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1 Introduction

We present a stylized two-period model of portfolio choice and parameterize it to some key
moments of returns on aggregate stock market indices. We use the model to compare the
true nonlinear portfolio solution with the solutions from two approaches that belong to the
class of local approximation methods, developed by Judd and Guu (2001, hereafter 'JG’) and
Devereux and Sutherland (2010, 2011, hereafter 'DS’).

The DS solution approach has received considerable attention in solving portfolio problems
in dynamic macroeconomic models in the recent past.! While the two-period setting of
the present paper ignores the main advantages of the DS method, which lie in obtaining
portfolio solutions in dynamic settings (possibly in environments with many states variables),
it nevertheless is able to shed light on some of its properties.?

While DS and JG solution approaches are fundamentally similar, as they both are based
on a Taylor-series approximation around the non-stochastic steady state, we find important
differences between the results that they produce (as currently implemented). Devereux and
Sutherland (2010, 2011) are mainly interested in incorporating the portfolio problem into
dynamic macroeconomic models, and so they concentrate on approximating the solution in
the direction of the model’s state variables, at the same time neglecting the effect of the size
of the shocks.? As a result, we find that in our two-period model, their approach delivers the
constant portfolio solution independent of the size of the shocks.

At the same time, we show that the true solution generally depends on the size of uncer-
tainty, with skewness, kurtosis and higher-order moments of the distribution of underlying
shocks affecting the results. The JG bifurcation method is able to capture this dependency:
its zero-order portfolio solution component coincides with DS, while its higher-order solu-
tions components account for variations of the size of uncertainty. Even the second-order JG
solution is able to account for the effects of skewness and kurtosis of equity returns on the
solution.

We show that the resulting discrepancy between the DS and JG solutions can be non-
trivial. This makes extending the DS approach to take into account the effect of the size of
uncertainty a valuable exercise.?

2 Model

The world consists of two countries. In each there lives a representative investor for two
periods, consuming a single consumption good in period 2. In period 1 investors decide on a
portfolio over two assets: equity — a claim on the total world’s output —, and a risk-free bond.
The bond yields one unit of period-2-consumption and serves as numeraire, i.e., the period 1
bond price is normalized to 1. Each share has price p in period 1 and has a random period 2

!Together with the contributions of Tille and van Wincoop (2007) and Evans and Hnatkovska (2005, 2012).

2We perform a more extensive evaluation of the DS method, in a dynamic setting, in a companion paper,
Rabitsch et al. (2014).

3This is for simplicity of exposition. It also squares with the intuition that in standard macro models the
size of the shocks does not affect the solution up to the first-order of approximation (see Schmitt-Grohé and
Uribe (2004) and Jin and Judd (2002)). However, the JG solutions shows that this intuition does not apply
to a model with portfolio choice.

4Since both approaches are based on Taylor series approximations, the intuition suggests that this should
be possible. We thank the referee for this point.



value, Y = 1+ ez. We assume E{z} =0 and E {z2} = 1. In addition, we assume that the
support for z is bounded from below, so that Y > 0 for all € and z.

Each investor i starts with bY units of bonds and 6 shares of equity. Investors’ utility
is given by w; (C;) = C’1 7/ (1—1;). C; denotes investor i’s period- 2-consumption which
equals her final wealth. Wlthout loss of generality, we assume 67 4 69 = 1; this implies that
z denotes aggregate risk in the world endowment Y. Let 6; be the shares of equity and b;
bonds held by investor ¢ after trading in period 1. Investor ¢ solves:

Eui(C;
e ()

s.t.:
Ggp + bg =6;p+0b; (budget constraint in period 1)
Ci =6;Y +b;,VY (budget constraints in period 2)

Market-clearing implies 61 4+ 62 = 1, by + bs = 0. Define § = 0y; then 0, = 1 — 0. Also,
denote by = b = —by. Similarly, initial endowments 8° = 67, 09 =1 — 0%, and b9 = b° = —b9.
The model’s equilibrium conditions can be reduced to a system of two equations in 6 and p:

H(0(c),p(e),e) = (1)
E [uy (0Y + b7+ (6° = 0)p)(Y — p)] ~0
E [uh((1—0)Y — 10 — ( —60)p)(Y —p)] '

2.1 Portfolio solution methods

We comment only on the main points of the various portfolio solution approaches, and refer
the interested reader to the appendix for further documentation. To obtain the nonlinear
(quadrature) portfolio solution in this simple economy, called ’true solution’ hereafter, we
approximate the expectations operator using quadrature methods and solve system (1) using
a nonlinear equations solver.

To apply the Devereux and Sutherland solution approach, we use DS’ notation conven-
tion and express portfolio holdings in terms of assets in zero-net supply, oy = [ae; ] =
[(0 —6%)p;b—b°.]. Following Schmitt-Grohé and Uribe (2004) and Jin and Judd (2002)
we can think of the true policy function for a4, in a recursive economy, as a function that
depends on the model’s state variables, x;, and on a parameter that scales the variance-
covariance matrix of the model’s exogenous shock processes, €; that is, oy = «(z4,€). In
contrast to a standard Taylor series expansion to oy = « (24, €), the DS approximate portfolio
solution, as described in Devereux and Sutherland (2010, 2011), considers only how variations
in the model’s state variables, ¢, affect the optimal portfolio solution, but ignores the effect
of variations in the size of uncertainty, e. Because our model is static (we have & = 0), the
portfolio solution under DS is:

_ 72— 0 0
e = 0" (1 —6%). 2
YT A= 09) + 70 ( ) ®

Or, for 6:
6=0°+ %, where a, = @,. (3)



The property of o which is key here, is that it is invariant to the size of the shock z, and
as a result, of any other statistical properties (skewness, kurtosis etc.).

To obtain the Judd-Guu portfolio approach, using bifurcation methods, we closely follow
the steps outlined in Judd and Guu (2001). Unlike the DS approach, the JG solution depends
on the size of uncertainty, and, as result, on higher-order moments of assets’ returns. Namely,
the first-order terms of JG’s approximate solution depend on the returns’ skewness, while the
second-order terms depend on their kurtosis.

3 Results

Consider a setup of countries with identical initial endowments, b? = 0 and 6?? = 0.5 for
country i = 1,2, but assume country 2 is twice as risk averse, reflected by 1 = v2/2. In our
numerical examples, we take the robust empirical stylized fact of positive and non-normally
distributed equity premia seriously. We model world output endowment, ¥ = 1+ ¢z, through
a Normal-inverse Gaussian (N.I.G.) distribution.® This gives us enough flexibility to target
mean, standard deviation, skewness and kurtosis of equity (excess) returns in our model,
to the observed moments of excess returns of aggregate stock market indices reported in
Guidolin and Timmermann (2008), for Pacific-ex-Japan, United Kingdom, United States,
Japan, Europe-ex-UK, and World, based on monthly MSCI indices — repeated in columns 1-4
of Table 1.

Figure 1 plots the portfolio solution for country 1’s equity share, 8, as a function of the
size of uncertainty e, for two illustrative examples: "United Kingdom’ (panel A) and "Pacific-
ex-Japan’ (panel B). The first region’s MSCI displays positive, the latter’s negative skewness;
both display substantial kurtosis.

The solid red line displays the true portfolio solution: as country 1 is less risk averse, it
chooses to hold a higher share of equity than initially endowed with (6 > 6 = 0.5), which it
finances by going short in debt. Also, the solution for 6 depends on the size of uncertainty:
for the UK case we observe that country 1’s optimal share in equity initially increases, and
then decreases, as € increases. For Pacific-ex-Japan 6 continuously decreases.

The portfolio solution obtained by the Judd-Guu approach can help understand the mech-
anisms that drive these results in more detail. The positive skewness of the UK’s MSCI return
index (0.75) leads to a positive slope of the first-order (linear) Judd-Guu solution: positive
skewness means shifting more weight to ’good’ outcomes, such that an investor would demand
more of the risky asset. Positive skewness therefore works to increase country 1’s optimal
equity holdings, 0, as ¢ increases. While this logic applies to both investors JG show that the

5The N.I.G. distribution has experienced recent interest in the finance literature because of its flexibility in
capturing non-normal properties of asset pricing data (see e.g. Colacito et al. (2012)).

5Tn particular, for each MSCI index we consider, we choose 4 parameters of the N.I.G. distribution to make
sure that F {23} and E {24} match the observed skewness and kurtosis of that MSCI index’ returns from the
data, and that E{z} = 0 and E {2°} = 1 (the normalization assumed by Judd and Guu (2001), which we

follow here). Since E {22} =1, we control the volatility of the return process through the choice of €. In our
model the variance of gross equity return, Re, is given by var(R.) = var (”%) = ;—z = 2 [E (R.)]?, because

std(r‘eiata)

E[z*] =1 and [E (R.)] = 1/p. Using this result, we set ¢ = ECEREE

data. Finally, we pick our final free parameter, 2, to match the observed mean excess equity return.

where r2%*® is the net return in the



Figure 1: Equity shares held by country 1 investor. Panel A and B refer to the parameteriza-
tions for the UK and Pacific stock market facts respectively. Circles correspond to the value
of € used in the calibration.

United Kingdom Pacific ex—Japan
0.672 ‘ ‘ ‘ ‘
0.67r
" e ®
0.668[ .

@ 0.666f @ 0.65f

| —True
---DS
o JG (Lst)

0.63F ~ -JG (2ﬂd)

0.664 0.64

0.662

0.660 0.02 0.04 0.06 0 0.02 0.04 0.06 0.08

€ €

strength with which equity demand increases in such case depends on investors’ relative ’skew-
tolerance’. For the CRRA preference specification we use, skew-tolerance is always larger for
the less risk-averse country, implying that country 1’s appetite for taking risk increases more
strongly and its chosen equity position goes up under positive skewness as € increases.” Panel
B, ’Pacific-ex-Japan’, provides a different example: returns display negative skewness (—2.3).
This implies that the return distribution is more heavily shifted towards 'bad’ outcomes, so
investors demand less of the risky asset. Since the skew-tolerance coefficient continues to be
higher for country 1, but now, because of negative skewness, multiplies a negative number
E (zg), the slope from the first-order part of the JG solution is negative: the less risk averse
country 1 decreases its holdings of risky assets as ¢ increases. The second-order JG solution is
able to the capture effects of kurtosis on the portfolio solution. MSCI return-indices of both
regions are characterized by substantial kurtosis (10.3 for UK, 22.3 for Pacific-ex-Japan).
Kurtosis means putting more weight to tail events, so as € increases, this leads an investor
to reduce demand for the risky asset. Again, this logic applies to both investors, the relative
strength of this effect depends on investors’ relative ’kurtosis-tolerance’. For CRRA prefer-
ences kurtosis-tolerance is lower for the less risk-averse country®, so that the reduction in the
demand for risky assets due to (excess) kurtosis is more pronounced for the less risk-averse
country: as € increases, country 1’s equity share further decreases.

Finally, the black dashed line in Figure 1 shows results from applying the DS solution
approach. The DS solution coincides with the constant (zero-order) component of the Judd-
Guu solution. As explained in section 2 the portfolio solution under DS is a function of state

"Judd and Guu (2001) define ’skew-tolerance’ as p (C;) = %Zj,/,((%i)) Z/,l,/((g i)), for country i = 1,2. For CRRA

preferences this is given by p (C;) = %%Ttl Note that in this case % = _2% < 0. Therefore, with 71 < 72
we have that p (C1) > p (C2).

8JG’s definition of ’kurtosis-tolerance’ is given by s (C;) = —% “J;;gg) ;L,l,(é’;)) 5//,((22)) . For CRRA preferences,
k(Cy) = —%W Note that in this case 25 = % > 0. Therefore, with v1 < 72 we have & (C1) <

0v; E
R (CQ)




Asset Data, Yo /v1 =2 Y2 /71 =3
Mean,% SD,% Skew Kurt oPs 97¢ girue oPs 6P girue

UK 0.7503 6.1898  0.7587  10.316 | 0.6667 0.6626 0.6608 | 0.7500 0.7449 0.7417
Pacific-ex-Japan 0.3892 7.0538 -2.2723 22.297 | 0.6667 0.6427 0.6282 | 0.7500 0.7195 0.6973
World 0.4560 5.174 -0.8711 6.9133 | 0.6667 0.6607 0.6588 | 0.7500 0.7424 0.7396
US 0.5415 4.4825 -0.7084 5.9138 | 0.6667 0.6623 0.6607 | 0.7500 0.7445 0.7421
Japan 0.3733 6.4830 0.0700  3.5044 | 0.6667 0.6653 0.6642 | 0.7500 0.7483 0.7466
Europe-ex-UK 0.4158 5.0578 -0.5672 4.6124 | 0.6667 0.6631 0.6620 | 0.7500 0.7454 0.7439

Table 1: Optimal equity holdings obtained by different portfolio solution methods; model cal-
ibrated to (various regions’) return data on MSCI aggregate stock market indices by Guidolin
and Timmerman (2008).

variables only, and not a direct function of the size of uncertainty, €. Since, in this simple
static model there is no variation in states, the obtained constant solution is not only the
zero-order solution, but actually corresponds to the DS solution up to any order.

Table 1 reports the optimal portfolio solutions for all other regions, calibrated to the
respective MSCI return indices. Columns 5-8 (9-12) report the true portfolio solutions, the
(second-order) JG solution, and the DS solution, for the scenario in which country 2 is twice
(three times) as risk averse as country 1. The largest discrepancies emerge for MSCI Pacific-
ex-Japan: the difference to the true solution of the equity share obtained by the (second-order)
JG solution is —2.31% (—3.14%), the difference of the DS solution —6.13% (—7.56%).

4 Conclusions

In a two-period model, calibrated to match key moments of returns on aggregate stock market
indices, we find that DS and JG solutions coincide in the limit where uncertainty vanishes,
but else differ. As currently implemented, the DS approach does not account for variations in
the size of uncertainty (and its interactions with other statistical properties of returns, such
as skewness and kurtosis), unlike JG. We show that the resulting discrepancy between the
DS and JG solutions can be non-trivial. This makes extending the DS solution to take into
account the effect of the size of uncertainty an interesting direction for future research.
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A Appendix

A.1 Model Equilibrium Conditions

The optimization problem of investor ¢, for ¢ = 1,2, and market-clearing gives rise to the
following system of equilibrium conditions:

(E1): M = E[uj(C1)], (E2): Ay = E'[uy(C2)],

(E3): phr = E [, (CL)Y], (E): pho = E [uh(Ca)Y],
(E5): Cy = 8Y +b,YY,  (E6): Co = (1— )Y — b, VY,
(ET): 6%+ 0% =6p + b,

with unknowns: Cy,Co,0,b, p, A1, Ao; A; denotes the Lagrange multiplier on investor ¢’s period
1 budget constraint. In addition, denote the return on equity by R. = Y/p, bond return
R, = 1, and excess return, R, = R. — Rp. The above equilibrium conditions can be further
reduced to a system of two equations in variables 6 and p, which correspond to equation (1)
in the main text, which is restated below for convenience.

H(0(),p(e),e) = (4)
E [u’l(HY + 80+ (0° — 0)p) (Y — p)}
E [up((1=0)Y —b° — (6° = 0)p)(Y —p)]



Asset NIG parameters
7 o p g £ V3 V2

Pacific-ex-Japan | 0.1439  0.4163 —0.1745 0.3114 | 0.0703 0.886 1.120
UK —0.1138 0.6932 0.1171 0.6638 | 0.0614 2.969 3.920
World 0.2903  1.0839 —0.3176 0.9473 | 0.0515 2.344 3.096
US 0.3104  1.2331 —0.3352 1.0990 | 0.0446 3.750 4.950
Japan —0.1406 2.4628  0.1411 2.4507 | 0.0646 2.294 3.051
Europe-ex-UK 0.4776 1.7463 —0.5250 1.5150 | 0.0504 2.320 3.079

*— for the case 22 =2, **~ for the case 12 =3

Table 2: Calibrated parameter values

A.2 Details of the Nonlinear (Quadrature) Solution

To obtain the nonlinear (quadrature) portfolio solution in this simple economy, we approxi-
mate the expectations operator using quadrature methods and simply solve the system given
in (4) using a nonlinear equations solver.?

The key step in obtaining the quadrature solution is to replace the integrals in (4) with
finite sums. We do so by using the Gauss-Chebyshev quadrature. We assume that z follows
a truncated normal inverse Gaussian distribution (NIG). The NIG distribution is completely
characterized by 4 parameters (finig, Onig, Bnig and dnig). This allows us to match the first
4 moments of the returns from the data. In addition, we assume that the support of z is
bounded from below, z >= Z, so that Y > 0 for all values of € that we consider. In practice,
we assume that Z = —10 in all cases, except for when we consider MSCI Pacific-ex-Japan
with 9 = 371, where we assume that Z = —9. This ensures that C'y > 0 and Cy > 0 for
all values of ¢ that we consider. After fixing Z and some large upper bound Z'°, we set the
values for finig, Omig, Buig and dyig, apply the Gauss-Chebyshev quadrature with 1000 nodes!!
to compute the resulting first 4 moments, and change values of finig, Onig, Bnig and dnjg until
we obtain E[z] = 0, E[z?] = 1, and E[z%] and E[z%] that match the skewness and kurtosis of
assets’ returns in the data.

After this, we solve the system in (4) with a non-linear solver on a fine grid over [g, &],
where &; corresponds to the standard deviation of the asset ¢’s returns in the data.

A.3 Details of the Devereux-Sutherland Solution

The contributions by Devereux and Sutherland (2011, 2010) provide easy-to-apply methods
to obtain approximate portfolio solutions in a dynamic stochastic GE model. While we apply
their method in a model that is essentially static in the sense that there is no variation in
state variables, it is indicative to reflect first on how their method works in the general case
of a dynamic setting. In particular, denote with «; the true (unknown) function of optimal
holdings of any asset that is zero-net supply.'? In the above contributions, DS show that a

9The nonlinear solution in this static economy is simple to obtain. In more general, dynamic settings
nonlinear methods providing a globally valid approximation for portfolios is substantially more complex. Such
global portfolio solution methods have been proposed by Kubler and Schmedders (2003).

0Tn practice, we set Z = 30, and check that the results are not sensitive to changing this value.

1WWe check that the results are not sensitive the the number of quadrature nodes selected as well.

12DS’ exposition of their method is in terms of assets in zero-net supply. This is not in any way restrictive.
For assets in positive net supply, such as equities, this can be easily achieved by defining portfolio positions in



zero-order (first-order) approximation to the true portfolio solution can be obtained from a
second (third) order Taylor series expansion to the model’s portfolio optimality conditions, in
conjunction with a first (second) order Taylor series expansion to the model’s other optimal-
ity and equilibrium conditions. Applying these steps one obtains an approximate portfolio
solution of the format:

ap = a+ oz (5)

where @ is the zero-order (constant) part of the solution, o is a vector of the first-order
coefficients, x; is the vector of the model’s state variables, and Z; refers to the state variables
expressed as (log-)deviations from their steady state values.

DS also state that their solution principle, which builds up on earlier work by Samuel-
son (1970), could be successively applied to higher orders: to obtain an n-th order accurate
portfolio solution, one needs to approximate the portfolio optimality conditions up to order
n 4+ 2, in conjunction with an approximation to the model’s other optimality and equilibrium
conditions of order n + 1. E.g., going one order higher, one would obtain the approximate
portfolio solution as oy = & + /7y + %ﬂa” Tt.

It is important to realize that the expression in equation (5) is, however, not the same as
what would result from a Taylor series expansion of the true policy function ay. Following
Schmitt-Grohé and Uribe (2004) and Jin and Judd (2002) we can think of the true policy
function in a recursive economy as a function that depends on the model’s state variables,
x¢, and on a parameter that scales the variance-covariance matrix of the model’s exogenous
shock processes, ¢; that is, ay = a(x¢,£). A Taylor series to policy function a4, evaluated at
approximation points x; = T and € = 0, would then result in:

~ _ 1_ N SN 1 _
ar = a(z,0)+a, (7,0) T +a. (7,0) 5+§x;am (Z,0) Tp+ e (7,0) e+ §a€6 (z,0) e2+... (6)

That is, in contrast to the Taylor series expansion in equation (6) the DS approximate
portfolio solution does only consider how variations in the model’s state variables affect the
optimal portfolio solution, but ignores the effect of variations in the size of uncertainty.314

Let us return to finding the DS portfolio solution in our two-period model. To apply their
method, it is convenient to reformulate the portfolio positions in zero-sum value terms. In
our model, this means defining portfolio positions as:

ae=(0—-0p, a,=0b-1"

terms of deviations from some initial portfolio endowments, and then multiplying them by their price.

3The comparison of the DS solution with equation (6) is simply for reasons of exposition. We are of
course not suggesting that an approximate solution to the true unknown portfolio function actually can be
obtained by taking a simple Taylor series expansion around the non-stochastic steady state. This is not feasible
using standard local approximation methods (using the standard implicit function theorem) — the portfolio
is indeterminate both at the non-stochastic steady state and in a first-order approximation of the stochastic
setting. This is exactly the problem that the DS method and the JG method have addressed and proposed
(different) ways of solving for.

1411 the general case of a dynamic model, this still does not imply that the size of uncertainty cannot have an
effect on optimal portfolios. In principle there could be an effect of the size of uncertainty, €, on the portfolio
through the effect of € on the states themselves. This, however, would only be happening at higher orders, as
the (state) variables are not affected by ¢ at first-order (certainty equivalence) and only through a constant at
second-order (see Schmitt-Grohé and Uribe (2004)).



We can then re-write home investor’s budget constraints as:

0:(0—00)p+(b—bo):ae+ab:W
S—_— N——

Qe ayp

Y
Cr=0-0"p — +(b-0") 1 _+0"+6°Y = acRe + apRy +1° + 6°Y

\P;/ =Ry
=Re
= WRy + a (R. — Rp) +b° +6°Y
=R

Since the first equation implies that W = 0, the equilibrium system can be written as:

(E1): A\ = E[u}(C1)Ry), (E2'): Ay = E [uhy(CaRy)],
(E3): A, = E[u,(C1)R.] (E4'): Xy = E [uh(C2)Re]
(E5"): O = aeRy +0° +0°Y,VY, (E6): C1 + Cy =Y, VY,
(ET’)

Following Devereux and Sutherland , we obtain the zero-order or constant portfolio so-
lution, @., from the second-order approximation of both countries’ first order optimality
conditions with respect to portfolio allocations'®, which, once combined, result in an expres-
sion that contains only first-order terms of the model’s macro variables. The second order
approximation to the Euler equations w.r.t. to equity and w.r.t. to the bond, gives:

o . o 1 .,
o ’Yle'E[Tx—7101T1+2(7“2_7“§)} =0
A—Y2 B NV DS _
C5 PRy - E Ty — Yaloly + 2(7"6 )| = 0
Combining, we get:
E[(y1é1 — 7262) 7] =0 (7)

That is, we need first order expressions for consumptions of country 1 and 2, and of excess
returns. Those are found by log-linearizing (E5’), (E6’) and the definition of excess returns,
R. = Y/p, and substituting the ar, term with a mean-zero shock £ in (E5):

Ciér = & +60Y 0,
Coty = Yi—Chéy,
Po= Y
Plugging the above expressions for ¢1, ¢; and 7, into equation (7), using the fact that
C1=0Y and Cy = (1 — 90) Y and plugging back a.7, for &, we get:

(’yl(ae-f-eo) 72(1_60_05@)) EQ% _ <’}/1(Oée+90) ’)/2(1—490—Oée)>€2 —0

60 1—0°

69 1—60

5That is, both countries’ Euler equations with respect to the risky and with respect to the safe asset.

10



where we used § = ez and Ez? = 1.
Solving the last equation for a., we get:

_ Y2 — 71 0 0
Qe = 71(1_90)+72909 (1—-67) (8)
Because our model is static and we have & = 0, and because the size of uncertainty, ¢,
does not in any other way affect the portfolio solution under the DS method, there is a strong
implication: it turns out that in our two-period model also higher-order approximations, up to
any order, are identical to the constant zero-order part of the solution, &.. The DS portfolio
solution for # is then obtained as:

0:90+%,Where Qe = Q. 9)
p

The property of . which is key here, is that it is invariant to the size, or any other statis-
tical properties (i.e. skewness, kurtosis etc.), of the shock z in the model. It should be clear
that this is true in our model from inspecting equation (2) — c only depends on the difference
between the two investors’ risk aversion parameters and the initial equity endowments.!©.

Once the optimal «, is found, the solution to 6 can be found from 6 = #° + 2. While
from equation (8) it is clear that . does not depend on the size of shocks, ¢, this is not
generally true for 6, as p in general will depend on € in higher-order approximations. To see,
how the portfolio solutions from the DS method would perform if one accounted for this, we
use the solution for p from the true portfolio solution method. The idea is, that at best, an
infinite-order Taylor approximation would converge to the true function p(¢). As the first
row of Figure 2 shows, p () is, however, a decreasing function of ¢ (the return on the risky
asset increases as the size of shocks increases, so its price falls). This implies, that allowing
p to vary with € would actually worsen the portfolio solution results from the DS method,
which is confirmed in the second row of Figure 2; 9 increases as € increases.

A.4 Details of the Judd-Guu Solution

The system in (1) implicitly defines 0 (¢) and p (¢). Denote this system H (6 (¢),p(¢),e) = 0.
However, the implicit function theorem cannot be applied to analyze (1) around € = 0, since
assets are perfect substitutes in such case and must trade at the same price; that is, we
must have p (0) = 1. However, 6 (0) is indeterminate because H (6,p,0) = 0 for all §. The
indeterminacy of 6 implies that Hy (6,1,0) = 0, ruling out application of the implicit function
theorem.

Judd and Guu (2001) show how one can use the bifurcation theorem to solve the above
problem. The bifurcation approach requires that the Jabobian matrix H g ) is a zero matrix.
While at e = 0, 6 (0) is indeterminate, there is only a single possible value for p (0) and p’ (0);
so the Jacobian H(y,) would in fact not be a zero matrix. We follow Judd and Guu (2001)
in solving this problem by reformulating the problem in terms of the price of risk, 7, instead
of the price of equity, p. That is, we parameterize the equity price as pe = 1 — &2 (), where

16Gtrictly speaking, the finding that e is invariant to changes in the size of uncertainty does not imply that
the same is true for 0, as the equity price, p, generally does depend on ¢. In appendix A.3, we show that taking
into the account the effect of the size of shocks on p would, in fact, worsen the performance of the DS solution
for 6.
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Figure 2: Equity price from true solution, p!"“¢, and solutions for equity shares held by
country 1 investor.
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7 () is the risk premium in the e-economy. Since 02 = 1, €2 is the variance of risk and 7 (&)
is the risk premium per unit variance. This way, the system in (1) can be rewritten as

H(0(c),m(e),¢e) = (10)
E[ui(0(1+ez)+b°+ (g — 0) [1 —en])(z +em)]
E [u’g((l —0)(1+ez)—b°— (6p —0) [1 — 5277])(2 + ETF)]

Obtaining the coefficients of the Taylor series expansion of 6 (g), given by

2 3
0(c) =0y +0 (0)e+0" (0)%+9"’ (0)%+..., (11)
is then conceptually straightforward. To find 6y, one needs to differentiate function H
with respect to e, to find 6’ (0) one needs to differentiate function H w.r.t. ¢ the second time,

to find 6" (0) the third time, etc., and needs to evaluate those derivatives at £ = 0.
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