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ABSTRACT1
During emergency situations in trains, rapid and safe evacuation is crucial for saving lives of pas-2
sengers. Computer models such as EvacTrain, STEPS, Pathfinder and FDS+Evac are making use3
of either a discrete space network or a continuous space network, and allow determining egress4
times for various emergency passenger train designs and conditions. These models offer insights5
into potential difficulties and offer possible solutions to evacuation challenges in a short time and6
at low cost. This paper focuses on the application of MassMotion (a commercial available evacua-7
tion software commonly used for evacuation planning in buildings) to passenger train evacuation.8
Key performance indicators such as mean total evacuation times, standard deviations, maximum9
evacuation times, minimum evacuation times, and 95th percentile of egress times are determined10
to evaluate the accuracy and reliability of MassMotion. In the validation test, actual occupant11
egress rates from a fire drill conducted by the Spanish Railroad Administration in a passenger train12
are used to measure the reliability of MassMotion for producing accurate egress time predictions.13
Further, the MassMotion passenger train simulation model is verified and compared to other exist-14
ing microscopic passenger train evacuation models for a hypothetical case study. The comparison15
shows that microscopic models with continuous-space representation predict passenger evacuation16
times more accurately than discrete networks. Also, the force-based model MassMotion provides17
consistent and reliable egress time predictions. The findings of this study contributes to the field18
of egress models for passenger train emergencies and can be used by evacuation modellers and19
authorities to support their decisions.20

21
Keywords: Computer modelling, Egress models, Train evacuation, Social Force Model, Cellular22
automata model, MassMotion23
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1 INTRODUCTION1

In emergency situations in trains, rapid and safe evacuation is crucial for saving lives of passen-2
gers (1, 2). Numerous disasters such as the fire at King’s Cross station (London, 1987), in the3
Hirschengraben tunnel (Zurich, 1991), in the Baku Metro (Azebayjan, 1995), in the Gletscherbahn4
Kaprun (Austria, 2000), in the Daegu subway (South Korea, 2003), and in the Rinkeby Station5
(Stockholm, 2005) resulted in many deaths and injuries (3) due to unsafe and delayed evacua-6
tion. Investigation studies of past evacuations identified a number of elements that influenced the7
egress time of train passengers: the characteristics and behaviours of passengers (e.g., age, gender,8
passenger loads), the geometry and configuration (e.g., the geometry of the train and the railway9
station, barriers within an enclosure, the number and dimensions of exit doors), the operating en-10
vironment (e.g., bridge, tunnel, hazard conditions), safety facilities (e.g., presence of emergency11
signs, lighting), emergency announcements and procedures, staff training, passenger assistance12
and the orientation of the coach (4, 5, 6, 7, 8, 9, 10, 11, 12). It was observed that a safe evacuation13
to a high platform or an adjacent coach has the egress flow rate of just below 1 person per second.14
Baseline safety codes and standards have been defined to ensure passenger safety in emergency15
train evacuations (13, 14). For instance, a minimum flow rate of 0.5 person per second during16
evacuations to the track level and a minimum flow rate of about 0.66 person per second to the adja-17
cent coach are acceptable performance targets for ensuring passenger safety in the Association of18
Train Operating Companies (ATOC) (13, 15). However, the devastating outcomes of recent train19
accidents highlight the need for improving rail safety standards and evacuation techniques.20

Evacuation time studies for passenger train emergencies are limited to fire drills (practices21
of a set of emergency procedures for a safe and rapid evacuation) and computer models. Computer22
models allow determining egress time predictions for various emergency conditions and multiple23
train designs. Validation and Verification (V&V) tests determine the degree to which these com-24
putational models and their results are accurate and reliable (16). This paper investigates a new25
microscopic model, the MassMotion model, for train passenger evacuation. The contributions of26
this paper are as follows:27

• MassMotion, an agent-based microscopic model commonly used for building evacuation,28
is applied to train passenger evacuation.29

• The results of defined key performance indicators (mean total evacuation times, standard30
deviations, maximum evacuation times, minimum evacuation times, and 95th percentile31
of egress times) are compared to real data obtained from a fire drill conducted by the32
Spanish Railroad Administration (RENFE) in a passenger train.33

• The MassMotion model is verified and compared to other existing passenger train evac-34
uation models using the Percent Error of the Mean (PEM) total evacuation time and the35
Percent Error of the 95th Percentile (PEP) of the total evacuation time in a hypothetical36
case study.37

The fundamental principles of existing passenger train evacuation models are reviewed in Sec-38
tion 2. Egress times from a fire drill in a specific passenger train scenario are used to validate the39
evacuation time results using MassMotion in Section 3. The egress time predictions of MassMo-40
tion are compared with other passenger train evacuation models using a hypothetical case study41
under various conditions in Section 4. Section 5 summarises the findings and gives suggestions for42
future works.43
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2 FUNDAMENTAL PRINCIPLES OF COMPUTER MODELS FOR PASSENGER TRAIN1
EMERGENCY EVACUATION2

Computer models can be divided into two main categories based on the underlying science prin-3
ciples for reproducing human behaviour and movement: macroscopic hydraulic models and mi-4
croscopic fluid dynamics (individual-movement) models (17). Both hydraulic models and fluid5
dynamics models describe people movement by distance, speed, flow, and density relationships.6
Hydraulic computer models consider some optimistic assumptions about people’s knowledge of7
the evacuation routes or shortest evacuation path, for instance. However, fluid dynamics models8
consider more realistic assumptions and integrate human behaviour by taking into account in-9
dividual characteristics, human decision-making processes and the operating environment (18).10
Microscopic fluid dynamics models can provide detailed information about the behaviour and11
movement of passengers in longer run times compared to macroscopic hydraulic models. Since12
macroscopic models cannot incorporate individual movement behaviour of passengers when cal-13
culating the flow rates, features of existing microscopic models are summarised in Table 1 and14
discussed in this section for passenger train evacuation. As shown in Table 1, microscopic sim-

TABLE 1 : Features of existing computational models for simulating passenger train evacuations

15
ulation models such as STEPS (Simulation of Transient Evacuation Pedestrian movementS) (20),16
Pathfinder (21), FDS+Evac (Fire Dynamics Simulators with Evacuation) (22), MassMotion (28),17
and EvacTrain (19) follow a number of different approaches and methods for modelling individ-18
ual behaviour, space and time representations and human movement. The methodologies used to19
validate these passenger train evacuation models are listed in column 6 of Table 1.20

Modelling the behaviour of train passengers needs to include passenger characteristics,21
environmental conditions and human intelligence in the movement models of evacuation scenarios.22
Looking at the models listed in Table 1, STEPS considers implicit individual behaviours by taking23
into account passengers response delays. Pathfinder includes three steering behaviours to follow24
the shortest path and to avoid collisions with obstacles and other passengers along the intended25
path of agents. Both STEPS and Pathfinder explain the movement of agents from a starting to a26
destination point by considering congestion and queuing disciplines. FDS+Evac and MassMotion27
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consider behavioural changes based on environmental conditions and artificial intelligence. These1
models use the behavioural modelling approach which incorporates the interaction between agents2
when moving towards a destination by defining physical and socio-psychological forces between3
the agents (23). A path-finding algorithm is usually added to these models to capture human4
intelligence and to move agents towards the destination through the shortest or fastest path (24,5
25, 26). EvacTrain uses a partial behaviour model and determines occupant movements using6
probabilistic distributions of the pre-movement times and the walking speeds.7

Looking at column 3 and 4 of Table 1, existing passenger train evacuations make use of8
either a discrete space network or a continuous space network, and allow determining egress times9
for various emergency passenger train designs and conditions. On the one hand, models with fine10
networks divide the layout into small grid cells and allow agents to move from and to these cells.11
Grid cells only allow one agent to occupy the space at a time. Thus, grid sizes are usually equal to12
the shoulder width of an average person (0.5 m by 0.5 m). On the other hand, the floor plan of a13
building or a train can also be split into sections (e.g., corridors, stair and rooms). These sections14
can be occupied by multiple agents at the same time (coarse network). Assuming a continuous15
space, occupants are not tied to a specific cell on a 2-D floor plan and move anywhere in the16
environment. STEPS, Pathfinder and EvacTrain use a discrete network while MassMotion and17
FDS+Evac operate on a continuous space network. All these models are based on behavioural18
assumptions, activity sets and route choices in continuous time.19

Looking at column 5 of Table 1, each cell in STEPS is associated with a potential value20
calculated based on for instance familiarity of agents with the environment. Using potential val-21
ues, agents move within the environment towards a certain direction. In Pathfinder, each cell is22
associated with a speed and flow rate based on the density of the space. In FDS+Evac, each agent23
keeps a certain distance from its nearby agents and obstacles using repulsive forces. In MassMo-24
tion, agents tend to analyse the conditions of their preferred route based on for instance distance,25
congestion or fire. In EvacTrain, the unimpeded movement of agents is determined.26

As shown in column 6 of Table 1, the egress models are usually validated using code27
requirements, fire drills and past experimental experiments. In Section 3, MassMotion is validated28
using data from a fire drill in a Spanish passenger train.29

3 APPLICATION AND VALIDATION OF MASSMOTION USING DATA FROM A FIRE30
DRILL CASE STUDY31

One of the reasons for the severe consequences in passenger train evacuations is the enclosed nature32
of trains. In emergency situations, real-world passenger train evacuations have two stages: the pre-33
evacuation stage and the evacuation stage (10, 19) as illustrated in Figure 1. The pre-evacuation34
stage consists of the following passenger response steps (10, 19):35

- tdetection: The fire detection time;36
- talarm: The fire alarm activation time;37
- trecognition: The time that passengers require to recognise the fire alarm and react38

(e.g., stand up);39
- tresponse: The time to decide how and which direction to move to exit the train;40
- tpre−evac−movement : The pre-evacuation movement time within the train before it stops.41

After the train has stopped, the evacuation stage follows a number of sequential steps (10):42
- tdoor: The time to open the exit doors of the train and locate ladders;43
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- tevac−movement : The evacuation movement time for passengers to get off the train.

FIGURE 1 : Sequence of passenger responses in a fire train emergency (19)

1

The sum of the pre-evacuation and evacuation time is defined as Required Safe Egress Time2
(RSET). RSET can be estimated using fire drills or computer models. Usually this estimation3
does not consider panic situations during the evacuation procedures. Hence, an appropriate safety4
margin is applied to the model time.5

3.1 Fire drill in a passenger train6

The simulation results using MassMotion are validated using the data obtained from a fire drill7
in a passenger train conducted by RENFE Operadora (Spanish Railroad Administration) (10). In8
this experiment, a fire started in a lounge coach and an emergency announcement was made to the9
passengers before the train stopped. Some of the passengers had handbags and jackets and no one10
had any luggage. As shown in Figure 2, the train is 21 m long with one exit door and 40 passengers11
taking part in this study. The fire drill was recorded using two video cameras, one in front of the12
exit door and one inside the coach (see Figure 2). The time to open the exit door of the train was13
53 s. The flow rate of passengers through the exit was observed as 0.58 person per second.14

The input parameters used to validate MassMotion using fire drill data are presented in15
Table 2. The walking speed distribution, the pre-evecuation movement time distribution and the16
evacuation movement time distribution are defined based on the data obtained from two fire evacu-17
ation during fire drills conducted by the Spanish Railroad Administration (RENFE) in high-speed18
trains S-103 and S-130 (19, 27)19
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FIGURE 2 : Geometry and configuration of the passenger train (19)

TABLE 2 : Input parameters for the simulation using MassMotion

3.2 Simulating a fire drill in a passenger train using MassMotion1

In general, egress times of train passengers are influenced by the random sampling of the pre-2
evacuation movement time. Hence, running a simulation for a similar case study may result in3
different egress times. As shown in Figure 3, the mean egress time for 10, 30 and 100 simulation4
runs in the described case study vary with a maximum of 7.3% difference. Thus, 100 simulations5
were undertaken to eliminate the randomness of the sample and give overall predictions that can6
reflect the range of assigned parameters.7

FIGURE 3 : Passengers egress times of 10, 30 and 100 simulations

Table 3 shows the results from 100 simulation runs using MassMotion. Also shown in8
Table 3 are the results from the fire drill in the passenger train conducted by RENFE Operadora.9
Table 3 summarises the average predicted evacuation time obtained by MassMotion and the evac-10
uation time from actual drill being 119 s and 121 s, respectively.11
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TABLE 3 : Total evacuation times of the MassMotion simulation (100 runs) and the evacuation of
fire drill

4 VERIFICATION OF MASSMOTION USING EXISTING PASSENGER TRAIN EVAC-1
UATION MODELS2

A detailed comparison and verification of MassMotion (28) to other egress models including Evac-3
Train, STEPS, Pathfinder and FDS+Evac is presented in this section. Details regarding the hypo-4
thetical case study and the verification results for various conditions are explained in Sections 4.15
and 4.2, respectively.6

4.1 Hypothetical passenger train evacuation case study7

The geometry and configuration of the train for the verification tests is shown in Figure 4. The8
length of the coach is 21 m with a 50-passenger capacity. The width of the train and aisle inside the9
coach are 2.5 m and 0.62 m, respectively. The coach is upright with one exit to the platform. Safety10
announcement are made in advance. There is no smoke and no crew member inside the coach. It11
is assumed that passengers do not carry any large luggage during the evacuation procedures.12

FIGURE 4 : The plan view of the train geometry and configuration used in the hypothetical case
study

Table 4 illustrates the inputs considered for the comparison of three emergency evacuation13
tests to the platform. Test 1 is defined to allow comparing the passenger train egress models with14
minimum passenger actions and with an open exit door. The flow rates of 0.79 person per second15
and 0.66 person per second considered here are based on the National Fire Protection Association16
(NFPA) and the Society of Fire Protection Engineers (SFPE) standards (29, 30). Test 2 is defined17
to test how interactions between passengers affect the egress time prediction in different models.18
The speed profile and behavioural variables (evacuation movement times for passengers before and19
after the exit door is open) are obtained from an announced evacuation reported in (19). In Test20
3, there is a low flow rate of passengers through the exit door since the passengers are carrying a21
large luggage in this case. Also, the exit door is opening after a shorter delay compared to Test 2.22
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TABLE 4 : Inputs for the comparison of emergency evacuation to platform

4.2 Comparison of MassMotion to other passenger train egress models1

The predicted mean egress times, the standard deviations, maximum evacuation times, minimum2
evacuation times, and the 95th percentile of egress times obtained from five egress models, Mass-3
Motion (28), EvacTrain (19), STEPS (20), Pathfinder (21), and FDS+Evac (22), for the explained4
case study in Section 4.1 are reported in Table 5. In Table 6, the level of agreement between all5
models in comparison to MassMotion is quantified by the Percent Error of the Mean (PEM) total6
evacuation time and the Percent Error of the 95th Percentile (PEP) of the total evacuation time as7
described below:8

PEM = |Mean Evatuation TimeMassMotion−Mean Evatuation TimeModel

Mean Evatuation TimeModel
|.1009

PEP = |
95th Percentile of Egress TimeMassMotion−95th Percentile of Egress TimeModel

95th Percentile of Egress TimeModel
|.10010

Looking at the results of Test 1 in Table 5, the mean evacuation times obtained from STEPS11
(69.0 s), Pathfinder (80.3 s), FDS+Evac (68.0 s) and EvacTrain (68.8 s and 80.6 s) vary by less12
than a second for the flow rates of 0.79 and 0.66 person per second. Looking at the PEM results13
of Test 1 in Table 6, the total mean evacuation time obtained from MassMotion is substantially14
smaller (by up to 11%) compared to other models. Also, it can be seen that MassMotion has15
the minimum evacuation time difference with FDS+Evac which has - equivalent to MassMotion16
- a continuous representative of space. The flow rates of passengers at the exit door of trains is17
positively correlated with the egress time as shown in Table 5. One can conclude that in continuous18
networks agents are less constrained in space and they might be squeezed into a confined area with19
physical contact. As a result, evacuation times of continuous space models are shorter than discrete20
based models.21

Looking at the results of Test 2 in Table 5, STEPS and PathFinder return the shortest22
prediction evacuation times in comparison to the results obtained by FDS+Evac, MassMotion23
and FDS+Evac. Also, the egress time of MassMotion has the highest level of agreement with24
FDS+Evac considering the PEM results shown in Table 6. It can be seen in Figure 5 that results25
from STEPS, PathFinder, FDS + Evac, and EvacTrain have less variability in comparison to the re-26
sults by MassMotion. Predicted evacuation times of MassMotion have the largest variability with a27
mean of 135.46 s and a standard deviation of 29.43 s as shown Table 5. In force-based models such28
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TABLE 5 : The outputs of the verification tests

TABLE 6 : PEM and PEP obtained for each verification evacuation test.
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as MassMotion and FDS+Evac, the evacuation times dependent on the movement of individuals1
whose actions are defined with interpersonal repulsive forces to keep a minimum distance from2
other passengers and obstructions within the aisle. This modelling concept in a continuous space3
results in higher variance of egress time and more realistic results.4

FIGURE 5 : Cumulative distributions functions of evacuation times for Test 2 for MassMotion,
EvacTrain (19), STEPS (20), Pathfinder (21), and FDS+Evac (22)

Looking at the results of Test 3 in Tables 5 and 6, both models, MassMotion and EvacTrain,5
produced the same mean egress time of 137 s with a flow rate of 0.44 person per second. The stan-6
dard deviation from the MassMotion simulation run is 36 s which is about three times larger than7
the standard deviation from simulations using EvacTrain. It can be concluded that the continuous8
existence of repulsive force models affects passenger movements in confined areas (e.g., in aisles)9
and increases the egress time of the passengers.10

The results of the three tests demonstrate the importance of passenger behaviour and their11
interaction as well as how these affect egress times. It can be argued that MassMotion provided12
consistent results in all three verification tests and the algorithms based on social forces are suffi-13
cient to represent the movement of passengers during passenger train evacuations.14

The level of passenger comfort which is based on the level of crowding (number of people15
per square metre) during a train evacuation is defined as the Level-Of-Service (LOS) (31). LOS is16
classified using a ranking from A to F, with A being the best and F being the worst experienced17
comfort. Figure 6 illustrates LOS for train passenger evacuation during the conducted case study.18
The congestion LOS C, D, E and F are represented in green, yellow, orange and red, respectively19
(see Figure 6a). It can be seen that congestion increases as passengers move towards the aisle after20
the pre-movement activities. As shown in Figure 6b, passengers are squeezed in the narrow aisle21
in front of the exit door resulting in congestion and physical contact between passengers. Figure 6c22
reports on the number of people experiencing congestion over time and Figure 6d shows a positive23
linear relationship between the egress time and congestion time throughout the evacuation process.24
The open space in front of the bottleneck reduces the congestion at the exit as passengers tend to25
wait in this area for the exit door to open. Once the train door opens, the bottleneck and the exit26
door are heavily congested with the LOS being ranked E and F.27
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FIGURE 6 : (a) LOS experienced by passengers during the train evacuation case study, (b) Evacu-
ation stages over time, (b) % of passengers experiencing congestion over time and (c) Relationship
between the egress time and congestion time
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5 CONCLUSIONS AND FUTURE WORK1

In this paper, MassMotion was successfully applied to passenger train evacuation. The simulation2
results show that the model developed in MassMotion is capable of representing the interactions3
between train passengers during a train emergency evacuation. MassMotion was validated using4
data from a fire drill being able to reproduce a mean egress time that is close to real data. The force-5
based model developed in MassMotion was verified and compared to four existing passenger train6
egress models (EvacTrain, STEPS, Pathfinder, and FDS+Evac) in three evacuation scenarios. The7
results demonstrate that the force-based model MassMotion can provide consistent and reliable re-8
sults. It can be concluded that the socio-psychological and physical forces in these type of models9
are suited to describe the fatal pressures people are exposed to during evacuation scenarios. Run-10
ning multiple simulations for different passenger train designs can help choosing the design with11
lowest risk for passenger causalities. It was observed that continuous network models predict a12
shorter evacuation time compared to models with a discrete network. Also, MassMotion produced13
a higher variance of egress time in comparison to STEPS, FDS+Evac, PathFinder and EvacTrain14
which is reasonable considering its underlying principles for capturing the complex behaviour of15
humans and their interactions with other passengers in trains.16

Egress time predictions using MassMotion might become more accurate by considering17
pre-movement times such as the time that passengers require in the aisle to collect their luggage.18
It is recommended to focus future work on defining multiple pre-evacuation times and further19
developments of the model for various hazard conditions, diverse seating arrangements within a20
passenger train and multiple passenger trains. Validation and verification is an on-going process21
and further validation tests are required to reinforce the usage of MassMotion for train evacuation.22
The egress analysis of this paper has been conducted for a specific emergency egress scenario and23
there is a need to validate the model using various passenger characteristics, different operating24
environments, and multiple hazard conditions to understand different aspects that may hinder rapid25
and safe emergency evacuation.26

The comparison results presented here show the effect of behavioural and movement rules27
on egress times when using computer models for passenger train evacuation. Simulation mod-28
els can provide insights into potential evacuation difficulties in a shorter time and with less cost29
compared to fire drills and real-world experimental studies. For instance, authorities can change30
the geometry and configuration of passenger trains and determine their impact on the egress time31
considering the comfort level of passengers. Also, evacuation modellers can integrate human in-32
telligence in their behavioural models in order to better replicate human movements in complex33
environmental conditions.34
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