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Abstract

The Oligocene epoch represents a somewhat neglected chapter in paleoclimate and
paleoceanographic history, which is at least partially due to the scarcity of complete
Oligocene sedimentary archives and poor biostratigraphic age control. Many of the
biotic events registered in Oligocene microfossils are strongly diachronous across
latitudes as a response to increased global cooling and enhanced meridional
temperature gradients. To improve biostratigraphic age control for the Oligocene of
the North Atlantic Ocean, we carried out a high-resolution study of dinoflagellate
cysts from Integrated Ocean Drilling Program (IODP) Sites U1405, U1406 and
U1411 off Newfoundland. Together the sites comprise an apparently complete
uppermost Eocene (34.9 Ma) to lowermost Miocene (21.7 Ma) sequence with good
magnetostratigraphic age control. This allows us to firmly tie identified dinoflagellate
cyst bioevents to the geomagnetic polarity timescale. In the dinoflagellate cyst
assemblages studied we have identified and magnetostratigraphically-calibrated ten
first and 19 last appearance datums. Our magnetostratigraphically-calibrated
dinocyst-based biostratigraphy, which is based on an average sample resolution of a
sample every ~150 kyrs, will contribute to an improved age framework for future

paleoceanographical studies in the higher-latitude North Atlantic.

Keywords: Paleogene; Oligocene; biostratigraphy; dinoflagellates; North Atlantic;

Integrated Ocean Drilling Program

1 Introduction

Positioned between the early Paleogene greenhouse and the well-developed
Neogene icehouse worlds, the Oligocene epoch (33.9-23.03 Ma; Gradstein et al.,
2012) represents in many ways the neglected ‘middle child’ of Cenozoic
paleoceanography and paleoclimatology (Shipboard Scientific Party, 2002). This

status has at least partially resulted from the sparseness of complete Oligocene
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sedimentary archives. Shelfal sequences of Oligocene age often exhibit hiatuses
caused by sea-level fluctuations that reflect the waxing and waning of Antarctic ice
sheets (Miller et al., 1991; Wade and Pélike, 2004; Palike et al., 2006). Likewise,
deep-marine Oligocene sequences, which would have remained largely unaffected
by sea-level dynamics directly, are often fragmentary due to the onset of strong
bottom-water circulation near the Eocene/Oligocene boundary (Miller and Tucholke,
1983; Davies et al., 2001). Notwithstanding these limitations, the Oligocene deserves
further attention from the paleoclimatic community because it represents one of the
most interesting episodes in the evolution of Cenozoic climates. Studying the
Oligocene allows one to decipher the processes underlying the transition from a
climate state characterized by the lack of large-scale ice sheets and associated sea-
level dynamics to a climate state characterized by a unipolar glaciation, pronounced,
glacially induced sea-level oscillations and the establishment of a quasi-modern
oceanic circulation regime (e.g., Coxall et al., 2005; Palike et al., 2006; Zachos et al.,
2008).

Disentangling the causal mechanisms behind the long-term climate evolution
and short-term dynamics in Earth’s history critically hinges on the availability of highly
resolved, integrated stratigraphies (e.g., Kuiper et al., 2008). Despite the enormous
progress in the development of geochemical and cyclostratigraphical approaches
over the past decades, microfossil-based biostratigraphy has remained an
indispensable stratigraphic tool both in academic research and industry applications
(e.g., Beaudoin and Head, 2004; Coccioni et al., 2008; Tauxe et al., 2012; Jenkins,
2013). However, although individual marine plankton taxa occur across vast regions,
their distribution is strongly influenced by water-mass or other oceanographic
boundaries (Lazarus, 1983). Hence, as a response to increased global cooling and
enhanced meridional temperature gradients from the late Eocene onwards, many
biotic events registered in microfossil assemblages during the Oligocene are strongly

diachronous across latitudes. These diachroneities can yield substantial uncertainties
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in biostratigraphic age control, thereby compromising long-distance correlations. For
instance, the ranges of many Oligocene calcareous nannoplankton taxa differ
strongly from low to high latitudes, which has resulted in the development of two
widely used zonal schemes — the zonation of Martini (1971) is largely based on
temperate regions, whereas that of Bukry (1973) relies on low-latitude sections.
Similarly, many planktic foraminifers show constrictions in ranges through the
Eocene and Oligocene (Boersma and Silva, 1991), as do radiolaria (Maurrasse,
1979), diatoms (Baldauf and Barron, 1990), and organic-walled dinoflagellate cysts
(dinocysts) (Williams and Bujak 1977; Williams et al., 2004). Clearly, further
improvement of biostratigraphic age control for the Oligocene is required, in
particular with regard to the generation of chronostratigraphically (i.e.,
paleomagnetically and/or cyclostratigraphically) well calibrated, temporally highly
resolved datums (Luterbacher et al., 2004).

With regard to the notorious incompleteness of Oligocene strata, the drift
sediments recovered during Integrated Ocean Drilling Program (IODP) Expedition
342 off Newfoundland represent a remarkable exception to the rule. Besides
spanning the entire Oligocene and being apparently complete, they exhibit
sedimentation rates that are exceptionally high for deep-marine settings (up to 10.4
cm/kyr) and have allowed exquisite preservation of calcareous, silicious and organic-
walled microfossils (Norris et al., 2014a). The high-quality paleomagnetic age control
of the IODP Exp. 342 sites discussed here (see Section 4.2) provide an opportunity
to develop an integrated biomagnetochronology for a number of microfossil groups
that can be exported to the greater NW Atlantic region. This will ultimately allow for

correlation of paleoceanographic events between the lower and higher latitudes.

2 Previous work on Oligocene dinocyst biostratigraphy
The backbone of microfossil-based biostratigraphy in the Oligocene is traditionally

formed by calcareous plankton groups. However, the biostratigraphic utility of these
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groups for the higher-latitude North Atlantic, and thereby also for correlation between
higher and lower latitudes, is compromised by their diminished diversity and/or
reduced preservation potential in polar to sub-polar settings (Baldauf and Barron,
1990; Lipps, 1993 and references therein). In contrast, organic-walled dinocysts are
inert to chemical dissolution (albeit sensitive to oxidation), and they exhibit high
species diversity in the Eocene to Oligocene of the high-latitude North Atlantic Ocean
and adjacent seas (Damassa et al., 1990; Eldrett et al., 2004).

Over approximately the past 40 years, dinocyst biostratigraphy has emerged as
a highly valuable tool in the age control of Oligocene successions from both shallow-
marine, shelfal (e.g., Stover and Hardenbol, 1994; Van Simaeys et al., 2004;
Schigler, 2005; Sliwinska et al., 2010) and pelagic settings (e.qg., Biffi and Manum,
1988; Brinkhuis and Biffi, 1993; Wilpshaar et al., 1996; Pross et al., 2010). In many
cases, Oligocene dinocyst bioevents have been chronostratigraphically calibrated
using information from calcareous microfossil groups, notably calcareous
nannoplankton (e.g., Biffi and Manum, 1988; Head and Norris, 1989; Damassa et al.,
1990; Pross, 2001; Van Simaeys et al., 2004). However, under a climate regime with
strong meridional temperature gradients as was the case during the Oligocene,
calcareous nannoplankton bioevents tend to be diachronous (Backman, 1987), and
the preservation of calcareous nannoplankton assemblages in high-latitude settings
is strongly compromised by enhanced carbonate dissolution (Berger et al., 1989;
Eldrett et al., 2004).

To date, remarkably few dinocyst biostratigraphies with robust
magnetostratigraphic calibration have become available for the Oligocene (Fig. 1).
With the exception of the biostratigraphic data provided by Tauxe et al. (2012),
Houben et al. (2013) and Peter Bijl (pers. comm.) for the high-latitude Southern
Ocean, they are exclusively based on successions from the Northern Hemisphere
(Fig. 2). Lower-latitude information from the Northern Hemisphere is primarily

available from the Tethyan realm. Based on material from the Umbria—Marche region
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of Central Italy, which is home to some of the most complete Oligocene successions
known from the western Tethys, Brinkhuis and Biffi (1993) established a dinocyst
zonation for the Eocene/Oligocene transition interval. Subsequently, Wilpshaar et al.
(1996) extended this work into younger strata, generating a dinocyst zonation for the
entire Oligocene. Their conclusion that this zonation could be used throughout the
Mediterranean region was later confirmed by Peeters et al. (1998) and Torricelli and
Biffi (2001). Integrating higher-resolution datasets from different sections in the
Umbria-Marche Basin, Coccioni et al. (2008) and Pross et al. (2010) further refined
the chronostratigraphic calibration of Oligocene dinocyst bioevents for the Tethyan
realm.

Mid-latitudinal, magnetostratigraphically-calibrated dinocyst bioevents for the
Oligocene are primarily known from the North Sea Basin (Fig. 1). Sliwinska et al.
(2012) established an integrated bio- and magnetostratigraphy for the Rupelian and
Chattian based on onshore deposits from Denmark. Dybkjzer et al. (2012) studied the
Oligocene-Miocene boundary interval, and Thomsen et al. (2012) presented a
magnetostratigraphic calibration for some of the Eocene to earliest Oligocene
bioevents previously identified by Heilmann-Clausen and Van Simaeys (2005). A
cross-calibration of magnetostratigraphic and dinocyst biostratigraphic data for part
of the lower Rupelian of the northern Alpine Foreland basin in Southern Germany
has been carried out by Kempf and Pross (2005).

For the higher-latitude North Atlantic, a wealth of magnetostratigraphically-
calibrated dinocyst data has become available from Deep-Sea Drilling Project
(DSDP) Site 338 and Ocean Drilling Program (ODP) Sites 643 and 913 in the
Norwegian—Greenland Sea (Fig. 2; Eldrett et al., 2004; Eldrett and Harding, 2009).
Following up on the previous, low-resolution work of Manum (1976), Eldrett et al.
(2004) developed magnetostratigraphies for the middle Eocene to lower Oligocene
(Chrons C21r to C12n) of DSDP Site 338 as well as ODP Sites 319B and 643A; they

identified numerous dinocyst bioevents for this time interval. An account of Eocene
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dinocyst events at DSDP Site 338 was later presented by Eldrett and Harding (2009);
this study also straddles the Eocene/Oligocene boundary. For ODP Site 647 in the
Labrador Sea, Firth et al. (2012) established an integrated, early to late Eocene
magneto- and multi-microfossil-group biostratigraphy that also yielded a number of
dinocyst bioevents. They utilized some of the dinocyst datums previously
magnetostratigraphically calibrated by Eldrett et al. (2004) in their identification of
magnetic reversals. Depending on the interpretation of the paleomagnetic signals
obtained, the ODP Site 647 record extends into the early or ‘middle’ Oligocene
(Chrons C13r or C9n). Firth et al. (2012) also re-examined the original work on ODP
Site 647 dinocysts of Head and Norris (1989).

Here we present magnetostratigraphically-calibrated dinocyst bioevents from
the latest Eocene to earliest Miocene successions off Newfoundland that were drilled
in 2012 during IODP Expedition 342 (‘Paleogene Newfoundland Sediment Drifts’).
The cores recovered during IODP Expedition 342 have yielded the first
stratigraphically apparently complete record of the entire Oligocene in the higher-
latitude Northwest Atlantic (Norris et al., 2014a). As such, and considering the high-
quality magnetostratigraphical age control for the material (Norris et al., 2014a, Van
Peer et al., in press), they can provide a future reference record for the greater
Northwest Atlantic region, with the potential of exporting the
magnetostratigraphically-calibrated biostratigraphical datums identified from their
dinocyst assemblages to the higher-latitude North Atlantic. Ultimately, our study aims
to establish a chronostratigraphic framework for future paleoenvironmentally- and
paleoceanographically-oriented research on the Oligocene of the higher latitudes of

the Northern Hemisphere.

3 Studied sites
The successions analyzed in this study have been recovered during IODP Expedition

342 from drift-sediment deposits ca. 700 km east-southeast of Newfoundland (Fig.
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2). IODP Expedition 342 was designed to recover Paleogene sedimentary
sequences with exceptionally high sedimentation rates, with the overarching goal of
reconstructing the evolution of the carbonate compensation depth in the North
Atlantic during the Paleogene. The Oligocene sequences have sedimentation rates
of 1.5 to 10 cm/kyr (Norris et al., 2014a). Owing to these high sedimentation rates
and the relatively high clay content of the sediments, calcareous, siliceous and
notably organic-walled microfossils are unusually well preserved in much of the IODP
Expedition 342 core material (Expedition 342 Scientists, 2012).

Because of their position in the Northwest Atlantic Ocean offshore
Newfoundland, the IODP Expedition 342 drillsites provide archives of information on
two different surface-water regimes, i.e., the (proto-) Gulf Stream and the (proto-)
Labrador Current. For the studied time interval, there is no conclusive evidence
about North Atlantic surface-water patterns. While the existence of the Gulf Stream is
relatively well established from at least the early Miocene onwards (Pinet et al., 1981;
Wade et al., 2001), the timing of the onset of the Labrador Current is a matter of
ongoing debate, ranging from the Maastrichtian to the middle Miocene (Nederbragt,
1992; Via and Thomas, 2006; Kender and Kaminski, 2013). The presence of ice-
rafted debris in the Arctic Sea since 46 Myr (St. John, 2008; Stickley et al., 2009)
indicates seasonal sea-ice formation that might have exported fresh water to the
lower latitudes via the (proto-) Labrador Current, suggesting that this current had
likely been established by that time. Given this paleoceanographic setting, the
successions from the studied sites allow reconstruction of the interplay between cold
water-masses derived from the Labrador Sea and warm-water masses derived from
the (sub-) tropical Atlantic.

During the Oligocene, the region off Newfoundland was situated at a paleo-

latitude of ~40°N (Norris et al., 2014a). The Oligocene succession was deposited in

a deep-water sediment drift setting, with paleo-waterdepths ranging from
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approximately 2800 to 4000 m (Expedition 342 Scientists, 2012). The drift sediments
likely originate from the Labrador margin and the Labrador Sea (Norris et al., 2014a).
Successions from three IODP Expedition 342 sites were analyzed (Sites U1405,
U1406, and U1411; Fig. 2). Together, these sequences span the entire Oligocene,
including the Eocene-Oligocene and Oligocene-Miocene boundary intervals. The
correlation between the records from different sites was achieved using
magnetostratigraphic data (Norris et al., 2014b, c, d; Van Peer et al., in press). The
stratigraphical, lithological and paleoceanographical characteristics of the
investigated sites with particular reference to the sampled intervals are briefly
discussed in the following.

From Site U1405 (coordinates: 40°08.30°N, 51°49.20'W; Fig. 2), we report
dinocyst data from the latest Oligocene (Chron C6Cr) to earliest Miocene (Subchron
C5Cn.1n). The site is situated on the J-Anomaly Ridge at a present-day water depth
of 4285 m. During the Oligo-Miocene, greenish-grey clays to oozes were deposited
that are characterized by varying abundances of radiolarians, diatoms and
calcareous nannofossils. The carbonate content of these sediments ranges from 0 to
30 %. Across the Oligocene-Miocene transition there are several pale, carbonate-rich
layers exhibiting high abundances of the nannofossil Braarudosphaera.
Sedimentation rates based on the age model for Site U1405 (Norris et al., 2014b) are
on the order of 10 cm/kyr across the studied interval. These exceptionally high
sedimentation rates suggest an intensification of boundary-current flow strength and
sediment transport, indicating a significant increase in drift development (Norris et al.,
2014b).

Site U1406 (coordinates: 40°21.0°N, 51°39.0°'W; Fig. 2) is also located on J-
Anomaly Ridge at a present-day water depth of 3813 m. The sedimentary sequence
recovered spans the Paleocene to early Miocene. Lithologically, the Oligocene
succession at Site U1406 consists of carbonate-rich nannofossil ooze in the

lowermost Oligocene that is overlain by ~180 m thick brown to green nannofossil
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ooze representing the early Oligocene to early Miocene. Sedimentation rates at Site
U1406 during the Oligocene are between 1.0 and 3.2 cm/kyr and thus generally
lower than at the deeper sites (e.g., Site U1405). This suggests that Site U1406
represents a shallower part of the J-Anomaly drift sequence that was less strongly
affected by sedimentation induced by the deep western boundary-current-induced
sedimentation (Norris et al., 2014c).

Located on the Southeastern Newfoundland Ridge at a present-day water
depth of 3300 m, Site U1411 (coordinates: 41°37.1°N, 49°00°W; Fig. 2) recovered a
late Eocene (Chron C15n) to early Oligocene (Chron C8r) succession comprised
primarily of silty clay, clay with nannofossils, and silty nannofossil clay (Norris et al.,
2014d). More carbonate-rich nannofossil ooze is only present immediately above the
Eocene/Oligocene boundary, probably representing the widespread carbonate
overshoot observed at other Expedition 342 sites (Norris et al., 2014d). Eocene and
Oligocene sedimentation rates at Site U1411 are ~1.5 cm/kyr on average. Even
higher values occur at the Eocene-Oligocene boundary interval (up to 3.2 cm/kyr).
These generally increased sedimentation rates from the middle Eocene onwards
reflect the onset of drift sedimentation at the Southeastern Newfoundland Ridge

(Norris et al., 2014d).

4 Material and methods

4.1 Sampling strategy

The investigated samples from the Oligocene Expedition 342 splice comprise cores
from Sites U1411 (Eocene/Oligocene transition interval; reversal C13r/C15n to
C12r/C13n), U1406 (early to late Oligocene; C12r/C13n to C6Cn.3n/C6Cr), and
U1405 (Oligocene/Miocene transition interval; C6Cn.3n/C6Cr to C6AAr.3r). The
splice has been developed based on shipboard magnetostratigraphic and
biostratigraphic (planktic foraminiferal, calcareous nannoplankton and radiolarian)

data (Norris et al., 2014b, c, d). Site U1405 was sampled from Sections U1405A-

10
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10H-6W to U1405B-21H-3W (127.70-247.39 m CCSF-A [Core Composite Depth
below Sea Floor]), Site U1406 from Sections U1406A-10H-1W to U1406A-22H-4A
(96.91-239.33 m revised CCSF-A, Van Peer et al., in press), and Site U1411 from
Sections U1411B-15H-4A to U1411C-12X-4A (135.31-188.43 m CCSF-A). A list of
all studied samples is available as Online Supplementary Material accompanying this
paper.

To achieve a targeted average temporal resolution between 100 and 150 kyrs,
sampling distances were calculated following the sedimentation rates as indicated by
shipboard stratigraphic work. This procedure resulted in twelve samples for the
Eocene/Oligocene transition interval of Site U1411, 69 samples for the early to late
Oligocene interval of Site U1406, and 13 samples for the Oligocene/Miocene
transition interval of Site U1405. An additional 18 samples were examined to cover a
hiatus and slumping structures at Site U1406 (Van Peer et al., in press). These
samples were taken from the splice for Site U1411 (from Cores U1411B-4H-6W to
U1411B-10H-6W, 27.55-87.6 m CCSF-A respectively). The revised depth for

samples from Site U1406 is given as revised CCSF-A (Van Peer et al., in press).

4.2 Magnetostratigraphical age control

For the magnetostratigraphic calibration of dinocyst bioevents, the shipboard-
measured magnetic polarity zones were used for all samples from Sites U1411 and
U1405 (compare Norris et al., 2014b, d). For Site U1406, the positions of some
reversals have been modified during post-cruise research by Van Peer et al. (pers.
comm.), and we have applied this updated stratigraphy wherever available.

The magnetostratigraphical reversal ages are based on the time scale of Gradstein
et al. (2012). For the Oligocene the GTS2012 ages are primarily based on the
astronomical tuning of ODP Site 1218 (Palike et al., 2006). Correlation of individual
polarity chrons to the geomagnetic polarity time scale was through shipboard

biostratigraphical data and the identification of the magnetochron reversal pattern
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(Norris et al., 2014a; Van Peer et al., in press). Biostratigraphic ages are determined
from the relative position of dinocyst datums within the respective magnetochrons

and given in percentages above the base of magnetochrons.

4.3 Palynological sample preparation and evaluation

In total, 113 samples were investigated for their dinocyst assemblages. The sampling
strategy yielded an average temporal resolution on the order of 150 kyrs. Sample
processing followed standard palynological techniques (e.g., Pross, 2001). Between
9 and 31 g of dry sediment were processed per sample. All samples from Sites
U1405 and U1411, and 52 samples from Site U1406 were digested using 33 %
hydrochloric acid (HCI) and 40 % hydrofluoric acid (HF); sieving was through a 15
pm nylon mesh. The residues were stained with 1% safranin (CH19CIN4), and one
to five strew mounts were prepared per sample using glycerine jelly as a mounting
medium. A slightly modified protocol was followed for a sample subset comprising 17
samples from Site U1406. After HCI and HF treatment, these samples were swirled
in order to increase the concentration of palynomorphs, and the residues were
sieved through an 11 ym mesh. Finally, all samples were briefly oxidized with
potassium hydroxide (KOH, 5%). At least one strew-mount slide was prepared per
sample by mounting the residue in glycerol jelly. A visual inspection of strew-mount
slides obtained through the different processing protocols revealed no systematic
differences in palynomorph preservation, with the exception of the stained material
being easier to count and photograph.

Whenever possible, a minimum of 300 (mean: 339) dinocysts were counted per
sample and identified to the species level; only in one sample less than 250
dinocysts were counted. To detect rare taxa that had not been registered during
regular counts, at least one additional slide was scanned for each sample. Selected
taxa were documented through photomicrographs using a Zeiss Axiocam105 color

camera mounted to a Zeiss Scope.A1 light microscope. With the exception of the
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sample subset from Site U1406, which is stored at the Geological Survey of
Denmark and Greenland in Copenhagen, Denmark, all material is housed in the
collection of the Institute of Earth Sciences, University of Heidelberg, Germany. If not

stated otherwise, the dinocyst taxonomy follows Fensome and Williams (2004).

5 Results and discussion

All examined samples from the uppermost Eocene to lowermost Miocene of IODP
Sites U1405, U1406 and U1411 yielded rich, exceptionally well and mostly three-
dimensionally preserved palynomorph assemblages. The assemblages are
dominated by dinocysts, but also contain lower numbers of (predominantly bisaccate)
pollen grains and spores. Acritarchs are generally common, but reach exceptionally
high abundances in a number of late Rupelian samples from Site U1406. The
dinocyst assemblages are highly diverse; 110 taxa were identified (see Appendix for

a full list of taxa).

5.1 Magnetostratigraphic calibration of dinocyst datums
The dinocyst assemblages contain numerous age-diagnostic marker taxa for the
latest Eocene to earliest Miocene that have been described previously from the North
Atlantic (e.g., Head and Norris, 1989; Williams and Manum, 1999; Eldrett et al.,
2004; Fensome et al., 2009; Firth et al., 2012), the North Sea (e.g., Bujak and
Mudge, 1994; Heilmann-Clausen and Van Simaeys, 2005a), and the Tethys (e.g.,
Wilpshaar et al., 1996; Van Mourik and Brinkhuis, 2000; Pross et al., 2010).
Semiquantitative range charts are presented in Figs. 3—6. An integrated scheme of
the magnetostratigraphically-calibrated dinocyst bioevents is given in Fig. 7. All ages
given refer to the 2012 time scale (Gradstein et al., 2012).

The Eocene-Oligocene transition as defined by the extent of Chron C13
(Gradstein et al., 2012) is characterized by the Last Appearance Datums (LADs) of

Areosphaeridium diktyoplokum, Charlesdowniea clathrata, Cordosphaeridium cf.
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funiculatum, Hemiplacophora semilunifera, Lophocysta sulcolimbata,
Schematophora speciosa, and Stoveracysta sp. 1. First Appearance Datums (FADs)
within that interval include those of Chiropteridium galea, Chiropteridium
lobospinosum, Filisphaera filifera, Melitasphaeridium asterium, Spiniferites manumii,
and Svalbardella spp. (Figs. 3—6). The middle part of the Rupelian from Chron C12
onwards is marked by the LADs of Enneadocysta pectiniformis, S. manumii, and
Phthanoperidinium comatum, as well as the FADs of Hystrichokolpoma pusillum and
Oligokolpoma galeottii Pross et al., 2010. The Chattian exhibits only a few dinocyst
bioevents; these are the LADs of Areoligera semicirculata, Saturnodinium pansum,
and Wetzeliella spp.. The Oligocene-Miocene boundary interval as defined by the
extent of Chrons C6C and C6B is marked by the LADs of Deflandrea spp., F. filifera,
H. pusillum, and Svalbardella spp, and the FAD of Artemisiocysta cladichotoma
(Figs. 3-7). Detailed characterizations of all registered dinocyst bioevents (FADs and
LADs) are provided below in ascending stratigraphic order. A stratigraphically
arranged compilation of magnetostratigraphically-calibrated FADs and LADs as they
are known from different ocean basins is provided in Tables 1 and 2, respectively.
We reiterate that all ages given refer to the time scale of Gradstein et al. (2012); this
also applies to the dates derived from previously published papers, which have been
recalculated accordingly to the Gradstein et al. (2012) timescale. The positions of the
individual dinocyst events with regard to the Calcareous Nannoplankton Zones as

identified in the Expedition 342 cores (Norris et al., 2014c) are also indicated.

5.1.1 LAD of Schematophora speciosa

Core position: U1411B-18H-2A, 164.43 m CCSF-A.
Magnetostratigraphic calibration: 69 % from the bottom of Chron C13r.
Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 34.1 Ma.
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Discussion: On the Scotian Margin off southeastern Canada, Schematophora
speciosa has previously been described to have a late Eocene (middle Priabonian)
LAD (Fensome et al., 2009), which is in agreement with our findings. Other than on
the Scotian Margin, the taxon has not been registered previously in the North
Atlantic. In the Mediterranean region, the LAD of S. speciosa occurs at the top of the
Schematophora speciosa Interval Zone, which is calibrated to Chron C13r and the
basal part of NP21 (Brinkhuis and Biffi, 1993). Hence, the region-specific LADs of S.
speciosa appear to be quasi-synchronous in the western North Atlantic and the

western Tethys.

5.1.2 LAD of Cordosphaeridium cf. funiculatum

core position: U1411C-9H-4A, 159.68 m CCSF-A.

Magnetostratigraphic calibration: 77 % of Chron C13r.

Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 34.0 Ma.

Discussion: Cordosphaeridium cf. funiculatum of Biffi and Manum (1988) differs from
the type material of C. funiculatum as described by Morgenroth (1966a) in having
shorter and thicker processes. The taxon has been previously reported from the
upper Eocene of the Labrador Sea (ODP Site 647) as Cordosphaeridium sp. cf.
funiculatum. In the Labrador Sea, it occurs until the end of NP20 (Head and Norris,
1989). In the western Tethys, the taxon occurs during the lower part of NP21, which
is correlative to the latest Eocene (Biffi and Manum, 1988). Our results are well in
agreement with the records from the Labrador Sea and the Tethyan region. As all
previous findings of C. cf. funiculatum are limited to the late Eocene, this taxon may
represent an important supraregional marker with remarkably similar LADs in lower-

latitude settings of the western Tethys and the higher-latitude western North Atlantic.

5.1.3 LAD of Hemiplacophora semilunifera
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Core position: U1411B-17H-3A, 154.91 m CCSF-A.

Magnetostratigraphic calibration: 93 % of Chron C13r.

Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 33.8 Ma.

Discussion: To date, Hemiplacophora semilunifera has been rarely detected
previously in the North Atlantic region. Head and Norris (1989) reported the species
from ODP Site 647 in the Labrador Sea, where it disappears by the end of NP21. For
central Italy, Brinkhuis and Biffi (1993) determined the LAD of H. semilunifera to
terminate their Glaphyrocysta semitecta Interval Zone of the earliest early Oligocene.
This zone corresponds to the middle part of NP21, and its top is assigned to the
lowermost part of Chron C13r. The apparently synchronous disappearance of H.
semilunifera in both the western North Atlantic and the Tethys indicates the high

stratigraphic relevance of the species.

5.1.4 FAD and LAD of Lophocysta sulcolimbata

Core positions: FAD: U1411C-11X-5A, 178.83 m CCSF-A; LAD: U1411B-17H-3A,
154.91 m CCSF-A.

Magnetostratigraphic calibration: 31 % of Chron C13r and 93 % of Chron C13r,
respectively.

Position with regard to calcareous nannoplankton zonation: NP 21.

Age assignment: 34.6 and 33.8 Ma, respectively.

Discussion: In our sample material, Lophocysta sulcolimbata occurs in relatively low
numbers, albeit repeatedly within a very short time interval of 0.8 Myr, which
suggests that it may represent a useful biostratigraphic marker with a remarkably
short range. However, previously published information on L. sulcolimbata from the
greater North Atlantic region does not yield a consistent picture of the taxon’s range.
Head and Norris (1989) provided a photomicrograph of the taxon (as Lophocysta sp.

1) from ODP Site 647 in the Labrador Sea. For ODP Site 985 in the Norwegian Sea,
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Williams and Manum (1999) give a FAD at 21.1 Ma, which is much later than our
findings. In the Central Danish Basin, the species was observed in the upper Eocene
(Heilmann-Clausen and Van Simaeys, 2005). Based on these widely divergent
ranges, the FAD and LAD of L. sulcolimbata as identified in our samples may only be

employed regionally for the Newfoundland Margin as latest Eocene events.

5.1.5 LAD of Areosphaeridium diktyoplokum

Core position: U1411C-8H-4A, 150.11 m CCSF-A.

Magnetostratigraphic calibration: 9 % of Chron C13n.

Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 33.7 Ma.

Discussion: In our material from IODP Expedition 342, the LAD of Areosphaeridium
diktyoplokum post-dates the Eocene/Oligocene boundary by 0.2 Ma. Highly similar
LADs are suggested from other sites in the North Atlantic. In the Norwegian-
Greenland Sea, A. diktyoplokum disappears within Chron C13 between 33.3 and
33.5 Ma (Eldrett et al., 2004). In the Labrador Sea, its LAD falls within NP21/NP22
(Head and Norris, 1989). In the North Sea Basin, the taxon disappears in the
lowermost part of Chron C12r (Sliwifiska et al., 2012), which is consistent with the
indirect calibration of this bioevent against NP21/NP22 in that region (Bujak and
Mudge, 1994; Van Simaeys et al., 2005a). While the LADs of A. diktyoplokum as
registered in the greater North Atlantic region are highly consistent, the available
information suggests a slightly later disappearance in the Tethyan realm. In Italy, A.
diktyoplokum has been reported to occur consistently in lowermost Oligocene strata,
and its LAD has been calibrated against a level close to the top of Chron C13n at
33.4 Ma (Pross et al., 2010; compare also discussion in Brinkhuis and Visscher,
1995, and van Mourik and Brinkhuis, 2005, and references therein). On the basis of
the temporal resolution of the available sample sets, the diachroneity between the

North Atlantic and Tethyan LADs of A. diktyoplokum amounts to ~0.4 Myr.
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475  5.1.6 LAD of Charlesdowniea clathrata

476  Core position: U1411C-8H-4A, 150.11 m CCSF-A.

477  Magnetostratigraphic calibration: 9 % of Chron C13n.

478  Position with regard to calcareous nannoplankton zonation: NP21.

479  Age assignment: 33.7 Ma.

480  Discussion: Charlesdowniea clathrata is relatively rare in the studied material; it has
481  not been reported previously from the western North Atlantic. In the eastern North
482  Sea Basin, the species has a mid-Rupelian LAD (Schigler, 2005). In the western
483  Tethys, the magnetostratigraphically-calibrated LAD of C. clathrata was determined
484 as 32.4 Ma (Pross et al., 2010). These findings suggest a pronounced diachroneity
485 between the LADs of C. clathrata in the Tethyan realm and the North Atlantic, which
486  amounts to ~1.3 Myr based on the temporal resolution of the available data.

487

488  5.1.7 FAD of Filisphaera filifera

489  Core position: U1411C-8H-4A, 150.11 m CCSF-A.

490  Magnetostratigraphic calibration: 9 % of Chron C13n.

491 Position with regard to calcareous nannoplankton zonation: NP21.

492  Age assignment: 33.7 Ma.

493  Discussion: In the IODP Expedition 342 material, Filisphaera filifera occurs

494  repeatedly (albeit in low numbers) in the upper Eocene and lowermost Oligocene;
495  the taxon then reappears in the upper Rupelian (corresponding to an age of 29.3
496  Ma). As F. filifera has originally been described from the Neogene and Quaternary
497  (Head, 1994), our findings imply a greatly extended range of this taxon in comparison
498  to previous work. However, they are broadly consistent with previous observations
499  from the North Sea Basin, where F. filifera has been reported from late Oligocene
500 and early Miocene strata (D. Zevenboom, cited in Head, 1994; Van Simaeys et al.,

501  2005a).
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5.1.8 FAD of Spiniferites manumii

Core position: U1411C-8H-4A, 150.11 m CCSF-A.

Magnetostratigraphic calibration: 9 % of Chron C13n.

Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 33.7 Ma.

Discussion: Spiniferites manumii occurs persistently, albeit in low numbers from 33.7
Ma onwards in the lower Rupelian of the Newfoundland Drift sediments studied. In
the Norwegian Sea, the FAD of S. manumii is calibrated to 31.4 Ma for ODP Site 985
based on the export of magnetostratigraphical signals from ODP Site 643 (Williams
and Manum, 1999), and in the Norwegian-Greenland Sea, the taxon appears close
to the C13n/C13r reversal (33.0 Ma; Eldrett et al., 2004). Because S. manumii has an
extremely short range, the taxon is considered as one of the best intra-Rupelian
markers in Europe (Sliwinska et al., 2012; compare also Section 5.1.14). Our new
data from the Newfoundland Drift sediments allow us to export this intra-Rupelian
marker to the western North Atlantic, where its FAD is only slightly older than in the

Norwegian-Greenland Sea.

5.1.9 LAD of Stoveracysta sp. 1

Core position: U1411B-16H-4A, 145.31 m CCSF-A.

Magnetostratigraphic calibration: 35 % of Chron C13n.

Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 33.5 Ma.

Discussion: Stoveracysta sp. 1 could not be attributed to previously established taxa
(compare taxonomic remarks), and the genus Stoveracysta has not been reported
previously from the western North Atlantic. Stoveracysta sp. 1 strongly resembles
(?)Stoveracysta sp. sensu Biffi and Manum (1988), which has been described from

early Miocene sediments of the Marche Region in central Italy (see taxonomic
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appendix). For the same region, Brinkhuis and Biffi (1993) identified various species
of Stoveracysta in the Eocene/Oligocene boundary interval, and Pross et al. (2010)
reported a magnetostratigraphically-calibrated LAD for representatives of the genus
Stoveracysta at 30.9 Ma. These findings postdate our findings from the western

North Atlantic.

5.1.10 FAD of Melitasphaeridium asterium

Core position: U1411B-16H-4A, 145.31 m CCSF-A.

Magnetostratigraphic calibration: 35 % of Chron C13n.

Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 33.5 Ma.

Discussion: To date, the FAD of Melitasphaeridium asterium has not been used as a
biostratigraphic datum in the North Atlantic. In the Danish sector of the North Sea
Basin, the FAD of M. asterium occurs in the lower part of Subchron C16n.1n

(Thomsen et al., 2012), which is much earlier than in the western North Atlantic.

5.1.11 LAD of Lentinia serrata complex

Core position: U1411B-16H-4A, 145.31 m CCSF-A.

Magnetostratigraphic calibration: 69 % of Chron C13n.

Position with regard to calcareous nannoplankton zonation: NP21.

Age assignment: 33.3 Ma.

Discussion: The ornamentation in most of the observed specimens here attributed to
the L. serrata complex is reflected in penitabular denticles and parasutural crests as
they are characteristic for the genus Lentinia Bujak in Bujak et al. (1980). Our
material, however, also contains specimens with a greatly reduced number of
denticles, which would allow attribution to the genus Vozzhennikovia Lentin and
Williams (1976), and the full range of transitions between both endmembers. As the

overall morphological characteristics of the encountered specimens are strongly
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reminiscent of L. serrata, and even in our excellently preserved material the size and
exact shape of the archeopyle (compare discussions in Bujak in Bujak et al., 1980,
and Sluijs et al., 2009) is only visible in relatively few specimens, we refer to them as
Lentinia serrata complex in our study.

In the western North Atlantic, L. serrata has been previously observed in the
Labrador Sea (Head and Norris, 1989) and off eastern Canada (Fensome et al.,
2009). Based on a combination of nannoplankton and well-log data, Fensome et al.
(2009) have suggested an earliest Rupelian LAD of this species, which is consistent
with our results. In the southern North Sea Basin, L. serrata was only observed in the
late Eocene (Stover and Hardenbol, 1993), while in the eastern North Sea Basin the
species extends into the late Eocene to Rupelian (Heilmann-Clausen and Van
Simaeys, 2005a; Sliwinska et al., 2012). In the Tethyan realm, L. serrata is known
from the uppermost Eocene to lowermost Oligocene of Central Italy (Brinkhuis and
Biffi, 1993); it disappears within Chron C12r at 32.4 Ma (Pross et al., 2010). Based
on the available sample resolution, the LAD of L. serrata in the western Tethys thus
postdates the here identified LAD for the L. serrata complex in the western North

Atlantic by ~0.9 Myr.

5.1.12 FAD of Chiropteridium lobospinosum

Core position: U1406B-21H-3W, 225.9 m CCSF-A.

Magnetostratigraphic calibration: 54 % of Chron C12r.

Position with regard to calcareous nannoplankton zonation: NP22.

Age assignment: 32.0 Ma.

Discussion: The FAD of Chiropteridium lobospinosum in the Newfoundland Drift
sediments postdates its appearance in the Norwegian-Greenland Sea; there, the
taxon first occurs at 33.5 Ma (Eldrett et al., 2004). In the Labrador Sea, C.
lobospinosum appears at the beginning of NP23 (Head and Norris, 1989), and for the

North Sea Basin, the FAD of C. lobospinosum has been indirectly calibrated against
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586  NP22 (Kéthe, 1990; Van Simaeys et al., 2005a; Sliwinska et al., 2012). In the

587  Tethyan region, Chiropteridium spp. (mainly C. lobospinosum) has already been

588  recorded within the lower part of Chron C12r, and the first consistent occurrence has
589  been calibrated against Subchron C11n.1n at 29.75 Ma (Pross et al., 2010). Hence,
590 C. lobospinosum has a regionally diachronous FAD; in the Norwegian-Greenland
591 Sea, the species appears earlier than in the Newfoundland Drift succession, whereas
592  its FAD in the Tethyan realm it occurs even later than in both these regions. Although
593  not magnetostratigraphically constrained, the FAD in the North Sea sites appears
594  similar to our record.

595

596  4.1.13 FAD of Hystrichokolpoma pusillum

597  Core position: U1406B-21H-3W, 225.9 m CCSF-A.

598  Magnetostratigraphic calibration: 54 % of Chron C12r.

599  Position with regard to calcareous nannoplankton zonation: NP22.

600  Age assignment: 32.0 Ma.

601  Discussion: In the Tethys region, the FAD of Hystrichokolpoma pusillum is dated at
602  32.3 Ma (Pross et al., 2010) and thus (considering our sampling resolution of ~150
603  kyrs) is virtually synchronous with the appearance of the species in the western

604  North Atlantic.

605

606  5.1.14 LAD of Spiniferites manumii

607  Core position: U1406C-21X-4W, 222.24 m CCSF-A.

608  Magnetostratigraphic calibration: 73 % of Chron C12r.

609  Position with regard to calcareous nannoplankton zonation: NP22.

610  Age assignment: 31.6 Ma.

611  Discussion: In the Norwegian-Greenland Sea, the LAD of Spiniferites manumii is
612  observed in the upper part of Chron C12r at ~30.8 Ma (Eldrett et al. 2004; recorded

613  as Spiniferites sp. 1 sensu Manum et al. 1989). In the North Sea Basin, the LAD of
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the species is indirectly calibrated against the upper part of Chron C12r (Lagrou et
al., 2004; Van Simaeys et al., 2005a), and biostratigraphically calibrated against the
upper part of NP23 (Van Simaeys et al., 2005a). We conclude that the FAD
(compare Section 5.1.9) and LAD of S. manumii are thus remarkably synchronous
across the greater North Atlantic region. The highly restricted stratigraphic range of
~2 Ma makes S. manumii an exceptionally good intra-Rupelian marker for this

region.

5.1.15 LAD of Phthanoperidinium comatum

Core position: U1406B-20H-1W, 209.15 m CCSF-A.

Magnetostratigraphic calibration: 75 % of Chron C12n.

Position with regard to calcareous nannoplankton zonation: NP23.

Age assignment: 30.7 Ma.

Discussion: The LAD of Phthanoperidinium comatum as derived from our dataset
agrees with the record of Head and Norris (1989) from the Labrador Sea, where the
LAD is calibrated against NP23. This is consistent with the early Rupelian LAD of P.
comatum in the Danish North Sea (Schigler, 2005). For the western Tethys, Pross et
al. (2010) reported rare findings of P. comatum until the end of Chron C9r. Hence,
our results show an apparently synchronous LAD of the species in our dataset and
other North Atlantic sites, but a diachroneity between these North Atlantic sites and

the Tethyan region, where the species disappears later.

5.1.16 FAD of Chiropteridium galea

Core position: U1406A-19H-5W, 204.73 m CCSF-A.
Magnetostratigraphic calibration: 31 % of Chron C11r.

Position with regard to calcareous nannoplankton zonation: NP23.

Age assignment: 30.5 Ma.
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Discussion: The FAD of Chiropteridium galea is a well-known biostratigraphic datum
for the latest Eocene to earliest Oligocene (Williams and Bujak, 1985; Damassa et
al., 1990). Its FAD in the Norwegian-Greenland Sea is between 33.5 and 33.1 Ma
(Eldrett et al., 2004). For the Labrador Sea, where it occurs much earlier, a
biostratigraphically calibrated FAD of the species has been determined at the
beginning of NP18 (as Chiropteridium mespilanum; Head and Norris, 1989). Data
from the southern North Sea Basin indicate an indirectly calibrated FAD of
Chiropteridium spp. in the uppermost part of NP22 (Van Simaeys et al., 2005a); the
FAD of C. galea (i.e., a member of the Chiropteridium plexus) in northwestern
Germany occurs at the same time (Kéthe, 1990). A comparison of available FADs
within the North Atlantic region suggests a strong diachroneity, with the earliest FAD
in the Labrador Sea (NP18, i.e., older than 38.1 Ma; Head and Norris, 1989) and a
much later FAD (30.5 Ma — this study) off Newfoundland. The FAD of C. galea within
the Norwegian-Greenland Sea (Eldrett et al., 2004) also predates the FAD as
identified in the Newfoundland Drift succession, whereas data from the North Sea
Basin (Van Simaeys et al., 2005a; Kéthe, 1990; at least 32.9 Ma) suggest a later first

appearance in that region.

5.1.17 FAD of Oligokolpoma galeottii

Core position: U1406A-19H-5W, 204.73 m CCSF-A.

Magnetostratigraphic calibration: 31 % of Chron C11r.

Position with regard to calcareous nannoplankton zonation: NP23.

Age assignment: 30.4 Ma.

Discussion: Oligokolpoma galeottii Pross et al., 2010 has previously been described
from the western Tethys (Pross et al., 2010) with an FAD in the uppermost part of
Chron C12r, at 31.3 Ma. In our records from the Newfoundland Drift sediments, the

taxon appears slightly later, at 30.4 Ma.
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5.1.18 FAD of Artemisiocysta cladodichotoma

Core position: U1411B-10H-2W, 81.6 m CCSF-A.

Magnetostratigraphic calibration: not identified, between Subchrons C11n.2n and
C10n.2n.

Position with regard to calcareous nannoplankton zonation: NP23/NP24.

Age assignment: 29.6 Ma—28.3 Ma (based on a linear interpolation).

Discussion: In our Newfoundland Drift material, specimens of Artemisiocysta
cladodichotoma were identified in three samples from a short interval in Hole
U1411B without reliable magnetostratigraphic information. Based on linear
interpolation, the age can be constrained to fall between 29.6 Ma and 28.3 Ma. In
younger strata, A. cladodichotoma is continuously present from 22.7 Ma onwards. In
the North Sea Basin, the FAD of A. cladodichotoma is considered an important
biostratigraphic marker for the basal Chattian (Van Simaeys et al. 2005a). In
successions from the Danish sector of the North Sea Basin, the taxon is extremely
rare and only occurs across a short interval straddling the magnetochron C9r/C9n
reversal (Sliwinska et al., 2012). In the Umbria-Marche Basin of Central Italy, A.
cladodichotoma is already observed in Chrons C8 and C9n (Pross et al., 2010).
Despite the remaining uncertainties in our age assignment from Site U1411, a
considerably earlier FAD of A. cladodichotoma emerges for the western North
Atlantic. This offset may well be due to paleoceanographic factors, its inconspicuous
appearance (easily overlooked) and/or the rarity of the taxon in Chattian dinocyst

assemblages.

5.1.19 LAD of Enneadocysta pectiniformis

Core position: U1406B-17H-2W, 165.59 m CCSF-A.
Magnetostratigraphic calibration: Chron C9n.

Position with regard to calcareous nannoplankton zonation: NP25.

Age assignment: 26.7 Ma.
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Discussion: Enneadocysta pectiniformis (Gerlach, 1961) Stover and Williams, 1995
differs from Enneadocysta arcuata (Eaton, 1971) Stover and Williams, 1995 through
the absence of plate 6" and thus also the process on plate 6°"; however, the plate is
not a necessarily present feature for E. arcuata (Stover and Williams, 1995, Table 2).
As this difference is not always observable, and their overall morphologies and sizes
are highly similar, the two species were not separated in the present study and
counted as E. pectiniformis following Schigler (2005).

In the Labrador Sea, the LADs of E. arcuatum and E. pectiniformis are
calibrated against NP23 and NP 24, respectively (Head and Norris, 1989). For the
North Sea Basin, Van Simaeys et al. (2005a) report E. pectiniformis to disappear in
the middle part of NP23, while Schigler (2005) decribes an LAD of Enneadocysta
spp. within the upper half of the Rupelian. For the western Tethys, Pross et al. (2010)
reported a LAD of E. pectiniformis at 27.9 Ma. We conclude that the LAD of E.
pectiniformis in the Newfoundland Drift sediments postdates the LADs available for
the Labrador Sea, North Sea Basin and Tethyan region. The apparent discrepancy in
LADs between the Tethys and the North Sea Basin has been previously observed by
Pross et al. (2010), who connected it to a gradual abundance decline of E.

pectiniformis towards its range top.

5.1.20 LAD of Areoligera semicirculata

Core position: U1406C-16H-5W, 155.89 m CCSF-A.

Magnetostratigraphic calibration: 27 % of Chron C8r.

Position with regard to calcareous nannoplankton zonation: NP25.

Age assignment: 26.3 Ma.

Discussion: Areoligera semicirculata is rather rare in the material from the
Newfoundland Drift and never reaches more than 1% of the dinocyst assemblages.
In the Norwegian Sea, the LAD of A. semicirculata has been

magnetostratigraphically calibrated at 30.4 Ma (Williams and Manum, 1999). Its LAD
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is an important marker for the early Chattian in NW Europe (Kéthe, 1990; Van
Simaeys et al., 2005a). In Denmark, A. semicirculata is common within Chron C8r
(Sliwinska et al. 2012). In the western Tethys, the LAD occurs within Chron C9n at
27.4 Ma (Pross et al. 2010). Hence, the LAD for the Newfoundland Drift succession
is in close agreement with the data from the North Sea. Diachroneities exist for the

Labrador Sea and the Tethys, where A. semicirculata disappears earlier.

5.1.21 LAD of Saturnodinium pansum

Core position: U1406C-16H-5W, 155.89 m CCSF-A.

Magnetostratigraphic calibration: 27 % of Chron C8r.

Position with regard to calcareous nannoplankton zonation: NP25.

Age assignment: 26.3 Ma.

Discussion: Saturnodinium pansum was first described from middle to upper
Oligocene strata of the Blake Plateau, North Atlantic (Stover, 1977). To date, there is
no record of S. pansum in the Norwegian Sea, although other Chattian taxa such as
Areoligera semicirculata or Distatodinium biffii are present there (KKS, unpublished
data). In contrast, S. pansum is well known from the North Sea Basin. There, its LAD
is biostratigraphically calibrated against the basal part of the alternative NP25* (for
details see Van Simaeys et al. 2005a). In the German sector of the North Sea Basin,
the taxon was observed within the Aquitanian (Kéthe and Piesker, 2007), while in the
eastern North Sea Basin the taxon was never observed above the mid-Chattian (i.e.,
Chron C8r; Sliwinska et al., 2012; K. Dybkjeer, personal communication). In the
Mediterranean region, the taxon was reported from the lower Rupelian (Chron C12r)
and upper Chattian (Chron C7n- C67?; Pross et al., 2010). Summarizing the available
evidence, we observe a synchronous dissaperance of S. pansum in the
Newfoundland Drift region and the eastern North Sea Basin. Notably, these regions

have also yielded the northernmost records of S. pansum as yet known. The
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observed distribution pattern of S. pansum may furthermore suggest that the taxon is

adapted to relatively warm surface waters.

5.1.22 LAD of Wetzeliella gochtiilsymmetrica group

Core position: U1406B-14H-5W, 144.73 m CCSF-A.

Magnetostratigraphic calibration: 13 % of Subchron C8n.2n.

Position with regard to calcareous nannoplankton zonation: NP25.

Age assignment: 25.9 Ma.

Discussion: In the Newfoundland Drift sediments, Wetzeliella spp. mainly comprise
W. gochtii and W. symmetrica as well as transitional forms between these two taxa.
At the Scotian Margin off Canada, W. gochtii exhibits a middle Chattian LAD, and the
LAD of W. symmetrica is at the top of the Chattian (Fensome et al., 2009). In the
Labrador Sea, W. symmetrica occurs until NP24 (Head and Norris, 1989). In the
North Sea, the LAD of W. symmetrica has been determined at the NP24/NP25
boundary, and the LAD of W. gochtii has been recorded within the lowermost NP25
(Van Simaeys et al., 2005a). This North Sea datum also applies to Schigler (2005),
who provides a LAD for the W. gochtii/lW. symmetrica group in the basal Chattian. In
the western Tethys, only W. gochtii was found, which has a LAD at 26.9 Ma (Pross et
al., 2010). In the Labrador Sea and the North Sea Basin, species of the genus

Wetzeliella disappear earlier than in the Newfoundland Drift succession.

5.1.23 LAD of Filisphaera filifera

Core position: U1405A-15H-3W, 173.86 m CCSF-A.

Magnetostratigraphic calibration: 25 % of Subchron C6Cn.2n.

Position with regard to calcareous nannoplankton zonation: NN1.

Age assignment: 22.7 Ma.

Discussion: Filisphaera filifera has not been reported from the North Atlantic before.

In the North Sea Basin, the taxon disappears at the Oligocene-Miocene boundary
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(Schigler, 2005), which is very close to the LAD identified for the Newfoundland Drift
successions. However, F. filifera also occurs in the younger Neogene and

Quaternary (Head, 1994; compare Section 5.1.8).

5.1.24 LAD of Hystrichokolpoma pusillum

Core position: U1405A-16H-4W, 185.92 m CCSF-A.

Magnetostratigraphic calibration: 69 % of Subchron C6Cn.1r.

Position with regard to calcareous nannoplankton zonation: NN2.

Age assignment: 22.8 Ma.

Discussion: Based on the available information, Hystrichokolpoma pusillum exhibits
strongly diachronous range tops in the western North Atlantic (this study), the North
Sea (Schigler, 2005) and the western Tethys (Biffi and Manum, 1988). In the North
Sea, H. pusillum disappears in the uppermost Rupelian (Schigler, 2005). In the
western Tethys, the taxon occurs regularly until at least 23.6 Ma (Pross et al., 2010);
its LAD is during NN1 (Biffi and Manum, 1988). Thus, the even younger LAD
registered for the Newfoundland Drift material may mark the youngest occurrence of

H. pusillum as yet known.

5.1.25 LAD of Deflandrea spp.

Core position: U1405A-14H-5W, 167.71 m CCSF-A.

Magnetostratigraphic calibration: 25 % of Subchron C6Bn.2n.

Position with regard to calcareous nannoplankton zonation: NN2.

Age assignment: 22.2 Ma.

Discussion: The LAD of Deflandrea spp., mostly represented by the species D.
phosphoritica, is a classical biostratigraphic marker for the Oligocene-Miocene
boundary interval. For the Scotian Margin off Canada, Fensome et al. (2009)

reported the LAD of Deflandrea spp. to coincide with the top of the Chattian, which is
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consistent with our findings from the Newfoundland Drift succession. Data on the
LAD of Deflandrea spp. in the North Sea Basin suggest a more complex
disappearance pattern for that region. In the Danish sector of the North Sea Basin,
Dybkjeer et al. (2012) used D. phosphoritica in their characterization of the
Oligocene-Miocene boundary. They observed D. phosphoritica in the late Chattian
and early Aquitanian, with the taxon disappearing shortly before the Oligocene-
Miocene boundary and then repeatedly re-occuring in the basal Aquitanian. Findings
of Deflandrea spp. in the lower Miocene of the same region have previously been

reported by Schigler (2005).

5.1.26 FAD and LAD of Svalbardella spp.

Core position: for the FAD U1411C-8H-4A, 150.11 m CCSF-A; for the LAD U1405B-
15H-5W, 160.95 m CCSF-A.

Magnetostratigraphic calibration: 8 % of Chron C13n to 61 % of Subchron C6Bn.2n.
Position with regard to calcareous nannoplankton zonation: NP21-NN2.

Age assignment: 33.7-22.1 Ma.

Discussion: Svalbardella spp. reaches exceptionally high abundances and exhibits
repeated recurrences in the Newfoundland Drift material. The genus Svalbardella is
a typical representative of high-latitude North Atlantic dinocyst assemblages during
the middle to late Eocene and the Oligocene (Manum 1960, 1976; Manum and
Throndsen, 1986; Head and Norris, 1989; Eldrett et al., 2004). During surface-water
cooling pulses associated with Oligocene glacial episodes, the genus also briefly
occurred in the North Sea (Van Simaeys, 2004; Sliwinska et al., 2010; Sliwinska and
Heilmann-Clausen, 2011; Clausen et al., 2012), the Tethyan realm (Brinkhuis and
Biffi, 1993; Van Simaeys et al., 2005b; Coccioni et al., 2008; Pross et al., 2010), and
the high latitudes of the southern hemisphere (Brinkhuis et al., 2003; Van Simaeys et

al., 2005b). As such, the genus represents arguably the best indicator of surface-
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water cooling in Paleogene dinocyst assemblages (compare Sluijs et al., 2005) and
thus has attracted considerable attention over the past 15 years or so.

The two most important features that distinguish the genus Svalbardella from
the morphologically similar genus Palaeocystodinium are a visible paracingulum and
bluntly rounded apical and antapical horns. To date, the genus comprises two
formally established species, S. cooksoniae (Manum, 1960) and S. partimtabulata
(Heilmann-Clausen and Van Simaeys, 2005). However, in addition to these species,
a number of similar dinocyst morphotypes has informally and peripherally been
referred to Svalbardella (e.g., Schigler, 2005; Sliwinska et al., 2012). Some of these
morphotypes exhibit clearly rounded horns, but lack a visible paracingulum and are
therefore sometimes referred to as Palaeocystodinium (e.g., Damassa et al., 1996).
This morphological variety of the Svalbardella/Palaeocystodinium complex is also
documented in our material from the Newfoundland Drift succession (Plate VII, 12-
15). To avoid nomenclatoric confusion, we have attributed
‘SvalbardellalPalaeocystodinium-like’ dinocyst morphotypes to Svalbardella spp. if
they exhibited rounded horns and/or paracingular tabulation. It has been speculated
that the morphology may have been affected by sea-surface temperature (e.g., Van
Simaeys et al., 2005b).

In the Norwegian Sea, S. cooksoniae appears at 42.2 Ma (Eldrett et al.,
2004). In the eastern North Sea Basin, S. partimtabulata appears first in Chron C18r
and the upper part of NP16 (Heilmann-Clausen and Van Simaeys, 2005; Thomsen et
al., 2012). Hence, the oldest documentation of Svalbardella spp. in our
Newfoundland Drift material may not necessarily represent the true FAD of
Svalbardella spp. in the western North Atlantic. In the Labrador Sea, the LAD of S.
cooksoniae is indirectly calibrated to NP23 (Head and Norris, 1989). Significantly
earlier LADs have been reported from the Norwegian Sea (30.4 Ma, ODP Site 985;
Williams and Manum, 1999) and the Norwegian-Greenland Sea (33.5 Ma, ODP Sites

338 and 643A; Eldrett et al., 2004). In the North Sea Basin, the youngest records of
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Svalbardella spp. are from the lower Chattian (Schigler, 2005) and Chron C9n
(Sliwinska et al., 2012), respectively. In the western Tethys, Coccioni et al. (2008)
and Pross et al. (2010) recorded a recurrence interval of Svalbardella spp. between
29.1 and 27.1 Ma; it coincides with the Oi-2b benthic §'°0 glacial episode of Miller et
al. (1991), which represents the strongest glaciation of the Oligocene (Palike et al.,
2006). Summarizing the above, the occurrence pattern of Svalbardella spp. is
strongly controlled by the regionally prevailing surface-water temperature regime. In
light of the high variability of Oligocene climates, their FADs and LADs can hence
only be employed for short-distance correlations on intra-basinal scales. On the other
hand, Svalbardella spp. can serve as a highly sensitive paleoenvironmental indicator

for changes in surface-water temperatures.

5.2 Additional observations

Although the Newfoundland Drift sediments have yielded highly diverse dinocyst
assemblages, a number of well-known biostratigraphic markers for the Oligocene of
the North Atlantic region are poorly represented or even conspicuously absent. For
instance, only single specimens of Distatodinium biffii and Rhombodinium draco
were encountered in the study material. Distatodinium biffii is an important marker for
the Rupelian-Chattian boundary in the North Sea (Sliwinska et al., 2012) and in the
Tethyan realm (Coccioni et al., 2008; Pross et al., 2010). The same holds for R.
draco, the LAD of which biostratigraphically defines the Rupelian-Chattian boundary
and the lowermost part of the Chattian in the North Sea (Kéthe, 1990; Schigler,
2005; Van Simaeys et al., 2005a).

The Eocene-Oligocene transition interval of the Newfoundland Drift succession
is characterized by a number of LADs of typical lower-latitude, Tethyan marker
species such as Schematophora speciosa, Hemiplacophora semilunifera, and
Cordosphaeridium cf. funiculatum (Fig. 5). Considering that cyst-forming

dinoflagellates are highly sensitive to changes in the shallow surface waters,
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especially with regard to changes in temperature (e.g., Sluijs et al., 2005), the
disappearance of these lower-latitude taxa during the latest Eocene and earliest
Oligocene points to surface-water cooling off Newfoundland, possibly due to an
enhanced influence of the proto-Labrador Current.

This hypothesis is supported by the first documentation of the cold-water
indicator Svalbardella spp. in the same interval, which also suggests a surface-water
cooling. This can be explained by the southward expansion of cool surface-water
masses from the high northern latitudes where surface-water temperatures declined
earlier. In the Labrador Sea, the genus Svalbardella already appears during the early

Eocene (Head and Norris, 1989).

6 Concluding remarks

Our detailed dinocyst study on the Newfoundland Drift sediments recovered during
IODP Expedition 342 has yielded the first magnetostratigraphically-calibrated
dinocyst bioevents for the uppermost Eocene to lowermost Miocene of the western
North Atlantic. Comparison with magnetostratigraphically-calibrated dinocyst datums
from elsewhere in the North Atlantic, the North Sea, and the western Tethys helps to
quantify spatial leads and lags for a number of dinocyst events, although such efforts
are hindered by the yet low availability of chronostratigraphically constrained
appearance data from many regions. For the Eocene-Oligocene boundary interval,
we observe a high degree of synchronicity between dinocysts bioevents offshore
Newfoundland and in the western Tethys (e.g., Schematophora speciosa,
Cordosphaeridium cf. funiculatum and Hemiplacophora semilunifera).

The demise of lower-latitude taxa across the Eocene-Oligocene transition
interval in concert with the appearance of the cold-water indicator Svalbardella spp.
points to a surface-water cooling off Newfoundland during that time. Due to the
applicability of dinocyst biostratigraphy to high-latitude settings, and considering that

calcareous and siliceous plankton groups exhibit reduced diversities, relatively low
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preservation potential or both in polar to sub-polar environments, the dinocyst
bioevents identified and independently dated in our study contribute to an improved
age framework for future paleoceanographical studies in the higher-latitude North
Atlantic. Ultimately, the chronostratigraphically constrained dinocyst bioevents
identified in our study may contribute to an improved understanding of the

paleoclimatic and paleoceanographic evolution of the Oligocene world.
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Appendix A. Taxonomic remarks

An alphabetical list of all identified dinocyst taxa is given in Table A.1, and selected
taxa are depicted on Plates I-VIII. For taxonomic citations, we refer to Fensome and
Williams (2004) and the updated online version (Fensome et al., 2008); only taxa and

emendations that are not included into these reference catalogues are treated here.

Selected taxonomy
Division: DINOFLAGELLATA (Butschli, 1885) Fensome et al., 1993

Subdivision: DINOKARYOTA Fensome et al., 1993

34



947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

974

Class: DINOPHYCEAE Pascher, 1914

Subclass: PERIDINIPHYCIDEAE Fensome et al., 1993
Order: GONYAULACALES Taylor, 1980

Suborder: GONYAULACINEAE Fensome et al., 1993
Family: GONYAULACINEAE Lindemann, 1928

Subfamily: GONYAULACINEAE Fensome et al., 1993

Genus: STOVERACYSTA Clowes, 1985

Stoveracysta sp. 1

PIL. VI, 10, 11
Dimensions: mean width: 41.2 ym, mean archeopyle diameter: 30.5 ym, mean
overall length: 54 ym (n=5).
Description: Stoveracysta sp. 1 is a morphotype of Stoveracysta with one apical and
two antapical protrusions that are not always expressed. The ornamentation of the
ectophragm consists of low (c. 2 ym high), perforate penitabular septa, and plate 1"
is very small.
Remarks: The species resembles (?) Stoveracysta sp. of Biffi and Manum (1988, p.
194-196, PI. 7, Figs. 10-11 and 13-14) in having two antapical lobes and an
ectophragm that forms penitabular ridges. However, Stoveracysta sp. 1 differs from
(?) Stoveracysta sp. of Biffi and Manum (1988) in lacking a visible cingulum, but
showing other clearly visible plates. Furthermore, (?) Stoveracysta sp. of Biffi and

Manum (1988) has continuous rather than perforate septa/membranes.
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Figure captions

Figure 1: Compilation of magnetostratigraphically-calibrated dinocyst
biostratigraphies available for the North Atlantic, North Sea, and the western Tethys

region.

Figure 2: Geographical map of the North Atlantic region, with locations of studied
sites (star) and locations of other dinocyst studies discussed in the text. 1 — Fensome
et al. (2009); 2 — Head and Norris (1989); 3 — Eldrett et al. (2004); 4 — Manum
(1976); Williams and Manum (1999); 5 — Bujak and Mudge (1994); 6 — Sliwinska et
al. (2012); 7 — Heilmann-Clausen and Van Simaeys (2005), Thomsen et al. (2012); 8
— Schigler (2005), Dybkjeer et al. (2012); 9 — Van Simaeys et al. (2004), Van
Simaeys et al. (2005); 10 — Munsterman and Brinkhuis (2004); 11 — Kempf and
Pross (2005); 12 — Biffi and Manum (1988), Brinkhuis and Biffi (1993), Wilpshaar et

al. (1996), Pross et al. (2010).

Figure 3: Semiquantitative range chart of dinocyst taxa encountered at Site U1405 of
IODP Expedition 342, including shipboard-generated magnetostratigraphy and

Calcareous Nannoplankton Zonation (Norris et al., 2014d).

Figure 4: Semiquantitative range chart of dinocyst taxa encountered at Site U1406 of
IODP Expedition 342, plotted on revised composite depth scale (revised CCSF-A)
and including revised magnetostratigraphy (Van Peer et al., in press), and shipboard

Calcareous Nannoplankton Zonation (Norris et al., 2014c).

Figure 5: Semiquantitative range chart of dinocyst taxa encountered at Site U1411 of
IODP Expedition 342, including shipboard-generated magnetostratigraphy and

Calcareous Nannoplankton Zonation (Norris et al., 2014b).
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Figure 6: Semiquantitative range chart of dinocyst taxa encountered at Site U1411 of
IODP Expedition 342, including shipboard-generated magnetostratigraphy and

Calcareous Nannoplankton Zonation (Norris et al., 2014b).

Figure 7: Integrated scheme of magnetostratigraphically-calibrated dinocyst events
for the uppermost Eocene to lowermost Miocene of the Newfoundland Margin based
on the observations from IODP Sites U1405, U1406 and U1411. Time scale,
magnetostratigraphy, and Calcareous Nannoplankton Zones after Gradstein et al.

(2012).

Table captions

Table 1: Compilation of magnetostratigraphically-calibrated dinocyst FADs as known
from different regions in the Northern Hemisphere for the latest Eocene to earliest
Miocene. Data are from Eldrett et al. (2004) for the Norwegian-Greenland Sea,
Williams and Manum (1999) for the Norwegian Sea, Sliwinska et al. (2012) for the
Danish land area, and Pross et al. (2010) for the Umbria-Marche region of Central

Italy. Given ages refer to Gradstein et al. (2012).

Table 2: Compilation of magnetostratigraphically-calibrated dinocyst LADs as known
from different regions in the Northern Hemisphere for the latest Eocene to earliest
Miocene. Data are from Eldrett et al. (2004) for the Norwegian-Greenland Sea,
Williams and Manum (1999) for the Norwegian Sea, Sliwinska et al. (2012) for the
Danish land area, and Pross et al. (2010) and Wilpshaar et al. (1996; marked by *)
for the Umbria-Marche region of Central Italy. Given ages refer to Gradstein et al.

(2012).
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Appendix A, Table A1

Alphabetical list of all identified taxa, key to their occurrences in the range charts

(Figs. 3—6), and key to positions of respective photomicrographs in Plates | to VIII.

Plate captions

Plate I: Scale bar = 20 ym applies to all figures; all photographs taken using

differential interference contrast.

1,2

8,9

Apteodinium australiense (Deflandre and Cookson, 1955) Williams,
1978; Sample U1406 A17 H4 84-86 cm; Slide 14G394 A; England
Finder coordinates L36/2; specimen in high and low focus.
Apteodinium spiridoides Benedek, 1972; Sample U1406 B13 H3 84-
86 cm; Slide 14G494 A; T17.

Areoligera semicirculata (Morgenroth, 1966b) Stover and Evitt, 1978;
Sample U1406 C16 H6 76-78 cm; P46.

Areosphaeridium diktyoplokum (Klumpp, 1953) Eaton, 1971; Sample
U1411 B17 H3 126-128 cm; Slide 15A82 A; P26/2.

Artemisiocysta cladodichotoma Benedek, 1972; Sample U1405 B19
H5 136-138 cm; Slide 14L220; S28.

Batiacasphaera micropapillata Stover, 1977; Sample U1406 B11 H3
84-86 cm; Slide 14G404 A; N25/3.

Cerebrocysta bartonensis Bujak in Bujak et al., 1980; Sample U1411
C12 X3 113-115 cm; Slide 15A234 A; S35/1; specimen in high and

low focus.

Plate Il: Scale bar = 20 ym applies to all figures; all photographs taken using

differential interference contrast.
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1 Cordosphaeridium minimum (Morgenroth, 1966a) Benedek, 1972;
Sample U1406 A19 H3 84-86 cm; Slide 14G398 A; England Finder
coordinates P25/3.

2,3 Corrudinium incompositum (Drugg, 1970b) Stover and Evitt, 1978;
Sample U1411 B17 H3 126-128 cm; Slide 15A82 A; G40/3; specimen
in high and low focus.

4 Cyclodictyon spp.; Sample U1406 C18 H5 76-79 cm; Slide A; C41.

5,6 Chiropteridium galea (Maier, 1959) Sarjeant, 1983; Sample U1406
B17 H3 84-86 cm; Slide 14H44 A; U19; specimen in high and low
focus.

7,8 Chiropteridium lobospinosum Gocht, 1960; Sample U1406 B14 H3 84-

86 cm; Slide 14G498 A; W17; specimen in high and low focus.

Plate Ill: Scale bar = 20 um applies to all figures; photographs taken using

differential interference contrast.

1 Cordosphaeridium cf. funiculatum sensu Biffi and Manum, 1988;
Sample U1411 C9 H4 59-61 cm; Slide 15A181; R17/3.

2,3 Cordosphaeridium cantharellus (Brosius, 1963) Gocht, 1969; Sample
U1406 B17 H3 84-86 cm; Slide 14H44 A; U31/2; specimen in high
and low focus.

4 Dapsilidinium pseudocolligerum (Stover, 1977) Bujak et al., 1980;
Sample U1406 A18 H2 84-86 cm; Slide 14G396 C; S17.

5 Dinopterygium cladoides Deflandre, 1935; Sample U1411 A17 H4 84-
86 cm; Slide 14G394 A; T25/1.

6,7 Cribroperidinium sp.1; Sample U1411 B17 H3 126-128 cm; Slide
15A82 A; F33/1, specimen in high and low focus.

8,9 Distatodinium biffii Brinkhuis et al., 1992; Sample U1406 C16 H5 76-

78cm; Slide A; S35/2; specimen in high and low focus.
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10 Enneadocysta magna Fensome et al., 2006; Sample U1406 A19 H3

84-86 cm; Slide 14G398 A; G30.

Plate IV: Scale bar = 20 ym applies to all figures; all photographs taken using

differential interference contrast.

1 Deflandrea phosphoritica Eisenack, 1938b; Sample U1411 C7 H6 6-8
cm; Slide 15A178 B; England Finder coordinates S44/3.

2 Charlesdowniea clathrata (Eisenack, 1938b) Lentin and
Vozzhennikova, 1989; Sample U1411 B18 H2 123-125 cm; Slide
15A172 A; T27.

3 Enneadocysta pectiniformis (Gerlach, 1961) Stover and Williams;
Sample U1411 C11 X5 133-135 cm; Slide 15A232 A; S18.

4 Gelatia inflata Bujak, 1984; Sample U1406 A18 H3 84-86 cm; Slide
14G397 B; R39/2.

5 Hemiplacophora semilunifera Cookson and Eisenack, 1965a; Sample
U1411 C9 H4 59-61 cm; Slide 15A181 A; R40.

6,7 Filisphaera filifera Bujak, 1984; Sample U1406 B14 H3 84-86 cm,;
Slide 14G498 A; T28/2; specimen in high and low focus.

8,9 Impagidinium sp.; Sample U1411 C9 H4 59-61 cm; Slide 15A181 A;

S43; specimen in high and low focus.

Plate V: Scale bar = 20 ym applies to all figures; all photographs taken using
differential interference contrast.
1 Glaphyrocysta semitecta (Bujak in Bujak et al., 1980) Lentin and
Williams, 1981; Sample U1411 B16 H4 41-43 cm; Slide 15A80 A;
England Finder coordinates U24/1.
2 Glaphyrocysta sp.; Sample U1406 B17 H3 76-79 cm; Slide 14H44 A,

u31/2.
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6,7

Homotryblium plectilum Drugg and Léblich Jr., 1976; Sample U1406
A17 H4 84-86 cm; Slide 14G394 A; S30/3.

Hystrichokolpoma pusillum Biffi and Manum, 1988; Sample U1406
B13 H3 84-86 cm; Slide 14G494 C; J24/1.

Oligokolpoma sp.; Sample U1406 A19 H5 84-86 cm; Slide 14G400
B; H34/2.

Hystrichokolpoma rigaudiae Deflandre and Cookson, 1955; Sample
U1411 C9 H4 59-61 cm; Slide 15A181 A; G32; specimen in high and
low focus.

Hystrichokolpoma cinctum Klumpp, 1953; Sample U1406 C16 H6 84-

86 cm; Slide 14H113 A; T13.

Plate VI: Scale bar = 20 ym applies to all figures; all photographs taken using

3,4

6,7

differential interference contrast.

Impletosphaeridium insolitum Eaton, 1976; Sample U1405 C17 H2
94-96 cm; Slide 14L228 A; England Finder coordinates P13/4.
Lejeunecysta fallax (Morgenroth, 1966b) Artzner and Dérhofer, 1978;
Sample U1405 B21 H3 12-14 cm; Slide 14L222A; G18/3.

Lentinia serrata Bujak in Bujak et al., 1980; Sample U1411 B16 H4
41-43 cm; Slide 15A80 A; T41; specimen in high and low focus.
Lingulodinium machaerophorum (Deflandre and Cookson, 1955) Wall,
1967; Sample U1406 B14 H3 84-86 cm; Slide 14G498 A; 020/4.
Lophocysta sulcolimbata Manum, 1979; Sample U1411 B15 H4 0-2
cm; Slide 15A78 A; N38; specimen in high and low focus.
Melitasphaeridium asterium (Eaton, 1976) Bujak et al., 1980; Sample
U1406 B11 H2 84-86 cm; Slide 14G403 A; R29/4.

Microdinium reticulatum Vozzhennikova, 1967; Sample U1406 A22

H4 38-40 cm; Sample 14A4 A; S20/2.
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1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464

1465

10, 11

12,13, 14

Oligokolpoma galeottii Pross et al., 2010; Sample U1406 A19 H3 84-
86 cm; Slide 14G398 A; S21/3; specimen in high and low focus.
Nematosphaeropsis labyrinthus (Ostenfeld, 1903) Reid, 1974; Sample
U1406 A22 H4 38-40 cm; Slide 15A4A; S34/4; specimen in high and

low focus.

Plate VII: Scale bar = 20 ym applies to all figures; all photographs taken using

differential interference contrast.

Operculodinium centrocarpum Deflandre and Cookson, 1955) Wall,
1976; Sample U1406 A17 H4 84-86 cm; Slide 14G394 B; England
Finder coordinates M27/1.

Phthanoperidinium comatum (Morgenroth, 1966b) Eisenack and
Kjellstrom, 1972; Sample U1411 B15 H4 0-2 cm; Slide 15A78 A; P24.
Reticulatosphaera actinocoronata (Benedek, 1972) Bujak and
Matsuoka, 1986; Sample U1406 B14 H3 84-86 cm; Slide 14G498 A;
S19.

Saturnodinium pansum (Stover, 1977) Brinkhuis et al., 1992; Sample
U1406 C16 H5 76-78 cm; Slide A; J42/2.

Rhombodinium draco Gocht, 1955; Sample U1411 C8 H4 146-148
cm; Slide 15A180A; V28/2.

Spiniferites manumii (Lund, 2002) Schigler, 2005; Sample U1406 A22
H4 38-40 cm; Slide 15A4 A; H38/2.

Spiniferites pseudofurcatus (Klumpp, 1953) Sarjeant, 1970; Sample
U1406 B11 H5 84-86 cm; Slide 14G487A; T34.

Pentadinium laticinctum Gerlach, 1961; Sample U1406 A17 H5 84-86
cm; Slide 14G395 C; P22.

Schematophora speciosa Deflandre and Cookson, 1955; Sample

U1411 B18 H2 123-125 cm; Slide 15A172 A; F28/1.
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1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

10, 11

12

13

14

15

Stoveracysta sp. 1; Sample U1411 C8 H4 146-148 cm; Slide 15A180
A; P28; specimen in high and low focus.

Svalbardella sp. 1; Sample U1411 C8 H4 146-148 cm; Slide 15A180
A; H44/3.

Svalbardella sp. 2; Sample U1406 A19 H5 84-86 cm; Slide 14G400 A;
W33.

Svalbardella sp. 3; Sample U1406 A19 H 3 84-86 cm; Slide 14G398
A; U14.

Palaeocystodinium golzowense Alberti, 1961; Sample U1411 B15 H4

0-2 cm; Slide 15A78 A; Q23/4.

Plate VIII: Scale bar = 20 ym applies to all figures; all photographs taken using

3,4

8,9

differential interference contrast.

Selenopemphix crenata Matsuoka and Bujak, 1988; Sample U1411
C8 H4 146-148 cm; Slide 15A180 A; England Finder coordinates F33.
Selenopemphix nephroides Benedek, 1972; Sample U1411 C8 H4
146-148 cm; Slide 15A180 A; N33/4.

Tectatodinium pellitum Wall, 1967; Sample U1406 A17 H4 84-86 cm;
Slide 14G394 B; T39/4; specimen in high and low focus.
Thalassiphora delicata Williams and Downie, 1966¢; Sample U1411
C8 H4 146-148 cm; Slide 15A180 B; W22.

Wetzeliella gochtii Costa and Downie, 1976; Sample U1406 A19 H3
84-86 cm; Slide 14G398 B; V42.

Wetzeliella symmetrica Weiler, 1956; Sample U1406 A19 H4 80-83
cm; N32.

Thalassiphora pelagica (Eisenack, 1954b) Eisenack and

Gocht, 1960; Sample U1406 A17 H5 84-86 cm; Slide 14G395 C; Q34;

specimen in high and low focus.
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Fig.6
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Table 1

Age (Ma)

Newfound-  Norwegian Norwegian North Umbria-

Taxon land Drift -Greenland Sea Sea/Danish Marche
Exp. 342 Sea land area (Italy)

Artemisiocysta cladodichotoma 29.6
Chiropteridium galea 30.5 335
Oligokolpoma galeottii 30.5 313
Chiropteridium lobospinosum 32.0 335 325
Hystrichokolpoma pusillum 32.0 323
Melitasphaeridium asterium 335
Filisphaera filifera 33.7
Spiniferites manumii 33.7 33.0 31.4
Svalbardella spp. 33.7 42.2 29,1
Lophocysta sulcolimbata 34.6 21,1




Table 2

Age (Ma)
Newfound- Norwegian Norwegian North Umbria-Marche
Taxon land Drift  -Greenland Sea Sea/Danish (Italy)
Exp. 342 Sea land area
Svalbardella spp. 22.1 335 30.4 27.1
Deflandrea spp. 22.2
Filisphaera filifera 22.7
Hystrichokolpoma pusillum 22.8 23.6
Wetzeliella gochtii/symmetrica group 26.1 26.9 (W. gochtii)
Areoligera semicirculata 26.6 30.4 C8r 27.4
Saturnodinium pansum 26.6 C8r 24.5
Enneadocysta pectiniformis 27.1 27.9
Phthanoperidinium comatum 30.7 27.9
Spiniferites manumii 31.7 30.8 Cl2r
Lentinia serrata complex 33.3 324
Stoveracysta sp. 1 335 30.9 (S. spp.)
Areosphaeridium diktyoplokum 33.7 335 Cl2r 334
Charlesdowniea clathrata 33.7 324
Hemiplacophora semilunifera 33.8 33.6*
Cordosph. cf. funiculatum 34.0
Schematophora speciosa 34.1 34.5*
Lophocysta sulcolimbata 34.6




Appendix, Table A.1

Key to range charts Micro-
Taxon
Fig. 3 Fig. 4 Fig. 5 Fig. 6 photographs

Achomosphaera spp. 7 8 12 9
Achilleodinium biformoides (Eisenack, 1954b) Eaton, 1976 59 2 27
Apteodinium australiense (Deflandre and Cookson, 1955) Williams, 1978 33 5 39 PI. 1, Figs. 1-2
Apteodinium spiridoides Benedek, 1972 40 51 PI. |, Fig. 3
*Areoligera semicirculata (Morgenroth, 1966b) Stover and Evitt, 1978 53 4 Pl. 1, Fig. 4
Areoligera spp. (undiff.) 51 13
*Areosphaeridium diktyoplokum (Klumpp, 1953) Eaton, 1971 35 PI. 1, Fig. 5
*Artemisiocysta cladodichotoma Benedek, 1972 26 45 51 PI. |, Fig. 6
Batiacasphaera micropapillata Stover, 1977 PI. I, Fig. 7
Batiacasphaera sphaerica Stover, 1977
Batiacasphaera spp. (undiff.) 8 9 14 10
Cerebrocysta bartonensis Bujak in Bujak et al., 1980 29 49 36 PI. |, Figs. 8-9
*Charlesdowniea clathrata (Eisenack, 1938b) Lentin and Vozzhennikova, 1989 37 PI. IV, Fig. 2
*Chiropteridium galea (Maier, 1959) Sarjeant, 1983 30 3 15 PI. 1I, Figs. 5-6
*Chiropteridium lobospinosum Gocht, 1960 3 21 16 PI. II, Figs. 7-8
Chiropteridium spp. (undiff). 32 52 17
Cleistosphaeridium ancyreum (Cookson and Eisenack, 1965b) Eaton et al., 2001
Cleistosphaeridium diversispinosum Davey et al., 1966
Cleistosphaeridium spp. (undiff.) 9 10 18
Cordosphaeridium cantharellus (Brosius, 1963) Gocht, 1969 4 30 19 44 PL. I, Figs. 2-3
*Cordosphaeridium cf. funiculatum of Biffi and Manum, 1988 48 PL. 11, Fig. 1
Cordosphaeridium minimum (Morgenroth, 1966a) Benedek, 1972 7 20 12 PI. 1I, Fig. 1
Cordosphaeridium spp. (undiff.) 1 36 21 11
Corrudinium incompositum (Drugg, 1970b) Stover and Evitt, 1978 58 5 PI. Il, Figs. 2-3
Cribroperidinium sp. 1 PIL. 11, Figs. 6-7
Cyclodictyon spp. 62 PI. II, Fig. 4
Dapsilidinium pseudocolligerum (Stover, 1977) Bujak et al., 1980 6 11 22 14 PI. I, Fig. 4
Dapsilidinium spp. 65 50
Deflandrea phosphoritica PI. IV, Fig. 1
Deflandrea spp. (undiff.) 36 12 23 15
Dinopterygium cladoides Deflandre, 1935 47 40 1 PI. I, Fig. 5
Diphyes colligerum (Deflandre and Cookson, 1955) Cookson, 1965a
Distatodinium biffii Brinkhuis et al., 1992 48 52 PI. 111, Figs. 8-9
Distatodinium craterum Eaton, 1976
Distatodinium ellipticum (Cookson and Eisenack, 1965a) Eaton, 1976
Distatodinium spp. (undiff.) 33 41 4
*Enneadocysta pectiniformis (Eaton, 1971) Stover and Williams, 1995 57 16 PI. IV, Fig. 3
Enneadocysta magna Fensome et al., 2006 61 PI. lIl, Fig. 10
*Filisphaera filifera Bujak, 1984 37 1 24 52 PI. IV, Figs. 6-7
Gelatia inflata Bujak, 1984 2 31 25 28 PI. IV, Fig. 4
Glaphyrocysta intricata (Eaton, 1971) Stover and Evitt, 1978
Glaphyrocysta semitecta (Bujak in Bujak et al., 1980) Lentin and Williams, 1981 38 Pl.V, Fig. 1
Glaphyrocysta spp. (undiff.) 38 37 42 39 PIl. V, Fig. 2
Hapsocysta kysingensis Heilmann-Clausen and Van Simaeys, 2005 27 34
*Hemiplacophora semilunifera Cookson and Eisenack, 1965a 45 PI. IV, Fig. 5
Heteraulacacysta porosa Bujak in Bujak et al., 1980 56 40
Heteraulacacysta pustulata Jan du Chéne and Adediran, 1985 41
Heteraulacacysta spp. (undiff.) 43 46
Homotryblium plectilum Drugg and Loeblich Jr., 1967 12 2 7 29 Pl.V, Fig. 3
Hystrichokolpoma cinctum Klumpp, 1953 PIl.V, Fig. 8
*Hystrichokolpoma pusillum Biffi and Manum, 1988 39 27 5 PI.V, Fig. 4
Hystrichokolpoma rigaudiae Deflandre and Cookson, 1955 13 22 11 30 PI.V, Figs. 6-7
Hystrichokolpoma salacia Eaton, 1976
Hystrichokolpoma sp. sensu Biffii and Manum 1988
Hystrichokolpoma truncata Biffi and Manum, 1988
Hystrichokolpoma spp. (undiff.) 14 13 26 17
Hystrichokolpoma/Oligokolpoma spp. 60 6
Hystrichosphaeropsis obscura Habib, 1972
Impagidinium dispertitum (Cookson and Eisenack, 1965a) Stover and Evitt, 1978
Impagidinium maculatum (Cookson and Eisenack, 1961b) Stover and Evitt, 1978
Impagidinium paradoxum (Wall, 1967) Stover and Evitt, 1978
Impagidinium torsium Stover and Hardenbol, 1993
Impagidinium velorum Bujak, 1984 15 38 43 18
Impagidinium spp. (undiff.) 16 14 27 19 PI. IV, Figs. 8-9
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Impletosphaeridium insolitum Eaton, 1976 17 23 28 PI. VI, Fig. 1
Lejeunecysta fallax (Morgenroth, 1966b) Artzner and Dérhofer, 1978 PI. VI, Fig. 2
Lejeunecysta hyalina (Gerlach, 1961) Artzner and Dorhofer, 1978

Lejeunecysta spp. 18 15 44 20

*Lentinia serrata Bujak in Bujak et al., 1980 41 33 PI. VI, Figs. 3-4
Lingulodinium machaerophorum (Deflandre and Cookson, 1955) Wall, 1967 19 24 29 7 PI. VI, Fig. 5
*Lophocysta sulcolimbata Manum, 1979 46 PI. VI, Figs. 6-7
*Melitasphaeridium asterium (Eaton, 1976) Bujak et al., 1980 20 4 30 2 PI. VI, Fig. 8
Microdinium reticulatum Vozzhennikova, 1967 58 5 PI. VI, Fig. 9
Nematosphaeropsis reticulensis (Pastiels, 1948) Sarjeant, 1986

Nematosphaeropsis labyrinthus (Ostenfeld, 1903) Reid, 1974 PI. VI, Figs. 12-14
Nematosphaeropsis spp. (undiff.) 21 16 45 21

*Qligokolpoma galeottii Pross et al., 2010 31 28 PI. VI, Figs. 10-11
Oligokolpoma spp. PIl.V, Fig. 5
Operculodinium centrocarpum (Deflandre and Cookson, 1955) Wall, 1967 22 17 31 22 PI. VI, Fig. 1
Operculodinium spp. (undiff.) 28 6 32 49

Palaeocystodinium golzowense Alberti, 1961 23 18 33 23

Palaeocystodinium spp. (undiff.) 44 34 PI. VII, Fig. 15
Pentadinium laticinctum Gerlach, 1961 42 1 PI. VII, Fig. 8
Pentadinium spp. (undiff.) 49 35

Phthanoperidinium amoenum Drugg and Loeblich Jr., 1967 63

*Phthanoperidinium comatum (Morgenroth, 1966b) Eisenack and Kjellstrom, 1972 66 24 PI. VII, Fig. 2
Phthanoperidinium filigranum (Benedek, 1972) Benedek and Sarjeant, 1981

Phthanoperidinium geminatum Bujak in Bujak et al., 1980 64

Phthanoperidinium spp. (undiff.) 24 19 3

Polysphaeridium spp. 29 39 47

Reticulatosphaera actinocoronata Benedek, 1972 5 20 36 25 PI. VI, Fig. 3
Rhombodinium draco Gocht, 1955 42 PI. VII, Fig. 5
*Saturnodinium pansum (Stover, 1977) Brinkhuis et al., 1992 54 8 PI. VII, Fig. 4
*Schematophora speciosa Deflandre and Cookson, 1955 50 PI. VI, Fig. 9
Selenopemphix crenata Matsuoka and Bujak, 1988 PI. VIII, Fig. 1
Selenopemphix nephroides Benedek, 1972 PI. VIII, Fig. 2
Selenopemphix spp. (undiff.) 18 15 44 20

*Spiniferites manumii (Lund, 2002) Schigler 2005 67 31 PI. VI, Fig. 6
Spiniferites pseudofurcatus (Klumpp, 1953) Sarjeant, 1970 35 9 8 PI. VII, Fig. 7
Spiniferites spp. (undiff.) 7 8 12 9

*Stoveracysta sp. 1 34 PI. VII, Figs. 10-11
*Svalbardella spp. 35 25 37 32 PI. VII, Figs. 12-14
Tectatodinium pellitum Wall, 1967 25 32 38 26 PI. VIII, Figs. 3-4
Thalassiphora delicata Williams and Downie, 1966¢ PIL. VIII, Fig. 5
Thalassiphora fenestrata Liengjaren et al., 1980 PIL. VIII, Fig. 8
Thalassiphora gracilis Heilmann-Clausen and Van Simaeys, 2005

Thalassiphora pelagica (Eisenack, 1954b) Eisenack and Gocht, 1960 50 10 47 PI. VIII, Figs. 9-10
Thalassiphora spp. (undiff.) 55 3 43

*Wetzeliella gochtii Costa and Downie, 1976 46 48 6 PIL. VIII, Fig. 6
*Wetzeliella symmetrica Weiler, 1956 46 48 6 PI. VIII, Fig. 7
undiff. dinocysts 40 68 53 53

indeterminate dinocysts 41 69 54 54

*dinocysts used for biostratigraphy
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