Genome-wide association analyses identify new risk variants

and the genetic architecture of amyotrophic lateral sclerosis

- Wouter van Rheenen^{1,123}, Aleksey Shatunov^{2,123}, Annelot M. Dekker¹, Russell L. McLaughlin³,
- 5 Frank P. Diekstra¹, Sara L. Pulit⁴, Rick A.A. van der Spek¹, Urmo Võsa⁵, Simone de Jong^{6,7},
- 6 Matthew R. Robinson⁸, Jian Yang⁸, Isabella Fogh^{2,9}, Perry T.C. van Doormaal¹, Gijs H.P.
- 7 Tazelaar¹, Max Koppers^{1,10}, Anna M. Blokhuis^{1,10}, William Sproviero², Ashley R. Jones²,
- 8 Kevin P. Kenna¹¹, Kristel R. van Eijk¹, Oliver Harschnitz^{1,10}, Raymond D. Schellevis¹,
- 9 William J. Brands¹, Jelena Medic¹, Androniki Menelaou⁴, Alice Vajda^{12,13}, Nicola Ticozzi^{9,14},
- Kuang Lin², Boris Rogelj^{15,16}, Katarina Vrabec¹⁷, Metka Ravnik-Glavač^{17,18}, Blaž Koritnik¹⁹,
- Janez Zidar¹⁹, Lea Leonardis¹⁹, Leja Dolenc Grošelj¹⁹, Stéphanie Millecamps²⁰, François
- Salachas^{20,21,22}, Vincent Meininger^{23,24}, Mamede de Carvalho^{25,26}, Susana Pinto^{25,26}, Jesus S.
- Mora²⁷, Ricardo Rojas-García^{28,29}, Meraida Polak^{30,31}, Siddharthan Chandran^{32,33}, Shuna
- 14 Colville³², Robert Swingler³², Karen E. Morrison³⁴, Pamela J. Shaw³⁵, John Hardy³⁶, Richard
- W. Orrell³⁷, Alan Pittman^{36,38}, Katie Sidle³⁷, Pietro Fratta³⁹, Andrea Malaspina^{40,41}, Simon
- 16 Topp², Susanne Petri⁴², Susanne Abdulla⁴³, Carsten Drepper⁴⁴, Michael Sendtner⁴⁴, Thomas
- Meyer⁴⁵, Roel A. Ophoff^{46,47,48}, Kim A. Staats⁴⁸, Martina Wiedau-Pazos⁴⁹, Catherine Lomen-
- Hoerth⁵⁰, Vivianna M. Van Deerlin⁵¹, John Q. Trojanowski⁵¹, Lauren Elman⁵², Leo
- 19 McCluskey⁵², A. Nazli Basak⁵³, Ceren Tunca⁵³, Hamid Hamzeiy⁵³, Yesim Parman⁵⁴, Thomas
- 20 Meitinger⁵⁵, Peter Lichtner⁵⁵, Milena Radivojkov-Blagojevic⁵⁵, Christian R. Andres⁵⁶, Cindy
- Maurel⁵⁶, Gilbert Bensimon^{57,58,59}, Bernhard Landwehrmeyer⁶⁰, Alexis Brice^{61,62,63,64,65},
- 22 Christine A.M. Payan^{57,59}, Safaa Saker-Delye⁶⁶, Alexandra Dürr⁶⁷, Nicholas W. Wood⁶⁸, Lukas
- 23 Tittmann⁶⁹, Wolfgang Lieb⁶⁹, Andre Franke⁷⁰, Marcella Rietschel⁷¹, Sven Cichon^{72,73,74,75,76},
- Markus M. Nöthen^{72,73}, Philippe Amouyel⁷⁷, Christophe Tzourio⁷⁸, Jean-François Dartigues⁷⁸,
- Andre G. Uitterlinden^{79,80}, Fernando Rivadeneira^{79,80}, Karol Estrada⁷⁹, Albert Hofman^{80,81},
- Charles Curtis^{6,7}, Hylke M. Blauw¹, Anneke J. van der Kooi⁸², Marianne de Visser⁸², An
- Goris⁸³, Markus Weber⁸⁴, Christopher E. Shaw², Bradley N. Smith², Orietta Pansarasa⁸⁵,
- 28 Cristina Cereda⁸⁵, Roberto Del Bo⁸⁶, Giacomo P. Comi⁸⁶, Sandra D'Alfonso⁸⁷, Cinzia
- 29 Bertolin⁸⁸, Gianni Sorarù⁸⁸, Letizia Mazzini⁸⁹, Viviana Pensato⁹⁰, Cinzia Gellera⁹⁰, Cinzia
- 30 Tiloca⁹, Antonia Ratti^{9,14}, Andrea Calvo^{91,92}, Cristina Moglia^{91,92}, Maura Brunetti^{91,92}, Simona
- 31 Arcuti⁹³, Rosa Capozzo⁹³, Chiara Zecca⁹³, Christian Lunetta⁹⁴, Silvana Penco⁹⁵, Nilo Riva⁹⁶,
- 32 Alessandro Padovani⁹⁷, Massimiliano Filosto⁹⁷, Bernard Muller⁹⁸, Robbert Jan Stuit⁹⁸,
- PARALS registry⁹⁹, SLALOM group⁹⁹, SLAP registry⁹⁹, FALS Sequencing Consortium⁹⁹,

- 34 SLAGEN Consortium⁹⁹, NNIPPS Study Group⁹⁹, Ian Blair¹⁰⁰, Katharine Zhang¹⁰⁰, Emily P.
- 35 McCann¹⁰⁰, Jennifer A. Fifita¹⁰⁰, Garth A. Nicholson^{100,101}, Dominic B. Rowe¹⁰⁰, Roger
- Pamphlett¹⁰², Matthew C. Kiernan¹⁰³, Julian Grosskreutz¹⁰⁴, Otto W. Witte¹⁰⁴, Thomas
- Ringer¹⁰⁴, Tino Prell¹⁰⁴, Beatrice Stubendorff¹⁰⁴, Ingo Kurth¹⁰⁵, Christian A. Hübner¹⁰⁵, P.
- Nigel Leigh¹⁰⁶, Federico Casale⁹¹, Adriano Chio^{91,92}, Ettore Beghi¹⁰⁷, Elisabetta Pupillo¹⁰⁷,
- Rosanna Tortelli⁹³, Giancarlo Logroscino^{108,109}, John Powell², Albert C. Ludolph⁶⁰, Jochen H.
- Weishaupt⁶⁰, Wim Robberecht^{83,110,111}, Philip Van Damme^{83,110,111}, Lude Franke⁵, Tune H.
- 41 Pers^{112,113,114,115,116}, Robert H. Brown¹¹, Jonathan D. Glass^{30,31}, John E. Landers¹¹, Orla
- 42 Hardiman^{12,13}, Peter M. Andersen^{60,117}, Philippe Corcia^{56,118,119}, Patrick Vourc'h⁵⁶, Vincenzo
- Silani^{9,14}, Naomi R. Wray⁸, Peter M. Visscher^{8,120}, Paul I.W. de Bakker^{4,121}, Michael A. van
- Es¹, R. Jeroen Pasterkamp¹⁰, Cathryn M. Lewis^{6,122}, Gerome Breen^{6,7}, Ammar Al-
- 45 Chalabi^{2,124,125}, Leonard H. van den Berg^{1,124} & Jan H. Veldink^{1,124,125}

46

47 Affiliations:

- 48 1. Department of Neurology, Brain Center Rudolf Magnus, University Medical Center
- 49 Utrecht, Utrecht, The Netherlands.
- 2. Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of
- Basic and Clinical Neuroscience, London, UK.
- 3. Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin,
- 53 Dublin, Republic of Ireland.
- 4. Department of Medical Genetics, Center for Molecular Medicine, University Medical
- 55 Center Utrecht, Utrecht, The Netherlands.
- 5. Department of Genetics, University of Groningen, University Medical Centre Groningen,
- 57 Groningen, The Netherlands.
- 6. MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry,
- 59 Psychology & Neuroscience, King's College London, London, UK.
- 7. NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of
- Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- 8. Queensland Brain Institute, The University of Queensland, Brisbane, Queensland,
- 63 Australia.
- 9. Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico
- 65 Italiano, Milano, Italy.
- 10. Department of Translational Neuroscience, Brain Center Rudolf Magnus, University
- 67 Medical Center Utrecht, Utrecht, The Netherlands.

11. Department of Neurology, University of Massachusetts Medical School, Worcester, MA,

- 69 USA.
- 70 12. Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences
- 71 Institute, Dublin, Republic of Ireland.
- 72 13. Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland.
- 73 14. Department of Pathophysiology and Tranplantation, 'Dino Ferrari' Center, Università
- 74 degli Studi di Milano, Milano, Italy.
- 75 15. Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
- 76 16. Biomedical Research Institute BRIS, Ljubljana, Slovenia.
- 17. Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine,
- 78 University of Ljubljana, SI-1000 Ljubljana, Slovenia.
- 79 18. Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000
- 80 Ljubljana, Slovenia.
- 81 19. Ljubljana ALS Centre, Institute of Clinical Neurophysiology, University Medical Centre
- 82 Ljubljana, SI-1000 Ljubljana, Slovenia.
- 20. Institut du Cerveau et de la Moelle épinière, Inserm U1127, CNRS UMR 7225, Sorbonne
- Universités, UPMC Univ Paris 06 UMRS1127, Paris, France.
- 85 21. Centre de Référence Maladies Rares SLA Ile de France, Département de Neurologie,
- 86 Hôpital de la Pitié-Salpêtrière, Paris, France.
- 87 22. GRC-UPMC SLA et maladies du Motoneurone, France.
- 88 23. Ramsay Generale de Santé, Hopital Peupliers, Paris, France.
- 89 24. Réseau SLA Ile de France.
- 90 25. Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University
- 91 of Lisbon, Lisbon, Portugal.
- 92 26. Department of Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal.
- 93 27. Hospital San Rafael, Madrid, Spain
- 94 28. Neurology Department, Hospital de la Santa Creu i Sant Pau de Barcelona, Autonomous
- 95 University of Barcelona, Barcelona, Spain.
- 96 29. Centro de Investigación en red en Enfermedades Raras (CIBERER), Spain.
- 97 30. Department Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- 98 31. Emory ALS Center, Emory University School of Medicine, Atlanta, GA, USA.
- 99 32. Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK.
- 33. Centre for Neuroregeneration and Medical Research Council Centre for Regenerative
- 101 Medicine, University of Edinburgh, Edinburgh, UK.

- 34. Faculty of Medicine, University of Southampton, Southampton, UK.
- 35. Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield,
- 104 Sheffield, UK.
- 36. Department of Molecular Neuroscience, Institute of Neurology, University College
- 106 London, UK.
- 37. Department of Clinical Neuroscience, Institute of Neurology, University College London,
- 108 UK.
- 38. Reta Lila Weston Institute, Institute of Neurology, University College London, UK.
- 39. Sobell Department of Motor Neuroscience and Movement Disorders, Institute of
- 111 Neurology, University College London
- 40. Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of
- 113 London, London, UK.
- 41. North-East London and Essex Regional Motor Neuron Disease Care Centre, London, UK.
- 42. Department of Neurology, Hannover Medical School, Hannover, Germany.
- 43. Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg,
- 117 Germany.
- 44. Institute of Clinical Neurobiology, University Hospital Wuerzburg, Germany.
- 45. Charité University Hospital, Humboldt-University, Berlin, Germany.
- 46. University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of
- 121 Neuroscience, The Netherlands.
- 47. Department of Human Genetics, David Geffen School of Medicine, University of
- 123 California, Los Angeles, CA, USA.
- 48. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human
- Behavior, University of California, Los Angeles, CA, USA.
- 49. Department of Neurology, David Geffen School of Medicine, University of California,
- 127 Los Angeles, CA, USA.
- 128 50. Department of Neurology, University of California, San Francisco, CA, USA.
- 51. Center for Neurodegenerative Disease Research, Perelman School of Medicine at the
- 130 University of Pennsylvania, Philadelphia, PA, USA.
- 131 52. Department of Neurology, Perelman School of Medicine at the University of
- 132 Pennsylvania, PA USA.
- 133 53. Neurodegeneration Research Laboratory, Bogazici University, Istanbul, Turkey.
- 134 54. Neurology Department, Istanbul Medical School, Istanbul University, Istanbul, Turkey.
- 135 55. Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.

- 136 56. INSERM U930, Université François Rabelais, Tours, France.
- 57. APHP, Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière, France.
- 138 58. Université Pierre & Marie Curie, Pharmacologie, Paris VI, Paris, France.
- 139 59. BESPIM, CHU-Nîmes, Nîmes, France.
- 140 60. Department of Neurology, Ulm University, Ulm, Germany.
- 61. INSERM U 1127, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
- 142 62. CNRS UMR 7225, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
- 143 63. Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Hôpital de
- 144 la Pitié-Salpêtrière, 75013 Paris, France.
- 145 64. Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, 75013 Paris,
- 146 France.
- 147 65. APHP, Département de Génétique, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
- 148 66. Genethon, CNRS UMR 8587 Evry, France.
- 149 67. Department of Medical Genetics, l'Institut du Cerveau et de la Moelle Épinière, Hoptial
- 150 Salpêtrière, 75013 Paris, France.
- 68. Department of Neurogenetics, Institute of Neurology, University College London, UK.
- 69. PopGen Biobank and Institute of Epidemiology, Christian Albrechts-University Kiel,
- 153 Kiel, Germany.
- 154 70. Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
- 71. Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health,
- 156 Faculty of Medicine Mannheim, University of Heidelberg, Germany
- 72. Institute of Human Genetics, University of Bonn, Bonn, Germany.
- 73. Department of Genomics, Life and Brain Center, Bonn, Germany.
- 74. Division of Medical Genetics, University Hospital Basel, University of Basel, Basel,
- 160 Switzerland.
- 75. Department of Biomedicine, University of Basel, Basel, Switzerland.
- 76. Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich,
- 163 Germany.
- 164 77. University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE Risk
- Factor and molecular determinants of aging diseases, Labex Distalz, F-59000 Lille, France.
- 166 78. Bordeaux University, ISPED, Centre INSERM U1219-Epidemiologie-Biostatistique &
- 167 CIC-1401, CHU de Bordeaux, Pole de Sante Publique, Bordeaux, France.
- 79. Department of Internal Medicine, Genetics Laboratory, Erasmus Medical Center
- Rotterdam, Rotterdam, The Netherlands.

80. Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The

- 171 Netherlands.
- 172 81. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,
- 173 USA.
- 174 82. Department of Neurology, Academic Medical Center, University of Amsterdam,
- 175 Amsterdam, The Netherlands.
- 176 83. KU Leuven University of Leuven, Department of Neurosciences, Experimental
- Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000
- 178 Leuven, Belgium
- 179 84. Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, 9007, St. Gallen,
- 180 Switzerland.
- 181 85. Laboratory of Experimental Neurobiology, IRCCS 'C. Mondino' National Institute of
- 182 Neurology Foundation, Pavia, Italy.
- 183 86. Neurologic Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan,
- 184 Italy.
- 185 87. Department of Health Sciences, Interdisciplinary Research Center of Autoimmune
- Diseases, UPO, Università del Piemonte Orientale, Novara, Italy.
- 187 88. Department of Neurosciences, University of Padova, Padova, Italy.
- 188 89. Department of Neurology, University of Eastern Piedmont, Novara, Italy.
- 189 90. Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS
- 190 Istituto Neurologico 'Carlo Besta', Milano, Italy.
- 191 91. "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Torino,
- 192 Turin, Italy.
- 193 92. Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy.
- 194 93. Department of Clinical research in Neurology, University of Bari "A. Moro", at Pia
- 195 Fondazione "Card. G. Panico", Tricase (LE), Italy.
- 196 94. NEMO Clinical Center, Serena Onlus Foundation, Niguarda Ca' Granda Hostipal, Milan,
- 197 Italy.
- 198 95. Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca' Granda
- 199 Hospital, Milan, Italy.
- 200 96. Department of Neurology, Institute of Experimental Neurology (INSPE), Division of
- Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
- 202 97. Neurology Unit, Department of Clinical and Experimental Sciences, University of
- 203 Brescia, Italy.

- 204 98. Project MinE Foundation, Rotterdam, The Netherlands.
- 205 99. A list of members and affiliations appears in the Supplementary Note.
- 206 100. Department of Biomedical Sciences, Faculty of Medicine and Health Sciences,
- 207 Macquarie University, Sydney, New South Wales, Australia.
- 208 101. University of Sydney, ANZAC Research Institute, Concord Hospital, Sydney, New
- 209 South Wales, Australia.
- 210 102. The Stacey MND Laboratory, Department of Pathology, The University of Sydney,
- 211 Sydney, New South Wales, Australia.
- 212 103. Brain and Mind Centre, The University of Sydney, New South Wales 2050, Australia.
- 213 104. Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.
- 214 105. Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- 215 106. Department of Neurology, Brighton and Sussex Medical School Trafford Centre for
- Biomedical Research, University of Sussex, Falmer, East Sussex, UK.
- 217 107. Laboratory of Neurological Diseases, Department of Neuroscience, IRCCS Istituto di
- 218 Ricerche Farmacologiche Mario Negri, Milano, Italy.
- 219 108. Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of
- 220 Bari 'Aldo Moro', Bari, Italy.
- 221 109. Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology,
- University of Bari 'Aldo Moro', at Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy.
- 223 110. VIB, Vesalius Research Center, Laboratory of Neurobiology, Leuven, Belgium.
- 224 111. University Hospitals Leuven, Department of Neurology, Leuven, Belgium.
- 225 112. Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- 226 113. Division of Genetics, Boston Children's Hospital, Boston, MA, USA.
- 227 114. Center for Basic Translational Obesity Research, Boston Children's Hospital, Boston,
- 228 MA, USA.
- 229 115. Department of Genetics, Harvard Medical School, Boston, MA, USA.
- 230 116. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- 231 117. Department of Pharmacology and Clinical Neurosience, Umeå University, Umeå,
- Sweden.
- 233 118. Centre SLA, CHRU de Tours, Tours, France.
- 234 119. Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France.
- 235 120. Diamantina Institute, The University of Queensland, Translational Research Institute,
- 236 Brisbane, Queensland, Australia.
- 237 121. Department of Epidemiology, Julius Center for Health Sciences and Primary Care,

238	University Medical Center Utrecht, Utrecht, The Netherlands.
239	122. Department of Medical and Molecular Genetics, King's College London, London, UK.
240	123. These authors contributed equally to this work.
241	124. These authors jointly directed this work.
242	125. To whom correspondence should be addressed.
243	
244	Corresponding authors:
245	Ammar Al-Chalabi
246	Department of Basic and Clinical Neuroscience
247	King's College London
248	Maurice Wohl Clinical Neuroscience Institute
249	Coldharbour Lane
250	E-mail: ammar.al-chalabi@kcl.ac.uk
251	
252	Jan H. Veldink
253	Department of Neurology
254	Brain Center Rudolf Magnus
255	University Medical Center Utrecht
256	Heidelberglaan 100
257	3584CX Utrecht
258	The Netherlands
259	Email: j.h.veldink@umcutrecht.nl
260	

To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find
associated loci, we assembled a custom imputation reference panel from whole genome-
sequenced ALS patients and matched controls ($N = 1,861$). Through imputation and
mixed-model association analysis in 12,577 cases and 23,475 controls, combined with
2,579 cases and 2,767 controls in an independent replication cohort, we fine mapped a
novel locus on chromosome 21 and identified C21orf2 as an ALS risk gene. In addition,
we identified MOBP and SCFD1 as novel associated risk loci. We established evidence
for ALS being a complex genetic trait with a polygenic architecture. Furthermore, we
estimated the SNP-based heritability at 8.5%, with a distinct and important role for low
frequency (1–10%) variants. This study motivates the interrogation of larger sample
sizes with full genome coverage to identify rare causal variants that underpin ALS risk.
ALS is a fatal neurodegenerative disease that affects 1 in 400 people, death occurring within
three to five years ¹ . Twin-based studies estimate heritability to be around 65% and 5–10% of
ALS patients have a positive family history ^{1,2} . Both are indicative of an important genetic
component in ALS etiology. Following the initial discovery of the <i>C9orf72</i> locus in GWASs ³⁻
5, the identification of the pathogenic hexanucleotide repeat expansion in this locus
revolutionized the field of ALS genetics and biology ^{6,7} . The majority of ALS heritability,
however, remains unexplained and only two additional risk loci have been identified robustly
since ^{3,8} .
To discover new genetic risk loci and elucidate the genetic architecture of ALS, we genotyped
7,763 new cases and 4,669 controls and additionally collected genotype data of published
GWAS in ALS. In total, we analyzed 14,791 cases and 26,898 controls from 41 cohorts
(Supplementary Table 1, Supplementary Note). We combined these cohorts based on
genotyping platform and nationality to form 27 case-control strata. In total 12,577 cases and
23,475 controls passed quality control (Online methods, Supplementary Tables 2–5).
For imputation purposes we obtained high-coverage (~43.7X) whole genome sequencing data
from 1,246 ALS patients and 615 controls from The Netherlands (Online methods,
Supplementary Fig. 1). After quality control, we constructed a reference panel including
18,741,510 single nucleotide variants. Imputing this custom reference panel into Dutch ALS
cases increased imputation accuracy of low-frequency variants (minor allele frequency, MAF
0.5–10%) considerably compared to commonly used reference panels: the 1000 Genomes

193	rioject phase I (1000GF) and Genome of The Netherlands (GoNL) (Fig. 1a). The
296	improvement was also observed when imputing into ALS cases from the UK (Fig. 1b). To
297	benefit from the global diversity of haplotypes, the custom and 1000GP panels were
298	combined, which further improved imputation. Given these results, we used the merged
299	reference panel to impute all strata in our study.
300	
301	In total we imputed 8,697,640 variants passing quality control in the 27 strata and separately
302	tested these for association with ALS risk by logistic regression. Results were then included
303	in an inverse-variance weighted fixed effects meta-analysis, which revealed 4 loci at genome-
304	wide significance (p < 5×10^{-8}) (Fig. 2a). The previously reported <i>C9orf72</i> (rs3849943) ^{3-5,8} ,
305	UNC13A (rs12608932) ^{3,5} and SARM1 (rs35714695) ⁸ loci all reached genome-wide
306	significance, as did a novel association for a non-synonymous variant in C21orf2
307	(rs75087725, p = 8.7×10^{-11} , Supplementary Tables 6–10). Interestingly, this variant was
808	present on only 10 haplotypes in the 1000GP reference panel (MAF = 1.3%), compared to 62
309	haplotypes in our custom reference panel (MAF = 1.7%). As a result, more strata passed
310	quality control for this variant by passing the allele frequency threshold of 1%
311	(Supplementary Table 11). This demonstrates the benefit of the merged reference panel with
312	ALS-specific content, which improved imputation and resulted in a genome-wide significant
313	association.
314	
315	Linear mixed models (LMM) can improve power while controlling for sample structure ¹¹ ,
316	particularly in our study that included a large number of imperfectly balanced strata. Even
317	though LMM for ascertained case-control data has a potential small loss of power ¹¹ , we
318	judged the advantage of combining all strata while controlling the false positive rate, to be
319	more important and therefore jointly analyzed all strata in a LMM to identify additional risk
320	loci. There was no overall inflation of the linear mixed model's test statistic compared to the
321	meta-analysis (Supplementary Fig. 2). We observed modest inflation in the QQ-plot (λ_{GC} =
322	1.12, $\lambda_{1000} = 1.01$, Supplementary Fig. 3). LD score regression yielded an intercept of 1.10
323	(standard error 7.8×10^{-3}). While the LD score regression intercept can indicate residual
324	population stratification, which is fully corrected for in a LMM, the intercept can also reflect
325	a distinct genetic architecture where most causal variants are rare, or a non-infinitesimal
326	architecture ¹² . The linear mixed model identified all four genome-wide significant
327	associations from the meta-analysis. Furthermore, three additional loci that included the

328	MOBP gene on 3p22.1 (rs616147), SCFD1 on 14q12 (rs10139154) and a long non-coding
329	RNA on 8p23.2 (rs7813314) were associated at genome-wide significance (Fig. 2b , Table 1 ,
330	Supplementary Tables 12–14). Interestingly, the SNPs in the MOBP locus have been
331	reported in a GWAS on progressive supranuclear palsy (PSP) ¹³ and as a modifier for survival
332	in frontotemporal dementia (FTD) ¹⁴ . The putative pleiotropic effect of variants within this
333	locus suggests a shared neurodegenerative pathway between ALS, FTD and PSP. We also
334	found rs74654358 at 12q14.2 in the TBK1 gene approximating genome-wide significance
335	(MAF = 4.9%, OR = 1.21 for A allele, $p = 6.6 \times 10^{-8}$). This gene was recently identified as an
336	ALS risk gene through exome sequencing ^{15,16} .
337	
338	In the replication phase, we genotyped the newly discovered associated SNPs in nine
339	independent replication cohorts, totaling 2,579 cases and 2,767 controls. In these cohorts we
340	replicated the signals for the C21orf2, MOBP and SCFD1 loci, with lower p-values in the
341	combined analysis than the discovery phase (combined p-value = 3.08×10^{-10} , p = 4.19×10^{-10}
342	¹⁰ and p = 3.45×10^{-8} for rs75087725, rs616147 and rs10139154 respectively, Table 1 ,
343	Supplementary Fig. 4) ¹⁷ . The combined signal for rs7813314 was less significant due to an
344	opposite effect between the discovery and replication phase, indicating non-replication.
345	Although replication yielded similar effect estimates for rs10139154 compared to the
346	discovery phase, this was not statistically significant ($p = 0.09$) in the replication phase alone.
347	This reflects the limited sample size of our replication phase, which is inherent to the low
348	prevalence of ALS and warrants even larger sample sizes to replicate this signal robustly.
349	
350	There was no evidence for residual association within each locus after conditioning on the top
351	SNP, indicating that all risk loci are independent signals. Apart from the C9orf72, UNC13A
352	and SARM1 loci, we found no evidence for associations previously described in smaller
353	GWAS (Supplementary Table 15).
354	
355	The associated low-frequency non-synonymous SNP in C21orf2 suggested that this gene
356	could directly be involved in ALS risk. Indeed, we found no evidence that linkage
357	disequilibrium of sequenced variants beyond C21orf2 explained the association within this
358	locus (Supplementary Fig. 5). In addition, we investigated the burden of rare coding
359	mutations in a set of whole genome sequenced cases $(N = 2,562)$ and controls $(N = 1,138)$.
360	After quality control these variants were tested using a pooled association test for rare variants
361	corrected for population structure (T5 and T1 for 5% and 1% allele frequency,

362	Supplementary Note). This revealed an excess of non-synonymous and loss-of-function
363	mutations in C21 or f2 among ALS cases that persists after conditioning on rs75087725 ($p_{T5} =$
364	9.2×10^{-5} , $p_{TI} = 0.01$, Supplementary Fig. 6), which further supports that $C21 orf2$
365	contributes to ALS risk.
366	
367	In an effort to fine-map the other loci to susceptibility genes, we searched for SNPs in these
368	loci with cis-eQTL effects observed in brain and other tissues (Supplementary Note,
369	Supplementary Table 16) 18 . There was overlap with previously identified brain cis -eQTLs
370	for five regions (Supplementary Fig. 7, Supplementary Table 17, Supplementary Data
371	Set 1). Interestingly, within the <i>C9orf72</i> locus we found that proxies of rs3849943 (LD $r^2 =$
372	0.21 - 0.56) had a brain cis-eQTL effect on C9orf72 only (minimal p = 5.27×10^{-7}), which
373	harbors the hexanucleotide repeat expansion that drives this GWAS signal. Additionally, we
374	found that rs12608932 and its proxies within the UNC13A locus had exon-level cis-eQTL
375	effect on <i>KCNN1</i> in frontal cortex (p = 1.15×10^{-3}) ¹⁹ . Another overlap was observed in the
376	SARM1 locus where rs35714695 and its proxies had the strongest exon-level cis-eQTL effect
377	on <i>POLDIP2</i> in multiple brain tissues (p = 2.32×10^{-3}). Within the <i>SCFD1</i> locus rs10139154
378	and proxies had a <i>cis</i> -eQTL effect on <i>SCFD1</i> in cerebellar tissue (p = 7.71×10^{-4}). For the
379	<i>MOBP</i> locus, rs1768208 and proxies had a <i>cis</i> -eQTL effect on <i>RPSA</i> (p = 7.71×10^{-4}).
380	
381	To describe the genetic architecture of ALS, we calculated polygenic scores that can be used
382	to predict phenotypes for traits with a polygenic architecture ²⁰ . We calculated the SNP effects
383	using a linear mixed model in 18 of the 27 strata and subsequently assessed their predictive
384	ability in the other 9 independent strata. This revealed that a significant, albeit modest,
385	proportion of the phenotypic variance could be explained by all SNPs (Nagelkerke r^2 =
386	0.44% , $r^2 = 0.15\%$ on the liability scale, $p = 2.7 \times 10^{-10}$, Supplementary Fig. 8). This finding
387	adds to the existing evidence that ALS is a complex genetic trait with a polygenic
388	architecture. To further quantify the contribution of common SNPs to ALS risk, we estimated
389	the SNP-based heritability using three approaches, all assuming a population baseline risk of
390	0.25% ²¹ . GCTA-REML estimated the SNP-based heritability at 8.5% (SE 0.5%). Haseman-
391	Elston regression yielded a very similar 7.9% and LD score regression estimated the SNP-
392	based heritability at 8.2% (SE 0.5%). The heritability estimates per chromosome were
393	strongly correlated with chromosome length (p = 4.9×10^{-4} , r ² = 0.46 , Fig. 3a), which again is
394	indicative of the polygenic architecture of ALS.
395	

396 We found that the genome-wide significant loci only explained 0.2% of the heritability and 397 thus the bulk of the heritability (8.3%, SE 0.3%) was captured in SNPs below genome-wide 398 significance. This implies that many genetic risk variants have yet to be discovered. 399 Understanding where these unidentified risk variants remain across the allele frequency 400 spectrum will inform designing future studies to identify these variants. We, therefore, 401 estimated heritability partitioned by minor allele frequency. Furthermore, we contrasted this 402 to common polygenic traits studied in GWASs such as schizophrenia. We observed a clear 403 trend that indicated that most variance is explained by low-frequency SNPs (Fig. 3b). 404 Exclusion of the C9 or f72 locus, which harbors the rare pathogenic repeat expansion, and the 405 other genome-wide significant loci did not affect this trend (Supplementary fig. 9). This 406 architecture is different from that expected for common polygenic traits and reflects a 407 polygenic rare-variant architecture observed in simulations²². 408 409 To gain better insight into the biological pathways that explain the associated loci found in this study we looked for enriched pathways using DEPICT²³. This revealed SNAP receptor 410 411 (SNARE) activity as the only enriched category (FDR < 0.05, Supplementary Fig. 10). 412 SNARE complexes play a central role in neurotransmitter release and synaptic function²⁴, which are both perturbed in ALS²⁵. 413 414 415 Although the biological role of C21orf2, a conserved leucine-rich repeat protein, remains poorly characterized, it is part of the ciliome and is required for the formation and/or 416 maintenance of primary cilia²⁶. Defects in primary cilia are associated with various 417 418 neurological disorders and cilia numbers are decreased in G93A SOD1 mice, a well-419 characterized ALS model²⁷. C21orf2 has also been localized to mitochondria in immune 420 cells²⁸ and is part of the interactome of the protein product of *NEK1*, which has previously 421 been associated with ALS¹⁵. Both proteins appear to be involved in DNA repair mechanisms²⁹. Although future studies are needed to dissect the function of C21orf2 in ALS 422 423 pathophysiology it is tempting to speculate that defects in C21orf2 lead to primary cilium 424 and/or mitochondrial dysfunction or inefficient DNA repair and thereby adult onset disease. 425 The other associated loci will require more extensive studies to fine-map causal variants. The 426 SARM1 gene has been suggested as a susceptibility gene for ALS, mainly because of its role in Wallerian degeneration and interaction with UNC13A^{8,30}. Although these are indeed 427 428 interesting observations, the brain cis-eQTL effect on POLDIP2 suggests that POLDIP2 and 429 not SARM1 could in fact be the causal gene within this locus. Similarly, KCNN1, which

encodes a neuronal potassium channel involved in neuronal excitability, could be the causal gene either through a direct eQTL effect or rare variants in LD with the associated SNP in *UNC13A*.

In conclusion, we identified a key role for rare variation in ALS and discovered SNPs in novel complex loci. Our study therefore informs future study design in ALS genetics: the combination of larger sample sizes, full genome coverage and targeted genome editing experiments, leveraged together to fine map novel loci, identify rare causal variants and thereby elucidate the biology of ALS.

439 ACCESSION CODES

- NIH Genome-Wide Association Studies of Amyotrophic Lateral Sclerosis (phs000101.v3.p1),
- 441 Genome-Wide Association Study of Amyotrophic Lateral Sclerosis in Finland
- 442 (phs000344.v1.p1), CIDR: Genome Wide Association Study in Familial Parkinson Disease
- 443 (PD) (phs000126.v1.p1), Genome-Wide Association Study of Parkinson Disease: Genes and
- 444 Environment (phs000196.v1.p1)

445

446 DATA ACCESS

- The GWAS summary statistics and sequenced variants are publicly available through the
- 448 Project MinE data browser: http://databrowser.projectmine.com

449

450 **AUTHOR INFORMATION**

- The authors declare no competing financial interests. Correspondence and requests for
- materials should be addressed to A.A-C or J.H.V. (ammar.al-chalabi@kcl.ac.uk or
- i.h.veldink@umcutrecht.nl).

454455

ACKNOWLEDGMENTS

- The work of the contributing groups was supported by various grants from governmental and
- charitable bodies. Details are provided in the **Supplementary Notes**.

458

459 **AUTHOR CONTRIBUTIONS**

- 460 A.V., N.T., K.L., B.R, K.V, M.R-G, B.K, J.Z, L.L., L.D.G., S.M., F.S, V.M., M.d.C, S.Pinto,
- J.M, R.R-G, M.P., S.Chandran., S.Colville, R.S, K.E.M., P.J.S., J.H., R.W.O., A.Pittman.,
- 462 K.S., P.F., A.M., S.T., S.Petri, S.Abdulla., C.D., M.S., T.Meyer., R.A.O., K.A.S., M.W-P.,
- 463 C.L-H., V.M.V.D, J.Q.T, L.E, L.McC., A.N.B., Y.P., T.Meitinger, P.L., M.B-R., C.R.A.,
- 464 C.Maurel, G.B., B.L., A.B., C.A.M.P., S.S-D., N.W.W., L.T., W.L., A.F., M.R., S.C.,
- 465 M.M.N., P.A., C.Tzourio., J-F.D., A.G.U., F.R., K.E., A.H., C.Curtis, H.M.B., A.J.v.d.K.,
- 466 M.d.V., A.G., M.W., C.E.S., B.N.S., O.P., C.Cereda, R.D.B., G.P.C., S.D'A., C.B., G.S, L.M.,
- V.P., C.G., C.Tiloca, A.R., A.Calvo., C.Moglia, M.B., S.Arcuti., R.C., C.Z., C.L., S.Penco,
- N.R., A.Padovani., M.F., B.M., R.J.S., PARALS registry, SLALOM group, SLAP registry,
- FALS sequencing consortium, SLAGEN consortium, NNIPPS study group, I.B., G.A.N.,
- 470 D.B.R., R.P., M.C.K., J.G., O.W.W., T.R., T.A.P., B.S., I.K., C.A.H., P.N.L., F.C., A.Chìo.,
- 471 E.B., E.P., R.T., G.L., J.P., A.C.L., J.H.W., W.R., P.V.D., L.F., T.P., R.H.B., J.D.G, J.E.L.,
- O.H., P.M.A., P.C., P.V., V.S., M.A.v.E., A.A.-C, L.H.v.d.B. and J.H.V. were involved in

- phenotyping, sample collection and management. W.v.R, A.S., A.M.D., R.L.M., F.P.D.,
- 474 R.A.A.v.d.S., P.T.C.v.D., G.H.P.T., M.K., A.M.B., W.S., A.R.J., K.P.K., I.F., A.V., N.T.,
- 475 R.D.S., W.J.B., A.V., K.V., M.R.-G., B.K, L.L., S.Abdulla., K.S., E.P., F.P.D., J.M., C.Curtis,
- 476 G.B., A.A.-C and J.H.V. prepared DNA and performed SNP-array hybridizations. W.v.R.,
- 477 S.L.P., K.K., K.L., A.M.D., P.T.C.v.D., G.H.P.T., K.R.v.E., P.I.W.d.B and J.H.V. were
- involved in the next-generations sequencing analyses. W.v.R., K.R.v.E., A.M., P.I.W.d.B.,
- 479 A.A. and J.H.V. performed the imputation. W.v.R., A.S., F.P.D., R.L.M., S.L.P., S.d.J., I.F.,
- 480 N.T., W.S., A.J., K.P.K., K.R.v.E., K.S., H.M.B., P.I.W.d.B., M.A.v.E., C.L., G.B., A.A.-C.,
- 481 L.H.v.d.B and J.H.V. performed GWAS analyses. W.v.R., A.M.D., R.A.A.v.d.S., R.L.M.,
- 482 C.A., M.K., A.M.B., R.D.S., E.P.M., J.A.F., C.Tzourio, H.H., K.Z., P.C., P.V. and J.H.V.
- performed the replication analyses. W.v.R., A.S., R.L.M., M.R.R., J.Y., N.R.W., P.M.V.,
- 484 C.L., A.A.-C and J.H.V. performed polygenic risk scoring and heritability analyses. S.d.J.,
- 485 U.V., L.F., T.P., W.v.R., O.H., G.B., R.J.P. and J.H.V. performed biological pathway
- analyses. U.V., L.F., W.v.R. and J.H.V. performed eQTL analyses. W.v.R., A.S., A.A.-C.,
- 487 L.H.v.d.B. and J.H.V., prepared the manuscript with contributions from all authors. A.A.-C.,
- 488 L.H.v.d.B. and J.H.V. directed the study.

490 REFERENCES FOR MAIN TEXT

- 491 1. Hardiman, O., van den Berg, L. H. & Kiernan, M. C. Clinical diagnosis and
- 492 management of amyotrophic lateral sclerosis. *Nat Rev Neurol* **7**, 639–649 (2011).
- 493 2. Al-Chalabi, A. et al. An estimate of amyotrophic lateral sclerosis heritability using
- 494 twin data. J. Neurol. Neurosurg. Psychiatry **81**, 1324–1326 (2010).
- 495 3. van Es, M. A. et al. Genome-wide association study identifies 19p13.3 (UNC13A) and
- 496 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. *Nat. Genet.* **41,** 1083–
- 497 1087 (2009).

- 498 4. Laaksovirta, H. et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a
- 499 genome-wide association study. *Lancet Neurol.* **9,** 978–985 (2010).
- 5. Shatunov, A. et al. Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the
- 501 UK and seven other countries: a genome-wide association study. *Lancet Neurol.* **9**, 986–994
- 502 (2010).
- 503 6. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in
- noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72,
- 505 245–256 (2011).

7. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of

- 507 chromosome 9p21-linked ALS-FTD. *Neuron* **72**, 257–268 (2011).
- 508 8. Fogh, I. et al. A genome-wide association meta-analysis identifies a novel locus at
- 509 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet. 23, 2220–
- 510 2231 (2014).
- 511 9. 1000 Genomes Project Consortium et al. An integrated map of genetic variation from
- 512 1,092 human genomes. *Nature* **491**, 56–65 (2012).
- 513 10. Genome of the Netherlands Consortium. Whole-genome sequence variation,
- population structure and demographic history of the Dutch population. *Nat. Genet.* **46,** 818–
- 515 825 (2014).
- 516 11. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages
- and pitfalls in the application of mixed-model association methods. *Nat. Genet.* **46**, 100–106
- 518 (2014).
- 519 12. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from
- polygenicity in genome-wide association studies. *Nat. Genet.* **47**, 291–295 (2015).
- Höglinger, G. U. et al. Identification of common variants influencing risk of the
- tauopathy progressive supranuclear palsy. *Nat. Genet.* (2011).
- 523 14. Irwin, D. J. et al. Myelin oligodendrocyte basic protein and prognosis in behavioral-
- variant frontotemporal dementia. *Neurology* **83**, 502–509 (2014).
- 525 15. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk
- 526 genes and pathways. *Science* **347**, 1436–1441 (2015).
- 527 16. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-
- 528 temporal dementia. *Nat. Neurosci.* **18,** 631–636 (2015).
- 529 17. Skol, A. D., Scott, L. J., Abecasis, G. R. & Boehnke, M. Joint analysis is more
- efficient than replication-based analysis for two-stage genome-wide association studies. *Nat*.
- 531 *Genet.* **38,** 209–213 (2006).
- Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to
- enhance discovery from GWAS. *PLoS Genet.* **6**, (2010).
- Ramasamy, A. et al. Genetic variability in the regulation of gene expression in ten
- 535 regions of the human brain. *Nat. Neurosci.* **17,** 1418–1428 (2014)
- Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14,
- 537 507–515 (2013).
- 538 21. Johnston, C. A. et al. Amyotrophic lateral sclerosis in an urban setting: a population
- based study of inner city London. *J. Neurol.* **253**, 1642–1643 (2006).

- Lee, S. H. et al. Estimating the proportion of variation in susceptibility to
- schizophrenia captured by common SNPs. *Nat. Genet.* **44,** 247–250 (2012).
- Pers, T. H. et al. Biological interpretation of genome-wide association studies using
- 543 predicted gene functions. *Nat. Commun.* **6**, 5890–20 (2015).
- Ramakrishnan, N. A., Drescher, M. J. & Drescher, D. G. The SNARE complex in
- neuronal and sensory cells. *Mol. Cell. Neurosci.* **50**, 58–69 (2012).
- 546 25. Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M. & Shaw, P. J. Molecular
- pathways of motor neuron injury in amyotrophic lateral sclerosis. *Nat. Rev. Neurol.* **7,** 616–
- 548 630 (2011).
- 549 26. Lai, C. K. et al. Functional characterization of putative cilia genes by high-content
- analysis. Mol. Biol. Cell. 22, 1104–1119 (2011).
- 551 27. Ma, X., Peterson, R. & Turnbull, J. Adenylyl cyclase type 3, a marker of primary cilia,
- is reduced in primary cell culture and in lumbar spinal cord in situ in G93A SOD1 mice.
- 553 *BMC. Neurosci.* **12,** 71 (2011).
- 554 28. Krohn, K., Ovod, V., Vilja, P., Heino, M. & Scott, H. Immunochemical
- characterization of a novel mitochondrially located protein encoded by a nuclear gene within
- the DFNB8/10 critical region on 21q22. 3. *Biochem. Biophys. Res. Commun.* (1997).
- 557 29. Fang, X. et al. The NEK1 interactor, C21ORF2, is required for efficient DNA damage
- 558 repair. *Acta Biochim. Biophys. Sin.* **47,** 834–841 (2015)
- 559 30. Vérièpe, J., Fossouo, L. & Parker, J. A. Neurodegeneration in C. elegans models of
- ALS requires TIR-1/Sarm1 immune pathway activation in neurons. *Nat. Commun.* **6,** 7319
- 561 (2015).

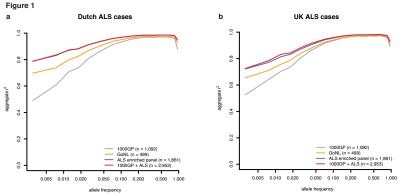
562

570

563 FIGURE LEGENDS

- Figure 1. Imputation accuracy comparison. The aggregate r² value between imputed and
- sequenced genotypes on chromosome 20 using different reference panels for imputation.
- Allele frequencies are calculated from the Dutch samples included in the Genome of the
- Netherlands cohort. The highest imputation accuracy was achieved when imputing from the
- merged custom and 1000GP panels. This difference is most pronounced for low frequency
- 569 (0.5–10%) alleles in both ALS cases from The Netherlands (a) and United Kingdom (b).
- Figure 2. Meta-analysis and linear mixed model associations. (a) Manhattan plot for meta-
- analysis results. This yielded four genome-wide significant associations highlighted with
- names indicating the closest gene. The associated SNP in C21orf2 is a non-synonymous

variant not found in previous GWAS. (**b**) Manhattan plot for linear mixed model results. This association analysis yielded three additional loci reaching genome-wide significance (MOBP, LOC101927815 and SCFD1). SNPs in the previously identified ALS risk gene TBK1 approached genome-wide significance ($p = 6.6 \times 10^{-8}$). Since the C21orf2 SNP was removed from a Swedish stratum because of a MAF < 1%, this SNP was tested separately, but is presented here together with all other SNPs with a MAF > 1% in every stratum. Here, LOC101927815 is colored grey because the association for this locus could not be replicated.


Figure 3. Partitioned heritability. (a) The heritability estimates per chromosome were strongly correlated with chromosome length ($p = 4.9 \times 10^{-4}$). (b) For ALS there was a clear trend where more heritability was explained within the lower allele frequency bins. This effect was still observed when, for a fair comparison between ALS and a previous study partitioning heritability for schizophrenia (SCZ) using identical methods²², SNPs present in HapMap3 (HM3) were included. The pattern for ALS resembles that observed in a rare variant model simulation performed in this study. Error bars reflect standard errors.

TABLES

Table 1. Discovery and replication of novel genome-wide significant loci.

	Discovery					Replication				Combined	
SNP	MAF_{cases}	$MAF_{controls}$	OR	P_{meta}	P_{LMM}	MAF_{cases}	$MAF_{controls}$	OR	P	$P_{combined}$	I^2
rs75087725	0.02	0.01	1.45	8.65×10^{-11}	2.65×10^{-9}	0.02	0.01	1.65	3.89×10^{-3}	3.08×10^{-10}	0.00*
rs616147	0.30	0.28	1.10	4.14×10^{-5}	1.43×10^{-8}	0.31	0.28	1.13	2.35×10^{-3}	4.19×10^{-10}	0.00*
rs10139154	0.34	0.31	1.09	1.92×10^{-5}	4.95×10^{-8}	0.33	0.31	1.06	9.55×10^{-2}	3.45×10^{-8}	0.05*
rs7813314	0.09	0.10	0.87	7.46×10^{-7}	3.14×10^{-8}	0.12	0.10	1.17	7.75×10^{-3}	1.05×10^{-5}	0.80*

Table 1. Discovery and replication of novel genome-wide significant loci. Genome-wide significant loci from the discovery phase including 12,557 cases and 23,475 controls were directly genotyped and tested for association in the replication phase including 2,579 cases and 2,767 controls. The three top associated SNPs in the MOBP (rs616147), SCFD1 (rs10139154) and C21orf2 (rs75087725) loci replicated with associations in identical directions as in the discovery phase and an association in the combined analysis that exceeded the discovery phase. * Cochrane's Q test: p > 0.1, ** Cochrane's Q test: $p = 4.0 \times 10^{-6}$, Chr = chromosome; SNP = single nucleotide polymorphism, MAF = minor allele frequency, OR = odds ratio, P_{meta} = meta-analysis p-value, P_{LMM} = linear mixed model p-value, $P_{combined}$ = meta-analysis of discovery linear mixed model and associations from replication phase.

Figure 2

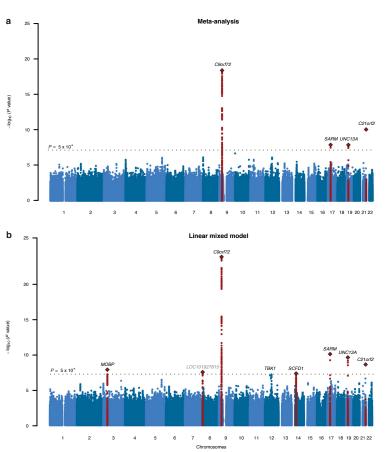
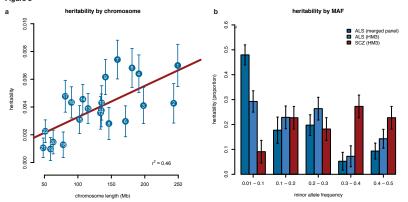



Figure 3

603	
604	ONLINE METHODS
605	Software packages used, their version, web source, and references are described in the
606	Supplementary Table 18.
607	
608	GWAS discovery phase and quality control. Details on the acquired genotype data from
609	previously published GWAS are described in Supplementary Table 1. Methods for case and
610	control ascertainment for each cohort are described in the Supplementary Note. All cases
611	and controls gave written informed consent and the relevant institutional review boards
612	approved this study. To obtain genotype data for newly genotyped individuals, genomic DNA
613	was hybridized to the Illumina OmniExpress array according to manufacturer's protocol.
614	Subsequent quality control included:
615	1) Removing low quality SNPs and individuals from each cohort.
616	2) Combining unbalanced cohorts based on nationality and genotyping platform to form
617	case-control strata.
618	3) Removing low quality SNPs, related individuals and population outliers per stratum.
619	4) Calculate genomic inflation factors per stratum.
620	More details are described in the Supplementary Note and Supplementary Fig. 11. The
621	number of SNPs and individuals failing each QC step per cohort and stratum are displayed in
622	Supplementary Tables 2–5.
623	
624	Whole genome sequencing (custom reference panel). Individuals were whole genome
625	sequenced on the Illumina HiSeq 2500 platform using PCR free library preparation and 100bp
626	paired-end sequencing yielding a minimum 35X coverage. Reads were aligned to the hg19
627	human genome build and after variant calling (Isaac variant caller) additional SNV and
628	sample quality control was performed (Supplementary Note and Supplementary Fig. 12).
629	Individuals in our custom reference panel were also included in the GWAS in strata sNL2,
630	sNL3 and sNL4.
631	
632	Merging reference panels. All high quality calls in the custom reference panel were phased
633	using SHAPEIT2 software. After checking strand and allele inconsistencies, both the 1000
634	Genomes Project (1000GP) reference panel (release 05-21-2011) ³¹ and custom reference
635	panel were imputed up to the union of their variants as described previously ³² . Those variants
636	with inconsistent allele frequencies between the two panels were removed.

637	
638	Imputation accuracy performance. To assess the imputation accuracy between different
639	reference panels, 109 unrelated ALS cases of Dutch ancestry sequenced by Complete
640	Genomics and 67 ALS cases from the UK sequenced by Illumina were selected as a test
641	panel. All variants not present on the Illumina Omni1M array were masked and the SNVs on
642	chromosome 20 were subsequently imputed back using four different reference panels
643	(1000GP, GoNL, custom panel and merged panel). Concordance between the imputed alleles
644	and sequenced alleles was assessed within each allele frequency bin where allele frequencies
645	are calculated from the Dutch samples included in the Genome of the Netherlands cohort.
646	
647	GWAS imputation. Pre-phasing was performed per stratum using SHAPEIT2 with the
648	1000GP phase 1 (release 05-21-2011) haplotypes ³¹ as a reference panel. Subsequently, strata
649	were imputed up to the merged reference panel in 5 megabase chunks using IMPUTE2.
650	Imputed variants with a MAF < 1% or INFO score < 0.3 were excluded from further analysis.
651	Variants with allele frequency differences between strata, defined as deviating > 10SD from
652	the normalized mean allele frequency difference between those strata and an absolute
653	difference $> 5\%$, were excluded, since they are likely to represent sequencing or genotyping
654	artifacts. Imputation concordance scores for cases and controls were compared to assess
655	biases in imputation accuracy (Supplementary Table 19).
656	
657	Meta-analysis. Logistic regression was performed on imputed genotype dosages under an
658	additive model using SNPTEST software. Based on scree plots, 1 to 4 principal components
659	were included per stratum. These results were then combined in an inverse-variance weighted
660	fixed effect meta-analysis using METAL. No marked heterogeneity across strata was
661	observed as the Cochrane's Q test statistics did not deviate from the null-distribution (λ =
662	0.96). Therefore, no SNPs were removed due to excessive heterogeneity. The genomic
663	inflation factor was calculated and the quantile-quantile plot is provided in Supplementary
664	Fig. 3a.
665	
666	Linear mixed model. All strata were combined including SNPs that passed quality control in
667	every stratum. Subsequently the genetic relationship matrices (GRM) were calculated per
668	chromosome including all SNPs using the Genome-Wide Complex Trait Analysis (GCTA)
669	software package. Each SNP was then tested in a linear mixed model including a GRM

670 composed of all chromosomes excluding the target chromosome (leave one chromosome out, 671 LOCO). The genomic inflation factor was calculated and the quantile-quantile plot is 672 provided as **Supplementary Fig. 3b**. 673 674 **Replication.** For the replication phase independent ALS cases and controls from Australia, 675 Belgium, France, Germany, Ireland, Italy, The Netherlands and Turkey that were not used in 676 the discovery phase were included. A pre-designed TaqMan genotyping assay was used to 677 replicate rs75087725 and rs616147. Sanger sequencing was performed to replicate 678 rs10139154 and rs7813314 (Supplementary Note and Supplementary Table 20). All 679 genotypes were tested in a logistic regression per country and subsequently meta-analyzed. 680 681 Rare variant analysis in C21orf2. The burden of non-synonymous rare variants in C21orf2 682 was assessed in whole genome sequencing data obtained from ALS cases and controls from 683 The Netherlands, Belgium, Ireland, United Kingdom and the United States. After quality 684 control the burden of non-synonymous and loss-of-function mutations in C21orf2 were tested 685 for association per country and subsequently meta-analyzed. More details are provided in the 686 Supplementary Note and Supplementary Fig. 13. 687 688 **Polygenic risk scores.** To assess the predictive accuracy of polygenic risk scores in an independent dataset SNP weights were assigned based on the linear mixed model (GCTA-689 LOCO) analysis in 18/27 strata. SNPs in high LD ($r^2 > 0.5$) within a 250 kb window were 690 691 clumped. Subsequently, polygenic risk scores for cases and controls in the 9 independent 692 strata were calculated based on their genotype dosages using PLINK v1.9. To obtain the 693 Nagelkerke R² and corresponding p-values these scores were then regressed on their true 694 phenotype in a logistic regression where (based on scree plots) the first three PCs, sex and 695 stratum were included as covariates. 696 697 **SNP-based heritability estimates.** GCTA-REML. GRMs were calculated using GCTA 698 software including genotype dosages passing quality control in all strata. Based on the 699 diagonal of the GRM individuals representing subpopulations that contain an abundance of 700 rare alleles (diagonal values mean +/- 2SD) were removed (Supplementary Fig. 14a). Pairs 701 where relatedness (off-diagonal) exceeded 0.05 were removed as well (Supplementary Fig. 702 14b). The eigenvectors for the first 10 PCs were included as fixed effects to account for more 703 subtle population structure. The prevalence of ALS was defined as the life-time morbid risk

- for ALS (i.e. 1/400)¹⁹. To estimate the SNP-based heritability for all non-genome-wide
- significant SNPs, genotypes for the SNPs reaching genome-wide significance were modeled
- as fixed effect. The variance explained by the GRM therefore reflects the SNP-based
- heritability of all non-genome-wide significant SNPs. SNP-based heritability partitioned by
- 708 chromosome or MAF was calculated by including multiple GRMs, calculated on SNPs from
- each chromosome or within the respective frequency bin, in one model.
- 710 Haseman-Elston regression. The Phenotype correlation Genotype correlation (PCGC)
- 711 regression software package was used to calculate heritability based on the Haseman-Elston
- 712 regression including the eigenvectors for the first 10 PCs as covariates. The prevalence was
- again defined as the life-time morbid risk (1/400).
- 714 LD score regression. Summary statistics from GCTA-LOCO and LD scores calculated from
- Furopean individuals in 1000GP were used for LD score regression. Strongly associated
- SNPs (p < 5×10^{-8}) and variants not in HapMap3 were excluded. Considering adequate
- 717 correction for population structure and distant relatedness in the linear mixed model, the
- 718 intercept was constrained to 1.0^{12} .
- 719 **Biological pathway analysis (DEPICT)**. Functional interpretation of associated GWAS loci
- was carried out using DEPICT, using locus definition based on 1000GP phase 1 data. This
- method prioritizes genes in the affected loci, predicts involved pathways, biological processes
- and tissues, using gene co-regulation data from 77,840 expression arrays. Three separate
- analyses were performed for GWAS loci reaching $p = 10^{-4}$, $p = 10^{-5}$ or $p = 10^{-6}$. One thousand
- 724 permutations were used for adjusting the nominal enrichment p-values for biases and
- additionally 200 permutations were used for FDR calculation.

726

727

REFERENCES FOR METHODS

- 728 31. Delaneau, O., Marchini, J. & 1000 Genomes Project Consortium. Integrating sequence
- and array data to create an improved 1000 Genomes Project haplotype reference panel. *Nat*.
- 730 *Commun.* **5,** 3934 (2014).
- Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of
- 732 genomes. *G3* **1,** 457-70 (2011).