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ABSTRACT 

Whilst much attention has been given to models that describe wave, tide and sediment transport processes in 

sufficient detail to determine the local changes in bed level over a relatively detailed representation of the bathymetry, far 

less attention has been given to models that consider the problem at a much larger scale (e.g. that of geomorphological 

elements such as a tidal flat and tidal channel). Such aggregated or lumped models tend not to represent the processes in 

detail but rather capture the behaviour at the scale of interest. One such model developed using the concept of an 

equilibrium concentration is the Aggregated Scale Morphological Interaction between Tidal basin and Adjacent coast 

(ASMITA). In this paper we provide some new insights into the concepts of equilibrium, and horizontal and vertical 

exchange that are key components of this modelling approach. In a companion paper, we summarise a range of 

developments that have been undertaken to extend the original model concept, to illustrate the flexibility and power of 

the conceptual framework. However, adding detail progressively moves the model in the direction of the more detailed 

process-based models and we give some consideration to the boundary between the two. 

Highlights 

 The concept of aggregating model scales is explored and the basis of the ASMITA model is outlined in detail; 

 The relationship between dispersion as used in fast-scale process-based models and the horizontal exchange 

used in aggregated models is explored; 

 The basis for formulating suitable equilibrium relationships is explained; 

 Alternative ways to include advection and dispersion are examined.  
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1. Introduction 

The concept of an Aggregated Scale Morphological Interaction between Tidal basin and Adjacent 

coast (ASMITA) was first proposed by Stive et al. (1998) for the study of estuary and inlet response to 

sea-level rise. The idea behind ASMITA is that a tidal basin, or an estuary, can be sub-divided into a 

number of elements (Fig. 1). Each element is described in terms of its surface area, volume, and the 

horizontal and vertical rates of exchange. In addition, an equilibrium condition is associated with each 

type of element that equates to zero accommodation space. The model seeks to optimise these 

equilibrium conditions, subject to the initial conditions, any sources or sinks of sediment, and any 

imposed changes. For example, if under the initial conditions, the accommodation space is zero, there 



Ian TOWNEND et al. / China Ocean Eng., 30(4), 2016,   2 

will be no net change in the transport of sediment. However, with an increasing mean sea level, the 

accommodation space becomes positive and sediment is imported (subject to availability); the opposite 

response occurs when sea level falls. The key concepts of the ASMITA model are: 

 The estuary is schematized into a number of geomorphologic elements; 

 The state of each element is described by its volume and surface area (water or sediment); 

 Integrated parameters of hydrodynamics (tidal prism, or tidal range) are used; 

 Empirical relationships define the morphological equilibrium for each element; 

 Deviation from the morphological equilibrium causes a sediment demand (or supply); and 

 A gradient in sediment demand (supply) drives sediment transport, and thereby morphological 

change. 

 

Fig. 1. Schematisation of an estuary or inlet into a number of elements as used in ASMITA. 

The methodology was developed to look at the combined response of tidal delta, channel and tidal 

flats and has been applied to examine inlet response to sea level rise (van Goor et al., 2003), and 

human interferences (Kragtwijk et al., 2004), as well as changes in tidal range, such as the nodal tidal 

cycle (Jeuken et al., 2003; Wang and Townend, 2012). Kragwijk et al. (2004) also extended the 

application to multiple elements based on a matrix derivation of the governing equations.  

These initial applications made use of fixed surface areas for the elements, and prescribed 

equilibrium conditions for the inlets derived from previous studies (Eysink, 1990; O'Brien, 1931; 

Renger and Partenscky, 1974). In these early applications, the parameters were used in conjunction 

with historical information to calibrate and validate the model. Following application to estuaries in the 

UK (Humber and Southampton Water), a more detailed appraisal of the model parameterisation was 

undertaken (Wang et al., 2008). This clarified the relationship of parameters such as the vertical and 

horizontal exchange within the aggregated model, ASMITA, and parameters that might be measured in 

the field. Different ways of schematising the geomorphology of an estuary using the three basic 

element types are linked and have also been explored against reported historical changes (Rossington 

et al., 2007). Direct comparisons with a more detailed process model (Delft 3D) have also provided 

further insight into the validity and limitations of the aggregated modelling approach (Dissanayake et 

al., 2011).  

This paper provides a summary of these developments and explores the links with other 
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formulations. In particular, we provide some new insights into the concepts of equilibrium, and 

horizontal and vertical exchange that are key components of this modelling approach. The application 

of the model is illustrated with a simple case study.  

A number of additions have been added to the original formulation over the last decade. These 

include such things as river discharge, tidal pumping, littoral drift, saltmarsh elements, variable surface 

area and the influence of waves, and these are detailed more fully in a companion paper (Townend et 

al., 2016) referred to as Part 2. 

2. Outline of ASMITA Formulation 

The original model considered the mass balance within each element, based on horizontal 

exchanges in and out of the element and vertical exchanges to and from the bed. Two assumptions 

were then made: 

(i) that there is an equilibrium state that can be prescribed in some way; and 

(ii) that any deviation from the equilibrium in terms of sediment concentration, can be related to 

the flow velocity, and hence cross-sectional area, or volume (see discussion on equilibrium 

sediment concentration below). 

Taking a single element model, such as an estuary channel, for simplicity, the first of these 

assumptions makes use of a relationship between the element volume and the tidal prism: 

Ve = f(P),   (1) 

where Ve is the equilibrium volume of the channel and P is the tidal prism (Eysink, 1990). 

The second assumption leads to an equivalence between concentration and volume, and the local 

equilibrium concentration, ce, can be written in terms of actual volume, V, and equilibrium volume, Ve: 

e

e E

n
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c c

V

 
  

 
, (2) 

where n is the concentration transport exponent and cE is the equilibrium concentration for the system 

as a whole (usually taken as the open boundary value). The difference between the actual concentration 

and the local equilibrium value induces morphological change governed by the exchange between the 

water column and the bed: 
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where w is the vertical exchange coefficient, S is the surface area of the channel, c is the actual 

concentration and cb is the concentration of the bed (omitted in the original derivation). In addition, any 

vertical exchange must be balanced by the horizontal exchange (assuming that, on the morphological 

time scale, the change in the amount of sediment in suspension is negligible compared to the amount of 

deposition/erosion): 

   e E
.wS c c c c     (4) 

The parameter δ is the horizontal exchange coefficient and, for a single element, the r.h.s. of Eq. 

(4) represents the exchange with the external environment. 
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Combining Eqs. (2)(4), the morphological change in volume is given by: 
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  (5) 

This is a change relative to the initial volume and so does not include changes in water levels and 

tidal range. Therefore, the morphological change within the existing volume can be thought of as the 

volume change relative to a fixed water surface, Vf. Including changes in water surface and 

morphological changes gives the total volume change, or volume relative to a moving water surface, 

Vm. Adopting a simple linear relationship for the equilibrium volume of the form Ve=αP, where α is an 

empirical coefficient, these three volumes are given by: 
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 (6) 

where ΔP is the change in prism, ζ is a vertical change in the reference water level (this may include 

changes in mean water level and tidal range depending on the reference surface for the particular 

element type), and the subscript “0” refers to the initial condition. In Eq. (6) dV/dt is obtained from Eq. 

(5) and this can be implemented numerically using a simple forward stepping scheme subject to a 

suitable choice of time step (see Appendix). Alternative definitions of equilibrium are readily 

considered. For example, the above expression could be replaced by Ve=αPβ, where β is a coefficient 

to define the non-linear variation of volume as a function of tidal prism. 

The above equations are for a single element but can readily be extended to multiple elements. 

The original development considered the tidal delta, tidal flats and a channel as components of the tidal 

inlet (Kragtwijk et al., 2004; van Goor et al., 2003). The variation in these volumes depends on the 

transport of sediment in and out of the elements and any changes to the water volume itself. The latter 

may be due to sea level rise, subsidence of the bed, or any form of progressive change in the basin 

volume. Hence, over the long-term (time scales much longer than a tidal cycle), the rate of change of 

the element volume depends on the residual flux, and any change in reference water surface (e.g. due 

to sea level rise or tidal range variations): 
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where J is the sediment flux between elements i and j. If the residual sediment flux between two 

elements is assumed to have advective and dispersive components: 
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where q (m3s1) is the residual discharge rate, D (m2s1) is the inter-tidal dispersion coefficient between 

the two elements (i.e. tidal integrated), A (m2) is the vertical area of the interface between the two 

elements. 
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In Eq. (8) the subscripts i and j refer to the elements that the transport is from and to respectively. 

Some additions, outlined in Part 2, extend the model to include storage areas and saltmarsh elements 

(Fig. 1). It is also possible to subdivide elements such as the channel into multiple elements. The 

equations for such cases are best written in matrix form, as proposed by Kragtwijk et al. (2004), and 

are detailed in the Appendix.  

It should be noted that the equations presented are for long-term fluxes and so there is not a direct 

equivalence between for example the vertical flux and the settling velocity commonly used in process 

models. The issue of parameter selection was explored by Wang et al. (2008) and a typical calibration 

procedure is as follows: 

 use the exponent in a suitable sediment transport formula to define the transport coefficient, 

n. Typically this would have a value between 2 and 5 depending on the type of sediment; 

 base the vertical exchange, w, on the settling velocity; 

 the dispersion coefficient D should be proportional to u2H/w in which u is the scale of the 

tidal flow velocity, H is the hydraulic water depth and w is the rate of vertical exchange. The 

horizontal exchange coefficient, δ (m3s1), is then obtained from the dispersion coefficient as 

follows: 
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 where Δx is a representative distance between the two elements. The coefficient of 

proportionality, ε, should have a value of around 0.1, but is used as a calibration parameter to 

ensure the correct level of mixing. 

 The choice of global equilibrium concentration, cE, is guided by the background 

concentration in the marine environment (especially if tidal pumping is included as 

explained in Part 2) or the average concentration within the estuary, if the system is believed 

to be close to equilibrium. The final choice may be adjusted to ensure that the combined 

influence of the transport coefficient, n, and equilibrium concentration, cE, give the correct 

morphological time scale. 

2.1 Equilibrium Sediment Transport 

A very similar approach has been developed in terms of the (tidally averaged) equilibrium 

sediment concentration. Sediments are moved in and out during the flood and ebb tide. Over short time 

scales (seconds-hours), this transport is largely advective in character. However, over longer time 

scales of one or more tides (days-years), the redistribution of sediment is characterised by the tidally 

averaged dispersion. Following this line of reasoning, Di Silvio et al. (2010) proposed “a tidally 

averaged equilibrium concentration as the local transport concentration value which, with the 

prevailing local shear stresses, does not produce net erosion or deposition”. This definition formalised 

earlier proposals for a model that considered tidally averaged flow and concentration to determine 

erosion and accretion within a tidal basin based on a suitably defined equilibrium concentration (Dal 

Monte and Di Silvio, 2004; Di Silvio, 1989). Rather than using aggregated “elements”, sediment 

transport was computed on a Cartesian grid, such that: 
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,  (10) 

where Jx and Jy are the sediment fluxes in the x and y directions, and F is the net erosion or deposition. 

As outlined above in Eq. (8), the fluxes were then computed in terms of the advective and dispersive 

contributions. The erosion/deposition rate made use of the depth integrated model proposed by 

Gallappatti and Vreugdenhil (1985), integrated over a tidal cycle: 

 E
,F w c c    (11) 

where w is the rate of vertical exchange with the bed, c is the concentration and cE is the equilibrium 

concentration. These two equations then provided what was needed to solve the equation for the rate of 

bed level change, given by:  
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where cb is the concentration of the bed and α accounts for other changes such as sea level rise or land 

subsidence (Di Silvio, 1989). The concentration here is the instantaneous concentration, c(t), averaged 

over a sufficiently long time. By noting the relationship between discharge and velocity and using a 

suitable sediment transport equation, where qs is proportional to un (u is the velocity), the depth 

averaged instantaneous concentration is given by: 

1
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n n
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   .  (13) 

By averaging over a suitable interval, the long-term averaged concentration is obtained. Eq. (13) 

is used to define relationships for tides, internal and external waves, and river inputs, which are 

summed to give a total equilibrium concentration (Di Silvio et al., 2010). For a system close to 

equilibrium, this equates to the global equilibrium concentration used in the ASMITA formulation. It 

therefore follows that the calibration process used to set up the Di Silvio model would be one way of 

determining the value of the global equilibrium concentration, cE. 

Within the element itself, we assume that of the material that moves in and out on every tide, 

some will fall to the bed, or be eroded from the bed, depending on whether the element is above or 

below its equilibrium condition. Over the long-term time scale, this can also be considered as a 

dispersion process. For a suspended sediment load and given flow conditions, the equilibrium bed level 

as a function of the flow field, bed strength, and dispersion coefficient, depends on the concentration 

velocity, defined as (Seymour, 2004, pers.com.): 

D

 



 o cr ,  (14) 

where D is again the dispersion coefficient, τo is the bed shear stress and τcr is critical bed shear stress 

for erosion. When the concentration velocity tends to zero, there is no net erosion or deposition and the 

concentration of suspended particles is in equilibrium. At equilibrium within a particular element, the 

concentration is proportional to the shear stress, which is a function of velocity squared. Now as the 

velocity is inversely proportional to the volume of the element, the equilibrium concentration for the 
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element can be written in terms of the equilibrium concentration for the system as a whole, cE. We also 

make the assumption that the actual transport in an element is approximately equal to the potential 

transport, so that ci = cie and can be related to cE as follows: 

2

2 e e
2
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1 so that .i i

i

c V
c u

V c V


 
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When in equilibrium, the concentration in all elements will tend to cE. This overall, or global, 

equilibrium concentration is usually defined at the open sea boundary, if this can be considered in 

equilibrium. However, it does not follow that this should be the background concentration found in the 

open sea. Estuaries are known to have significantly higher suspended sediment concentrations moving 

back and forth on every tide than those typically found on the open coast. This is, in part, a reflection 

of the concentration velocity to achieve equilibrium but also influences such as tidal asymmetry, which 

is introduced as an addition in Part 2 using the concept of tidal pumping. It may therefore be more 

appropriate to consider the long-term average concentration of the estuary as a whole as the 

representative equilibrium concentration, cE. This is consistent with the approach of Di Silvio et al. 

(2010), who used various forms of Eq. (13) to sum the contributions to the equilibrium concentration 

within the tidal basin. 

2.2 Aggregation of the Sediment Concentration Equation 

In this section we illustrate how the mass-balance equations in ASMITA can be derived from the 

three-dimensional (3D) convection-diffusion equation for sediment concentration. The derivation 

serves to: (1) clarify the equivalence and differences between ASMITA and a process-based 

morphodynamic model (e.g. Delft3D); and (2) identify the physical nature of the (intertidal) 

dispersion. 

The 3D convection-diffusion equation for sediment concentration reads: 

s
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.  (16) 

Herein c = sediment concentration; t = time; u, v = horizontal flow velocity components;  

x, y = horizontal coordinates; w = vertical flow velocity; z = vertical coordinate;  

x, y, z = turbulent diffusion coefficients; ws = settling velocity. 

To solve this equation a bed-boundary condition is needed. At the boundary near the bed the 

sediment concentration (which equates to the downwards flux when multiplied by the settling velocity) 

or the sediment concentration gradient (which equates to the upwards flux when multiplied by the 

vertical diffusion coefficient) can be prescribed. Their values need to be calculated using a sediment 

transport formula (in the case of sand) or a formulation for the erosion rate (in the case of mud). 

Eq. (16) can first be integrated in the vertical direction to obtain the depth-averaged advection-

diffusion equation:  
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    (17) 

with the over-bar representing depth-averaging of the corresponding variable, and h = water depth; x, 
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y = coefficients counting for the effects of the shapes of the vertical distribution of flow velocity and 

sediment concentration; Dx, Dy = dispersion coefficients; E = erosion at the bottom; Db = deposition to 

the bottom. 

This is the first level of aggregation as used by many process-based models. Note that the 

diffusion coefficients in the horizontal direction become dispersion coefficients as they also represent 

the mixing due to the non-uniform vertical distributions of the flow velocity and the sediment 

concentration.  

For non-cohesive sediment (sand) the sediment exchange between the bottom and the water 

column can be derived using an asymptotic solution of the convection-diffusion Eq. (16) (Gallappatti 

and Vreugdenhil, 1985; Wang, 1992). For cohesive sediment (mud) these terms can be calculated using 

e.g. the Krone-Partheniade formulation. In general, such formulations have the form 

( , )E f   ;  (18) 

b s
D cw .  (19) 

It is important to mention that the erosion, E, is independent of the sediment concentration, whereas 

the deposition, Db, is proportional to the sediment concentration. The coefficient, , is in general a 

function of ws/u* in which u* is the bed shear velocity.  

Eq. (17) can be written as:  

b

( ) yx
sshc

E D
t x y


   
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,  (20) 

in which sx and sy represent the suspended sediment transport rate in the x- and y-direction. This 

equation can further be aggregated by integrating over a part, or the whole, of the estuary (a 

morphological element). Using Green’s theorem, the integration yields: 

( )
,

i

i

VC
S Source Sink

t


  


  (21) 

herein V is the volume of the water body of the area and Si denotes sediment transport at open 

boundary (positive=import). 

This equation can also be directly derived by considering the mass-balance of sediment in the 

whole water body. The Source and Sink terms represent the integrals, over some area, A, of 

respectively E and Db. 

d d  
A

Source E x y External Sources  ;  (22) 

d d
A

Sink D x y  .  (23) 

Eqs. (16), (17), (20) and (21) can also be aggregated in time, e.g. over a tidal period or a much 

longer time. As an example, integration of Eq. (17) over a tidal period yields: 

r r
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.  (24) 

The first term representing the change of sediment storage in the water column is neglected as it 

becomes much less important on longer time-scale than the terms on the right hand side representing 
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the exchange with the bottom. All the other terms remain basically the same, but the parameters and 

variables now represent the tidally-averaged values. The residual flow velocities (ur, vr) causes 

advection and the tidal flow now becomes the major mixing agent for the dispersion represented by the 

coefficients Dx and Dy, as elaborated by Wang et al. (2008).  

Aggregation in time of Eq. (21) yields the equation used by ASMITA.  

0.
i

i

S Source Sink     (25) 

Due to the aggregations the Source and Sink terms can no longer be calculated using independent 

formulae for sediment transport and bed erosion, as the required detailed information on flow strength 

is no longer available. However, the aggregation over morphological elements also makes it possible to 

use empirical relations to calculate the morphological equilibrium, which are used to calculate the 

Source and Sink terms (see previous sections).  

The ASMITA model is thus based on the same principles as a process-based model (e.g. Delft3D) 

in the case that the suspended sediment transport is dominant. Both models try to represent the same 

physical processes, but at different levels of aggregation. The difference between the two models is in 

the formulations for the exchange between the bottom sediment and the water column. In Delft3D this 

is arranged via the bottom boundary condition in 3D mode or a formulation derived from an 

asymptotic solution of the (3D) advection-diffusion equation (Galappatti and Vreugdenhil, 1985; 

Wang, 1992) in 2DH mode. In both cases, the local equilibrium concentration for sediment needs to be 

calculated. This requires a sediment transport formula that relates the transport capacity to the strength 

of the flow and the properties of sediment. A sediment transport formula is often derived by 

considering the relevant physical processes, but it always contains parameter (s) to be calibrated with 

observations from the field and/or laboratory. In that sense, a sediment transport formula is thus 

empirical. One must also take into account the uncertainties associated with the application of such a 

formula. This is shown by the fact that there are not one but many sediment transport formulas 

available. An indication of the uncertainty is given by van Rijn (1984) who suggested that sediment 

transport estimates and measurements can differ by a factor of 2. In ASMITA, a single formulation is 

used for the exchange between the bottom and the water column.  This is based on relationships 

between the morphological equilibrium of the elements and aggregate hydrodynamic parameters, 

reflecting the aggregation in time and space. These relationships are, like the sediment transport 

formula, based on physical considerations (to determine relevant hydrodynamic parameters and 

morphological relationships) and observations from the field (to calibrate the parameters in the 

relationship). The local equilibrium concentration is related to the ratio between the equilibrium 

volume and the actual volume. The empirical relationships for the morphological equilibrium also 

contain uncertainties, just like the empirical aspects of a sediment transport formula in Delft3D. 

2.3 Dispersion 

Dispersion is used here to describe the horizontal exchange (between nodes or elements) and can 

be derived from 3D convection-diffusion equation, as just outlined. Since this is a process which seeks 

to reduce or smooth gradients in concentration, at the time-scale of interest (decades), it might also be 

referred to as diffusion. Here we follow Dronkers and use the term dispersion for model scale 
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processes and diffusion for processes that take place at sub-model scale (Dronkers, 2005). The 

dispersion occurs in the definition of the horizontal fluxes in zero-dimensional form in Eq. (8) and in 

two-dimensional form in the equivalent expansion of the fluxes used in Eq. (9). For the latter Di Silvio 

et al. (2010) followed the approach of Dronkers (1978) and used a tensor to describe the two-

dimensional tidal dispersion as: 

 
2

e 2

xx xy

yx yy

D D u uv
k

D D vu v

   
    

  
D ,  (26) 

where ke is coefficient and u and v are suitably averaged velocity fields. Recognising that ke is poorly 

defined and as a result is used as a poorly constrained calibration parameter, Zhou (pers.comm., 2012) 

examined the oscillatory shear stress, Ko, based on the work of Lewis (1997), who proposed: 
2 2
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L z
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A K
 ,  (27) 

where us is the surface velocity, Kz is the vertical shear dispersion coefficient (typically 0.00010.001 

m2/s, depending on the vertical mixing strength), h is water depth, AL is a scaling parameter that is a 

function of the vertical velocity profile, AL=f(), described by: 

s
    for   1 0

z

z
u u z h

h



 
  

 
.  (28) 

Hence, ignoring the molecular diffusion and steady state shear contribution, the effective 

dispersion coefficient can be written as: 

 
2 2

o 22 2

L

1

v

h u uv
K

vu vc A u v

   
  

  
.  (29) 

where cv is a constant (~0.002). Comparing Eqs. (26) and (29), this clearly provides a more physically 

based definition of ke. For a typical tidal estuary with a velocity of around 1 m/s, a water depth of 10 

m, and assuming a linear vertical profile ( =1), Eq. (29) suggests a value of AL =120 and dispersion 

coefficient of 150 m2/s. 

An alternative form of the ASMITA concept, made use of a 1-D flow model and so considered 

cross-sections along the channel rather than reaches (Wang et al., 1998). The linearised form of the 

equations for morphological development from this model was subsequently elaborated (Wang and 

Townend, 2012) and used to examine the form of the intertidal dispersion coefficient (Wang et al., 

2008). As already noted, Eq. (9), this suggested that the inter-tidal dispersion coefficient D should be 

proportional to u2H/w, which is consistent with the more detailed 2-D form presented here. 

3. Additional Considerations 

3.1 Alternative Equilibrium Conditions 

3.1.1 Empirical Prism Relationships 

The most often used form of equilibrium within ASMITA makes use of the O'BrienJarrett 

relationship (Jarrett, 1976; O'Brien, 1931). This relates cross-sectional area to tidal prism but the 
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relationship with tidal prism has been shown to be equally applicable to channel and intertidal volumes 

(Eysink, 1991; Townend, 2005) and leads to an expression of the form: Ve=αP. For the tidal inlets that 

make up the Wadden Sea (Netherlands, Germany, Denmark), the channel volumes have been shown to 

follow an exponent of  =1.5 (Eysink and Biegel, 1992). From the UK database, which includes 66 

estuaries of different types and size, this usually provides a good description for the volume at mean 

tide level but a statistically slightly poorer description of the channel and flats as separate elements (see 

Table 1). Similar relationships for the surface area are improved by scaling the tidal prism using the 

tidal range (Table 1). As can be seen from the goodness-of-fit values (R2) in Table 1, the addition of an 

exponent does not necessarily improve the quality of the fit. Hence using a linear relationship is a 

plausible option for estuaries but not necessarily for semi-enclosed basins. The single fit parameter, α, 

is then simply the ratio of the volume to tidal prism. By assuming that an estuary, in its present state, is 

close to equilibrium, this coefficient can then be readily calculated. This is one of the simplest ways to 

set up the equilibrium condition in the ASMITA model. 

Table 1 Tidal prism relationships based on the estuaries in the UK estuary database. Surface area relationships 

are based on the tidal prism divided by the tidal range.  

 Linear Power law 

α R2 α β R2 

Volume 

MTL 0.843 0.98 0.096 1.113 0.92 

Channel 0.418 0.93 0.005 1.230 0.80 

Flat 0.163 0.74 0.080 1.081 0.61 

Surface area 

MTL 1.08 0.99 0.377 1.049 0.96 

Channel 0.78 0.97 0.047 1.152 0.93 

Flat 0.95 0.77 31.0 0.810 0.83 

3.1.2 Idealised Cross-Section As A Function of Tidal Prism 

An alternative approach is to use the equilibrium hypsometry relationships for channels (Cao and 

Knight, 1997) and tidal flats (Friedrichs and Aubrey, 1996) to define the form of the estuary cross-

section (see Fig. 2). The equations to describe this (tidal flow only) form have been used to explore 

estuary form (Townend, 2010). However, integrating this cross-section over the respective intervals 

provides cross-sectional areas of the intertidal and channel, respectively. This leads to the following 

simple expressions for surface areas, S, and volumes, V, of the channel (lw) and intertidal flats (fl), 

where nbk has a value of 1 or 2 depending on whether a half or full cross-section is being considered: 

2
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  

f l bk eqS

π
.  (30) 

In the above, P is the tidal prism; n determines the shape of the channel (the larger the value, the 

closer the form is to a rectangular channel) and is parabolic with a value of n=2; the equilibrium slope 

can be calculated from: 
W W

m L
n a


 o l w

eqS e

bk

, where the widths, Wo and Wlw, are as defined in Fig. 2, Le 

is the estuary length and a is the tidal amplitude. If the slope, meqS and shape coefficient, n, are treated 
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as being constant, Eq. (30) can be used to derive updated equilibrium volumes and areas for the 

channels and flats given a new value of the tidal prism. Comparisons for a number of UK estuaries 

suggest that these equations provide a reasonable estimates of the gross properties. It also follows that 

the more complete description of estuary shape based on external parameters (rather than the tidal 

prism) and including influences such as internal wind-waves and saltmarsh (Townend, 2012) can also 

be used as a basis for prescribing equilibrium. 

 

Fig. 2. Definition sketch for equilibrium form of channel and intertidal. 

3.1.3 Hypsometry As A Function of Tidal Prism 

The simplest form of hypsometry description is proposed by Wang et al. (2002). This is based on 

an empirical power law expression of the following form: 

( ) ( )V z C d z    ,  (31) 

where V is the volume of the reach or estuary, C and  are constants, d is the depth of the section 

below the mean tide level datum, and z is the elevation relative to the datum (positive above the 

datum). This can be written as: 

( )
1 ,

V z z

V d



 
  
 o

  (32) 

where Vo = C.d is the volume below the mean tide level datum. The derivative of equation is surface 

area of the reach or estuary, i.e: 

1( ) ( )S z C d z     ,  (33) 

where C.d1 is the surface area at the mean tide level datum, So, from which it follows that the 

average depth, or hydraulic depth, at any elevation is given by: 

( )
( ) .

( )

V z d z
H z

S z 


    (34) 

So that Vo/So =Ho =d/. These relationships have been shown to provide a good description of the 

hypsometry, as illustrated in Fig. 3. Making use of approximate estimates of the tidal prism using (i) 

the volume between high and low water slack water; and (ii) the tidal excursion through the area at the 

mouth (Savenije, 2005), one can derive relationships for the volume and surface area at mean tide 

level:  

𝑆𝑜 =
𝑃(1−𝛿∙𝐿𝑤)

2𝑎.cos(𝜀)
   and  𝑉𝑜 =

𝜔𝑃𝐿𝐴

2𝑢
  (35) 
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where ε is the phase lag between tidal elevation and tidal velocity; ω is the angular frequency of the 

tide (2π/Tp), Tp being the tidal period; a is the tidal amplitude, u is the tidal velocity amplitude, δ is the 

along-channel damping of tidal amplitude and LA and Lw are the rates of area and width convergence. 

For UK estuaries, these both provide reasonable estimates, even without detailed knowledge of the 

phase lag and rates of convergence. The surface area fit is given in Table 1, based on SpαP/(2a), the fit 

coefficient accounting for (1-δ.Lw)/cos ε. The fit for volumes based on Eq. (35) is also quite good with 

R2= 0.96, although this still has quite a lot of scatter, probably reflecting the quality of the estimates of 

convergence and velocity amplitude. 

 

Fig. 3. Hypsometry of the Humber estuary compared to the power law functions for volume and surface area. 

The maximum depth, d, and the shape parameter, α, are constrained by Eq. (34), so that if one is 

known, the other can be estimated. Alternatively, they can be obtained as fitting parameters based on 

the existing bathymetry. Thereafter it is assumed that the shape parameter remains constant. The 

historic data for the last 70 years on the Humber estuary suggest that this is a reasonable assumption. 

When used in ASMITA, Eqs. (32)(35) provide high and low water values based on updated values of 

the tidal prism, from which channel and flat volumes and surface areas are obtained. 

3.1.4 Relationships for Tidal Deltas 

The original development of ASMITA (and its application to the Wadden Sea) relied on the work 

of Walton and Adams (1976) to parameterise the equilibrium relationship for the tidal delta. This 

provides an empirical relationship for the volume of sediment in the delta over the surrounding bed 

level as, by relating the volume to the tidal prism: 
bV aP , where V is the sediment volume, P is the 

tidal prism, and a and b were defined as 6.57E3 and 1.23, respectively, although the coefficients are 

usually adjusted when applied to specific inlets.  

Subsequent work has explored the offshore extent of ebb-tidal deltas (Carr and Kraus, 2001; de 

Vriend et al., 1994) and the distance alongshore (Carr and Kraus, 2001; Hoan et al., 2011). However, 

these studies largely focused on micro and meso-tidal inlets. In contrast, estuaries and rias that are 

meso- or macro-tidal have very different morphologies and there is little knowledge to guide the 

determination of suitable equilibrium. 

The plan area of the delta is estimated based on the maximum distance offshore and the up and 

down drift distances to the shore connection points, as defined in the literature. This could be defined 
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as the area of semi-circle or a triangle and, for simplicity, the latter is adopted. Hence the plan area is 

given by:  u d
0.5S L W W  , where L is the distance offshore, Wu is the updrift distance, Wd is the 

downdrift distance. These three variables have all been related to tidal prism and various workers (Carr 

and Kraus, 2001; de Vriend et al., 1994; Sha and van den Berg, 1993) have suggested various empirical 

relationships based on exposure and the number of jetties at the inlet mouth. 

Although Hoan et al. (2011) modify the up and down drift relationships to account for the angle 

of prevailing wave attack and associated asymmetry of the delta, this is not included, given the overall 

uncertainty associated with the empirical relationships. Hence, relationships for exposed coast without 

jetties are given as: 

  
0.40.25L P ;    0.54

u
0.09W P ;    0.57

d
0.048W P  

Whence the plan area of the delta is given by:  0.03 0.940.01125 0.006S P P  .  (36) 

3.2 Equivalence with Regime Theory 

The regime method uses the following relationships to express the variation between key form 

parameters and the tidal discharge (Langbein, 1963; Myrick and Leopold, 1963): 

; ; ,p q rW Q H Q A Q     (37) 

where r=p+q, W is the width, H the hydraulic depth, A, the cross-sectional area, Q, the discharge, and 

p, q, and r are exponents. In the literature these values are taken at mean tide level, or the level of peak 

discharge.  The latter is generally considered more representative and is used here. 

In contrast, ASMITA is based on an assumption that the morphology will adjust so that 

concentrations equal an equilibrium value, as governed by Eq. (2). This is implemented within the 

ASMITA model as a function of horizontal and vertical exchange rates, Eqs. (3) and (4) and an 

expression for the equilibrium volume, Eq. (1). The latter can be represented in a number of ways but 

the most widely used is to relate the volume to the tidal prism, i.e. Ve = αP, where P is the tidal prism. 

Given that for a symmetric tide, Q ≈πP/Tp, it is clear that Ve could be written in terms of discharge. 

More generally, this is written with the prism to some power, m, following the initial observation 

of this relationship by O’Brien (1931). A number of authors have subsequently explored the physical 

basis of this equation (Friedrichs, 1995; Hughes, 2002; Kraus, 1998). Whereas Kraus and Hughes 

conclude that the prism or discharge is to some exponent. Friedrichs suggests that, for the case of a 

symmetric tide, the exponent is one. However, he then explains the variations about a value of one 

based on the role of tidal asymmetry, river flows and the development of a turbidity maxima. His 

resulting equation has the form: 

1
6 ,

s

g
A H N Q




      (38) 

where N is Manning’s friction coefficient, ρ is the density of water, g the acceleration due to gravity, τs 

the total shear stress that is just stable and β is the exponent that varies about one. A seaward decrease 

in shear stress should cause β >1 and be associated with flood dominant discharge, whereas a decrease 

of the shear stress in a landward direction should give β <1 and reflect ebb dominance. Friedrich 
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reports this to be the case for the Thames and the Usk estuaries in the UK. 

Now the along estuary variation of cross-section for a convergent estuary can be expressed as an 

exponential of the form A = Aoexp(x/LA), where Ao is the area at the mouth and LA is the e-folding 

length of the cross-sectional area. It then follows that the volume to the same reference (MTL or level 

of peak discharge) is given by: 

0
1 exp .

xL
x

A A

A

L
V A x A L A L

L

  
       

  
 o o

d   (39) 

Combining Eqs. (38) and (39) the volume can also be written as a regime relationship, similar to 

those in equation (37), i.e. V α Qs, and will vary in a similar manner, assuming that LA remains 

approximately constant when the system is perturbed.  Hence, for typical coastal plain estuaries there 

should be an equivalence between a Regime model and ASMITA when using tidal prism as a basis for 

equilibrium. However, along channel variations and the recognition of the role of tidal asymmetry, 

river flows and the associated turbidity maxima, as characterised by the exponent, β, may need to be 

carefully examined if a one-to-one correspondence is to be established. 

3.3 Morphological Response Time 

Linearising Eq. (5) around the equilibrium, Kragtwijk et al. (2004) show that the morphological 

time scale can be expressed as: 

e e

E s

1
.

V V

c n w S




 
  

  
  (40) 

This makes clear that the morphological e-folding time scale (or half-life) is a function of the 

system properties but not the disturbance. This equation is derived for a single element model and so 

also provides a response time scale for the system as a whole. For multiple elements, similar 

relationships can be derived for the individual elements (see Kragtwijk et al. (2004) for further details). 

When seeking to apply the model in some forms of hindcast against historical data, it is important to 

recognise that the changes, such as sea-level rise, or non-equilibrium advective flows (flows for which 

equilibrium is not defined by the global equilibrium concentration, cE) invoke a perturbation and hence 

a change in volumes in accordance with the equilibrium relationships adopted. For example, when 

including sea-level rise, it may be necessary to include an initial “spin-up” period to allow the model to 

adjust to the prevailing rate of rise. Subsequent changes are then correctly reproduced as perturbations 

on the initial rate. Similarly, if river inputs, or littoral drift are included there may be a need to include 

an adjustment to the rate of change equation, as explained below for advective flows below and in Part 

2 for littoral drift. 

3.4 Advective Flows 

By default, the ASMITA model assumes that the equilibrium of the elements within the model 

domain are conditioned by the concentration in the “outside world”, or external environment. When 

considering a delta/channel/flat system, as in the original applications, this global equilibrium is 

determined by the concentration in the “external” marine environment (i.e. a single value). The 

condition for equilibrium then requires that the volume rate of change goes to zero, Eq. (3), which is 
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equivalent to zero gradient in the concentration field. If other sources are introduced, such as a river 

input, this remains the basis for equilibrium provided the concentration is the same as the global 

concentration. However, if the concentration associated with the other sources is not the same then Eq. 

(3) no longer represents an equilibrium state, or put another way, the additional source constitutes a 

perturbation to the system. One way of overcoming this is to determine the equilibrium taking account 

of the additional inputs, on the assumption that these are intrinsic to the state of equilibrium 

represented by the initial state of the system being modelled. This is predicated on the idea that the 

form of the estuary (bathymetry etc.) used to describe the existing state will be close to an equilibrium 

under the prevailing conditions and, consequently, the various inputs must all be represented in this 

state. 

For a single element with the inclusion of a river input, Eq. (3) is modified as follows: 

   e

o e r e

d

d

n

VV
C q q

t V
 

  
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   
,  (41) 

where qo is discharge to the marine environment, qr is the river discharge and δe is the horizontal 

exchange rate. In order to have a different concentration associated with the river flow but allow cE to 

be factored into the coefficient C in Eq. (41) the imported concentrations are expressed as ci = ki
.cE. 

With some re-arrangement it can be shown that dV/dt =>0 if the equilibrium volume is factored by: 
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. (42) 

In a single element model, the flow in and out must balance  to ensure mass continuity, so that qo 

= qr. However, they are kept explicit here to illustrate the basis of the implementation in matrix form 

for multiple elements, which is detailed in the Appendix. 

4. Typical Application 

To illustrate the application of the model based on its original formulation we make use of a two-

element model, comprising a channel and a tidal flat, with dimensions and parameters that are based on 

the Humber estuary (Townend et al., 2008). The Humber Estuary is located on the North Sea coast of 

England and drains a catchment area of just under 24000 km2 with an annual average discharge of 

some 250 m3/s. The estuary is macro-tidal, with a mean tidal range of 6 m and extends some 145 km to 

the tidal limit. Suspended sediment loads are high with a turbidity maximum that moves between Hull, 

30 km from the mouth, and Selby, 95 km from the mouth, depending on the seasonal conditions. The 

variations in the geomorphology from the mouth to the tidal limit mean that this estuary could be 

schematised into elements in many different ways (Rossington et al., 2007). The results from 3 

different model runs using the 2 element model (channel and tidal flat) are shown in Fig. 4. The left 

hand plot is the tidal channel and the right hand plot is the tidal flat. Each plot shows how the volume 

(moving, equilibrium and fixed; see Eq. (6)) changes with time. The three cases are: 

(i) sea-level rise of 1.8 mm/a  indicated by the linear lines; 

(ii) sea-level rise and a cyclic variation in tidal range based on the lunar nodal tidal signal; 
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(iii) sea-level rise with an advective (river) flow but no account taken of this in the equilibrium 

condition; see Eqs. (42) and (43). This is only shown for the moving surface. Results for the 

other two volumes have a similar offset. 

 

Fig. 4. Illustration of (wet) volume changes for a 2 element model. Volumes are moving surface, equilibrium and fixed surface 

for a sea-level rise of 1.8 mm/a (linear change) and sea-level rise plus the 18.6 year lunar nodal cycle. The additional 
moving surface line (dash-dot) includes a river flow which is not accounted for in the equilibrium condition. 

It is also relatively easy to impose changes, to reflect dredging operations, reclamations or 

managed realignments, by introducing the change (ΔV(t) and ΔS(t)) into Eq. (6) for the fixed and 

moving surface volumes. For a system that is initially near to equilibrium and not subject to other 

changes, such as sea-level rise, the response to a change at some time, t, is to restore the initial state 

over a time scale that reflects the morphological time-scale of the system (Jeuken et al., 2003).  

The model is also very efficient and hence well suited to very long simulations or use in 

uncertainty analysis where ensemble or Monte Carlo techniques are being used. This is nicely 

illustrated by the application of the model to the Humber estuary in the UK to consider changes over 

Holocene (2000 years) and Historical (150 years) time scales. This was originally investigated using an 

empirical model (Townend et al., 2007) but a similar result is readily obtained using ASMITA, Fig. 5. 

 

Fig. 5. Comparison of modelled estuary volume with (a) estimates of the rate of basin infilling derived from the stratigraphic 

records for the Humber Estuary (Rees et al., 2000) and (b) historical data derived from bathymetric charts. Measured data   

includes error bars (±1 year and ±5% volume or area). 

5. Conclusions 



Ian TOWNEND et al. / China Ocean Eng., 30(4), 2016,   18 

The ASMITA model has been under continuous development over the last two decades since it 

was first proposed in 1998. As an aggregated type of model based on prescribed equilibrium 

relationships, it aims to explore the bulk morphodynamic changes (in terms of volume change) of 

large-scale estuarine and coastal systems over relatively long term, in contrast to the fast-scale process-

based models (e.g., Delft3D) which intend to capture the details of bed level change. Because of its 

simplicity and effectiveness, the ASMITA model has been used in a number of applications, showing 

its competence in, e.g., assessing the morphodynamic response of tidal inlets and estuaries to sea-level 

rise and anthropogenic interventions. During the last decade, a number of extensions to explore other 

inlet and estuary dynamics have been developed within the mass-balance framework of ASMITA. 

These are presented in Part 2 and include (1) tidal pumping, (2) saltmarsh and storage element, (3) 

transport of mixed sediment, (4) variable area and constraints, (5) literal drift for delta and (6) the 

effect of waves. Adding more complexity, these extensions widen the application possibilities of the 

model and make the model more realistic, while keep the advantage of obeying the prescribed 

morphological equilibrium over the long-term. Therefore, the ASMITA-type of models represent a 

different modelling philosophy, which can complement process-based models, especially when dealing 

with large-scale and long-term simulations. 
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Appendix 

The equations presented for the single element model can be conveniently written in matrix form 

to represent a multi-element model. Here we follow the naming convention of Kragtwijk et al. (2004) 

for volumes and add some additional terms to make the model more general with respect to dispersion, 

advection and the sources of perturbations in the volume. 

For a multi-element model, the variables used in this Appendix are defined as either vectors or 

matrices, as follows: 

V : element volumes;  : volume ratios (Vke /Vk)n; 

S : element surface areas;  : surface area ratios (Ske /Sk)abs(n); 

e
c : local equilibrium concentrations; ext

 : 
horizontal exchange coefficients with 

environment; 

c : element concentrations; n : 

concentration transport exponent. 

positive for wet volumes and negative 

for sediment volumes; 

ext
c : 

concentrations for fluxes into the system 

from the environment; 
b

c : concentration of bed; 

ext
q : 

advective flows into the system from the 

environment 
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Diagonal matrices: 

D: horizontal exchange between elements W: vertical exchange coefficient w 

Q: advective exchange between elements S: surface area 

B: expression to scale rate of change I: unit or identity matrix 

d : expression for offset to rate of change M: unit matrix with sign of n 

The matrix D reflects the structure of the horizontal exchange between elements and with the 

outside world. For an n-element system with all elements linked and exchanging sediment with 

external environments, this would take the following form: 

1, 1, 1,2 1,

2,1 2, 2, 2,

,1 ,2 , ,

...

...

... ... ......

...

n E n

n E n

n n n n n E

   

   

   

 
 

   
    
 
 
     






D                               (P1.1) 

For dispersive horizontal exchange the matrix is symmetric because δi,j = δj,i and the direction of 

transport depends on the concentration gradient.  However, for advective transport, the flow has a 

specified direction and we adopt the convention of transport from element i to element j. The matrix 

for an n-element system is then given by: 

1, 1, 1,2 1,

2,1 2, 2, 2,

,1 ,2 , ,

...

...

... ... ......

...

n E n

n E n

n n n n n E

q q q q

q q q q

q q q q

 
 

   
    
 
 
     






Q ,                              (P1.2) 

where qn,E all relate to fluxes out of the system. In order to ensure continuity of water mass we also 

require that, for each element, the sum of the discharges in and out of the element is zero, ie ∑qi = 0.  

However, provision is made for the sediment concentrations associated with these discharges to vary. 

The basic equations can now be written: 

 

e

b

T

e E ext ext

e E ext E

d 1
( );

d

( ) ( ) ;

and ,

c

c

V
c c

t c

c c c c k q

c c k c c





 

     

 

MWS

D Q WS     (P1.3) 

The basis for calculating the change in volume due to some perturbation is then as follows: 

 
1V

d V
t c

   
b

d

d
B                                (P1.4) 

where 
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T 1

E

T 1

E ext ext

( ) ;

( ) ( ).
c

c

d c k q





     

    

QB MWS I D WS WS

MWS D Q WS
 

The term V  refers to any other changes in volume, introduced at any given time, within each 

element, eg due to reclamation or dredging. The change determined by Eq. (A.4) is the morphological 

adjustment relative to the initial volume and so does not include changes in water levels and tidal range 

but the volumes used in defining   are based on the total water volume of the element at any given 

time interval. As explained in the main text, these are referred to as Vf and Vm, respectively. When 

using the ratio of element volume to tidal prism as the basis for equilibrium, the equilibrium, fixed and 

moving volumes are given by: 

 e 0

f f0

m m0

d
d

d

dd
d d

d d

V P P P

V
V V t

t

V
V V t S t

t t

 




     




 



  




 

     (P1.5) 

Stability requires the numerical propagation to be faster than the physical speed of propagation of 

any given property. In terms of advection this requires that the volume cannot infill in a single time 

step, so that qcdt/V ≤ 1. A similar requirement can be imposed for dispersion, with a dispersion 

coefficient K: Kdt/(2X2) ≤ 1, where X is some appropriate excursion length. In ASMITA we are 

essentially dealing with horizontal fluxes Q and D (both m3/s). We can therefore write the stability 

criteria as: 

min
( )

t
c

 
   

  

V

Q D
.     (P1.6) 

Advective Flow Equilibrium  

If an advective flow, such as a river flow, is included, this implies a perturbation to the system 

unless accounted for in the rate of change equations, such as Eq. (P1.3). This is addressed by taking 

account of the additional inputs, on the assumption that these are intrinsic to the state of equilibrium 

represented by the initial state of the system being modelled. To account for this, the equilibrium 

volume and area are corrected using the arguments that lead to Eqs. (32) and (33) for a single element. 

In matrix form this adjustment, α, can be obtained from the initial conditions, as follows: 

   
1 1

1 1

e e0 e e0
andn nS S e V V d    F B .   (P1.7) 


