consider models where we use escape and saturation depth

as predictors together with KISS, defined in Jankowski, Nishi and Eaton

(1997) as

KISS =
100

4v(tk − t1)

k−1∑
i=1

(ti+1 − ti)(dvi+1 + dvi )

2

where k is the highest timepoint index, tj is the value in minutes of the jth

timepoint, v = 3 is an adjustment to account for the non-linearity of the
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Proportion of missing data

2 minutes 91.18%

5 minutes 54.27%

15 minutes 7.18%

30 minutes 10.54%

45 minutes 88.64%

60 minutes 11.81%

75 minutes 90.45%

90 minutes 54.91%

105 minutes 91.36%

120 minutes 21.55%

150 minutes 89.55%

180 minutes 30.27%

210 minutes 98.18%

240 minutes 37.00%

270 minutes 99.45%

300 minutes 45.45%

330 minutes 99.45%

360 minutes 51.00%

390 minutes 99.73%

420 minutes 67.54%

450 minutes 99.73%

480 minutes 73.36%

540 minutes 98.91%

600 minutes 99.91%

1440 minutes 98.82%

Table 5.1: Proportion of missing data in the second QinetiQ dataset
by timepoint
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5 minutes 15 minutes 30 minutes 60 minutes Proportion of Observations

1 1 1 1 37.55%

0 1 1 1 43.73%

1 0 1 1 1.36%

1 1 0 1 0.18%

1 1 1 0 2.64%

0 0 1 1 1.91%

0 1 0 1 2.91%

0 1 1 0 1.55%

1 0 0 1 0.18%

1 0 1 0 0.09%

1 1 0 0 1.45%

0 0 0 1 0.36%

0 0 1 0 0.64%

0 1 0 0 2.82%

1 0 0 0 2.27%

0 0 0 0 0.36%

Table 5.2: Missingness patterns for the 5, 15, 30 and 60 minute
timepoints (0 indicates an observation is absent while 1 indicates it
is present)

ordinal bubble score as a measure of the number of bubbles present and

dj is the ordinal bubble score at the jth timepoint. We will also consider

a possible interaction between escape and saturation depth. To maximize

the use of the available data and inferences that can be made from it, we

will seek to impute the bubble scores that are missing in the dataset - a

process which we now explain.
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Proportion of missing data (No DCS) Proportion of missing data (DCS)

5 minutes 45.55% 51.89%

15 minutes 3.09% 24.32%

30 minutes 2.82% 45.95%

60 minutes 2.82% 53.51%

90 minutes 43.82% 65.95%

120 minutes 10.18% 67.57%

180 minutes 19.82% 62.16%

240 minutes 25.55% 68.11%

300 minutes 32.36% 77.84%

360 minutes 38.09% 76.76%

420 minutes 53.18% 85.41%

480 minutes 59.45% 82.70%

Table 5.3: Proportion of missing data in the second QinetiQ dataset
by timepoint and DCS occurrence

5.3 Imputation Model

As mentioned in Section 1.10, we consider the idea that some suitable joint

model underlies the data and that the observed ordinal bubble score at each

timepoint is derived from a latent continuous variable. The model that we

use here for the underlying variable is drawn from Anderson and Pember-

ton (1985) who consider a multivariate normal underlying joint distribution

as, while we could use a distribution more complex than the multivariate

normal distribution, we may draw quickly and efficiently from this distri-

bution which, as we will see, will be an important factor. We denote the

observed ordinal bubble score at timepoint i for the jth dive on our 1-12

scale by yij. The existence of an underlying continuous variable Zi for each

timepoint i, which we term the bubble concentration, would seem to be a

reasonable model given that the number of bubbles passing the heart at a

particular time, while not necessarily able to be categorised by listeners into

anything more than grades, would in fact be a specific number of bubbles
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on a considerably finer scale. The method, then, supposes that conditional

on the covariates xj for a particular dive j, the bubble concentrations are

drawn from a multivariate normal distribution Zj ∼ N(βxj,R). Here, if

we suppose that we have a total of m timepoints and p covariates (where

in our case p = 2 as we are using escape depth and saturation depth as the

two covariates), β is a m× p matrix of regression coefficients. Further, R

is a suitable m×m covariance matrix describing the way in which the ob-

servations at different pairs of timepoints are related to one another. Note

that this matrix must be symmetric (being a covariance matrix), so that in

computing these correlations, we need not in fact estimate all m2 elements

of R.

Now, let the number of possible levels of the rth timepoint’s ordinal vari-

able be denoted by kr. In our case, we have kr = 12 for each timepoint

as there are 12 possible bubble grades for every timepoint. Suppose also

that there are kr−1 cutpoints α1,i, α2,i, . . . , αkr−1,i such that for each time-

point i and the values of the new continuous variable between the pairs of

cutpoints determine to which ordinal bubble score our continuous variable

corresponds. Suppose, for example, that at timepoint 1 our continuous

bubble concentration lies in the interval [α5,1, α6,1]. Then this corresponds

to an ordinal bubble score of 6 on our scale (equivalent to a KM score of

2). We also suppose that there are two additional ‘cutpoints’ α0 = −∞
and αkr =∞, so that, in general, an ordinal bubble score of q on our scale

corresponds to the bubble concentration lying in the interval [αq−1, αq].

In order to identify the location and scale of Z, which are not generally

unique, we must fix two parameters in each dimension. We choose to fix

the cutpoint α1 = 0 for each timepoint, as well as setting the diagonal

entries of R to 1, so that R is a correlation matrix. Note that R must

be symmetric and have 1s along its leading diagonal (being a correlation

matrix) so that, in computing these correlations, we need not in fact find

all m2 values, which is useful for our computations. To actually estimate
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the remaining coefficients α and β we use maximum likelihood based on

the 1-way margins of the joint distribution of y. It follows that for the

ith timepoint of the jth dive with covariates xj, the probability that an

observation of ordinal score yij is observed is given by

P (yij) = Φ(α(i, yij) + β(i)xj)− Φ(α(i, yij − 1) + β(i)x), (5.1)

where as previously noted the observed KM bubble scores have been con-

verted to lie on a 1-12 scale, (12 representing a KM score of 4.00 and 1

representing a KM score of 0.00), where Φ is the standard normal CDF

and where β(i) represents the ith row of β.

Using (5.1) for each of the n dives, taking logs and summing, we may now

construct a log likelihood

l =
kr∑
i=1

n∑
j=1

logP (yij) (5.2)

and maximizing (5.2) leads us to maximum likelihood estimates of α and

β.

Having obtained these maximum likelihood estimates for α and β, we can

now similarly find estimates for the components of R by constructing a

similar log likelihood instead based on the 2-way margins (i.e. the joint

probability that at the ith timepoint we have a bubble score of yij while

at the kth timepoint we have a bubble score of ykj). Using equation (5) of

Anderson and Pemberton (1985), which states that

P (yij, ykj) =

∫ α(i,yij)+β(i)xj

α(i,yij−1)+β(i)xj

∫ α(k,ykj)+β(k)xj

α(k,ykj−1)+β(k)xj

f(ζ, η, ρik) dζ dη,
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where h is the standardised bivariate normal PDF given by

f(x, y, ρ) =
1

2π
√

1− ρ2
exp

(
−x

2 + y2 − 2ρxy

2(1− ρ2)

)
,

we may construct the new log likelihood

l2(ρ|α,β,x,y) =
kr∑
i=1

kr∑
k=1
k 6=i

n∑
j=1

logP (yij, ykj). (5.3)

Proceeding as before by maximization of this new likelihood (5.3) (which, it

should be noted, is a conditional likelihood given the estimates of α and β),

we may obtain estimates of the components ofR, which are the correlations

between bubble concentrations at different timepoints. Reasonably, we

might expect these to be fairly high for neighbouring timepoints, as it

is likely that bubble scores at nearby timepoints will be closely related.

Having estimated α and β (by maximizing the likelihood (5.2)) and R

(by maximizing the likelihood (5.3) conditional on our estimates for αand

β), we must now consider how to impute our missing values. Splitting

the data for the ith timepoint and jth dive with corresponding covariates

xj into observed yobs,j (where the original bubble score is observed) and

unobserved yunobs,j (where the original bubble score is unobserved) sections,

with corresponding bubble concentrations zobs,j and zunobs,j. Thence, for

each dive j where the ith bubble score is observed and takes value yij, we

have that

Zij|yij,α,β,xj ∼ N(β(i)xj,R)|zobs,j ∈ [αyij−1, αyij ], (5.4)

where the above notation indicates that Zij conditional on yij,α,β,xj is

distributed as a truncated normal distribution with mean β(i)xj, variance

R and truncated to the interval [αyij−1, αyij ].
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We then wish to calculate the expectation

E[Zunobs,j|yobs,j,xj] (5.5)

to form our mean imputation of bubble concentration for the unobserved

concentrations at the given timepoint.

To do this, we use a Gibbs sampler, which involves the full conditional

distributions of each datapoint. That is, for a particular datapoint (with

given covariates of saturation and escape depth) then given the bubble

score at every other timepoint, we may find the conditional distribution

for the latent bubble concentration at the remaining timepoint and subse-

quently sample from this using a Gibbs sampler to give us an estimate of

the latent bubble concentration on our new continuous scale. The desired

conditional distribution will depend on whether we have observed the orig-

inal bubble score at the given timepoint. If we have, then we draw from

a truncated normal, truncated at the desired cutpoints (after adjustment

for the covariates) with mean and variance being standard results as given

in, for example, Gelman et al. (2003), for the required conditional distri-

butions. We use a truncated normal distribution in this case as we know

that the continuous bubble concentration must lie between a given pair of

cutpoints. On the other hand, if we have a missing value initially then

we must draw from a (standard, non-truncated) normal distribution, again

with mean and variance β(i)xj and R respectively as given in (5.4) (but

this time without the truncation requirement for the distribution) as we do

not know the original datavalue and have no bounds for the possible value

of the continuous variable. We then iterate the process, cycling through

each of the timepoints for a given observation a number of times until we

appear to have achieved convergence in our Gibbs sampler (this turns out

to require only a few burn-in iterations). Having done this, we then average

the Gibbs sampler outputs over all the post burn-in iterations and perform

a mean imputation using (5.5). We may then optionally back-transform
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using our cutpoints (adjusted for the covariates) onto the original ordinal

KM scale to provide an ordinal imputation if this is desired. In either case

an initial value for the continuous bubble concentration is required. In the

case of a non-missing value, we use the midpoint of the cutpoints of the

interval in which the continuous score must lie. In the case of a missing

value, we use 0 as our initial value.

Note that while we could treat the above parameters as missing and then

incorporate them into our Gibbs sampler, this would necessitate our run-

ning the sampler every time we wanted to find the continuous bubble score

for a new dive - including when we wanted to make a prediction for new

covariate values. As we shall see in Section 6.3, this would be highly un-

desirable in a time-critical rescue situation and this is why we have chosen

the above method instead.

5.4 Results

In this section, we first consider the results of applying the model outlined in

the previous section. We begin by considering results from using only the 4

timepoints at 5, 15, 30 and 60 minutes. In this case, we obtain the following

maximum likelihood estimates for α and β and we also give the estimated

correlation matrix R between the bubble concentrations at the different

timepoints. Note that the first column of β corresponds to saturation depth

while the second corresponds to escape depth. Also note that the models are

only valid over the range in which we have data (i.e. for saturation depths

between around 0 and 15m and escape depths between 0 and 300m). In

the results for α below, we omit the zeroth column (which is −1× 1010 for

all timepoints) and the final column (which is 1× 1010 for all timepoints).
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Thus, for α we obtain the estimates

α̂ =


0 0.0002 0.412 0.430 0.430 0.871 0.902 1.204 1.881 2.532 2.772

0 0.113 0.716 0.820 0.865 1.639 1.649 2.018 2.659 3.427 3.612

0 0.024 0.643 0.712 0.722 1.489 1.514 1.897 2.714 3.559 3.798

0 0.055 0.821 0.849 0.870 1.671 1.690 2.047 2.868 3.769 4.085

 .

Next, we have

β̂ =


−0.100 −0.00739

−0.186 −0.00885

−0.222 −0.00769

−0.259 −0.00622

 .

Finally, for our estimated correlation matrix, we have

R̂ =


1.000 0.843 0.771 0.704

0.843 1.000 0.882 0.789

0.771 0.882 1.000 0.877

0.704 0.789 0.877 1.000

 .

We see here that the coefficients β are all negative. This indicates that

when saturation is higher, or when escape occurs at deeper depths, we ex-

pect higher mean bubble concentrations. That is, it is easier for a given

dive to fall into a higher category, so that, as we would certainly expect,

dives that have higher saturation or escape depths are more likely to pro-

duce higher bubble scores. Also, our estimated correlation matrix shows

that closely related timepoints have similar bubble scores in an almost

conditionally independent manner (so that at each step further away we

square the correlation to obtain the next nearest correlation). This would

also seem to be a promising result as we would expect close timepoints to

have similar bubble scores, with more distant timepoints having less similar

scores.
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Now, using these results to impute our missing values, while also convert-

ing the datavalues to continuous bubble concentrations, we find that the

median bubble concentrations for the 5, 15, 30, 60 timepoints after impu-

tation are 2.027, 2.872, 2.496 and 2.477 respectively. Comparing with α̂

above, we have that these correspond to values of 10, 12, 10 and 10 on our

ordinal scale (or 3+, 4, 3+ and 3+ on the KM scale). Comparing with the

median for the original unimputed data (ignoring missing values), where

the medians are 3+, 3, 3, 3 respectively, it would seem that imputation has

indicated that the bubble scores that are missing are, in general, higher

than those that are observed. This implies that we do not have data that

are Missing Completely at Random (MCAR). That is, the values of the

other covariates may not be independent of whether the covariate values

are missing or not. As higher bubble scores are more prevalent in dives

with higher scores, an analysis based on only the complete cases may well

lead to misleading results.

Having completed the imputation, we would ideally use the Bayesian frame-

work to perform our logistic regression. However, as QinetiQ wishes to

compare and integrate this work with their current work - which is under-

taken under the maximum likelihood framework - our results here shall also

be undertaken within that framework. In order not to lose our Bayesian

perspective, however, we shall also outline in Section 5.7 the Bayesian ap-

proach that could be used to obtain these regression results and obtain

DCS predictions.

We may use our imputed dataset and then apply the method of scoring to

find the maximum likelihood estimates for a logistic regression of the DCS

response on the continuous bubble concentration at each timepoint. Note

that the null deviance for all the models below (with the exception of the

KISS model as this contains fewer datapoints) is 900.21 on 985 degrees of

freedom. This yields the results in Table 5.4. This model has a residual

deviance of 571.54 on 981 degrees of freedom and an AICc of 581.54. We
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Estimate Std. Error

Intercept -5.2236 0.3592

5 minutes -1.0981 0.2770

15 minutes 0.7617 0.4542

30 minutes 0.1055 0.5130

60 minutes 0.9500 0.2760

Table 5.4: Estimates for regression model after imputation using
only bubble scores

find that the model can be improved by including saturation and escape

depth as covariates. Doing this, we obtain the results in Table 5.5 (note

that the final row represents the interaction effect between the saturation

and escape depths): This model has a residual deviance of 505.81 on 978

Estimate Std. Error

Intercept -6.7191 0.8335

5 minutes 0.3750 0.3522

15 minutes -0.3170 0.4831

30 minutes 0.4623 0.5344

60 minutes -0.0457 0.3219

Saturation Depth 0.4494 0.0906

Escape Depth 0.0086 0.0038

Saturation Depth:Escape Depth -0.0010 0.0003

Table 5.5: Estimates for regression model after imputation using
bubble scores, saturation depth, escape depth and their interaction

degrees of freedom and an AICc of 521.81. We see then that the AICc has

dropped significantly with the inclusion of the three extra parameters and

indeed none of the bubble concentrations are significant predictors when

taken together. This would seem to indicate that any information they

give is perhaps provided by a smaller subset of these timepoints. Before

we consider selecting the ‘best’ subset of variables for predictive power, we

first give an indication of how to predict from this model, should we wish

to do so.
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We now consider a worked example. Suppose we have a dive with bubble

scores of 4, 3, 2.66, 2 on the KM scale at timepoints 5,15,30 and 60 minutes

respectively, with a saturation depth of 5m and an escape depth of 200m.

The first thing we must do is convert our observed bubble scores to con-

tinuous bubble concentrations for use with our models. To achieve this, we

can approximate using the midpoint of a suitable pair of the cutpoints α̂,

depending on which timepoint we are considering (with the exception of

bubble scores of 0 or 4, for which we must adjust slightly, given the need

for artificially large end cutpoints). Now, to convert our bubble scores to

bubble concentrations, we consider each row of α̂ in turn. We consider the

second, third and fourth scores first. For the second score, which is 3 on

the KM scale (or 9 on our 1-12 scale), we examine the second row of α

and take the midpoint of the interval [α2,8, α2,9] as our bubble concentra-

tion estimate. This gives 2.339 as our estimate. For the third score, which

is 2.66 on the KM scale (8 on our 1-12 scale), we look at the third row

of α̂ but now take the midpoint of the interval [α3,7, α3,8] as our bubble

concentration estimate, giving the estimate 1.706. Finally, for the fourth

score, which is 2 on the KM scale (6 on our 1-12 scale), we look at the

fourth row of α̂ but now take the midpoint of the interval [α4,5, α4,6] as our

bubble concentration estimate, giving the estimate 1.2705. To obtain the

estimate for the first timepoint, we must follow a slightly different proce-

dure as the observed score is 4 - we cannot take the midpoint of [α1,11, α1,12]

as we recall that the latter is artificially large (1× 1010). Thus, instead, we

simply add 0.3 to the cutpoint α1,11 (giving 3.072) as this is similar to the

average distance between cutpoints. Note that this only provides a rough

and ready estimate (as does using the midpoint of each pair of cutpoints in

general) as usually all the continuous bubble concentrations would be im-

puted using a run of our Gibbs sampler that takes into account the bubble

scores measured during the dive. Thus, we obtain the following (where the
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coefficients have been rounded to 3 d.p.)

P (DCS) = invlogit
(
− 6.719 + 0.375× 3.072− 0.317× 2.339

+ 0.463× 1.706− 0.046× 1.2705 + 0.449× 5

+ 0.008× 200− 0.001× 5× 200
)

≈ invlogit(−2.73)

=
e−2.73

1 + e−2.73

= 0.0612,

where the inverse logit function is given by invlogit(x) = exp(x)/(1 +

exp(x)).

By following the procedure outlined in Collett (2002, p. 98-99), we may

also find a confidence interval for this prediction. To do this, we must first

obtain from R the overall standard error of the fitted value - s, say - and in

this case, this is given by 0.6415. Collett then gives that if our fitted value

on the logit scale is ŷ, say, then a suitable 95% confidence interval on the

logit scale is given by (ŷ− 1.96s, ŷ+ 1.96s), which in this case evaluates to

(-3.987,-1.473). Further, he asserts that this may be back transformed to

the original scale to give a confidence interval for the fitted probability of

DCS and in this case this evaluates to (0.0182,0.1865).

Next, using both forward and backward stepwise selection with decreasing

AICc as our selection criterion, the model we obtain is shown in Table 5.6.

This model has only a slightly larger residual deviance of 507.03 on 980

degrees of freedom and an AICc of 517.03. We have thus improved on our

model by considering only those predictors that seem to encapsulate the

most information.

We also have the results for the 12 timepoint model. In this case, we again

omit for α the zeroth column (which is −1 × 1010 for all timepoints) and
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Estimate Std. Error z-value p-value

Intercept -6.6663 0.8108 -8.222 < 2× 10−16

30 minutes 0.4245 0.1357 3.128 0.0018

Saturation Depth 0.4131 0.0814 5.074 3.90× 10−7

Escape Depth 0.0083 0.0037 2.279 0.0227

Saturation Depth:Escape Depth -0.0009 0.0003 -2.988 0.0028

Table 5.6: Estimates for regression model after imputation using
bubble scores, saturation depth, escape depth and their interaction
after model selection by AICc

the final column (which is 1× 1010 for all timepoints). Here then, for α̂ we

have

α̂ =



0 0.0002 0.412 0.430 0.430 0.870 0.902 1.204 1.881 2.532 2.772

0 0.113 0.716 0.820 0.865 1.639 1.649 2.018 2.659 3.427 3.612

0 0.024 0.643 0.712 0.722 1.489 1.514 1.897 2.714 3.559 3.798

0 0.055 0.821 0.849 0.870 1.671 1.690 2.047 2.868 3.769 4.085

0 0.051 0.590 0.630 0.630 1.461 1.522 1.934 2.844 3.792 4.093

0 0.130 0.775 0.842 0.866 1.510 1.543 1.953 2.703 3.622 3.946

0 0.224 0.996 1.039 1.058 1.683 1.683 2.132 3.024 4.026 4.447

0 0.313 0.919 0.990 1.027 1.671 1.686 2.207 3.148 4.048 4.730

0 0.257 0.797 0.926 0.954 1.760 1.777 2.349 3.302 4.077 4.594

0 0.251 0.805 0.938 0.972 1.841 1.854 2.404 3.294 3.867 4.813

0 0.132 0.630 0.749 0.775 1.748 1.801 2.192 3.334 3.859 4.380

0 0.156 0.794 0.979 1.013 1.929 1.973 2.387 3.178 3.554 4.909



.
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For β̂, we obtain

β̂ =



−0.100 −0.00739

−0.186 −0.00885

−0.222 −0.00769

−0.259 −0.00622

−0.281 −0.00251

−0.232 −0.00407

−0.217 −0.00398

−0.190 −0.00368

−0.170 −0.00317

−0.157 −0.00236

−0.103 −0.00218

−0.128 −0.00140


while for the correlation matrix we have

R̂ =



1.000 0.843 0.771 0.704 0.562 0.591 0.505 0.408 0.438 0.320 0.229 0.248

0.843 1.000 0.882 0.789 0.400 0.629 0.595 0.540 0.494 0.364 0.086 0.044

0.771 0.882 1.000 0.877 0.671 0.739 0.669 0.652 0.605 0.537 0.460 0.525

0.704 0.789 0.877 1.000 0.828 0.850 0.740 0.650 0.604 0.564 0.571 0.525

0.562 0.400 0.671 0.828 1.000 0.810 0.700 0.600 0.550 0.426 0.413 0.486

0.591 0.629 0.739 0.850 0.810 1.000 0.875 0.777 0.698 0.677 0.665 0.690

0.505 0.595 0.669 0.740 0.700 0.875 1.000 0.895 0.835 0.783 0.760 0.653

0.408 0.540 0.652 0.650 0.600 0.777 0.895 1.000 0.915 0.845 0.808 0.671

0.438 0.494 0.605 0.604 0.550 0.698 0.835 0.915 1.000 0.927 0.871 0.775

0.320 0.364 0.537 0.564 0.426 0.677 0.783 0.845 0.927 1.000 0.905 0.812

0.229 0.086 0.460 0.571 0.413 0.665 0.760 0.808 0.871 0.905 1.000 0.893

0.248 0.044 0.525 0.525 0.486 0.690 0.653 0.671 0.775 0.812 0.893 1.000



Here, we again see that all the β̂ coefficients are negative, which is as
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expected. The correlation matrix here is not quite so intuitive as in the

four-point example, though bubble scores at adjacent timepoints are again

generally well correlated, so that this matrix would seem to indicate that

nearby timepoints have similar bubble scores.

Having obtained these results, we may now use them to impute the missing

values in the dataset, and convert the ordinal bubble scores to continuous

bubble concentrations, being sure to adjust for the covariates. Unfortu-

nately, it happens that this correlation matrix is, in fact, not positive def-

inite, and so our imputation process will fail (as we will obtain negative

conditional variances, which is clearly impossible). To circumvent this is-

sue, we note that the matrix above is somewhat akin to the correlation

matrix for an autocorrelated process (i.e. one where adjacent timepoints

are correlated with some correlation coefficient ρ, timepoints separated by

one timepoint are correlated with correlation coefficient ρ2 and, in general,

timepoints separated by k timepoints have correlation coefficient ρk−1). We

may select such a matrix that is in fact positive definite and use this to

approximate R. We choose to do this by minimizing the sum of squares of

the matrix R −R∗, where R∗ is our new matrix, as a function of ρ. This
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yields the following matrix R∗:

R∗ =



1.000 0.894 0.798 0.713 0.637 0.570 0.509 0.455 0.406 0.363 0.324 0.290

0.894 1.000 0.894 0.798 0.713 0.637 0.570 0.509 0.455 0.406 0.363 0.324

0.798 0.894 1.000 0.894 0.798 0.713 0.637 0.570 0.509 0.455 0.406 0.363

0.713 0.798 0.894 1.000 0.894 0.798 0.713 0.637 0.570 0.509 0.455 0.406

0.637 0.713 0.798 0.894 1.000 0.894 0.798 0.713 0.637 0.570 0.509 0.455

0.570 0.637 0.713 0.798 0.894 1.000 0.894 0.798 0.713 0.637 0.570 0.509

0.509 0.570 0.637 0.713 0.798 0.894 1.000 0.894 0.798 0.713 0.637 0.570

0.455 0.509 0.570 0.637 0.713 0.798 0.894 1.000 0.894 0.798 0.713 0.637

0.406 0.455 0.509 0.570 0.637 0.713 0.798 0.894 1.000 0.894 0.798 0.713

0.363 0.406 0.455 0.509 0.570 0.637 0.713 0.798 0.894 1.000 0.894 0.798

0.324 0.363 0.406 0.455 0.509 0.570 0.637 0.713 0.798 0.894 1.000 0.894

0.290 0.324 0.363 0.406 0.455 0.509 0.570 0.637 0.713 0.798 0.894 1.000



We see that the matrix R∗, where ρ = 0.894 (which is the minimizer for

R−R∗), is fairly similar to R but is not identical to it. However, it would

seem to be a reasonable approximation and is indeed a positive definite

matrix, as we require to continue.

We now use 2,000 iterations of the Gibbs sampler, with our matrix R∗,

taking the first 100 as a burn-in and discarding them. We then impute the

mean of the remaining 1,900 iterations as the desired continuous bubble

concentration. We use a specific point as an example here. Notably, we

take the final datapoint. This has missing values at 5, 90, 300, 360, 420, 480

minutes, with a saturation depth of 5 and escape depth of 0 (as this is

not an escape type dive). We see from the histogram in Figure 5.1, which

concerns the imputation for the bubble concentration at the first timepoint

at 2 minutes, that there is a continuous bubble concentration spread of

around 0.53 to 2.85, with the majority of the mass occurring between about
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0.9 and 2.5. Comparing with α̂ above, this leads us to a probable value of

8, 9 or 10 for our ordinal bubble score (3-, 3 or 3+ on the KM scale), or

possibly 4 or 8 (1+ and 3- respectively on the KM scale). This would seem

reasonable given that the first observed score, which occurs at 15 minutes,

is 3 on the KM scale. Using the mean of our Gibbs sampler after removing

the burn-in iterations, we obtain a continuous concentration of 1.64, which

back-transforms to a score of 9 on the ordinal scale (3 on the KM scale),

which seems in order given that the score at 5 minutes is 8 (or 3 on the

KM scale).

Figure 5.1: Histogram of imputation for 5 minute timepoint of dive
986

Having completed the imputation, we may again use our imputed dataset

to perform a logistic regression of the DCS response on the continuous

bubble concentration at each timepoint, though we should note that we
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are using the data twice here (albeit for two rather different purposes,

but this cannot be avoided). This yields the results in Table 5.7. This

Estimate Std. Error

Intercept -4.813 0.397

5 minutes -0.444 0.322

15 minutes 0.295 0.479

30 minutes 0.162 0.518

60 minutes 1.023 0.436

90 minutes 0.341 0.383

120 minutes -1.201 0.428

180 minutes 0.207 0.441

240 minutes 0.428 0.443

300 minutes -0.915 0.490

360 minutes 1.441 0.521

420 minutes -2.296 0.588

480 minutes 1.767 0.515

Table 5.7: Estimates for regression model after imputation using
only bubble scores

model has a residual deviance of 533.49 on 973 degrees of freedom and an

AICc of 559.49. This time, we see that now there is considerable overlap

in the information provided by the bubble concentrations at the various

timepoints, causing a lack of significance of any of the bubble concentrations

as predictors. However, the AICc is considerably lower than when we were

just using 4 timepoints, so it is clear that a good deal of information is

imparted by the later timepoints (perhaps another reason for the success of

KISS, rather than the previous individual first few bubble scores), though

our model here is not as good as the model using only KISS.

Suppose we now use saturation and escape depth as additional predictors.

Recall that in the 4 timepoint case this provided a considerable improve-

ment. This model, whose parameters are given in Table 5.8, has a residual

deviance of 487.88 on 970 degrees of freedom with an AICc of 519.88. Here
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Estimate Std. Error

Intercept -6.756 0.858

5 minutes 0.382 0.358

15 minutes -0.443 0.503

30 minutes 0.440 0.542

60 minutes 1.169 0.474

90 minutes -1.258 0.538

120 minutes -0.263 0.474

180 minutes -0.033 0.445

240 minutes 0.654 0.465

300 minutes -0.705 0.511

360 minutes 0.710 0.563

420 minutes -0.654 0.619

480 minutes 0.523 0.500

Saturation Depth 0.466 0.096

Escape Depth 0.006 0.004

Saturation Depth:Escape Depth -0.001 0.000

Table 5.8: Estimates for regression model after imputation using
bubble scores, saturation depth, escape depth and their interaction

we see that the effect on the AICc of predictors is smaller than it was

previously, but is still significant. This clearly indicates that using more

timepoints has improved the amount of information obtained using more

of the bubble profile, as we might expect. Suppose we now use stepwise

(backward) selection on the above model. Then we obtain the results in

Table 5.9. This model has a residual deviance of 493.77 on 970 degrees

of freedom with an AICc of 507.77 - clearly an improvement on the full

model above. As we can see, only a few of the timepoints are selected, so

that there is an indication that some of the timepoints provide overlapping

information.

For comparison, suppose we only include the effect of saturation depth,

escape depth and the interaction of these two factors. Then, we have
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Estimate Std. Error z-value p-value

Intercept -6.7892 0.8172 -8.308 < 2× 10−16

60 minutes 1.4884 0.3360 4.431 9.40× 10−6

90 minutes -1.4819 0.3945 -3.756 0.0002

240 minutes 0.3606 0.1986 1.815 0.0695

Saturation Depth 0.4658 0.0840 5.545 2.94× 10−8

Escape Depth 0.0057 0.0038 1.515 0.1298

Saturation Depth:Escape Depth -0.0009 0.0003 -2.952 0.0032

Table 5.9: Estimates for regression model after imputation using
bubble scores, saturation depth, escape depth and their interaction
after model selection by AICc

the results in Table 5.7. This model has a residual deviance of 517.24

Estimate Std. Error z-value p-value

Intercept -7.018 0.8570 -8.189 2.64× 10−16

Saturation Depth 0.5481 0.0756 7.256 3.99× 10−13

Escape Depth 0.0138 0.0035 3.961 7.45× 10−5

Saturation Depth:Escape Depth -0.0012 0.0003 -3.746 0.0002

Table 5.10: Estimates for regression model after imputation using
only saturation depth, escape depth and their interaction

on 982 degrees of freedom with an AICc 525.24. This is clearly greater

than the AICc for the previous model, whence we may conclude that the

bubble concentrations do provide some useful information over and above

the escape and saturation depths.

For practical reasons, we also consider the model using only the five minute

timepoint together with the saturation and escape depths. We do this be-

cause we wish to ascertain whether the 5-minute timepoint is a useful ob-

servation to collect - it is easily and rapidly obtainable and may thus be

useful in the event of an emergency. This yields the results in Table 5.8.

This model has a residual deviance of 517.25 on 982 degrees of freedom

and an AICc of 525.25. In fact, using backward selection we find that the
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Estimate Std. Error z-value p-value

Intercept -5.0080 0.4472 -11.199 < 2× 10−16

5 minutes 0.5580 0.1367 4.084 4.43× 10−5

Saturation Depth 0.3033 0.0353 8.592 < 2× 10−16

Escape Depth -0.001227 0.0016 -0.7680 0.443

Table 5.11: Estimates for regression model after imputation using
only saturation depth, escape depth and the 5-minute bubble score

escape depth term is not required here and the AICc may be improved by

eliminating it to yield the model whose parameters are given in Table 5.12

instead. This model has a residual deviance of 517.84 on 983 degrees of free-

Estimate Std. Error z-value p-value

Intercept -5.2123 0.3660 -14.240 < 2× 10−16

5 minutes 0.4979 0.1113 4.473 7.72× 10−6

Saturation Depth 0.3198 0.0284 11.274 < 2× 10−16

Table 5.12: Estimates for regression model after imputation with
AICc selection, using only saturation depth and the 5-minute bub-
ble score

dom and an AICc 523.84. This is better even than the model incorporating

the escape depth and saturation depth together with their interaction (a

model with an AICc of 525.24) and is certainly better than that model

without the relevant interaction (which has an AICc of 540.88). Thus, it

seems that the 5 minute timepoint does in fact provide valuable informa-

tion - information that could well be useful in practical circumstances if

easily obtained.

Suppose we now check the effect of using KISS rather than the imputed

bubble concentrations. This requires us to first back-transform our imputed

bubble concentrations onto the original ordinal scale before using these

figures to calculate the KISS. Doing this, we obtain the results in Table

5.13. This model has a residual deviance of 634.28 on 984 degrees of freedom
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Estimate Std. Error z-value p-value

Intercept -3.8214 0.2195 -17.41 < 2× 10−16

KISS 0.0627 0.0046 13.52 < 2× 10−16

Table 5.13: Estimates for regression model after imputation using
only KISS

with an AICc of 638.28.

We see that KISS is a less effective predictor than our model that uses a set

of bubble concentrations together with the escape and saturation depths,

and is less effective even than the model that uses only the bubble con-

centrations. It seems then that it would be helpful to find some modified

version of KISS that is able to incorporate our continuous bubble concen-

trations, rather than requiring that the ordinal KM scale be used, as we

might expect some form of KISS-type score that averages over the various

timepoints and takes account of the non-linearity of bubble quantity with

respect to bubble concentration to provide a more useful predictor.

Thus, it seems that perhaps it would be useful in future work to find some

more flexible version of KISS that incorporates the ability to use continuous

bubble concentrations, as this may be able to provide more information as

a predictor than we would obtain from just using the saturation and escape

depths alone, or any particular bubble score. Further, use of an integrated

score would allow us to recoup some degrees of freedom that are lost if we

make use of the bubble concentrations at individual timepoints.

Now, using the imputed KISS scores together with the saturation depths,

we obtain Table 5.14. This model has a residual deviance of 515.49 on 981

degrees of freedom with an AICc of 525.49. This model is, however, not

noticeably better than the model excluding KISS (and we see that the KISS

regression coefficient has a rather high p-value), so we might conclude that

there is no information to be gained by using the bubble scores in addition
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Estimate Std. Error z-value p-value

Intercept -6.8674 0.8531 -8.050 8.29× 10−16

KISS 0.0098 0.0074 1.325 0.185

Saturation Depth 0.5050 0.0812 6.216 5.10× 10−10

Escape Depth 0.0127 0.0035 3.591 0.0003

Saturation Depth:Escape Depth -0.0012 0.0003 -3.597 0.0003

Table 5.14: Estimates for regression model after imputation using
KISS, saturation depth, escape depth and their interaction

to the saturation and escape depths where available. However, it would,

as noted previously, be interesting to see whether a more flexible version

of KISS might provide a yet more substantial amount of information from

the available bubble scores than does the current version, particularly if

we could use our continuous concentrations to this end. Moreover, it is

interesting to note that if, rather than simply using our imputed KISS

scores, we use the ‘true’ (observed) KISS score where available and only

elsewhere use the imputed scores (we label this variable KISS2), we obtain

the model given in Table 5.15:

Estimate Std. Error z-value p-value

Intercept -6.5940 0.8032 -8.210 < 2× 10−16

KISS2 0.0430 0.0058 7.431 1.08× 10−13

Saturation Depth 0.3567 0.0741 4.812 1.49× 10−6

Escape Depth 0.0070 0.0034 2.073 0.0382

Saturation Depth:Escape Depth -0.0008 0.0003 -2.692 0.0071

Table 5.15: Estimates for regression model after imputation using
KISS2, saturation depth, escape depth and their interaction

This model has a residual deviance of 459.81 on 981 degrees of freedom

with an AICc of 469.81. This is clearly better than any of our previous

models. Thus, it seems that the observed KISS values provide a better

source of information than the imputed KISS scores. To see why this
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might be the case, we examine those datapoints for which there is a large

difference between the observed KISS scores and those calculated using the

imputed data. It emerges that those points with a lower observed KISS

than imputed KISS are almost universally missing the observation at the

5 minute timepoint. Meanwhile, those points with a higher observed KISS

than imputed KISS are generally those dives that have a great many missing

values after the first two or three timepoints and have large KM scores for

the first couple of timepoints. In such dives, the KISS may well be 100

or close to it, while the imputed scores, reflecting the general tendency

for bubble scores to decrease over time, have a rather lower KISS as the

imputed scores become smaller as time progresses (reflecting the correlation

structure in the data). Given both these observations, and the fact that

using the observed KISS where available seems to provide superior results, it

would seem that perhaps the bubble scores at the earlier timepoints provide

more information than do the bubble scores at later timepoints. It may well

then be instructive to create a new version of KISS giving enhanced weight

to these points, in an effort to reflect the additional information provided

here.

5.5 Applying Multiple Imputation to the Bub-

ble Dataset

We can now proceed to apply the multiple imputation procedure of Section

1.10 to our bubble dataset, taking m = 40 to be our number of imputations

as we have under 70% missing data and so should obtain a suitably robust

result. As it is of particular interest, we consider the regression given by

logit(P (DCS)) = γ0 + γ1x1 + γ2x2 + γ12x1x2 + γ3x3,
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where x1 is the saturation depth, x2 is the escape depth, x3 is the imputed

variable on the concentration continuous scale, and the γs are regression

coefficients. In our case, we are particularly interested in the γ3 coefficient.

Recall that this model has estimated coefficients as given in Table 5.16.

Estimate Std. Error z-value P-value

Intercept -6.9270 0.8727 -7.938 2.05× 10−15

5 minutes 0.2380 0.0686 3.469 0.0005

Saturation Depth 0.5000 0.0801 6.127 8.96× 10−10

Escape Depth 0.0070 0.0038 1.867 0.0619

Saturation Depth:Escape Depth -0.0010 0.0003 -3.235 0.0012

Table 5.16: Estimates for regression model after imputation using
saturation depth, escape depth and their interaction together with
the 5 minute bubble score

On creating 40 imputed datasets, we obtain 40 values for γ3 all ranging

between 0.22 and 0.24 with standard errors around 0.07. Using Rubin’s

rules given above, we have Q = 0.2327, U = 0.07234, B = 5.118623 ×
10−6, T = 0.07234337, so that q is very large indeed (we have q ≈ 7.5×109)

and we may effectively compare with a normal distribution rather than a

t-distribution. In this case, then, we do have evidence that our regression

coefficient is significantly different from zero as

0.2327− 0√
0.07234

≈ 3.217,

which gives a p-value of 0.00145.

Clearly, then, it is better to obtain the bubble score at 5 minutes to assist

shipboard medics in predicting occurrence of DCS than it is to go without

it and, given that it is such an easy reading to obtain, is well worth the time

to acquire as it will certainly enhance their triage and treatment objectives.
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5.6 Some Validation

In order to validate the above results to some extent, we split the (imputed)

second QinetiQ dataset into a training dataset (comprising 80% of the

original dataset, chosen at random) and a test dataset (comprising the

remaining 20% of the original dataset). We then refit the model with the

same covariates as Table 5.16 using only the training dataset and then use

the results to make predictions for the test dataset.

We again use the pseudo-R2, R
T
2 , defined in Section 3.6 and, when consid-

ering this restricted training dataset, we would again hope to obtain similar

parameter estimates as we did using the whole dataset, as well as a similar

R2
T value for the predictions on the test dataset.

Fitting the model to the training dataset yields the parameter estimates

in Table 5.17 below. We see that, as hoped, these parameter estimates are

quite similar to those obtained in Table 5.16 for the whole of the second

QinetiQ dataset (and certainly within two standard errors of the previous

estimates, though do note that these standard errors are now larger, as

we would expect, given that we have a smaller dataset). In addition, the

R2
T value for the test dataset using these parameter values is 0.4311. The

value obtained for the whole dataset is 0.4863, and this similarity is again

reassuring.

5.7 Bayesian Logistic Regression

In Section 5.4, we used maximum likelihood methods to enable QinetiQ to

make comparisons directly with their own models. However, it would of

course be possible to use a Bayesian framework to fit our logistic regression,
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Estimate Std. Error z-value P-value

Intercept -6.3781 1.4920 4.275 1.91× 10−5

5 minutes 0.2670 0.0927 2.880 0.0040

Saturation Depth 0.4174 0.1242 3.361 0.0008

Escape Depth 0.0070 0.0076 1.867 0.0619

Saturation Depth:Escape Depth -0.0012 0.0006 -2.18 0.0292

Table 5.17: Estimates for regression model after imputation using
saturation depth, escape depth and their interaction together with
the 5 minute bubble score for the training dataset

and this would avoid losing the Bayesian coherence of our work. To do this,

we first note that the likelihood for the logistic regression with p covariates

x1, x2, . . . , xp is given by

n∏
i=1

(
eη

1 + eη

)yi (
1− eη

1 + eη

)1−yi
(5.6)

where η = b0 + b1x1 + · · · + bpxp is the linear predictor, yi = 1 if DCS

occurs on the ith dive and yi = 0 otherwise and b0, b1, . . . , bp are some real

parameters. If desired, interaction parameters can also be included.

Taking the product of the likelihood 5.6 with a suitable prior, we can (using

a suitable MCMC sampler), obtain samples from the posterior distribution

of the regression parameters.

As an example of how this might be achieved, and in order to compare our

results with the maximum likelihood results obtained previously, we shall

follow this procedure for our final model above (from Table 5.16). That

is, we shall fit a model incorporating the 5 minute bubble score, as well as

saturation depth, escape depth and the interaction of the last two of these,

so that our linear predictor is η = b0+b1x1+b2x2+b12x1x2+b3x3, where x1

is the saturation pressure, x2 the escape depth and x3 the imputed bubble

score. Then, we have 5 regression parameters to deal with, including our
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Parameter Approximate posterior mode (Standard error)

b0 (Intercept) -7.1463 (0.8561)

b1 (Saturation Depth) 0.5181 (0.0784)

b2 (Escape Depth) 0.0100 (0.0038)

b12 (Saturation Depth:Escape Depth) -0.0011 (0.00033)

b3 (5 minutes) 0.2625 (0.1406)

Table 5.18: Estimated posterior modes (standard errors) of regres-
sion parameters

intercept. As we have no prior knowledge about possible parameter values,

we shall use a diffuse uniform prior, U(−100, 100), for each of the regression

parameters.

Using the rjags package in R to sample from the desired chain 100,000 times

and discarding the first 10,000 as burn-in, we obtain the results given in

Table 5.18 and Figure 5.2. We can see that the chains mix quite well and

that the posterior modes presented here are very similar to the maximum

likelihood estimates noted in Table 5.16 above, which is reassuring.

5.8 Discussion

In summary, this chapter has concerned use of bubble scores to predict

DCS, as well as the imputation of those bubble scores to ensure compre-

hensive use of the given information, trying to avoid the complete discarding

of missing data. To that end, we have outlined an imputation method by

which we may impute the missing values in a dataset, using the mean of

a Gibbs sampler that also converts the observed ordinal bubble data into

continuous bubble concentrations.
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Figure 5.2: Trace plots and kernel density estimates for Bayesian
logistic regression model
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Using these results, we found that using more timepoints seems to give

considerably better results on performing logistic regression of occurrence

of DCS on bubble score, and that KISS, using as it does all the available

timepoints, gives a yet better result, with the proviso that imputed KISS

is used only where the original KISS is unavailable. We would suggest that

it might in future be helpful to devise a version of KISS that can use the

continuous bubble concentrations to provide an even better overall sum-

mary of the data and to give enhanced weight to the first few datapoints.

This would seem to be helpful, given the additional information on DCS

probability that these points seem to provide. However, if this KISS is to

use imputed data, we should also form some measure of its uncertainty and

incorporate this into its subsequent usage as a predictor for DCS.

In future work, we could usefully refit the model of Chapter 3 using the

Second QinetiQ dataset as employed in this chapter, and we could then

directly compare the predictive power of the models in Chapters 3 and 4.

This would provide further information on the predictive effectiveness of

each of the models, together with an indication as to which of the two

might a more fruitful avenue for further investigation. However, should the

bubble-score based method prove to be more effective, this does not mean

that we should necessarily dismiss Chapter 3’s model but may rather be

an indication that the single-compartment model is insufficient and that an

extension to multiple compartments is required for full predictive efficacy.



Chapter 6

Combining Models, Model Av-

eraging and Predicting Risk

6.1 Introduction

Having considered a variety of models in Chapters 3, 4 and 5, we now seek

to bring our previous work together here. Recall that we have two primary

aims. Our first aim is to provide easily accessible advice for submariners

trapped in a damaged submarine who must determine whether they should

attempt to escape from the submarine - a choice which is only sensible if

their DCS risk is not too high should they choose to do so, or if they will

otherwise be killed anyway - or, alternatively, wait for a rescue sub to arrive.

The latter is far preferable from a DCS risk point of view but may not be

viable from a practical one. We therefore seek to provide a submarine

commander with advice to better weigh up their options in this regard. In

particular, we shall seek to make some account for the importance of the

length of time for which saturation at the given depth has been experienced

- that is, whether we are effectively dealing with a saturation dive, a sub-

saturation dive or a bounce dive. The first will be the case where the

submarine has been flooded to a greater or lesser extent for a long period

125
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before an escape attempt is made, the second where there has been flooding

for a short period prior to consideration of escape, and the latter where

there is no internal submarine flooding at all. In this instance (i.e. within

the stricken submarine), no computational facilities can be relied upon.

To this end, we shall attempt to improve on the tool that already exists,

which is a 2D contour plot of saturation depth against escape depth with

DCS probability as the response (Loveman et al. (2014)). We shall use

the results that we have obtained in Chapters 3 and 4 to outline how to

produce a superior visual aid for use by submariners in this situation.

Having recalled our first aim, we now recall our second: to provide improved

practicable applicable models for the prediction of DCS in submariners after

escape from a damaged submarine. Our purpose now is not to provide aid

to the submarine commander, but rather to provide information to any

rescuers. Upon rescuing the submariners, the crew of the rescue ship must

assess each submariner for their risk of contracting DCS in order to decide

whom, if anyone, to place in their limited available on-board recompression

chamber treatment space or whether to advise the submariners to wait

for additional rescue resources to arrive before attempting escape. To this

end, we shall not be able to use any technique that requires vast amount of

computational effort to formulate our predictions given the limited time and

intrinsic pressures of an emergency situation. In particular, we should be

able to run our predictive model for each member of a disabled submarine’s

crew in the space of around five minutes. Given that a standard naval

submarine crew is a little under 100 hands, with the largest submarines

having just under 200, this means that our predictions should not take

more than about a second each to deliver. Furthermore, the computational

resources available to make any predictions on board a rescue ship will be

limited. While a small computer may be available, it would be ideal if any

calculations could be completed on (suitably reprogrammed) watch-size

diving computers (or perhaps via a phone app) that are readily available

and are easily carried by members of the rescue operation. Note that since
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rescue has now occurred, we will now be able to leverage our results from

Chapter 5 as well as those from Chapters 3 and 4, as the rescuers will be

able to make an assessment of the divers’ KM bubble scores five minutes

after surfacing, and this should be taken by the rescue team themselves after

bringing survivors to the surface. Given that this data is highly significant

in the prediction of cases of DCS, they will be able to use this invaluable

information in addition to whatever other dive depth and time details they

have to hand.

Given the above considerations, we do not want to actually perform any

MCMC (and particularly not any RJMCMC) at this stage. All compu-

tations are to have been completed in advance so that, rather than per-

forming any likelihood evaluations, we need only use predetermined mod-

els and parameter values. On the other hand, it will certainly be fea-

sible to perform a small number of low-dimension integrations as this is

well within the realm of possibility for computationally low-powered de-

vices. Thus, our models from Chapters 3 and 4 remain useful. While we

noted that computation times there were high, this is because we had to

compute several thousand integrals per likelihood evaluation. Here, how-

ever, if we have a k compartment model, we need only compute at most

1+(1+2)+(1+2+3)+ · · ·+(1+ · · ·+k) separate integrals per submariner.

Even if we make use of all possible models from 1-compartment up to and

including an 8-compartment model in some way, then we need only com-

pute a maximum of (1 + (1 + 2) + · · ·+ (1 + · · ·+ 8))× 200 = 24000, which

is computationally equivalent to only three likelihood evaluations of the

8-compartment model and is easily achievable! Furthermore, our results

from Chapter 5 rely only on logistic regression, predictions from which are

easily and quickly calculated. Indeed, this was why we took a non-Bayesian

approach there; while we could have used a Bayesian procedure, this would

have entailed drawing from a posterior predictive distribution for a new

observation or running a Gibbs sampler to include this ‘new observation’

as we went along running our imputation and doing so would have required
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Number of compartments Label Bounce Sub-saturation Saturation

3 p3 0.37450 0.33240 0.32445

4 p4 0.41757 0.38858 0.33314

5 p5 0.20793 0.27904 0.34241

Table 6.1: Table of reweighted posterior model probabilities

running a lengthy sampler which is not something we have the time or com-

putational power to do for each submariner in this time-critical situation.

6.2 A submariner’s aid

Our first aim of helping the submariners to determine whether or not to

escape from their damaged vessel is to be accomplished using just our

results from Chapters 3 and 4 (as of course no bubble score is available

until the post-ascent stage). To this end, we focus on using our results

from Chapter 4 and, in particular, using a Model Averaging procedure

with model weights as found in performing our RJMCMC.

Suppose, then, that we use the results obtained in Chapter 4 and recorded

in Table 4.2 where we used our RJMCMC algorithm to obtain posterior

model probabilities for the 1, 2, . . . , 8-compartment models. Notice that

the vast majority of the posterior model probability distribution is con-

centrated on the 3, 4 and 5 compartment models. To that end, to avoid

unnecessary computation, we reallocate the probability from the 1, 2, 6, 7

and 8 compartment models to the 3 and 5 compartment models by adding

the weight of the 1 and 2 compartment models to the 3 compartment model

and from the 6, 7 and 8 compartment models to the 5 compartment model

(these respectively being the closest compartment values to those of the

removed compartments). Then, the model probabilities assigned to these

models are as in Table 6.1.
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Now, as suggested by Kass and Rafferty (1995) we may use Bayesian Model

Averaging, to obtain the pdf for the probability of DCS not occurring as

being given by

p(y|θ, x1, x2, x3) =
5∑

k=3

pk

(
exp

(
−

k∑
i=1

∫ ∞
0

hi(t|θi, x1, x2, x3) dt

))
,

(6.1)

where h is our hazard function as obtained in Section 4.2.

In the following section, we shall want to save further computational effort

and insert the modal posterior parameter values here in order to conse-

quently obtain the estimated probability of DCS occurring in the ascended

submariners. However, this is not necessary at this stage as our computa-

tional time is not limited here. To that end, we would like to obtain the

posterior predictive distribution in order to account for our uncertainty in

the estimates of the parameter values, as this will effectively average out

the prediction over these possible parameter values. To that end, we note

that the posterior predictive distribution for a new observation ynew will be

given by

p(ynew) =

∫
θ

p(ynew|θ)p(θ|x1, x2, x3) dθ, (6.2)

where θ is the whole set of parameters. In particular, to use (6.2) with

(6.1), we need to interchange the order of summation and integration to

obtain

p(ynew) =
5∑

k=3

pk

∫
θk

(
exp

(
−

k∑
i=1

∫ ∞
0

hi(t|x1, x2, x3) dt

))
p(θk|x) dθk,

(6.3)

where θk is the set of parameters required for model k.

Now, (6.3) may not seem much more amenable to computation than its

predecessor statement. However, recall that we already have samples from
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p(θk|x), as these are simply our samples from the RJMCMC runs in Chap-

ter 4. It follows that we can use these (after a suitable burn-in period has

been removed from the samples, of course). Then, supposing that at step t

of our MCMC iteration our parameters are θ
(t)
k , we may then simulate from

p(ynew|θ(t)k ) by drawing from a Bernoulli distribution with parameter given

by p(y,θ
(t)
k ). Having done this, we may collate these results to estimate

the probability of DCS occurring for a new observation, while also taking

account of the uncertainty in our parameter values. By doing this for a

range of covariate values, we can form a grid of posterior predictive prob-

abilities for these parameter values and subsequently create an enhanced

2D contour plot.

As an example, we provide such a plot in Figure 6.1 for saturation dives

followed by escape. While plots of this nature take quite some time to

produce and are highly computationally intensive, they could be prepared

in advance by personnel knowing the approximate depths and exposure

times likely to be involved in any operations to be undertaken. Note that

we limit the plot to a maximum depth of 700m as below this depth it is

highly likely that the submarine itself will be crushed.

6.3 Helping the rescuers

We now move on to consider our second problem - helping the rescuers

to predict which submariners are liable to suffer DCS, so as to be able to

provide the requisite treatment more effectively to those who are in most

need. Recall that it can take several hours following surfacing for DCS

to develop, but these decisions must be made within minutes of divers’

surfacing, so we must make use of all the information we can obtain. To

that end, we now use not only our results from Chapters 3 and 4, but also

those from Chapter 5 as the rescuers will be able to measure the bubble
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Figure 6.1: Contour plot showing estimated DCS probabilities for
a range of saturation depths (x-axis) and escape depths (y-axis)
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scores of those submariners whom they rescue. To do this, however, we

must find some way to combine the two types of model and, in order to

achieve this, we use the idea of a mixture of the two possible approaches.

First, note that to save computation time here, we use a point estimate of

the parameter values for our compartmental models, rather than making

use of the posterior predictive distribution for a new observation as we did

in the previous subsection. We do, however, continue to account for model

uncertainty by using the posterior model probabilities obtained in Chapter

4, rather than simply choosing a ‘best model’. For our point estimates of

the desired compartmental model parameters, we use the posterior mode

obtained by maximizing the marginal kernel density estimates of our pos-

terior distribution, as outlined in Chapter 3 (with the estimates used being

as given in Chapter 4).

Supposing, then, that we have the posterior model probabilities of our 3,

4 and 5 compartment models as given in the previous subsection, with θk

again corresponding to the parameters of the k-compartment model, we

formulate the probability y of DCS occurring as being

f(y|θ, p, x1, x2, x3) = ppB + (1− p)pM (6.4)

where p is our ‘mixture’ probability which will weight the importance of

each of the two types of model, pB is the DCS probability obtained from

the logistic regression model considered in Section 5.6 and pM is the DCS

probability obtained from our averaged model from Section 6.2. We shall

suppose that there are n datapoints and take

L(p) =
n∏
i=1

f(yi)
δi(1− f(yi))

1−δi

to be our likelihood function, where δi = 0 if DCS does not occur on the ith

dive and δi = 1 if DCS does occur on that dive. We further suppose that
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Parameter Approximate posterior mode (Standard error)

β0 -65.034 (4.214)

β1 1.637× 10−6 (2.056× 10−7)

β2 −8.078× 10−6 (6.310× 10−7)

β3 -5.973 (1.672)

Table 6.2: Estimated posterior modes (standard errors) of mixture
parameter distributions for saturation dives

logit(p) may depend linearly on the maximum depth, x1, the saturation

depth, x2 and the 5-minute imputed bubble score, x3. It follows that p =

logit−1(β0+β1x1+β2x2+β3x3) for some hyperparameters β0, β1, β2, β3. We

may now run an MCMC algorithm to estimate these parameters. Note that

since β0+β1x1+β2x2+β3x3 may take any real value while p takes a value in

the interval [0, 1] as required, given that it is a probability. As previously,

we sample each component separately and use a normal proposal as well as

a non-informative uniform prior on each parameter- this time U(−200, 200)

- so that the acceptance probability, α, for our move for β0, for example,

becomes

α = min

{
L(β

(∗)
0 |β

(t)
1 , β

(t)
2 , β

(t)
3 , y)

L(β
(t)
0 |β

(t)
1 , β

(t)
2 , β

(t)
3 , y)

, 1

}
,

where superscript (t) indicates the current, tth iterated value and super-

script (∗) indicates our new proposed value for β0.

Our results are summarised in the Table 6.2, which gives the approximate

posterior modes of the distributions of the parameters in question and a

trace plot is given in Figure 6.2. Note that as the bubble data do not contain

information on dive type, we must select a particular set of parameters

from those found in Chapter 4 to use. To this end, we use the saturation

parameters as QinetiQ have stated that the vast majority of the dives for

this dataset were undertaken in saturation conditions (Loveman, Personal

Communication, 2012).
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Figure 6.2: Trace plot for β hyperparameters

Note that our method does not add any additional computational time at

the point of rescue - all necessary MCMC sampling is done here, in advance.

All we need do in order to estimate the probability of DCS for a given dive

profile and bubble score, is to input the Saturation Depth, Escape Depth

and Bottom Time of the dive, together with the bubble score, so as to

obtain a suitable point estimate of DCS probability. Note, however, that

Bottom Time will likely have to be estimated for a sub-saturation dive,

though a ‘standard’ bottom time of 12 hours is used here where no further

information is available.

To see how our new combined model performs, it is helpful to recall the

pseudo-R2, RT
2 , suggested by Tjur (2009) that we defined in Section 3.6,

found by calculating the average predicted probability for each of the three
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possible outcomes (DCS, no DCS, again counting marginal DCS as a no

DCS outcome) and taking the absolute difference between them.

Now, if we set p = 0 and produce a prediction for each datapoint, we can

see the effect of considering only the averaged compartmental model. This

gives an R2
T of 0.4119. On the other hand, setting p = 1 and again making

predictions for each datapoint, we can now see the effect of considering only

the bubble-score based method. This gives an R2
T of 0.4863. Finally, by

setting p equal to the suggested inverse logit function of x1, x2, x3 above, we

can see the ultimate effect of, and improvement created by, combining our

models. In this case, we obtain an R2
T of 0.6155. Meanwhile, the R2

T for the

original QinetiQ logistic regression in Section 3.2 is 0.3417. We see, then,

that our combined model makes a good improvement on the original Qine-

tiQ logistic regression model and a reasonable improvement on the separate

models presented here, without too much additional computational effort

being needed.

6.4 An Overview

Throughout this and preceding chapters, we have made various approxima-

tions to a fully Bayesian solution. In this Section, we shall aim to outline

what those have been and how a fully Bayesian solution to our problem

might fit together.

Firstly, in Chapter 4, we would ideally have liked to have found the exact

marginal likelihood for each model under consideration (i.e. the models

with 1, 2, . . . , 8 compartments). However, the models under consideration

are clearly analytically intractable and we therefore had to consider some

means by which to approximate the desired marginal likelihoods. To that

end, we could have chosen either a within-model approach (involving the
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evaluation of a series of numerical approximations to suitable integrals) or

a between-models, transdimensional approach. This latter approach was

selected as approximating the integrals involved in the computing of each

marginal likelihood directly - even with a numerical approximation - would

have been difficult, given the complexity of the likelihood function in ques-

tion. The transdimensional approach, while still requiring likelihood eval-

uations, did not require as many as would have been needed by evaluating

the marginal likelihood of a model with each of 1, 2, . . . , 8 compartments

separately.

Secondly, in Chapter 5, Section 5.3, rather than performing a mean im-

putation, we could have used our Gibbs sampler to directly sample the

desired values for imputation by treating these as missing values. However,

as mentioned in Section 6.1 above, this would have necessitated the running

of the Gibbs sampler for each prediction we wished to make, rather than

running it initially and then making use of the results obtained during the

time-critical rescue period.

Finally, in Section 6.3 above, we have made use of two sets of approxima-

tions: in the first instance, we have used point estimates (posterior modes)

for the compartmental models used to obtain our estimated DCS proba-

bilities, rather than making use of a posterior predictive distribution after

integrating out the relevant parameters. This allows us to compute the de-

sired survival probabilities rapidly, again in what would be a time-critical

situation, rather than having to numerically evaluate multiple integrals of

the form (6.2). In the second instance, we have similarly approximated

the posterior parameter distributions for the regression models of Chap-

ter 5 by their posterior modal estimates. Overall, then, a fully Bayesian

solution would necessitate avoiding both these approximations and that

noted above that was used in Section 5.3 (since the imputed bubble score

is used in (6.4)). Firstly, we should have to use our Gibbs sampler to

draw our imputed bubble score, rather than approximating this by using a
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mean imputation. Secondly, we should need to find the posterior predictive

distribution for the DCS probability of a new dive, not by using point es-

timates of the posterior density, but rather by marginalising suitably over

all the parameters in question. That is, we should have to integrate out

the parameters θk for each of our k compartmental models (whether that

be the reduced number we used in Sections 6.2 and 6.3 or the full range

of 1, 2, . . . , 8 suggested in Section 4.7), over the regression parameters ob-

tained in Section 5.7 (since we would need to use our Bayesian regression

framework, rather than the maximum likelihood framework used in Sec-

tion 5.4) and also over the hyperparameters β introduced in Section 6.3.

Clearly, however, this would represent a considerably higher computational

burden than making use of the approximations we have chosen and could

not be done in a time-critical situation.
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Future Work

In this thesis, we have considered both ‘black box’ logistic regression mod-

els and physically based Thalmann-type models for the modelling of the

probability of the occurrence of DCS both with and without information

being available about post-surfacing bubble scores. In doing this, we have

supposed that the compartments in question are not physical, identifiable

locations in the body that correspond with particular tissue types, but

rather are simply useful modelling tools, not corresponding with particular

tissue types. However, it has been proposed in Bühlmann (1984), for in-

stance, that with 16 compartments these could directly correspond to parts

of the body. If this were the case, perhaps it would be possible to take mea-

surements in different parts of the body and we would subsequently be able

to form a model in which compartments were directly interpretable as be-

ing associated with specific body parts or tissue types. A further reason for

doing this is that, although we have considered only the incidence of DCS,

the first QinetiQ dataset also includes information on the type of DCS that

occurred. For example, depending on where the majority of bubbles are

lodged, there can be neurological symptoms, breathing difficulties, heart

trouble or joint issues. If we were able to assign compartments to body

parts in a one-one fashion, it might be possible to make inferences about

not only whether DCS might occur, but also what type of DCS would be

138
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most likely to occur. This is of interest to medics as some types of DCS

(notably those forming in the brain and lungs) require more immediate

treatment than do those occurring in the joints or extremities, say. In ad-

dition, we have effectively considered DCS as a binary outcome (with a

third possible ’marginal’ outcome in a few cases). It may also be possible

by, for example, requesting that experimenters use their expert judgement,

to ask them to assign a DCS severity level in a manner similar to the KM

bubble scores considered in Chapter 5. These ordinal data would provide

us with more information than a simple binary outcome, and would allow

us to better predict those most serious, problematic DCS cases.

Due to time and computational constraints, we have only been able to focus

our attention on a single physical decompression model - that of Thalmann

et al. (1997) in which a supersaturation approach to hazard build-up over

time is considered. However, as noted in Section 2.3, there are several mod-

els that directly incorporate the formation of bubble dynamics into their

models - though often without considering levels of supersaturation, but

merely considering absolute levels of inert gas in the compartments at a

given time. We could seek to extend our methods in Chapter 4 and Chap-

ter 6 by allowing the addition of a further model that directly incorporates

these dynamics, and subsequently including this information in our hazard

function and then into our likelihood. We would then be mixing three types

of model in Chapter 6. Clearly, this would lead to considerably increased

computational requirements as these bubble modelling processes involve the

use of partial differential equations whose solutions cannot be found exactly.

This would require the use of a numerical approximation scheme for their

solution, rather than being able to use methods such as those outlined in

Chapter 3 for the Thalmann et al. model. Even more promising would be

the possibility of using the very recent model suggested in Goldman and

Solano-Altamirano (2015), which accounts not only for bubble formation

but also the possibility of interchange of gas being permitted between the

compartments of the model. This occurrence is something not accounted
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for by the model that we selected, nor by any of the other models described

in Section 2.3, all of which are ‘perfusion limited’, which is to say no diffu-

sion is permitted between the compartments in these models. However, the

Goldman-Solano-Altamirano model is an order of magnitude more compli-

cated, requiring not only the solution of partial differential equations, but

coupled partial differential equations, where the coupling occurs due to the

diffusion between the compartments. To evaluate the required likelihood

many hundreds of thousands of times, as is required to use our methods in

Chapter 4, would simply not be viable. However, we could consider making

use of emulation. In this process, details of which can be found in, for exam-

ple, Conti and O’Hagan (2010), one attempts to avoid having to evaluate

the likelihood by calculating it at a carefully selected set of points and then

extrapolating what the computer code would output by use of a statistical

emulator, the latter often being based on a Gaussian process. As Gaussian

processes are quick to evaluate, we can effectively find approximations to

computationally expensive likelihood values by using our cheap emulator.

Of course, this comes at the cost of additional error and uncertainty, as we

are now approximating the true output of our computer program. However,

it would allow us to approximate the output Goldman-Solano-Altamirano

method for use in our MCMC and RJMCMC procedures.

As noted in Section 3.6, we could further investigate the use of time-to-

event data by allowing the parameters in each compartment to vary before

and after DCS occurs (in those cases where it does occur), in order to ob-

tain a better model fit. However, this would immediately double the size

of our parameter space and likelihood evaluation already takes several sec-

onds, with the MCMC code requiring several days to run several hundred

thousand iterations. To decrease this computation time, we could attempt

to parallelize our MCMC code. There are two possible ways to do this:

in the first instance, we could perform an embarrassing parallelization in

which we simply have several instances of the code running at the same
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time. On the other hand, we could also utilise the massively parallel struc-

ture of a system such as a GPU (Graphics Processing Unit), rather than a

CPU, to parallelize a single chain. A GPU can perform many hundreds of

identical computations simultaneously. For details of how this works see,

for example, Kirk and Hwu (2010). Such a system would be an excellent

choice for, say, simultaneously checking whether each of the parameters

in our RJMCMC compartment is to be updated during the within-model

phase, then feeding this back to the main CPU. The CPU then performs

the single step of checking whether there is to be an update to the number

of compartments, before passing new data back to the GPU if required for

the next update of the various parameters. By doing this, we can actually

calculate many results at the same time and considerably reduce required

computation time, possibly allowing us the leeway to explore either partic-

ularly large numbers of more closely specified compartments that directly

correspond to particular body parts (as suggested in the first paragraph

above), or by allowing us to explore different, more highly parameterized

versions of our hazard functions. For example, we could allow the param-

eters in each compartment to become some function of the covariates.

A final possibility to extend the work would be to consider the effect of

different types of dive. In this thesis, we have only considered individual

dives in isolation and all these dives have been undertaken using air as the

breathing gas. However, we could, for example, consider examining dives

undertaken with a different breathing gas (such as Heliox - a mixture of

Helium and Oxygen), or we could consider ‘repetitive type’ dives where

there is more than one descent and subsequent ascent and decompression.

In these cases, bubble score is qualitatively observed not to follow a similar

pattern with time as with the other non-repetitive type dives (Loveman,

Personal Communication, 2010). There are a not insignificant number of

dives of this type that have already been undertaken in otherwise suitable

escape-type conditions. Thus, if possible, we feel that it would be beneficial
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to make use of this information. This might provide useful data and lead

to more informed practice in a tactical situation.
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