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THE OPTIMAL CASH HOLDING MODELS FOR STOCHASTIC CASH
MANAGEMENT OF CONTINUOUS TIME

Abstract. In business, enterprises need to maintain stable cash flows to meet the
demands for payments in order to reduce the probability of possible bankruptcy. In
this paper, we propose the optimal cash holding models in terms of continuous time
and managers’ risk preference in the framework of stochastic control theory in the
setting of cash balance accounting with the interval of a safe area for cash holdings.
Formulas for the optimal cash holdings are analytically derived with a widely
used family of power utility functions. Our models can be seen as an extension
of Miller-Orr model to solve the cash holding problem of continuous time from
the accounting perspective. Numerical examples are also provided to illustrate the
feasibility of the developed optimal cashing holding models of continuous time.

1. Introduction. In business, in order to reduce the probability of possible bank-
ruptcy, enterprises need to maintain stable cash flows to meet the demands for
payments such as transaction and debt repayment. So far, most of the researches in
the literature of cash management have focused on how to determine the optimal
cash holdings. There are two main streams of optimal models for cash management
based on objective functions. The first stream is pioneered by Baumol(1952) and
Tobin(1956). In Baumol (1952), it was assumed that the cash income is sustainable
while cash payments are quite on the opposite, where the optimal demand for cash
is determined by the lowest total cost with the total cost including both opportunity
and transaction costs. Based on Baumol’s model, Tobin (1956) took the interest rate
factor into account. Recent extensions along this stream can be found in Frenkel and
Jovanovic(1980, 1981), Bar-Ilan(1990), Dixit(1991), Ben-Bassat and Gottlieb (1992),
Chang(1999) and Perry and Stadje(2000), MAS Melo and Bilich(2013), to list a few.
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The second stream is pioneered by Miller and Orr(1966). Differently from the first
stream, Miller and Orr (1966) considered that the cash flows are random with the
optimal demand for cash determined by the lowest total cost. For recent extensions
along this second stream, the reader is referred to Bar-Ilan, Perry and Stadje (2004),
Bar-Ilan and Lederman (2007) and Moraes and Nagano(2013), among others.

The disadvantages associated with the above optimal decision models for cash
management have been recognised in that they focused on how to reduce the
total cost under the discrete time case and did not take managers’ risk preference
into account. Meanwhile, the influence of securities’ risk on decision-making was
completely ignored. In the Miller and Orr’s model, it is moreover highlighted
that the cash balance follows a normal distribution, which may be a very ideal
state. Since then, a few scholars, including Giirgis (1968), Eppen and Fama (1969),
Daellenbach (1971, 1974), Hausman and Sanchez-Bell (1975), Milbourne (1983),
Vickson (1985) and Smith (1989), Baccarin (2002) and Bensoussan, Chutani and
Sethi(2009), have tried to overcome the defects by using dynamic programming
methods. See also Song, Ching, Siu and Yiu (2013) for a recent discussion on the
issue.

In this paper, our main objective is to extend the Miller-Orr’s model by supposing
that cash balance dynamically satisfies a stochastic differential equation from the
cash holding accounting perspective. Differently from the general investment
portfolio problem in finance (c.f., Merton (1969 and 1971) and Karatzas et al (1991)),
it is worth noting in accounting that a “safe area” of cash holdings is important for
the companies. Firstly, all enterprises need some cash to keep liquidity, and they
can usually set an upper bound H and a lower bound L of the cash holdings by
the empirical data. Secondly, if the cash holding is not in the safe area [L,H], there
are two cases: One case is that the cash holding is more than H, which will result
in the loss of opportunity cost. The excel of idle funds investing in risky assets
could increase the profit of the enterprises. The other case is that the cash holding
is less than L, in which the enterprises have the liquidity risk. Therefore the “safe
area” is the warning lines for the enterprises. Thirdly, the difference between the
cash holdings problem in accounting and the general investment portfolio problem
in finance is that the former pursues the utility maximazation on the basis of the
safe area while the latter usually does not take this safe area into account. The
stochastic differential equations introduced for the risky assets in this paper have
been popularly used in the literature in the setting of continuous-time investment
financing by using dynamic programming methods; see, for example, Merton
(1969 and 1971) and Karatzas et al (1991). However, the solution to the problem of
general investment portfolio is not necessarily the solution to the problem of cash
holdings owing to the safe area consideration. Those equations will contain the
risk factor of securities, which will make up the Miller-Orr model which lacks of
considering the securities’ risk. In addition, in most of the literatures mentioned
above, the optimal cash management either was determined by the lowest total
cost including the opportunity and transaction costs, or did not consider a safe area
for cash balance as in the setting of investment financing. In this paper, we will
take the expected utility maximization as the ultimate goal of cash management
in the setting of cash balance accounting with the interval of the safe area for cash
holdings. This could be seen as an extension alternative to Song et al (2013). We
notice that managers’ risk preference is very important in the enterprises’ decision-
making. A risk-seeking manager tends to increase the investment in risky assets
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and reduce the cash holding, while a manager of risk aversion tends to reduce the
investment in risky assets and increase the cash holding. In this regard, this paper
will try to take the managers’ preference into account, attempting to provide a
decision-making base for managers. On the basis of this, the managers can decide
how much of cash balance need to be held in the cash and how much need to be
transferred to the risky assets.

The remaining of this paper is organized as follows. In Section 2 we will intro-
duce the continuous-time models (CTMs) for stochastic cash management. Section
3 will first give the optimal cashing holdings with general utility function and then
derive the analytical formulas for optimal cash holdings by using a popular family
of specific power utility functions. In Section 4 some illustrative examples will be
provided to demonstrate the feasibility of the CTMs. Section 5 finally concludes.

2. Continuous-time cash management models. Enterprises usually put their cash
balance in commercial banks or purchase government bonds in order to seek greater
security and liquidity but get lower risk-free return, which leads to higher oppor-
tunity cost. On the contrary the managers will pursue higher return by investing
the remaining assets in risky long-term assets such as stocks, corporate bonds and
so on, which brings transaction cost. So enterprises need to consider the trade-
off between opportunity cost and benefits of cash holdings. In order to solve the
problem, Baumol’s model and Miller-Orr’s model both aim at seeking the lowest
total cost. Differently, we are supposing that managers’ target is to get more profits
on the basis of enterprises’ stability. Therefore maximizing the enterprize’s utility
function of cash balance is the CTM’s objective function.

As pointed out in Section 1, differently from the extension by Song et al. (2013),
in this paper, we consider the setting where we assume the manager, as a decision
maker in the enterprises, determines the split of the given level of cash balance
Mt between cash holdings Xt and risky assets Rt at time t with a safe area taken
into account. In order to simplify the problem, we assume the risky assets are
stocks. Miller and Orr pointed out that enterprises can get an upper bound H and
a lower bound L of cash holdings from the empirical data. And under normal
operating conditions, the company should have H ≤Mt. There are two principles.
One is when Xt > H, the cash holdings is excessive and managers will decide to
transfer a sizeable quantity of funds to risky assets for temporary investment. The
other one is when Xt < L, enterprises may be in the face of a prolonged net drain
and managers will liquidate some risky assets or will borrow to restore the cash
holdings to an ”safe level”, which is, in Miller-Orr’s model, the adequate working
level. We will need the same upper bound H, lower bound L and the above-stated
two principles.

The stochastic dynamics of the prices of the stock St and the money market
account Bt at time t are supposed to evolve according to, respectively, the Brownian
motion based stochastic differential equation and the ordinary differential equation
as usually assumed in the literature of finance (c.f., Merton (1969 and 1971) and
Karatzas et al (1991), etc.). We suppose St and Bt are modelled by the popular
geometric Brownian motion and the ordinary differential equation, respectively, as
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follows: dSt
St

= r1dt + σ1dWt

S0 = a
(1)

dBt

Bt
= r0dt, (2)

where r1 represents the instantaneous expected rate of return, r0 is the interest rate
of the cash. Here r0, r1, σ1 are constants with r1 > r0, and σ1 represents the instanta-
neous volatility, Wt is a one-dimensional Brownian motion on a given probability
space (Ω,F ,P,Ft), where Ft is the natural filtration, i.e. Ft = σ{Wt : 0 < s < t}.

The interval [L,H] is the ”safe area”. If cash holdings is in [L,H], that is L ≤
Xt ≤ H, the manager does not need to make adjustment about Xt. However, if
the cash holdings is beyond the safe area [L,H], we need to make adjustment to
maximize the enterprize’s utility function of the cash balance. Note that, in general,
from the investment financing perspective, an investor could borrow as much cash
as possible to invest into the stock. However, in the setting of this paper, from the
cashing holding accounting perspective, the first principle is to meet the daily cash
needs for the remaining cash purposes, and then is to achieve the value growth. So
in our paper, differently from the financing case as considered in the literature such
as Merton (1969, 1971) and Karatzas et al (1991), etc., we are rather considering
the accounting case with the “safe area” of interval [L,H]. Here, when a company
wants to borrow cash, we then take it to be contained in the cash flow Xt at time t.

Now we discuss the problem in the following two cases. In the sequel, we
suppose that the cash balance is Mt at time t, and the proportion of cash balance in
cash holdings is βt, then we have Xt= βtMt, Rt= (1-βt)Mt.

2.1. Case 1: Xt > H. If Xt > H at time t, we need to transfer part of cash holdings
to risky assets. We suppose 0 6 λt 6 1 denotes the fraction of Xt invested in
stocks and then 1 − λt denotes the cash holdings percentage at time t. On the
other hand, cash holdings should always be in the safe interval [L,H], so we
require L ≤ (1 − λt)βtMt ≤ H, that is λt must be in[1 − H

βtMt
, 1 − L

βtMt
]. Because

Xt = βtMt ≥ H ≥ L, 0 ≤ 1 − H
βtMt
≤ λt ≤ 1 − L

βtMt
≤ 1.

Now we denote by Λ the set of all admissible transfer strategies λt.
The dynamics of cash process Mt satisfies the following equation

dMt =
(1 − λt)βtMt

Bt
dBt +

λtβtMt + (1 − βt)Mt

St
dSt (3)

Substituting (1) and (2) into (3) leads to

dMt =
(1 − λt)βtMt

Bt
dBt +

λtβtMt + (1 − βt)Mt

St
dSt

=
(1 − λt)βtMtr0Bt

Bt
dt +

λtβtMt + (1 − βt)MtSt

St
(r1dt + σ1dWt)

= [r0βt(1 − λt)Mt + r1(1 − βt)Mt + r1λtβtMt]dt + [(1 − βt)Mt + λtβtMt]σ1dWt

The aim of managers is to find an optimal cash holdings process. Now we
suppose that there is a utility function U(x), i.e., a strictly concave, increasing and
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differentiable function U(x) satisfyingU′

(x) > 0,
U′′

(x) < 0.

Then the problem can be described as

[M-1]:


max
λt

E[U(MT)]

s.t.

dMt = [r0βt(1 − λt)Mt + r1(1 − βt)Mt + r1λtβtMt]dt + [(1 − βt)Mt + λtβtMt]σ1dWt

λt ∈ Λ

where U(MT) is the manager’s preferences over the terminal wealth of the cash bal-
ance.

2.2. Case 2: Xt < L. If Xt < L at time t, we need to transfer part of risky assets to
cash holdings. Suppose that Rt = (1−βt)Mt is the risky assets holdings’ value at time
t, and in order to increase the cash holdings Xt, we need to transfer part of Rt to Xt.
Let 0 6 µt 6 1 is the conversion ratio. Similar to case 1, βtMt +µt(1−βt)Mt should be
in the safe area [L,H], then µt ∈ [ L−βtMt

(1−βt)Mt
,

H−βtMt

(1−βt)Mt
]. Because Xt = βtMt < L < H < Mt,

0 ≤ L−βtMt

(1−βt)Mt
≤ µt ≤

H−βtMt

(1−βt)Mt
≤ 1. We also can denote by Π the set of all admissible

transfer strategies µt .
Then the dynamics of cash process Mt satisfies the following equation:

dMt =
βtMt + µt(1 − βt)Mt

Bt
dBt +

(1 − µt)(1 − βt)Mt

St
dSt. (4)

Substituting (1) and (2) into (4), one arrives at

dMt =
βtMt + µt(1 − βt)Mt

Bt
dBt +

(1 − µt)(1 − βt)Mt

St
dSt

=
βtMt + µt(1 − βt)Mt

Bt
r0Btdt +

(1 − µt)(1 − βt)Mt

St
St(r1dt + σ1dWt)

= [r0βtMt + r0µt(1 − βt)Mt + r1(1 − µt)(1 − βt)Mt]dt + (1 − µt)(1 − βt)Mtσ1dWt.

Then the problem similar to [M-1] can be given as

[M-2]:


max
µt

E[U(MT)]

s.t.

dMt = [r0βtMt + r0µt(1 − βt)Mt + r1(1 − µt)(1 − βt)Mt]dt + (1 − µt)(1 − βt)Mtσ1dWt

µt ∈ Π.

[M-1] and [M-2] belong to stochastic control problems. Both of them are the CTM
and can be regarded as a natural generalization from the Miller-Orr’s discrete time
case to the continuous time case.

3. Optimal Solutions to [M-1] and [M-2]. We first present the general optimal
solutions to [M-1] and [M-2] in Subsections 3.1 and 3.2, respectively, and then
discuss the optimal solutions with specific utility functions in Subsection 3.3.

3.1. The general optimal solution to [M-1]. In order to solve the model [M-1], we
need to define a value function as follows:

I(t, x) = max
λt

E[U(MT)|Mt = x], 0 < t < T. (5)
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By the dynamic programming maximal principle, we can get the following
Hamilton-Jacobi-Bellman equation (for short, HJB-equation)

It + sup
λt

{[r0βt(1 − λt)x + r1(1 − βt)x + r1λtβtx]Ix +
1
2

x2(1 − βt + λtβt)2σ2
1Ixx} = 0. (6)

Taking differentiation of the part inside the brackets of (6) with respect to λt,

x(r1 − r0)Ix + x2(1 − βt + λtβt)σ2
1Ixx = 0,

therefore,

λ∗t = 1 −
1
βt

+
r0 − r1

βtxσ2
1

Ix

Ixx
. (7)

Then we can get the equation about value function I by taking λ∗t into (6)

It + [x(r0 −
(r1 − r0)2

xσ2
1

Ix

Ixx
)]Ix +

1
2

x2(
r1 − r0

xσ2
1

Ix

Ixx
)2σ2

1Ixx = 0,

that is,

It + r0xIx −
(r1 − r0)2

2σ2
1

I2
x

Ixx
= 0

with
I(T, x) = U(x). (8)

The following verification theorem, following from Fleming and Soner (2006,
Chapter III, Theorem 8.1), shows that the classical solution to the HJB equation
yields to the solution to the optimization problem [M-1].

Theorem 3.1. Assume that V(t, x) is the solution to (6) with boundary condition (8).
Then the optimal value function I of (6) and V coincide. Furthermore, let λ∗t satisfy

It + [r0βt(1 − λ∗t)x + r1(1 − βt)x + r1λ
∗

tβtx]Ix +
1
2

x2(1 − βt + λ∗tβt)2σ2
1Ixx = 0

for all (t, x) ∈ [0,T)×R . Then the strategy λ∗t is optimal with E[U(M∗T)|M∗t = x] = V(t, x),
where M∗t denotes the cash balance process under the strategy λ∗t .

3.2. The general optimal solution to [M-2]. In order to solve the model [M-2], we
also need to define a value function

J(t, y) = max
µt

E[U(MT)|Mt = y], 0 < t < T, (9)

and the HJB-equation is

Jt+sup
µt

{[r0βty + r0µt(1 − βt)y + r1(1 − µt)(1 − βt)y]Jy +
1
2

y2(1 − µt)2(1 − βt)2σ2
1 Jyy} = 0.

(10)
Taking the differential of (10) with respect to µt,

− y(r1 − r0)Jy − y2(1 − βt)(1 − µt)σ2
1 Jyy = 0,

therefore,

µ∗t = 1 +
r1 − r0

y(1 − βt)σ2
1

Jy

Jyy
. (11)

Then we can get the equation about value function J by taking µ∗t into (10),

Jt + [r0y −
(r1 − r0)2

σ2
1

Jy

Jyy
]Jy +

1
2

y2(
r1 − r0

yσ2
1

Jy

Jyy
)2σ2

1 Jyy = 0,
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that is,

Jt + r0yJy −
1
2

(r1 − r0)2

σ2
1

J2
y

Jyy
= 0,

where

J(T, y) = U(y). (12)

The following verification theorem, again following from Fleming and Soner
(2006, Chapter III, Theorem 8.1), shows that the classical solution to the HJB equa-
tion yields to the solution to the optimization problem [M-2].

Theorem 3.2. Assume that W(t, y) is the solution to (10) with boundary condition (12).
Then the optimal value function J of (10) and W coincide. Furthermore, let µ∗t satisfy

Jt + [r0βty + r0µt(1 − βt)y + r1(1 − µt)(1 − βt)y]Jy +
1
2

y2(1 − µt)2(1 − βt)2σ2
1 Jyy = 0

for all (t, y) ∈ [0,T)×R . Then the strategyµ∗t is optimal with E[U(M∗T)|M∗t = y] = W(t, y),
where M∗t denotes the cash process under the strategy µ∗t .

As indicated above, solving the stochastic control problems [M-1] and [M-2]
becomes solving equations (6) and (10), respectively. It is worth noticing that
these partial differential equations are second order and non-linear, which are
usually difficult to obtain explicit solutions. However, for [M-1], we see from
Theorem 1 that if a classical solution V to (6) with the boundary condition (8) can
be found, then we have the unique optimal value function I and the corresponding
optimal strategy λ∗t . In other words, for the problem of maximizing expected utility
function, we need to solve the nonlinear partial differential equation (6) and seek
λ∗t which maximizes the function

It + [r0βt(1 − λt)x + r1(1 − βt)x + r1λtβtx]Ix + 1
2 x2(1 − βt + λtβt)2σ2

1Ixx

for all (t, x) ∈ [0,T) × R. Similarly, for [M-2], we also see from Theorem 2 that if a
classical solution W to (10) with the boundary condition (12) can be found,then we
have the unique optimal value function J and the corresponding optimal strategy
µ∗t . That is, for the problem of maximizing expected utility function, we need to
solve the nonlinear partial differential equation (10) and seek µ∗t which maximizes
the function

Jt + [r0βty + r0µt(1 − βt)y + r1(1 − µt)(1 − βt)y]Jy + 1
2 y2(1 − µt)2(1 − βt)2σ2

1 Jyy

for all (t, y) ∈ [0,T) × R. We can not find their explicit solutions for general utility
functions, which may need numerical calculations. Fortunately, however, for a
widely-used special class of HARA utility functions, their explicit solutions can be
found. In following subsections we construct a solution V of (6) and a solution W
of (10) with the boundary conditions in the case of power utility. Meanwhile, we
will consider the influence of a safe area on the model solutions.

3.3. Optimal analytical solutions with specific utility functions. In this subsec-
tion we will solve [M-1] and [M-2] under HARA power utility function

U(x) = xp

p , p < 1 and p , 0,

with the restriction of λt ∈ Λ and µt ∈ Π, respectively.
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3.3.1. Case for [M-1]. Firstly, for [M-1] we need to solve

It + sup
λt∈Λ

{[r0βt(1 − λt)x + r1(1 − βt)x + r1λtβtx]Ix +
1
2

x2(1 − βt + λtβt)2σ2
1Ixx} = 0 (13)

with the boundary condition

I(T, x) =
xp

p
. (14)

Next, we summarise the conclusions in the form of theorem.

Theorem 3.3. There exists a classical solution V to (13) with the boundary condition (14).
The solution V(t, x) and the corresponding λ∗t are as follows:
(i) If 1 − 1

βt
+ r1−r0

βt(1−p)σ2
1
≤ 1 − H

βtMt
, then

V(t, x) = m1(t) xp

p , m1(t) = e−pd1(t−T), d1 = r1 + r0−r1
Mt

H +
(Mt−H)2

2M2
t
σ2

1(p − 1)

and
λ∗t = 1 − H

βtMt
.

(ii) If 1 − H
βtMt

< 1 − 1
βt

+ r1−r0

βt(1−p)σ2
1
< 1 − L

βtMt
, then

V(t, x) = m2(t) xp

p , m2(t) = e−d2(t−T), d2 = r0p − p(r1−r0)2

2(p−1)σ2
1

and
λ∗t = 1 − 1

βt
+ r1−r0

βt(1−p)σ2
1
.

(iii) If 1 − L
βtMt
≤ 1 − 1

βt
+ r1−r0

βt(1−p)σ2
1
, then

V(t, x) = m3(t) xp

p , m3(t) = e−pd3(t−T), d3 = r1 + r0−r1
Mt

L +
(Mt−L)2

2M2
t
σ2

1(p − 1)

and
λ∗t = 1 − L

βtMt
.

Proof. First we suppose that (13)-(14) has a solution V, which has the following
form:

V(t, x) = m(t)
xp

p
, (15)

where m(t) is a suitable function which we can guess is an exponential function,
and the boundary condition implies that m(T) = 1. Inserting this trivial solution
(15) into (13) results in

m
′

(t)
1
p

+m(t) sup
λt∈Λ

{
1
2

(p − 1)σ2
1β

2
tλ

2
t +[(r1−r0)βt+(p−1)βtσ

2
1−(p−1)β2

t σ
2
1]λt+l} = 0, (16)

where l = r0βt + r1 − r1βt + 1
2 (p − 1)σ2

1 + 1
2 (p − 1)σ2

1β
2
t − (p − 1)σ2

1βt.
For λ∗t without restriction, and p < 1, so the supremum of (16) is attained at

λ∗t = 1 −
1
βt

+
r1 − r0

βt(1 − p)σ2
1

. (17)

We also can take Vx = m(t) xp−1

p and Vxx = m(t)(p − 1) xp−2

p into (7), then (17) can also
be obtained. But if the right hand side of (17) is less than 1 − H

βtMt
or larger than

1 − L
βtMt

, then we have to truncate it by 1 − H
βtMt

and 1 − L
βtMt

, respectively. Thus we
need to handle the following three cases:
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(1) The case of 1 − 1
βt

+ r1−r0

βt(1−p)σ2
1
≤ 1 − H

βtMt
.

In this case, the symmetry axis λt = 1 − 1
βt

+ r1−r0

βt(1−p)σ2
1

of the downward sparabola

1
2

(p − 1)σ2
1β

2
tλ

2
t + [(r1 − r0)βt + (p − 1)βtσ

2
1 − (p − 1)β2

t σ
2
1]λt + l = h (18)

is on the left side of the safe area [1− H
βtMt

, 1− L
βtMt

], and (18) is monotone decreasing
for λt in [1 − H

βtMt
, 1 − L

βtMt
], so (16) attains its maximum at

λ∗t = 1 −
H
βtMt

.

This allows us to replace (16) by

m
′

1(t) + pd1m1(t) = 0

subject to the condition m1(T) = 1. Then we can derive the following solution to
(16)

m1(t) = e−pd1(t−T).

Thus, (i) is proved.
(2) The case of 1 − H

βtMt
< 1 − 1

βt
+ r1−r0

βt(1−p)σ2
1
< 1 − L

βtMt
.

In this case, the supremum of (16) is attained at

λ∗t = 1 −
1
βt

+
r1 − r0

βt(1 − p)σ2
1

and it is ∈ Λ. Substituting it into (16), we obtain

m
′

2(t) + pd2m2(t) = 0

subject to the condition m2(T) = 1. Then we can derive the following solution to
(16)

m2(t) = e−pd2(t−T).

Thus, (ii) is proved.
(3) The case of 1 − L

βtMt
≤ 1 − 1

βt
+ r1−r0

βt(1−p)σ2
1
.

In this case, the symmetry axis λt = 1 − 1
βt

+ r1−r0

βt(1−p)σ2
1

of the downward sparabola

(18) is on the right side of the safe area [1 − H
βtMt

, 1 − L
βtMt

], and (18) is monotone
increasing for λt in [1 − H

βtMt
, 1 − L

βtMt
], so (16) attains its maximum at

λ∗t = 1 −
L

βtMt
.

This allows us to replace (16) by

m
′

3(t) + pd3m3(t) = 0

subject to the condition m3(T) = 1. Then we can derive the following solution to
(16)

m3(t) = e−pd3(t−T).



10 ZHENGYAN WANG, GUANGHUA XU, PEIBIAO ZHAO AND ZUDI LU

Thus, (iii) is proved.
�

Combining Theorem 1 with Theorem 3, we obtain

Corollary 1. The optimal transfer strategy λ∗t is

λ∗t =


1 − H

βtMt
i f 1 − 1

βt
+ r1−r0

βt(1−p)σ2
1
≤ 1 − H

βtMt
;

1 − 1
βt

+ r1−r0

βt(1−p)σ2
1

i f 1 − H
βtMt

< 1 − 1
βt

+ r1−r0

βt(1−p)σ2
1
< 1 − L

βtMt
;

1 − L
βtMt

i f 1 − L
βtMt
≤ 1 − 1

βt
+ r1−r0

βt(1−p)σ2
1
.

3.3.2. Case for [M-2]. Now, for [M-2], we need to solve

Jt+sup
µt∈Π

{[r0βty + r0µt(1 − βt)y + r1(1 − µt)(1 − βt)y]Jy +
1
2

y2(1 − µt)2(1 − βt)2σ2
1 Jyy} = 0

(19)
with the boundary condition

J(T, y) =
yp

p
. (20)

Theorem 3.4. There exists a classical solution W to (19) with the boundary condition
(20). The solution W(t, y) and the corresponding µ∗t are as follows:
(i) If 1 − r1−r0

(1−βt)(1−p)σ2
1
≤

L−βtMt

(1−βt)Mt
, then

W(t, y) = n1(t) yp

p , n1(t) = e−pq1(t−T), q1 = r1 +
(r0−r1)L

Mt
+

(Mt−L)2

2M2
t
σ2

1(p − 1)

and

µ∗t =
L−βtMt

(1−βt)Mt
.

(ii) If L−βtMt

(1−βt)Mt
< 1 − r1−r0

(1−βt)(1−p)σ2
1
<

H−βtMt

(1−βt)Mt
, then

W(t, y) = n2(t) yp

p , n2(t) = e−pq2(t−T), q2 = r0p − p(r1−r0)2

2(p−1)σ2
1

and

µ∗t = 1 − r1−r0

(1−βt)(1−p)σ2
1
.

(iii) If H−βtMt

(1−βt)Mt
≤ 1 − r1−r0

(1−βt)(1−p)σ2
1
, then

W(t, y) = m3(t) yp

p , n3(t) = e−pq3(t−T), q3 = r1 + r0−r1
Mt

H +
(Mt−H)2

2M2
t
σ2

1(p − 1)

and

µ∗t =
H−βtMt

(1−βt)Mt
.

Proof. First we suppose that (19)-(20) has a solution W, which has the following
form:

W(t, x) = n(t)
yp

p
, (21)

where n(t) is a suitable function which we can guess is an exponential function,
and the boundary condition implies that n(T) = 1. Inserting this trivial solution
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(21) into (19) results in

n
′

(t)
1
p

+n(t) sup
µt∈Π

{
1
2

(p − 1)σ2
1(1 − βt)2µ2

t +[(r0−r1)(1−βt)−(p−1)(1−βt)2σ2
1−(p−1)β2

t σ
2
1]µt+k} = 0,

(22)
where k = r0βt + r1 − r1βt + 1

2 (p − 1)σ2
1(1 − βt)2.

For µ∗t without restriction and p < 1, the supremum of (22) is attained at

µ∗t = 1 −
r1 − r0

(1 − βt)(1 − p)σ2
1

; (23)

we also can take Wy = n(t) yp−1

p and Wxx = n(t)(p − 1) yp−2

p into (11), then (23) can also

be obtained. But if the right hand side of (23) is less than L−βtMt

(1−βt)Mt
or larger than

H−βtMt

(1−βt)Mt
, then we have to truncate it by L−βtMt

(1−βt)Mt
and H−βtMt

(1−βt)Mt
, respectively. Thus we

need to handle the following three cases:
(1) The case of 1 − r1−r0

(1−βt)(1−p)σ2
1
≤

L−βtMt

(1−βt)Mt
.

In this case, the symmetry axis µt = 1 − r1−r0

(1−βt)(1−p)σ2
1

of the downward sparabola

1
2

(p − 1)σ2
1(1 − βt)2µ2

t + [(r0−r1)(1−βt)− (p−1)(1−βt)2σ2
1− (p−1)β2

t σ
2
1]µt +k = z (24)

is on the left side of the safe area [ L−βtMt

(1−βt)Mt
,

H−βtMt

(1−βt)Mt
], and (24) is monotone decreasing

for µt in [ L−βtMt

(1−βt)Mt
,

H−βtMt

(1−βt)Mt
], so (22) attains its maximum at

µ∗t =
L − βtMt

(1 − βt)Mt
.

This allows us to replace (22) by

n
′

1(t) + pq1n1(t) = 0

subject to the condition n1(T) = 1. Then we can derive the following solution to
(22)

n1(t) = e−pq1(t−T).

Thus, (i) is proved.
(2) The case of L−βtMt

(1−βt)Mt
< 1 − r1−r0

(1−βt)(1−p)σ2
1
<

H−βtMt

(1−βt)Mt
.

In this case, the supremum of (22) is attained at

µ∗t = 1 −
r1 − r0

(1 − βt)(1 − p)σ2
1

and it is ∈ Π. Substituting it into (22), we obtain

n
′

2(t) + pq2n2(t) = 0

subject to the condition n2(T) = 1. Then we can derive the following solution to
(22)

n2(t) = e−pq2(t−T).

Thus, (ii) is proved.
(3) The case of H−βtMt

(1−βt)Mt
≤ 1 − r1−r0

(1−βt)(1−p)σ2
1
.

In this case, the symmetry axis µt = 1− r1−r0

(1−βt)(1−p)σ2
1

of the downward sparabola (24)
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is on the right side of the safe area [ L−βtMt

(1−βt)Mt
,

H−βtMt

(1−βt)Mt
], and (24) is monotone increasing

for µt in [ L−βtMt

(1−βt)Mt
,

H−βtMt

(1−βt)Mt
], so (22) attains its maximum at

µ∗t =
H − βtMt

(1 − βt)Mt
.

This allows us to replace (22) by

n
′

3(t) + pq3n3(t) = 0

subject to the condition n3(T) = 1. Then we can derive the following solution to
(22)

n3(t) = e−pq3(t−T).

Thus, (iii) is proved.
�

Combining Theorem 2 with Theorem 4, we obtain

Corollary 2. The optimal transfer strategy µ∗t is

µ∗t =


L−βtMt

(1−βt)Mt
i f 1 − r1−r0

(1−βt)(1−p)σ2
1
≤

L−βtMt

(1−βt)Mt
;

1 − r1−r0

(1−βt)(1−p)σ2
1

i f L−βtMt

(1−βt)Mt
< 1 − r1−r0

(1−βt)(1−p)σ2
1
<

H−βtMt

(1−βt)Mt
;

H−βtMt

(1−βt)Mt
i f H−βtMt

(1−βt)Mt
≤ 1 − r1−r0

(1−βt)(1−p)σ2
1
.

As can be seen from Corollary 1 and Corollary 2, when (17) and (23) are not
in Λ and Π, then the transfer ratio is not related with risk preference p. This also
fully discloses the importance of the safe area for companies. Here, managers’ risk
preference has no influence on the companies’ decision.

4. Illustrative examples.

4.1. Illustration of solutions to [M-1] and [M-2]. We first give an example to
demonstrate the feasibility of the CTM. In order to compute the model, we need
to know the daily average returns and variance of the risky securities, and also
the parameter p. We randomly select four profitable stocks from the Shanghai
and Shenzhen stock markets, China Vanke(000002), *ST Tianwei (600550), Pret
(002324) and Tianxing Instrument and Meter (000710), denoted by A, B, C and D,
respectively, and then get their daily average yield and variance as shown in Table
1 using the daily close data from 1 January 2012 to 30 August 2014.

Table 1. The daily average yield and variance

stock number daily average yield variance
A 0.000399 0.000437
B 0.000433 0.000687
C 0.000443 0.0019
D 0.000463 0.00055

As managers usually are cautious about the cash balance, one can take p = 0.1.
We suppose the enterprise’ cash flows range is [1000, 7000] = [L,H], which can be
obtained by the mangers’ estimation.
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Table 2. The optimal cash holdings in case 1: Xt > H

stock number invest ratio λ∗t in (17) (1 − λ∗t)Xt optimal cash holdings
A 0.756891 1944.871 1944.871
B 0.542302 3661.586 3661.586
C 0.04379 7649.684 7000
D 0.815414 1476.685 1476.685

If the cash balance Mt = 10000 and βt = 0.8 at time t and r0 = 0.03/365, then
Xt = 8000 > 7000, so the managers will buy some stocks to achieve the wealth
utility maximization. The cash holding policy for different stocks can be seen in
Table 2.

In particular, Table 2 shows that if the managers decide to buy stock C , then the
cash holdings is 7649.684 . It is still higher than the upper bound H. According
to Theorem 3, we can get the optimal cash holdings is 7000. Alternatively, if the
managers will buy stock B, then the whole process can be expressed by Figure 1.
From Figure 1, when the cash balance exceeds the upper bound H to point E, and
the managers can spend 4338.414 fund to buy stock B, then point F is the optimal
cash holding point.

Figure 1. optimal cash holding model in case 1

Alternatively, if the cash balance Mt = 10000 and βt = 0.08 at time t, then
Xt = 800 < 1000, and the managers will sell some stocks to restore the cash
holdings to the ”safe level”. Then the conversion policy and the cash holding
policy for different stocks can be seen in Table 3.

In particular, Table 3 shows that if the managers decide to sell stock C, then
the cash holdings is 7890.0104, which is higher than the upper bound H, where,
according to Theorem 4, we can get the optimal cash holdings is 7000. Now if the
managers will sell stock B, then the whole process can be expressed by Figure 2.
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Table 3. The optimal cash holdings in case 2: Xt < L

stock number conversion ratio µ∗t in (23) µ∗tRt + Xt optimal cash holdings
A 0.124443 1944.8711 1944.8711
B 0.383288 4326.2458 4326.2458
C 0.770653 7890.0104 7000
D 0.163794 2306.9047 2306.9047

From Figure 2, when the cash holdings is 800, which is down to the lower bound L
to point M, and the managers will sell 3526.246 fund of stock B and point N is the
optimal cash holding point.

Figure 2. optimal cash holding model in case 2

4.2. Illustration of the optimal cash holdings with different p values with the
power utility. Taking stock C as an example, we consider the effect of different p
values in the HARA power utility on the cash holding decision-making. We still
suppose the safe cash flows range is [1000,7000] and the cash balance is 10000 and
βt is 0.8 at time t. Then the cash holding policy with different p values can be seen
in Table 4, which is also plotted in Figure 3.

From Figure 3 we can see clearly that the larger the parameter p, the lower the
optimal allocation to cash until p ≥ 0.9. In particular, from Table 4, when p is 0.9, λ∗t
is greater than 1, where the manager is a serious risk seeker, even willing to borrow
money to invest in risky asset. However, in order to keep adequate working capital,
the optimal cash holdings should be 1000 according to Theorem 3.

4.3. Illustration of the comparison between the CTM model and the Miller-Orr
model. By the Miller-Orr (1966) model, we get the optimal cash holding using
M∗ = 4

3 (3γσ2/4υ)
1
3 + L, where M∗ is the firm’s optimal average yield, γ is the

transaction cost, σ2 is the variance of daily cash flows, υ is the marginal and
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Table 4. The optimal cash holdings with different p values

p invest ratio λ∗t in (17) (1 − λ∗t)Xt optimal cash holdings
0.1 0.04379 7649.684 7000
0.2 0.04672 7626.262 7000
0.3 0.08911 7287.156 7000
0.4 0.14562 6835.016 6835
0.5 0.22475 6202.019 6202
0.6 0.34344 5252.523 5252
0.7 0.54125 3670.031 3670
0.8 0.93687 505.047 1000
0.9 2.12374 -8989.91 1000

Figure 3. optimal allocation to cash for different p values

average yield. Now suppose for one company that γ = 50 and σ = 800. Then, for
stocks A, B, C and D, we can get M∗A = 6224.181, M∗B = 6083.670, M∗C = 6045.156,
M∗D = 5971.439. Obviously, the Miller-Orr model ignores the risk of risky assets
and the managers’ preferences, so the results are close to each other. However, in
Subsection 4.1 above, our CTM model considers these factors. The CTM model
decides the cash holding policy relying on the managers’ preferences and the return
and variance of the risky assets. So the CTM model solves the cash holding problem
from a different perspective of the Miller-Orr model. In the future, we can consider
to combine the two models to solve the problem.

5. Conclusion. We summarise the main contributions of this paper as follows.
Firstly, we have obtained the optimal cash holdings formulas based on [M-

1] and [M-2] in a general form using the HJB equation derived by the dynamic
programming principle. For the cases of specific power utility functions, we can
deduce the optimal decisions in the explicit forms in Corollary 1 and Corollary 2.
That is, we arrive at the optimal cash holdings (1 − λ∗t)Xt or (Xt + µ∗tRt) at time t.
This result can be regarded as an extension from a different perspective of the work
of Miller and Orr (1966).
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Secondly, as can be seen from Corollary 1 and Corollary 2, the conversion ratio
λ∗t and µ∗t are both related with the parameter p, the coefficient of the relative risk
aversion. The larger the parameter p, the lower degree of the relative risk aversion,
which means the managers more likely to pursue risks and thus the higher the
ratio investing on risky assets.

Thirdly, the CTM avoids to characterize the distribution of cash flows. The result
shows that the managers making decisions only need to consider the return and
risk of the investment objective. This conclusion makes up the Miller-Orr model’s
lack of considering the securities’ risk.

Finally, we demonstrate that the CTM is feasible, which the managers can use
to make decisions.

There are several topics worthy further research. In this paper, we take specific
power utility functions to get the analytical solutions, so in future we may try to ob-
tain general numerical solutions based on general utility functions. Furthermore,
the CTM model does not consider the variance of the daily cash flows, and we may
consider the cash holding policy by combining the CTM model with the Miller-Orr
model.
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