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Abstract

We prove that the reduced Kurosh rank of the intersection of two subgroups H and K
of a free product of right-orderable groups is bounded above by the product of the reduced
Kurosh ranks of H and K.

In particular, taking the fundamental group of a graph of groups with trivial vertex
and edge groups, and its Bass-Serre tree, our Theorem becomes the desired inequality of
the usual Strengthened Hanna Neumann conjecture for free groups.
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1 Introduction

Let H and K be subgroups of a free group F, and r(H) = max{0, rank(H) − 1}. It was an
open problem dating back to the 1950’s to find an optimal bound of the rank of H ∩ K in
terms of the ranks of H and K.

In [14], Hanna Neumann proved the following

r(H ∩K) ≤ 2 · r(H) · r(K). (1)

The Hanna Neumann Conjecture says that (1) holds replacing the 2 with a 1.

Later, in [15], Walter Neumann improved (1) to

∑

g∈K\F/H

r(Hg ∩K) ≤ 2 · r(H) · r(K), (2)

where Hg = g−1Hg. The Strengthened Hanna Neumann Conjecture, introduced by Walter
Neumann, says that (2) holds replacing the 2 with a 1.

These two conjectures have received a lot of attention, and recently, Igor Mineyev [12]
proved that both conjectures are true1. The fact that F is right-orderable plays a crucial role
in Mineyev’s proof.

1Independently and at the same time, Joel Friedman also proved these conjectures (See [6, 8])
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1.1 Definition. A group G is right-orderable if it admits a total order which is invariant under
the right G-multiplication action.

In particular, right-orderability is inherited by subgroups and implies torsion freeness.

We recall the well known Kurosh Subgroup Theorem [11], whose proof can be found in, for
example, [4].

1.2 Theorem (Kurosh Subgroup Theorem). Let G = ∗i∈IAi be a free product and H a
subgroup of G. Then

H = ∗(H ∩Ag
i ) ∗ F, (3)

where the g ranges over a set of double coset representatives in Ai\G/H for each i ∈ I and F
is a free group.

In view of the theorem, one would like to define the Kurosh rank of H with respect to the
free product ∗i∈IAi as the number of non-trivial factors (H ∩ Ag

i ) in (3) plus the rank of F .
One has to prove that this number is independent of the double coset representatives. This is
done in [10, Lemma 3.4].

However we prefer to give a different definition based on groups acting on trees. In our
approach, the Kurosh rank of H 6 G will depend on the action on a G-tree T rather in a
free product decomposition of G. We will denote the Kurosh rank by κT (H) and the reduced
Kurosh rank by κT (H) = max{0, κT (H) − 1}. We will give the formal definition of κT in
Section 2.

It is natural to consider to what extent Mineyev’s Theorem can be generalised to inter-
sections of subgroups of free products. It turns out that the Kurosh rank is the appropriate
concept to consider in this context. A proof of the Howson property for free products with
respect to the Kurosh rank can be found in [17, Theorem 2.13 (1)].

Let G be a group, T a G-tree with trivial edge stabilisers and H,K 6 G. Implicitly in [16,
Theorem 3], Soma proved that

κT (H ∩K) ≤ 18κT (H)κT (K).

To our knowledge, Burns, Chau and Kam, were the first studying explicitly the kurosh rank
of the intersection of subgroups in [3]. Ivanov [9] found that the inequality (1) holds for factor
free subgroups of free products of right-orderable groups. Later, Dicks and Ivanov [7] extended
this result to factor free subgroups of free products of torsion-free groups. In [10], Ivanov using
results obtained in [7] proved that if G is torsion free then

κT (H ∩K) ≤ 2κT (H)κT (K).

Our main result is the following

1.3 Theorem A. Let G be an right-orderable group and T a G-tree with trivial edge stabilisers.
Let H,K be subgroups of G. Then

∑

g∈K\G/H

κT (H
g ∩K) ≤ κT (H)κT (K).
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1.4 Remark. We note that if one considers a free group acting freely on a tree, then the
Kurosh rank of a subgroup and its genuine rank agree. Therefore the Strengthened Hanna
Neumann Conjecture is a corollary of Theorem A.

1.5 Remark. The main interest is when all these quantities are finite, but it is also true when
they are infinite, in which case we adopt the convention that 0 · ∞ = 0.

Mineyev’s brilliant Hilbert-module proof [12] yields to a very general result. Our proof of
Theorem A, is basically the same as the simplified version of Mineyev’s proof due to Warren
Dicks [5], which only applies to the special case of the strengthened Hanna Neumman conjec-
ture. A proof based on [12] and [5] that uses neither Hilbert-module theory nor Bass-Serre
theory was given in [13].

We note that the main tool for passing from the free group case and the free product case
is the proof of Theorem 2.4 and its application in Theorem 3.8, which says that the reduced
Kurosh rank is equal to the number of orbits of edges in the Dicks tree.

To obtain examples of groups and trees for Theorem A, we can consider G to be a graph
of groups with right-orderable vertex groups and trivial edge groups, and T the corresponding
Bass-Serre tree. In this case, the group is a free product of right-orderable groups. One can
prove that such group is right-orderable using the Kurosh Subgroup Theorem and [2, Theorem
2]. Another fairly simple proof of this fact is given in [1, Corollary 36].

2 Kurosh rank

Our notation and basic reference for groups acting on trees is [4]. The groups are acting on
the right.

2.1 Definition (Kurosh rank). Let G be a group and T a G-tree with trivial edge stabilisers
and H a subgroup of G.

Let cT (H) ∈ N∪ {∞} be the number of vertices vH ∈ V T/H such that v has a non-trivial
H-stabiliser. This is well defined since it is independent of the choice of the representative of
vH.

The Kurosh rank of H with respect to T is defined to be

κT (H) := cT (H) + rank(T/H),

where the rank(T/H), is the number of edges outside of a maximal subtree of T/H (equiva-
lently, rank(T/H) is the rank of fundamental group of the graph T/H, which is a free group).

The reduced Kurosh rank of H with respect to T is defined to be

κT (H) := max{0, κT (H)− 1}.

2.2 Remark. We note that the Kurosh rank of a subgroup depends on the free product
decomposition and not just the isomorphism type of the subgroup. Therefore, suppose we
took the free product of two surface groups, S1, S2. Then a free subgroup of infinite rank
inside S1 would have Kurosh rank 1, whereas a free subgroup of infinite rank meeting no
conjugate of either S1 or S2 would have infinite Kurosh rank.
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2.3 Proposition. Let H be a subgroup of G. Let T ′ be a H-subtree of T . Then κT (H) =
κT ′(H).

In particular, TH/H is finite (as a graph) if and only if κT (H) is finite.

Proof. This is an easy exercise in Bass-Serre theory.

2.4 Theorem. Let T be and H-tree and let T an H-tree obtained from T by collapsing an
H-subforest of T . Then

κT (H) =
∑

v∈V T /H

κT (Hv) + rank(T /H). (4)

In particular, the left hand side is infinite if and only if the right hand side is infinite.

Proof. Let φ : T → T be the natural quotient map, notice that this is an H-equivariant graph
map. We let φ be the induced graph map T/H → T /H.

As φ consists of the collapse of various subtrees to points, we have that φ−1(v) = Tv is
connected for any vertex v of T . Hence Tv is an Hv-subtree of T , where Hv is the stabiliser of
v ∈ V T .

Note that if, for some h ∈ H and Tvh ∩ Tv 6= ∅, then vh = v and hence h ∈ Hv. In
particular, the graph map Tv/Hv → T/H is injective.

For every vH ∈ V T /H we let Γv be the subgraph Tv/Hv of T/H and (Γv,Hv(−)) be the
associated graph of groups, which has fundamental group Hv by Bass-Serre Theory. Since
every vertex of T is in the pre-image of some vertex of T , we have that

V T/H =
⊔

vH∈V T /H

V Γv.

We view the edge set ET as a subset of ET , and the remaining edges of T are precisely
those which map to a vertex in T . Hence it is clear that,

ET/H =
⊔

vH∈V T /H

EΓv ⊔
⊔

eH∈ET /H

eH. (5)

We now consider the rank of the graph, T/H, which is simply the number of edges outside
of any maximal subtree. We construct a maximal subtree first by taking the union of maximal
subtrees of each Γv, and then enlarging the resulting forest to a maximal subtree, Y , of T/H.
We note that the map φ simply consists of collapsing each Γv to a point. Since each Y ∩ Γv is
connected, φ(Y ) must be a tree, and contains every vertex of T /H as φ is surjective. Hence
φ(Y ) is a maximal subtree of T /H. As before, we think of edges of T /H as being a subset of
the edges of T/H and, hence the edges of φ(Y ) as being a subset of the edges of Y .

Therefore, counting edges outside of Y and bearing in mind the disjoint union given by (5)
immediately gives that,

rank(T/H) =
∑

vH∈V T /H

rank(Γv) + rank(T /H). (6)
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In particular the left hand side is infinite if and only if (any term of) the right hand side is
infinite.

By Proposition 2.3, κT (Hv) = κTv (Hv). Since Tv/Hv = Γv, we have that κT (Hv) =
rank(Γv) + cTv(Hv). Moreover, since the ∪v∈V T /HV Γv = V T/H and (Γv ,H(−)) is the re-
striction of the graph of groups (T/H,H(−)) to the subgraph Γv we have that cT (H) =∑

v∈V T /H cTv (Hv). Thus

cT (H) +
∑

vH∈V T /H

rank(Γv) =
∑

vH∈V T /H

κT (Hv). (7)

Again, the left hand side is infinite if and only if the right hand side is infinite.

Now summing (7) and (6) we get that,

κT (H) +
∑

vH∈V T /H

rank(Γv) =
∑

vH∈V T /H

κT (Hv) + rank(T /H) +
∑

vH∈V T /H

rank(Γv).

Hence we are done if
∑

vH∈T /H rank(Γv) is finite. However, in the case that∑
vH∈T /H rank(Γv) is infinite, we deduce from (6) that the left hand side of (4) is infinite,

and from (7) that the right hand side of (4) is infinite.

3 Main Argument

Throughout this section G will be an right-orderable group and T a G-tree with trivial edge
stabilisers. G will act on T on the right.

An element g ∈ G is called elliptic if it fixes a point in T and is called hyperbolic if it does
not.

Given a hyperbolic g ∈ G, the axis of g, denoted Ag, consists of the subtree of points
displaced by the minimal amount by g (with respect to the path metric). This is always
non-empty and homeomorphic to the real line.

Associated to any non-trivial subgroup (not necessarily finitely generated), H 6 G there
is a minimal H-invariant subtree TH of T . In general, this will be the union of the axes of
hyperbolic elements of H except when every element of H is elliptic. In this case, a result of
Serre says that any finite set of elements of H have a common fixed point and therefore, as
edge stabilisers are trivial, there will be a unique point for the whole of H, in which case TH

will be the fixed vertex for H.

3.1 Remark. If, in Theorem A, either κT (H) or κT (K) is equal to infinity, then the theorem
holds. So without loss of generality we can assume that κT (H) and κT (K) are finite. Hence
κT (〈H ∪K〉) is also finite, and in view of Proposition 2.3, we can change G to 〈H ∪K〉, T to
T〈H∪K〉 and hence we can assume that T/G is finite.

Throughout the rest of the section T/G will be a finite graph.
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We fix an order < of G, and we use it to construct an order on the edges of T. We first put
any total order on ET/G, which is a finite set, and we denote it again by < . Then, we order
(ET/G) × G lexicographically, and use the natural bijection of this set with ET to order it.
That is (eG, g) ≤ (fG, h) if and only if eG < fG or eG = fG and g ≤ h. This ordering on the
edges of T is invariant under the action of G. We henceforth fix this ordering.

3.2 Definition (Dick’s Trees). Let T ′ be a subtree of T .

An edge e of T ′ is a T ′-bridge if there is a reduced bi-infinite path in T ′, containing e and
in which e is the <-largest edge.

For any subgroup H of G, we call an edge an H-bridge if it is a TH -bridge. Note that H
acts freely on the set of H-bridges.

Note that if T0 ⊆ T1 are subtrees of T then any T0-bridge is a T1-bridge. Hence, if H 6 K
are subgroups of G, then any H-bridge is also a K-bridge.

An H-island is a component of TH after all the H-bridges have been removed. Note that
H acts on the set of H-islands.

The Dicks H-tree, TH , is the H-tree whose vertices are the H-islands and whose edges are
the H-bridges. Note that all the edge stabilisers in TH are trivial.

3.3 Remark. The purely combinatoric concept of a T -bridge is introduced by Dicks in [5]
and corresponds to an order-essential edges in Mineyev’s terminology [12, Definition 2]. The
concept of islands correspond to relative components to the set of order-essential edges. The
relationship between bridges and order-essential edges is not at all obvious from the definitions
and that is why we use Dicks terminology.

3.4 Proposition. Let 1 6= H be a subgroup of G with κT (H) < ∞. Suppose that for every
H-island I in TH , the H-stabiliser HI has κT (HI) = 1. Then κT (H) is equal to |ETH/H|, the
number of orbits of edges in Dicks H-tree.

Proof. As κT (H) < ∞, TH/H is finite, and hence so is TH/H.

Since κT (HI) = 1 for all H-island I, we have that

∑

I∈V TH/H

κT (HI) = |V TH/H|.

By Theorem 2.4 we have that

κT (H) = |ETH/H| − |V TH/H|+ 1 +
∑

I∈V TH/H

κT (HI) = |ETH/H|+ 1.

Since H 6= 1, κT (H) = κT (H)− 1 = |ETH/H|.

Therefore the goal will be to show that for the tree TH , the stabiliser of any vertex has
Kurosh rank 1 (to obtain our main result Theorem 3.8). Equivalently, we need to show that
stabilisers of H-islands have Kurosh rank less than 2 (Proposition 3.5) and are non-trivial
(Proposition 3.7).
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3.5 Proposition. Suppose that H 6 G and that κT (H) ≥ 2. Then there is a H-bridge in TH .

Proof. If H fixes a vertex, TH will simply be this fixed vertex and κ(H) ≤ 1, contradicting the
hypothesis.

Now suppose that TH is a single line. If some h ∈ H fixes a vertex, then h2 fixes TH and
hence h2 = 1. This is impossible since H is right-orderable, and hence torsion free. Thus H
acts freely on TH , i.e. H ∼= Z, so has Kurosh rank 1, again contradicting the hypothesis.

Hence there exist two hyperbolic elements g, h ∈ H with distinct axes, Ag 6= Ah. These
two might intersect non-trivially, but they can only intersect in finitely many edges. If they
did intersect in an infinite ray, then the commutator ghg−1h−1 would fix an infinite subray
and hence an edge. However, the action is free on the edge set, and hence the commutator
would be the trivial element, implying that g and h commute and therefore have the same
axis, contradicting our choice of g and h.

Now choose a vertex v ∈ Ag and let p denote a path from vg−1 to vg with <-largest
edge e. By replacing g with g−1 if necessary, we may assume that e > eg. It follows that
e > eg > eg2 > . . . > egn . . .. Therefore e is the largest edge in the infinite ray starting with
e and continuing in the positive direction of the axis. (Note that the action of an hyperbolic
element g on its axis Ag induces an orientation of Ag with respect to which g translates in the
positive direction.) Likewise egn is the largest edge in the infinite ray starting with egn.

It follows that every infinite ray p∞ in Ag starting at any vertex of Ag and going in the
positive direction has a <-largest edge. Similarly, every infinite ray r∞ in Ah starting at any
vertex of Ah and going in the positive direction has a <-largest edge.

Thus there will exist a reduced bi-infinite path of the form p−1
∞ · q · r∞ where q is a finite

path from Ag to Ah; in the case where Ag and Ah are disjoint, q is the path from one axis
to the other, and in the case where they intersect, q is a subpath of the intersection, possibly
a single vertex. In either case, p−1

∞ · q · r∞ has a <-largest edge which is then a H-bridge in
TH .

3.6 Lemma. Suppose that H 6 G and that κT (H) = ∞. Then there are infinitely many
H-orbits of H-bridges in TH .

Proof. If |ETH/H| < ∞, then |V TH/H| < ∞ and also rank(T /H) < ∞. Hence, by Theorem
2.4,

∑
vH∈V T /H κT (Hv) = ∞. Therefore there exists an vH ∈ V T /H such that κT (Hv) = ∞.

So by Proposition 3.5, THv contains an Hv-bridge, and hence an H-bridge. This contradicts
the fact that Hv is the stabiliser of an island.

3.7 Proposition. Let H be a non-trivial subgroup of G with κT (H) < ∞ and let I be an
H-island in TH with stabiliser HI . Then HI is non-trivial.

Proof. If there is no H-bridge, then HI = H and, since H is non-trivial, HI is non-trivial.

Consider the set {e : e is a bridge whose initial point is in I}. Note that TH/H is a finite
graph, therefore if the set above is infinite, it must contain edges e and eh for some 1 6= h ∈ H.
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Clearly, by looking at initial points, h is a non-trivial element preserving I and we would have
that HI would be non-trivial.

Therefore, we may assume that the set above is finite and list the elements in order,
e1 < e2 < . . . < es.

Then e1 is the largest edge in a reduced bi-infinite path in TH . The tail of this path is a ray
whose initial vertex is in I and hence the entire ray must remain in I due to the minimality of
e1. Therefore, again as TH/H is finite, there are two distinct edges of I in the same H-orbit,
and therefore HI is non-trivial (and note that this is really a contradiction, since it implies
that the set above is infinite unless TH is a single vertex).

We now summarise the three propositions in one theorem.

3.8 Theorem. Let G be an right-orderable group and T an G-tree with trivial edge stabilisers
and finitely many orbits of edges. Let H be a subgroup of G. Then κT (H) is equal to |ETH/H|,
the number of orbits of edges in Dicks H-tree.

Proof. If H is the trivial group, then the theorem holds. So we assume H is non-trivial. If
κT (H) = ∞, then by Lemma 3.6, TH/H is also infinite, and the theorem holds. So we assume
κT (H) < ∞. For every H-island I, by Proposition 3.7, its H-stabiliser HI is non-trivial.
By Proposition 3.5, if κ(HI) ≥ 2 then there would be a THI

-bridge, which would imply the
existence of an H-bridge in I, contradicting the definition of I. Then κ(HI) = 1. The theorem
now follows from Proposition 3.4.

Proof of Theorem A. If either H or K is trivial, the theorem trivially holds. Hence, we assume
that H and K are non-trivial.

By Remark 3.1, the theorem also hold when the Kurosh rank of H or K is infinite. There-
fore, again by Remark 3.1, we can assume that T/G, TH/H and TK/K are finite.

The inclusions T(Hg∩K) ⊆ THg = (TH)g and T(Hg∩K) ⊆ TK induce a (diagonal) graph map,
sending e(Hg ∩K) to (eg−1H, eK). Therefore we get a map,

⋃

g∈K\G/H

T(Hg∩K)/(H
g ∩K) → TH/H × TK/K

which is injective on edges as edge stabilisers are trivial and the union is over distinct double
coset representatives.

In turn, this induces a map on the following edge sets:
⋃

g∈K\G/H

ET(Hg∩K)/(H
g ∩K) → ETH/H × ETK/K (8)

which is also injective.

By Theorem 3.8 we know that the number of edges in TH/H is equal to κT (H). And
similarly for K and Hg ∩K whenever they are non-trivial.

Therefore, the injectivity of the map (8) on edges, gives us the result.
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3.9 Remark. We note that in general, there is no obvious way to extend the map (8) to
a graph map. That is because, while (H ∩ K)-bridges map to H-bridges, it does not follow
that non-bridges map to non-bridges. In general, an (H ∩K)-island will consist of multiple H
islands as well as some H-bridges.

For instance, if H is free of rank 2 and K is any cyclic subgroup. Then TH∩K = TK is a
line and a K-island. However, this line will contain H-bridges unless the generator of K acts
elliptically on TH , which is not always the case.
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