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Abstract

Many problems in the field of acoustic measurements depend on the direction of incoming wave

fronts w.r.t. a measurement device or aperture. This knowledge can be useful for signal processing

purposes such as noise reduction, source separation, de-aliasing and super-resolution strategies

among others.

This paper presents a signal processing technique for the identification of the directions of travel

for the principal plane wave components in a sound field measured with a circular microphone

array. The technique is derived from a finite rate of innovation data model and the performance is

evaluated by means of a simulation study for different numbers of plane waves in the sound field.

1 Introduction

There are many methods of decomposing a microphone array measurement of a sound field into

an assessable number of parameters. Ignoring the differences between two-dimensional and three-

dimensional technologies, a convenient approach to perform this analysis/decomposition is to decom-

pose a sound field into a set of plane waves, e.g. as proposed in [1, 2, 3, 4]. Plane waves have the

advantage that they are elementary entities defined by only two parameters: the direction of travel

(DOT) and the complex amplitude. If the number of plane waves in a sound field is limited then it

is also perfectly described by a small number of parameters. In that case, these parameters can be

identified from the measurement made with a suitable microphone array.

One typically distinguishes between non-parametric (i.e. no underlying signal model) and para-

metric (e.g. based on a signal model) source detection or DOT estimation techniques. Examples of

1



non-parametric techniques are adaptive beamforming based on maximum likelihood estimators or the

MVDR beamformer [5, 6, 7]. Prominent examples of parametric techniques are the MUSIC algorithm

[8, 6], the EB-ESPRIT and the EB-DETECT algorithm [2], and Matching Pursuit variants such as

CLEAN [9]. Compressed sensing techniques could also be utilised to estimate parameters, yet are they

typically used improve the performance of sensor arrays directly [10, 11]. Some of these techniques

require a priori knowledge (e.g. the number of sources) or deploy statistical models to obtain estimates.

This may potentially lead to usable, yet slightly inaccurate results. Many applications and techniques,

however, require the exact knowledge of the DOT to ensure the best possible performance. Examples

are source separation, de-noising and de-aliasing techniques based on beamforming for acoustical and

sonar applications, as well as super-resolution techniques [12, 13, 14, 15].

This work presents a novel application of a signal processing approach that theoretically allows

to analytically recover the set of DOT of a finite number of principal plane waves from the measured

data of a circular microphone array. Once recovered, this information can be used to further process

the measured data, e.g. with simple beamforming techniques to suppress sources outside the main

listening direction or even de-aliasing strategies [15]. This work is to be understood as an initial study

based on idealised simulations and aims to introduce the proposed method. Therefore the impact of

measurement noise, model mismatch and transducer imperfections is not within the scope of this work

and will be addressed in future publications.

The next section introduces the sound field model, which is suitable to be combined with circular

microphone arrays. The third section briefly describes how the data defining the sound field can be

gained from the array observation. In the fourth section, the proposed method to identify the plane

waves in the sound field based on a finite rate of innovation data model is presented. In the penultimate

section, the proposed method is analysed with respect to its accuracy for different idealised sound field

scenarios and the last section concludes the findings and gives an outlook on future work.

2 Sound Field Model

The general sound field model for this work is based on the Herglotz Wave Function (HWF) in the

frequency domain [16, 17] given by

p(x, ω) =

∫

Ω
H(x, ŷ, ω)q(ŷ)dΩ(ŷ), x ∈ Λ, (1)
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where Λ denotes a sphere of a given radius around the coordinate origin within which the homogeneous

wave equation is satisfied at all points x. The integration domain Ω = {ŷ :
√

y21 + y22 + y23 = 1}

encompasses all the points on the surface of the unit sphere. Equation (1) basically describes the

sound field as the superposition of plane waves travelling in the directions ŷ. The magnitude of

each individual plane wave is determined by the Herglotz Density (HD) q(ŷ) and its propagation

characteristics are given through the Herglotz Kernel H(x, ŷ, ω) = eikx·ŷ.

While equation (1) is valid within Λ ∈ R
3, this work considers only two-dimensional scenarios to

reconcile the sound field model with the intended signal processing approach. Hence, the sound field

is assumed as height-invariant, i.e. the pressure is constant along the x3-axis, so that

p(x1, x2, x3) = p(x1, x2).

It has been shown in [17] that, using the Jacobi-Anger expansion [18], the model of the pressure in

equation (1) can be rewritten in polar coordinates as a function of the radius r and the polar angle φ

p(r, φ) = 2π
∞
∑

n=−∞

inRn(kr)
einφ√
2π

∫ 2π

0

e−inφ′

√
2π

q(φ′)dφ′. (2)

Note that the angular frequency ω has been dropped from the notation for the sake of brevity. The

radial function

Rn(kr) =















Jn(kr) ,FF

Jn(kr)− J ′

n(krs)

H
(1)′
n (krs)

H
(1)
n (kr) ,CS

(3)

allows for the modelling of free field conditions (FF) or the presence of a cylindrical scatterer at the

origin (CS) with radius rs [19, 2]. Jn(·) and H
(1)
n (·) denotes the Bessel-function and the Hankel-

function of the first kind, respectively, where J ′

n(·) and H
(1)′
n (·) denote their respective derivatives.

The integration variable φ′ in eq. (2) replaces the DOT ŷ, so that it represents the angle between

the positive x1-axis and the vector ŷ. The integration domain has become the unit circle Ωc = {ŷ :
√

x21 + x22 = 1}.

It is assumed here that the Herglotz density holds the basic information that defines the plane waves

in the sound field, and that this needs to be recovered from a finite number of pressure observations

made by a circular microphone array before the planned signal processing approach can be applied.

This is typically referred to as the inverse problem, which is solved in the next section.
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3 Recovering the Herglotz Density from Circular Array Measure-

ments

The procedure for solving the inverse problem such as the one posed by equation (2) has been discussed

in a number of works [19, 20, 2, 21]. For the sake of brevity, this derivation has been omitted. The

analytical solution to the inverse problem to equation (2) is given by

q(φ) =

∞
∑

n=−∞

qn
einφ√
2π

, (4)

with

qn =
1

2πinRn(krV )

∫ 2π

0

e−inφ′

√
2π

p(φ′)dφ′. (5)

For a circular microphone array with L = 2N +1 uniformly distributed pressure sensors, the solution

for the coefficients qn in (5) can be approximated by

q̃n =
1

inRn(krV )L

L
∑

n=l

e−in∆φl

√
2π

p(∆φl), (6)

with ∆φ = 2π
L
. As a consequence of the discretisation, the HD can only be reconstructed up to the

Nth order [22, 17], so that

q̃(φ) =
N
∑

n=−N

q̃n
einφ√
2π

. (7)

Furthermore, discretisation is also bound to lead to aliasing effects since the spatial complexity of

sound fields can typically not be expressed through an order-limited HD, especially at high frequencies.

However, the problem of aliasing is not within the scope of this work and considered a separate problem,

but it has been described for circular arrays with pressure sensors in previous work by Poletti [22] and

Alon and Rafaely [15]. In the following, it shall be assumed that the recovered coefficients q̃n are not

corrupted by either aliasing, measurement noise or misalignment of the sensors.

The next section introduces a method of estimating the DOTs of up to N plane waves from the set

of recovered coefficients {q̃n : n ∈ [−N . . . N ]} on the basis of a finite rate of innovation signal model.
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4 Finite Rate of Innovation Approach

This section presents how the parameters defining the plane waves in a sound field can be recovered

based on a Finite Rate of Innovation (FRI) signal model. A comprehensive introduction to the theory

behind signals with finite rate of innovation is beyond the scope of this work and the interested reader

is referred to the pertinent literature [23, 24, 25].

First, the new signal model for the Herglotz density is introduced. This model is based on a form

for the HD specified by equation (7) but makes another assumption regarding the nature of the sound

field. Then, a set of annihilation filters is calculated that is applied to the new signal model. These

filters are specified by the DOT of the incoming plane waves. Finally, it is shown how these parameters

can be extracted from the identified annihilation filters.

4.1 HD of a Single Plane Wave

From the definition of the HWF in equations (1) and (2), it can be seen that the HD of a single plane

wave is theoretically a weighted Dirac delta shifted to the direction of travel θ and is given by

q(φ) = bδ(φ− θ), (8)

where b is the complex amplitude of the plane wave. For a function with a period of 2π, the Dirac

delta can be approximated by the Fourier Series

q(φ) =
∞
∑

n=−∞

b
e−inθ

√
2π

einφ√
2π

. (9)

The above form of the HD can now be utilised in the FRI signal model, which is introduced in the

following subsection.

4.2 New Model for the Herglotz Density

In the following, only Herglotz densities that define sound fields with up to M = N plane waves are

considered. Accordingly, these can be represented by the sum of the Herglotz densities of the M

individual plane waves

q(φ) =
M
∑

m=1

bm

∞
∑

n=−∞

ein(φ−θm)

2π
. (10)
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A Herglotz Density of the above form has exactly 2M degrees of freedom, i.e. M directions of travel

and M complex amplitudes. Alternatively, since the HD is periodic, one can say that it has a ‘finite

rate of innovation’, which is an alternative way of expressing a ‘finite number of degrees of freedom’.

Rearranging equation (10) yields

q(φ) =

∞
∑

n=−∞

M
∑

m=1

bm
e−inθm

√
2π

einφ√
2π

=

∞
∑

n=−∞

qn
einφ√
2π

(11)

with the Fourier coefficients

qn =

M
∑

m=1

bm
e−inθm

√
2π

. (12)

The coefficients qn can be seen as an infinite sequence. Alternatively, the coefficients qn in (12) can

be seen as the superposition of M infinite sequences defined by

q(m)
n = bm

e−inθm

√
2π

(13)

for m ∈ [1 . . .M ]. Note that each of these sequences is uniquely related to one of the plane waves only.

The following subsection describes how the individual parameters bm and θm can be extracted from

the qn.

4.3 Definition of the Annihilation Filter

For each sequence q
(m)
n , there is a corresponding filter

a(m)
n = δn − e−iθmδn−1

that satisfies the equation

a(m)
n ∗ q(m)

n = 0,

where the asterisk represents the discrete signal convolution and δn denotes the Kronecker delta [19, 26],

which is defined by

δn =















1, n = 0,

0, n 6= 0.

6



These filters are therefore also sometimes referred to as annihilation filters [23]. The z-transform of

the filters a
(m)
n is given by

A(m)(z) = 1− e−iθmz−1,

which is zero for z = eiθm . Hence each annihilation filter suppresses the component einθm in the

sequence of the Fourier coefficients qn.

If the individual progressions q
(m)
n could be observed directly from the recovered coefficients qn, it

would be simple to identify the corresponding annihilation filters. Unfortunately this is not the case.

From equations (12) and (13) it follows however that

qn =
M
∑

m=1

q(m)
n ,∀n ∈ Z.

It can thus be assumed that one non-trivial solution for an that satisfies

qn ∗ an = 0 (14)

is the combination of all annihilation filters a
(m)
n to one comprehensive annihilation filter an of the

form

an = a(1)n ∗ a(2)n ∗ . . . ∗ a(M)
n = δn +

M
∑

m=1

αmδm−n (15)

with its z-transform given by

A(z) =

M
∏

m=1

A(m)(z) =

M
∏

m=1

(1− umz−1), um = e−iθm . (16)

The z-transform A(z) can also be written using the coefficients αm defined in equation (15):

A(z) = 1 + α1z
−1 + α2z

−2 + . . .+ αMz−M . (17)

From equations (16) and (17), it can be seen that the coefficients um are in fact the roots of the

characteristic polynomial

η(z) = zM + α1z
M−1 + α2z

M−2 + . . .+ αM . (18)
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In conclusion, once the annihilation filter an has been identified and the roots of its characteristic

polynomial have been calculated, then the directions of travel {θm : m ∈ [1 . . .M ]} of the M plane

waves are successfully recovered. The next step is therefore to find the annihilation filter an.

4.4 Calculation of the Annihilation Filter

The convolution of discrete-time signals can be realised in a convolution matrix. With a limited length

of the filter an, the linear equation system (LEQS) equivalent to (14) is given by



















q1 q0 q−1 · · · q
−(M−1)

q2 q1 q0 · · · q−(M−2)

...
...

...
. . .

...

qM qM−1 qM−2 · · · q0



















·



















a0

a1
...

aM



















=



















0

0

...

0



















.

It follows from equation (15) that a0 = 1. This can be exploited to avoid the trivial solution for the

filter an. Rearranging the above LEQS yields













q0 · · · q−(M−1)

...
. . .

...

qM−1 · · · q0













·













a1
...

aM













= −













q1
...

qM













, (19)

which is widely known in the field of auto-regressive filtering as a Yule-Walker equation system. This

can ideally be solved by plain matrix inversion, since it can be expected that the matrix is full rank.

However, this may not be the case in practice if the M plane waves are not distinct [23]. Furthermore,

equation (19) implicitly gives a condition for the set of modal coefficients {qn : n ∈ [−Nmin . . . Nmin]}

that is needed to perform this type of analysis. From the system matrix and the right hand side of

equation (19) it follows that

2Nmin + 1 = 2M ⇐⇒ Nmin = M − 1

2
. (20)

The last step is then to find the M distinct roots um of the characteristic polynomial η(z) in

(18). These can be obtained through different algorithms. For this work, the built-in function roots

of MATLAB has been utilised.

Once the roots have been found, the estimated directions of travel θ̃m can be calculated by the
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formula

θ̃m = i ln(um),∀m ∈ [1 . . .M ]

where ln(x) denotes the principal value of the natural logarithm.

4.5 Recovering the Complex Amplitudes of the Individual Plane Waves

With the DOT identified, equation (12) can be used to generate a linear equation system with the

complex amplitudes {bm : m ∈ [1 . . .M ]} as the unknown parameters and the Fourier coefficients qn

form the vector of constants [23].













q0
...

qM−1













=
1

2π



















1 . . . 1

e−iθ1 · · · e−iθM

...
. . .

...

e−i(M−1)θ1 · · · e−i(M−1)θM































b1
...

bM













(21)

This so called Vandermonde equation system [23] can be solved by matrix inversion to identify the

complex amplitudes bm.

5 Performance Evaluation

This section reports the results of numerical simulations to evaluate the performance of the proposed

technique by means of one specific example and the results of a small simulation study.

5.1 An Example

Figure 1 gives an indication of the accuracy of the estimated parameters {θm : m ∈ [1 . . .M ]} when

using the FRI based method with an artificially generated set of HD coefficients {qn : n ∈ [−7 . . . 7]},

which are given by equation (11) for a set of M = 4 randomly generated DOT θm and complex

amplitudes bm. The top graph shows the real- and imaginary part of the original HD q(φ). The graph

in the middle shows the real- and imaginary part of the HD qR(φ) that was reconstructed on the

basis of the identified parameters θ̃m and b̃m. The bottom graph shows the absolute error between

the original HD and the reconstructed HD |q− qR|. It can be seen that the FRI method approximates

the set of parameters {θm : m ∈ [1 . . .M ]} with very high accuracy. The nearly negligible error is
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Figure 1: Example of the results achieved with the proposed method for M = 4 and N = 7, (Top) real-
and imaginary part of the original HD, (Middle) real- and imaginary part of the reconstructed HD,
(Bottom) absolute reconstruction error as an indicator for the parameter estimation performance.

accredited to the limited numerical accuracy during the matrix inversion.

5.2 Simulation Study

To assess both the average performance and the competitiveness of the proposed method, it was tested

in a simulation study against the matching pursuit variant CLEAN [9]. The latter is an iterative

algorithm that can be described as follows:

1. Fit the signature of a single plane wave (see eq. (9)) in the Herglotz Density domain to the

recovered data q̃(φ) so that their global maxima are aligned and even. The parameter that best

aligns the two maxima is the DOT estimate θ̃m for the current iteration’s strongest plane wave.

1

2. Subtract the identified signature from q̃(φ).

3. Repeated the first two steps until the designated number of M plane waves have been identified.

In this simulation study, 5001 uniformly spaced samples were used for the required reconstruction in

the HD domain.

1It can be shown that θ̃m also maximises the cross-correlation between the single plane wave signature and the current
HD data q̃(φ).
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For the study, both methods were evaluated w.r.t. their average Parameter Identification Error

(PIE) for the estimation of the DOTs. For an estimated parameter θ̃m, the PIE in percent is given by

PIE =
(

|θm − θ̃m| mod π
)

100%.

The above measure was calculated for all identified DOTs in 5000 different Herglotz Densities and the

results were averaged afterwards. This was repeated for different numbers of plane waves M in the

sound field. Every HD was of the form given in (11) with randomly chosen θm and bm, respectively.

That corresponds to data perfectly acquired through a circular array with L = 15 microphones (i.e.

no spatial aliasing), allowing to reconstruct the sound field up to the order N = 7.

Table 1 shows the study’s results for M = 4, 5, 6, 7, where M = 7 is the largest number of plane

waves that can be identified with the proposed method from the simulated sound field data (compare

eq. (20)). It can be seen that, even for M = 7, the proposed method outperforms the CLEAN method

Number of Average PIE Average PIE
Plane Waves with FRI with CLEAN

M = 4 4.0574 · 10−9 % 6.3412 %

M = 5 9.8317 · 10−8 % 8.4108 %

M = 6 5.1642 · 10−6 % 9.7623%

M = 7 6.3900 · 10−3 % 10.4769%

Table 1: PIE in percent for M = 4, 5, 6, 7, calculated for each value M from 5000 different Her-
glotz Densities q(φ), each specified by a set of randomly chosen directions of travel θm and complex
amplitudes bm.

significantly, providing sufficient accuracy for most applications.

Note that this simulation study has been conducted based on simulated, measurement noise-free

and thus ideal conditions, where the number of plane waves identified always matched the number of

plane waves in the field.

6 Conclusion

A novel method to estimate the direction of travel of a given number of plane waves from the measure-

ment of a circular microphone array has been presented. The method is based on FRI signal theory

and has been evaluated by means of an initial simulation study w.r.t. the achieved average parameter

identification error. It has been shown that the latter does not exceed 0.01% for up to M = 7 plane

waves with the proposed method. This assumes ideal measurement data acquired with 15 microphones
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in the absence of noise. The remaining inaccuracy can most presumably be blamed on the limited nu-

merical precision of the computer system. The performance comparison of the proposed method and

the CLEAN algorithm indicates that, for the conditions simulated, the FRI method clearly surpasses

the CLEAN algorithm in terms of accuracy.

Future work is going to investigate the performance of the proposed method when applied to

non-ideal data, covering the evaluation of its robustness against measurement noise, non-ideal plane

waves (e.g. point sources in the near field of the measurement aperture) and transducer/aperture

imperfections. Especially potential ill-conditioning of the matrices involved in the FRI method may

have a crucial impact on its performance. Furthermore, the problem of when the number of plane

waves to be identified does not match the number of plane waves in the sound field, i.e. it is greater

or smaller, will be considered, as well as a comparison of the proposed method to further alternatives

(e.g. MUSIC, EB-ESPRIT, etc.).
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