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The operation of each hair cell within the cochlea generates a change in electrical potential at the

frequency of the vibrating basilar membrane beneath the hair cell. This electrical potential influen-

ces the operation of the cochlea at nearby locations and can also be detected as the cochlear micro-

phonic signal. The effect of such potentials has been proposed as a mechanism for the non-local

operation of the cochlear amplifier, and the interaction of such potentials has been thought to be the

cause of the broadness of cochlea microphonic tuning curves. The spatial extent of influence of

these potentials is an important parameter for determining the significance of their effects.

Calculations of this extent have typically been based on calculating the longitudinal resistance of

each of the scalae from the scala cross sectional area, and the conductivity of the lymph. In this

paper, the range of influence of the electrical potential is examined using an electrical finite element

model. It is found that the range of influence of the hair cell potential is much shorter than the con-

ventional calculation, but is consistent with recent measurements.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4964897]

[BLM] Pages: 2769–2779

I. INTRODUCTION

The hair cells of the cochlea provide an essential func-

tion in the transduction of sound; the inner hair cells acti-

vate neurons, while the outer hair cells (OHCs) provide

mechanical amplification of the sounds. For both inner hair

cells and OHCs, their function arises from a flow of ions

modulated by mechanical deflection of their stereocilia.

This ion flow causes a change in the electrical potential

near the cells.

This change in electrical potential propagates as an elec-

trical field and can influence the operation of the cochlea

outside of the hair cell that caused the change. Electrodes

both inside and outside of the cochlea can detect these

changes, recording a signal known as the cochlear micro-

phonic (Wever and Bray, 1930).

The effect of this propagation has been proposed as a

mechanism for non-local operation of the cochlear amplifier

(Dallos and Evans, 1995; Dimitriadas and Chadwick, 1999).

The frequency of the electric field is the frequency of

the basilar membrane vibration at any given hair cell loca-

tion. Destructive interference between potentials generated

at different positions within the cochlea has been thought to

be the cause of the broadness of cochlea microphonic tuning

curves compared with mechanical basilar membrane tuning

curves (Patuzzi, 1987).

The physical distance over which these potentials propa-

gate is an important parameter for determining the signifi-

cance of their effects. Calculations of this range has

typically been based on calculating the longitudinal resis-

tance of each of the scalae from the scala cross-sectional

area, and the conductivity of the lymph. These calculations

appear in Strelioff (1973), and many models of electrical

interactions within the cochlea have used this as a basis

(Ayat et al., 2014; Ayat and Teal, 2013; Honrubia et al.,
1973; Mistr�ık et al., 2009; Ramamoorthy et al., 2007; Teal

et al., 2011). Models based on this approach typically

include “ladder” networks of resistors. These have been

described as resistive cable models.

It has been suggested that the voltage decays exponen-

tially with the distance from the active hair cell, with a

decay constant or space constant (distance for voltage to

decay by 1/e of the original amplitude) of 0.5–4 mm (Geisler

et al., 1990). Johnston et al. (1966) used measurements with

electrodes to estimate this distance in the scala media as

2 mm.

Another approach for modelling the propagation of elec-

tric fields was used by Chertoff et al. (2012) to examine

propagation of the electric field to a far field electrode. This

modelled each hair cell as multiple points of charge.

In this paper, the propagation of the electrical field in

the cochlea is examined using an electrical finite element

model. The great advantage of finite element methods

(FEMs) over many other modelling techniques is that they

are capable of modelling structures of high complexity, such

as the cochlea. This ability has, for example, permitted accu-

rate modelling of cochlear micro-mechanics (Ni et al.,
2016). Electrical FEMs have been used to study the behav-

iour of cochlear implants (Briaire and Frijns, 2000; Choi and

Wang, 2014; Saba, 2012; Sue et al., 2013; Tran et al., 2011;

Tran et al., 2013). Harland et al. (2015) present a verya)Electronic mail: paul.teal@vuw.ac.nz
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detailed model of OHC membranes. FEMs, however, do not

appear to have been previously used to model the propaga-

tion of fields from hair cells.

II. THE FINITE ELEMENT COCHLEA

A. Human cochlear geometry

The cochlea is a multi-scale complex structure and its

geometry is usually simplified for modelling purposes. We,

however, have developed a set of detailed geometrical models

of the human cochlea based on histological images obtained

at different positions along the cochlea corresponding to dif-

ferent characteristic frequencies (Bellos et al., 2014), as

shown in Fig. 1. In each model, the scala vestibuli and scala

media are separated by the Reissner’s membrane, and the

organ of Corti, located between the scala media and scala

tympani, contains receptor cells consisting of one row of inner

hair cell and three rows of OHCs, as well as supporting cells

including the pillar cells. The geometries were meshed into

quadrilaterals as shown in Fig. 1, and a close-up view of the

organ of Corti at 12 mm from the base is shown in Fig. 2.

The slices were then extruded so that each quadrilateral

element becomes a hexahedron, as shown in Fig. 3. When the

extrusion is performed, the hair cells were made to have

approximately the same size in the radial and tangential dimen-

sions. Three slices of hair cell elements are alternated with

three slices of the supporting material elements. The extrusion

was arranged to include the curvature of the cochlea, as shown

in Fig. 3. The radius of curvature is approximately 3.8 mm at

the base, decreasing to 1.2 mm at the apex (Yoo et al., 2000).

This curvature was not found to cause any significant effect on

the results. A limitation of the extrusion approach is that it can-

not easily be used to analyse the effect of electrical propagation

on the opposite side of the cochlea. The reason for this is

because of the discontinuity that results at the centre of the

rotation, analogous to a branch point encountered in complex

analysis (Cohen, 2007). With sufficient elements, the extrusion

approach could be used to model propagation between the turns

on the same side of the cochlea. However (using the 12 mm

slice as an example), the number of elements (8874) within

each slice, and the number of nodes (8975) meant that

computer memory was a limitation long before a complete turn

of the cochlea could be modelled. The results presented are for

extrusions of 57 elements along the tangential direction, lead-

ing a total of 505 818 elements and 520 550 nodes.

Convergence of the mesh is an important consideration. A

full mesh-convergence analysis was not feasible with the com-

puter memory available, but convergence was examined by

varying the fineness of the mesh in the tangential direction. It

was found that variation of the decay rate was not great after

about three elements per row, which is the value used in the

manuscript. The decay rate appeared to increase slightly with

the finer mesh (the length constant decreased by at most 40%),

which is consistent with the results we discuss later.

Details of the electrostatic FEM technique are presented

in Appendix A.

B. Boundary conditions

A critical factor in any physical modelling is the specifi-

cation of boundary conditions. It is assumed that the

FIG. 1. (Color online) Meshed cochlea slices (a) 12 mm from the base, (b) 19 mm from the base, and (c) 24 mm from the base. The surrounding material is

bone. The length bars indicate 1 mm.

FIG. 2. (Color online) Close up the mesh cross section at 12 mm from the

base. (SV) Scala vestibuli, (SM) scala media, (ST) scala tympani, (SG) spiral

ligament, (PC) pillar cell, (IHC) inner hair cell, (ISC) inner sulcus cells, (TM)

tectorial membrane, (RL) reticular lamina, (STOx) OHCs stereocilia, (OHCx)

OHCs, (HC) Hensen cells, (BM) basilar membrane, (STI) inner hair cell stereo-

cilia, (LM) spiral limbus, (DC) Deiters cells, (RM) Reissner’s membrane, (TC)

tunnel of Corti, (BT) sub-tectorial space. The length bar indicates 100 lm.
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electrical potential at locations exterior to the cochlea is

zero. Ideally this would be modelled by a boundary at a con-

siderable distance, but due to the limitation of the available

geometry and the number of elements, the zero voltage is

located at the visible boundaries (i.e., the front, rear, upper

and lower surfaces, and the two curved surfaces) seen in

Fig. 3. For consideration of electrical interaction between

hair cells that are near each other, this boundary condition

was found to have negligible effect on the results. This was

determined by locating an active row of hair cells at different

positions within the simulated volume. The maximum devia-

tion in the voltage decay rates estimated in this way was

approximately 0.1%. The effect is not negligible for the vol-

tages in the scala vestibuli and scala tympani, but this does

not alter the conclusions of the study.

The electrical excitation provided by the hair cells is

assumed to take the form of a current. This was modelled by

a time-varying dipole of charge, with the apex and base of

the hair cell carrying equal and opposite charge. At the apex

of the cell, the charged region was the elements representing

the stereocilia. For the base, the charged region was all the

hair cell elements below the reticular laminar. The charge

density in each element was calculated by dividing the unit

charge by the sum of the volumes of the elements corre-

sponding to these two regions.

C. Material properties

The material properties used in the finite element model

are listed in Table I. Some conductivities are from Briaire

and Frijns (2000), who refer to Finley et al. (1990) and

Suesserman (1992). Sue et al. (2013) cite Cantrell et al.
(2008) as giving perilymph properties of conductance

r¼ 1420 mS/m and relative permittivity er¼ 78. It has been

assumed that inter-species variation in these properties is

insignificant. Some helpful discussions of the variations

between the various sources are presented in Saba (2012),

who refers to Finley et al. (1990), Briaire and Frijns (2000),

and Rattay et al. (2001). Some additional material properties

are provided by Dallos (1984), Tran et al. (2013), and Jia

et al. (2007).

The material properties not included in the table are not

known. These materials that were separately segmented, but for

which information on electrical properties was unavailable were:

the tectorial membrane, Deiters’s cells, Hensen cells, pillar cells,

inner sulcus cells, and the hair cells themselves (both inner and

outer). These are components of the organ of Corti, and were

thus assumed to have a conductivity of about 14 mS/m and a rel-

ative permittivity of about 78. The spiral limbus and spiral lam-

ina were given properties close to those of bone.

There were no two materials that were assigned exactly

the same value, because some slight variation in properties

would normally be expected to be present. Some experimen-

tation was conducted in which the material properties were

changed, some of them fairly significantly (variation of 50%

from the initially specified values). In particular, the conduc-

tivity of the reticular lamina (one of the unknown properties)

was subject to scrutiny because this is very near the hair

cells. Although detectable, these variations did not alter any

of the conclusions of this paper.

D. Post-processing

Modelling the current passing through an OHC as a

time varying charge dipole results in the matrix equation

FvFEM ¼ q; (1)

where vFEM is a vector of unknown node voltages and vector

q represents the element charges. We use a frequency

domain implementation, and an assumed time dependence

ejxt in the voltages and currents, where t is time, x is the

angular frequency and j ¼
ffiffiffiffiffiffiffi
�1
p

. The element charges are

zero except for the elements of the active hair cells, for

which q ¼ iFEM=ðjxÞ where iFEM is the current. The system

matrix F consists of real and imaginary parts,

F ¼ F� �
j

x
Fr; (2)

where F� contains information about the permittivity of the

materials, and Fr contains information about the conductiv-

ity of the materials.

FIG. 3. (Color online) Extrusion of the cochlea slice to permit the modelling

of longitudinal electrical coupling. Note that the tangential extent of the

extrusion has been exaggerated in this illustration by a factor of approxi-

mately 20 to make the curvature more visible. The length bar indicates

1 mm.

TABLE I. Electrical properties of cochlear material.

Material Conductivity (mS/m) Permittivity (relative)

Endolymph 1680 Strelioff (1973) —

Perilymph 1420 Strelioff (1973) 78 Cantrell et al. (2008)

Bone 10 Tran et al. (2013) 800 Kosterich et al. (1983)

Reissner’s membrane 2 Saba (2012) —

Basilar membrane 27 Saba (2012) —

Stria vascularis 5.3 Briaire and

Frijns (2000)

—

Organ of Corti 12 Briaire and

Frijns (2000)

—
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Thus Eq. (1) can be written as

F� �
j

x
Fr

� �
vFEM ¼

i

jx
; (3)

and multiplying by jx gives

ðFr þ jxF�ÞvFEM ¼ iFEM: (4)

It is shown in Appendix A that the corresponding ele-

ments of xF� are considerably smaller than those of Fr,

because they depend, respectively, on the real and imaginary

parts of Eq. (A2). This means that the voltages vFEM can be

obtained using a Taylor expansion of the matrix inverse:

vFEM ¼ ðFr þ jxF�Þ�1iFEM

�ðF�1
r � jxF�1

r F�F
�1
r ÞiFEM: (5)

The approximate frequency independence of <ðF�1Þ and of

=ðF�1=xÞ has been empirically confirmed (the norm of the

variations encountered when varying the frequency over the

range 1 Hz to 20 kHz, when divided by the norm of the actual

voltages, is less than 8� 10�4). This result means that the

equation need not be solved separately for every frequency.

In many cases, the first approximation vFEM ¼ F�1
r iFEM may

be sufficiently accurate. Indeed, most studies of electrical

effects in the scalae of the cochlea have assumed this result:

that resistive effects dominate, and capacitive effects repre-

sented by F� can be ignored. But if more accuracy is desired,

a second approximation based on Eq. (5) does not require

much more computation. One way to perform this computa-

tion is to solve the matrix problem using a matrix F based on

a small value of frequency x and scale the imaginary part of

vFEM to obtain the result for other frequencies.

It may be desirable to compare the results of the finite

element model with that of a lumped parameter model of

electrical conduction along the scalae; we make this compar-

ison in Sec. IV. For this we define a vector of currents

through OHCs ix and voltages across OHCs vx. The number

of elements in these vectors will depend on the number of

sections of the lumped parameter model used to represent

the cochlea but is typically less than 1000.

The vector vx is derived from vector vFEM by taking the

difference between the average of the voltages of the nodes

of the hair cell somata and the average of the nodes of the

stereocilia. This operation is represented by matrix Cv. The

vector iFEM is calculated from ix by distributing this current

as time varying charge among the elements of the hair cells.

This operation is represented by the matrix Ci. Combining

vx ¼ CvvFEM and iFEM ¼ Ciix, we have

vx ¼ CvF�1Ciix; (6)

or equivalently

ix ¼ ðCvðFr þ jxF�Þ�1CiÞ�1vx; (7)

which, because of the small values in F�, can be approxi-

mated as

ix � ððCvF�1
r CiÞ�1 þ jxðCvF�1

r CiÞ�1CvF�1
r F�

� F�1
r CiðCvF�1

r CiÞ�1Þvx

�ðCvF�1
r CiÞ�1vx: (8)

The approximate frequency independence of <ððCvF�1CiÞ�1Þ
and of =ððCvF�1CiÞ�1=xÞ has also been empirically con-

firmed to produce less error than 0.1% over the frequency

range 1 Hz to 20 kHz.

III. RESULTS

A. Finite element model

The real part of the voltages resulting from unit current

flowing through a single row of three hair cells is shown in

Fig. 4 for the 12 mm slice. Contributions from the inner hair

cell are ignored, and it is assumed that the three hair cells in

the row operate in phase with each other.

Inner hair cell electrical activity could be modelled sep-

arately, and combined with the OHC activity, although the

frequency and phase relationship between the two is strongly

frequency dependent, and we have not done so here.

The OHCs can only be considered to be approximately

in phase for both mechanical stimulation (Fridberger et al.,
2002) and electrical stimulation (Nowotny and Gummer,

2011; Nuttall et al., 1999). The first and second rows of

OHCs move in-phase with both acoustical and electrical

excitations, as shown in Figs. 4 and 8 of Ni et al. (2016) and

also observed by Karavitaki and Mountain (2007) in the

excised cochlea with electrical stimuli. The third row moves

not strictly in-phase with the other two rows when excited

electrically, due to greater influence from the Hensen cells,

as shown in Fig. 4 of Ni et al. (2016) and Fig. 12 of

Karavitaki and Mountain (2007). Figure 4 of Ni et al. (2016)

suggests that the phase variation is for combined mechanical

and electrical stimulation is almost undetectable for frequen-

cies below 1 kHz, but the variation between OHC row 1 and

row 3 rises to about 15� at 5 kHz.

The results for the 19 and 24 mm slices are qualitatively

similar to those for the 12 mm slice. A feature of these

results that is immediately apparent is that the voltage

decays rapidly with distance, and so this feature of the

results was studied in more detail. The effect induced by an

electrical potential on a hair cell is assumed to be measurable

as the potential difference between the voltage in the hair

cell, and the voltage at the stereocilia. The voltages at the

nodes representing each of these were averaged across the

three hair cells in each row, and then the difference between

the resulting two quantities obtained. This is presented ver-

sus the distance from the active row in Fig. 5(a). For separa-

tion between the hair cell rows of approximately 10 lm, the

space constant appears to be approximately 11 lm for the

slice 12 mm from the base, and close to 20 lm for the 19 mm

and 24 mm slices. This is very different from the values in

the range 0.5–4 mm assumed by Strelioff (1973) and the

other authors listed in Sec. I, and measured by Johnston

et al. (1966). The result is however much closer to the 42 lm

space constant reported by Fridberger et al. (2004), and the

80 lm space constant reported by Dong and Olson (2013).
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There is such a discrepancy between these results that some

explanation is necessary, and the FEM can assist in provid-

ing this explanation.

The most immediate suggestion is that the proximity of

the boundaries of the finite element model at 0 V are impos-

ing an unrealistically high rate of decay. It is true that the

effect of the boundary is not negligible and is apparent in

Fig. 5, causing the last value to deviate from the decay rate

seen closer to the active hair cells. The extent of this effect

was investigated by making the active row asymmetrically

located: the simulated volume includes nine rows of hair

cells, and so if rows other than number five are active, the

decay is somewhat asymmetrical. It was found that the

change in decay is only significant in the row closest to the

boundary. The space constant was not significantly influ-

enced (variation of about 0.1%) by the location of the

boundary.

Another possibility is that the reticular laminar provides

a significant insulating effect between the endolymph, in

which the stereocilia are located, and the organ of Corti, in

which the somata of the OHCs are located. By preventing

electrical propagation between these two regions, the reticu-

lar lamina could extend the range of electrical propagation.

As mentioned in Sec. II C this possibility was investigated

by decreasing the conductivity of the reticular laminar (from

the default value of 12 mS/m) to very low values. The effects

were visible but did not appreciably change the space

constant.

The real difference between the finite element model,

and previous work, is that earlier models have assumed that

currents that flow through the hair cells cause voltage

changes across the entire cross section of the scalae, in order

for the resistance values based on the scalae cross-sectional

areas and conductivities to be relevant. Modelling the hair

cells as current dipoles raises the possibility that this coupling

into the scalae does not occur; the geometry of hair cell con-

nection to the scalae becomes an important consideration.

B. Simple dipole model

In this section, we present results of a small investiga-

tion into the behaviour of a current dipole. This abstracts the

situation somewhat from a realistic geometry but allows the

essence of our understanding of the situation to be more eas-

ily understood.

A unit length dipole (representing the active hair cell)

having unit (positive and negative) charges is placed at the

origin. Another dipole (representing another hair cell) is

placed at an arbitrary position near the first dipole, and

aligned parallel to it. The voltage induced by the first dipole

in the second was investigated by simply applying

Coulomb’s law. The effect of a grounded boundary sphere

of radius five dipole lengths was also investigated using the

method of image charges (Tikhonov and Samarskii, 1963).

The grounded boundary condition of the finite element

model is considerably further from the hair cells than this.

The results are shown in Fig. 6 and it is apparent that the

proximity of a grounded boundary condition has perceptible

but insignificant effect on the voltage. It is also apparent that

the decay is very rapid. The decay rate is shown in Fig. 7.

FIG. 4. (Color online) Voltages (a) in the plane of the active hair cell, (b) between the active and the adjacent hair cell row, (c) at one row distance and (d) at

two rows distance. The colour maps are generated using the method of Green (2011) for viewing in colour or greyscale. The length bars indicate 10 lm. The

scale is in kilovolts per ampere of hair cell current.
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The curves are not a good fit to an exponential decay; rather,

the voltages decays inversely with distance as one would

expect from a monopole charge (for the finer tangential

mesh mentioned earlier in connection with convergence, the

behaviour variation also showed this tendency). However,

near the dipole, the space constant can be calculated as being

about 0.1–0.4 dipole lengths, depending on the relative posi-

tions of the two dipoles.

Although this simple study does not bear great resem-

blance to conditions inside the cochlea, it does show clearly

that the strongest single factor influencing the range of influ-

ence of a hair cell modelled as a current dipole will be the

length of the hair cell, and the space constant will be on the

order of this length. OHCs increase in length towards the

apex, but are typically in the range 25–45 lm. The implica-

tion of this is that the extent of electrical coupling within the

cochlea may be much weaker than has been supposed in pre-

vious studies.

The voltage decay rate measured using electrodes

inserted into the scalae as per Johnston et al. (1966) do not

accurately reflect the range of influence of dipoles the size of

hair cells. Such electrodes will measure the resistance

through a large cross section of perilymph or endolymph.

Hair cells are prevented from coupling into the scalae in this

way because they are essentially small current dipoles. The

more recent measurements of Dong and Olson (2013)

involve measurements closer to the actual location of hair

cells, and more closely reflect the action of current dipoles.

IV. EQUIVALENT LUMPED PARAMETER MODEL

The models that have been used to predict a greater

range of influence (up to 4 mm) of hair cell electrical activity

are similar to that of Strelioff (1973). An interesting question

is whether the parameters of such a model can be modified

so as to produce results similar to the finite element model

presented here. We consider here the model shown in Fig. 8.

This model is very similar to that of Ramamoorthy et al.
(2007), although the nomenclature of the resistance compo-

nents is chosen to be similar to that of Strelioff (1973). An

(a)

(b)

FIG. 5. (Color online) Voltage decay with distance from the active hair cell

row. The dashed lines added in (b) are lines minimising the mean squared

error for exponential decay. Since the response is the voltage per unit cur-

rent, it has the dimensions of impedance.

(a)

(b)

FIG. 6. (Color online) Voltage induced by a unit charge dipole at other

dipole positions oriented parallel to the source dipole. The units are in dipole

lengths. In (a) the boundary is at infinite distance, while in (b) a grounded

sphere of radius five dipole lengths surrounds the dipole. It can be seen that

the voltage decays rapidly with distance from the charged dipole, and that

this conclusion is not altered by proximity of a boundary.
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original feature of the model of Fig. 8 is that the electrical

properties of the scalae have been separated from those of

the hair cells. By analogy with models of cochlear mechani-

cal behaviour, we call these two properties the macro-

electrics and the micro-electrics, respectively. We do not

consider the micro-electrics further here, but instead focus

on the macro-electrics, shown on the left side of Fig. 8, as

this is the part of the model that is functionally equivalent to

the finite element model.

The circuit analysis of Fig. 8 is contained in Appendix

B, where it is shown that the voltages across the hair cells

and current through the hair cells can be represented as

Yvx ¼ ix: (9)

It is clear that Eq. (9) is essentially equivalent to Eq. (6),

although the lumped parameter model only includes resistors

at this stage. The slices used in the finite element model at

12, 19, and 24 mm from the base yield the values near the

diagonal of three columns of the diagonally dominant matrix

Y. The resistances R1ðnÞ;…;R11ðnÞ were allowed to vary

logarithmically along the length of the cochlea, parameter-

ised by the values at n¼ 1 (at the cochlea base) and n¼ 3500

(at the cochlea apex). The scala tympani and scala vestibuli

are effectively shorted together at the apex, while the scala

media is an open circuit at the apex.

A simple search using the method of Nelder and Mead

(1965) was used to find values of these resistances that mini-

mised the sum of squared errors between results of the finite

element and lumped models. The resulting similarity between

the models is shown in Fig. 9. The result was found to be rela-

tively insensitive to the values of R1, R2, and R8 so these were

left similar to the values of Strelioff (1973). The resulting

parameters are listed in Table II. It can be seen that some of

these values are far from those calculated on the basis of the

conductivity of the lymph cross-sectional areas of the scalae;

the least physiologically realistic value is the value of the

scala media to ground resistance, that nearly vanishes at the

apex. However, these model parameters yield electrical cou-

pling very close to that of the finite element model. This is

only one parameter set, and as the process of matching

between the models is rather under-determined, it is possible

that there are other parameter sets corresponding to local min-

ima of the error function that could perform equally well in

reconciling the two models. If more than three cochlear cross-

sections were available for the finite element model, the

model-matching problem would be less under-determined,

and the simple logarithmic variation used here could be

replaced by a more flexible parameter variation.

It should be noted that in Dimitriadas and Chadwick

(1999) the resistance that is here labelled R11 does not

FIG. 7. (Color online) Decay rate for the voltage induced by a unit charge

dipole at another dipole of the same length. The three curves are for differ-

ent distances (measured in dipole lengths) from the perpendicular bisector

of the source dipole. The dotted lines indicate exponential decays based on

minimising the squared error of the first 1.5 wavelengths.

FIG. 8. (Color online) Separation of the model into macro-electrics (on the

left) and micro-electrics (on the right). The macro-electrics can be arranged

to provide an approximation to the functionality of the finite element model.

FIG. 9. (Color online) Comparison between the voltage resulting from unit

hair-cell current in the finite element model (solid) and the lumped parame-

ter model (dashed) at the three locations 12, 19, and 24 mm from the base.

These results differ from those of Fig. 5 by a factor of three because there,

the excitation consisted of three unit current dipoles, whereas here, the total

current across the three hair cells is a single unit.
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represent the scala tympani, but a conductive pathway

between OHCs and Dieter’s cells (Zwislocki et al., 1992).

V. CONCLUSION

The finite element model presented has several deficien-

cies. On the one hand, it is not large enough to model the

entire cochlea, and hence cannot model the possibility of

coupling between different turns of the scalae, nor can it

model coupling to an externally located electrode. On the

other hand, it is not detailed enough to accurately model the

detail of the hair cells and hair cell membranes. However,

for the purpose of modelling the range of electrical influence

of hair cells, the model is adequate. The model suggests

that the decay of electrical potential with distance from a

hair cell is much more rapid than has been considered the

case in several previous studies based on measurements or

on modelling the resistance of the scalae. At first, this result

may be surprising, but on closer consideration can be seen to

be the natural result of the small size of the hair cells, which

neither the earlier models nor the measurements using elec-

trodes in the scalae consider. The new results are more con-

sistent with the more recent measurements made closer to

the hair cells of Fridberger et al. (2004) and Dong and Olson

(2013).

It is possible that ion diffusion, such as investigated in

Zwislocki et al. (1992) have a longer range effect than elec-

tric field propagation. This could account for some of the

discrepancy between experiments that have measured the

length constant [the measurements of Johnston et al. (1966)

used current pulse of several seconds duration]. However,

such ion diffusion would necessarily operate at a much lon-

ger time scale than the (virtually instantaneous) electric field,

and so its effect at high frequencies is likely to be small.

Much longer ranges of hair cell electrical influence have

been considered to be the cause of the broadness of tuning of

the cochlear microphonic (Patuzzi, 1987). However, it was

shown in Ayat et al. (2015) that longitudinal coupling is not

required for the cochlear microphonic to have broad tuning

curves; rather the broadness is due to phase cancellation

between the hair cell and hair bundle voltages. The shorter

range of hair cell electrical influence proposed here is consis-

tent with these earlier observations.

Although it has not been shown here, the finite element

model can be readily extended to include the effects of inner

hair cell activity. The relative phase and amplitude of the

OHC and inner hair cell contributions are frequency depen-

dent, and this would need to be taken into account if the two

contributions were to be considered jointly.

It is important to note that the electrical coupling effects

modelled in this paper are entirely independent of cochlear

mechanics. However, the existence of bidirectional coupling

between electrical and mechanical phenomena mean that the

results of this investigation could have implications for

cochlea physiology. The results of the finite element model

have been summarised in a much more simple lumped

parameter model, and this makes the results much more

accessible for future studies of the effects of electrical cou-

pling within the cochlea.
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APPENDIX A: ELECTROSTATIC FEM

Many studies that apply FEM use commercial software.

In the current study, however, the method was entirely

implemented from first principles. The principles of acousti-

cal FEMs will be familiar to many JASA readers, but the for-

mulation for electrical studies may be less so, although the

formulations for acoustical and electrical studies are very

similar. This section presents a very brief overview of the

approach used and its limitations. The primary sources used

in the implementation were Zienkiewicz et al. (2013) and

Humphries (2010).

A first step is the determination of whether radiation

effects must be considered in the model. These can be

ignored if the wavelength is very much greater than the sys-

tem size, using what is called the low-frequency approxima-
tion. Using L for the largest linear dimension of the system,

x for the angular frequency, � for material permittivity, and

l for material permeability, this requirement can be

expressed as

Lx
2p

ffiffiffiffiffi
�l
p � 1: (A1)

Recall that the goal of this investigation is to study the

effects of the electrical potentials at audio frequencies. At

these frequencies, and for the relevant materials (the actual

material properties are presented in Sec. II C) the largest

value obtained for the left of Eq. (A1) is approximately

2� 10�5, and therefore this low-frequency approximation is

indeed valid.

TABLE II. Parameter set for the lumped parameter macro-electrics cochlea

model. The values vary logarithmically between the two values given for

the base and apex. To obtain the values for a lumped model the “lateral”

resistances R1,…,R6 should be divided by the length of one section, whereas

the “longitudinal” resistances R8,…,R11 should be multiplied by the length

of one section. The “classical” values are from Ramamoorthy et al. (2007),

based on Strelioff (1973), although the value of R6 is directly from Strelioff

(1973); R6 is effectively infinite in Ramamoorthy et al. (2007).

Base Apex Units Description “Classical”

R1 5 15 X m Scala vestibuli to ground 10

R2 30 25 X m Scala vestibuli to scala media 25

R5 0.028 0.098 X m Scala tympani to ground 4

R6 3 2� 10�8 X m Scala media to ground 27

R8 1 6 MX/m Scala vestibuli longitudinal

resistance

3

R9 2000 2000 MX/m Scala media longitudinal

resistance

5

R11 550 83 MX/m Scala tympani longitudinal

resistance

0.15
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There are no known nonlinear effects associated with

electrical field propagation in the cochlea.

We use a frequency domain implementation, where

the voltages and currents have an assumed time depen-

dence ejxt where t is time, x is the angular frequency and

j ¼
ffiffiffiffiffiffiffi
�1
p

. The model resembles an electrostatic one, with

conductivity r modelled as the imaginary part of a com-

plex permittivity

� ¼ �r�0 � j
r
x
; (A2)

where �0 is the permittivity of free space and �r is the mate-

rial relative permittivity. At a frequency of 20 kHz, the ratio

of the real part to the imaginary part of this permittivity for

bone is 0.089. For other materials and lower frequencies the

ratio is smaller. This means that although capacitive effects

are not negligible, they are small compared to the resistive

effects. This leads to the simplifying approximations used in

Sec. II D.

In electrostatic finite element modelling the key

unknown is voltage. The Euler-Lagrange approach to formu-

lating the finite element equations is to use hypothesised val-

ues of the voltages / to infer the electric field (E ¼ �r/
where r represents the gradient operator). From this the

electrostatic energy density ue¼ �E2/2 can be calculated,

where E is the magnitude of vector E. The Euler-Lagrange

functional is the total energy, given by the volume integral

of ue, thus given by

L¼
ððð

�

2

@/
@x

� �2

þ @/
@y

� �2

þ @/
@z

� �2
 !

�qfixed/

 !
dV;

(A3)

where qfixed denotes prescribed space charge.

The principle of stationary action requires that the deriv-

ative of this functional with respect to voltage is 0, and it is

this condition that enables a system of linear equations to be

formed, and the voltages calculated.

The FEM facilitates the equation formation for a com-

plex system by approximating the energy density integral

using shape functions defined on each element, and by evalu-

ating the voltages only at a finite number of nodes, usually

defined at vertices or edges of the elements (although there

can also be nodes in the interior of elements if greater accu-

racy is required).

In the present study, basic eight-node hexahedral ele-

ments were used. The eight shape functions of the form Ni

¼ ð16n1Þð16n2Þð16n3Þ; i 2 f1;…; 8g are defined for cubes

using local coordinates ð�1Þ � n1; n2; n3 � 1. The required

global derivatives (on the general hexahedra) using coordi-

nates x, y, and z are obtained from derivatives with respect to

the local coordinates (on the cubes) using

rx/ ¼ J�1rn/; (A4)

where the 3� 3 Jacobian matrix J contains the derivatives

with respect to n1, n2, and n3 (the rows) of x, y, and z (the

columns). The integral for each element is approximated

using Gaussian quadrature with weights w‘, wm, and wn on

the interval [�1, 1] and again transformed to global coordi-

nates using the Jacobian:ððð
gðx; y; zÞ dx dy dz

¼
ð1

�1

ð1

�1

ð1

�1

~gðn1; n2; n3ÞJðn1; n2; n3Þ dn1 dn2 dn3

�
X
‘

X
m

X
n

~gðn1‘; n2m; n3nÞJðn1‘; n2m; n3nÞw‘wmwn:

(A5)

The resulting sparse system of equations is solved by

first creating the incomplete LU factorisation of the FEM

matrix to use as a preconditioner, and then using the general-

ised minimum residual iterative method (Saad, 2003).

The correctness of the implementation was validated for

known geometries such as cylinders, for which analytic solu-

tions are available.

APPENDIX B: LUMPED MODEL DERIVATIONS

The circuit of Fig. 8 can be analysed using the node-

voltage approach, yielding the following equations:

At vsv,

�vsv n� 1ð Þ
R8 n� 1ð Þ

þ vsv nð Þ 1

R1 nð Þ
þ 1

R2 nð Þ
þ 1

R8 n� 1ð Þþ
1

R8 nð Þ

� �

� vsm nð Þ
R2 nð Þ

� vsv nþ 1ð Þ
R8 nð Þ

¼ 0: (B1)

At vsm,

� vsm n� 1ð Þ
R9 n� 1ð Þ �

vsv nð Þ
R2 nð Þ

þ vsm nð Þ 1

R2 nð Þ
þ 1

R6 nð Þ

�

þ 1

R9 n� 1ð Þ þ
1

R9 nð Þ

�
� vsm nþ 1ð Þ

R9 nð Þ
¼ V2 nð Þ

R6 nð Þ
� ix nð Þ:

(B2)

At vst,

� vst n� 1ð Þ
R11 n� 1ð Þ þ vst nð Þ

1

R11 n� 1ð Þ þ
1

R11 nð Þ

�

þ 1

R5 nð Þ

�
� vst nþ 1ð Þ

R11 nð Þ
¼ ix nð Þ; (B3)

and across the hair cell,

vsmðnÞ ¼ vstðnÞ þ vxðnÞ þ V1ðnÞ: (B4)

These equations can then be represented using a matrix

with diagonal blocks,
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GMACvMAC ¼ iMAC: (B5)

Assuming we have only linear perturbations about the

DC values, we can assume that V1ðnÞ ¼ V2ðnÞ ¼ 0, and can

further write that

iMAC ¼ Diix (B6)

where ix ¼ ðixð1Þ; ixð2Þ;…; ixðNÞÞT and

Di ¼ IN � ð0; �1; 1ÞT ; (B7)

where � represents the Kronecker product.

We also have

vxðnÞ ¼ vsmðnÞ � vstðnÞ; (B8)

and so

vx ¼ DvvMAC; (B9)

where vx ¼ ðvxð1Þ; vxð2Þ;…; vxðNÞÞT and

Dv ¼ IN � ð0; 1; �1Þ: (B10)

Combining these equations, we can write

vx ¼ DvG�1
MACDiix; (B11)

or equivalently

Yvx ¼ ix: (B12)
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