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Doctor of Philosophy

SKYRMIONIC STATES IN CONFINED HELIMAGNETIC NANOSTRUCTURES

by Marijan Beg

Magnetic skyrmions have the potential to provide solutions for low-power, high-density

data storage and processing. One of the major challenges in developing skyrmion-

based devices is the skyrmions’ magnetic stability in confined helimagnetic nanostruc-

tures. Through a systematic study of equilibrium states, using a full three-dimensional

micromagnetic model, we demonstrate that skyrmionic states are the lowest energy

states in confined helimagnetic nanostructures at zero external magnetic field and in

absence of magnetocrystalline anisotropy. We show that bistable skyrmionic states

undergo hysteretic behaviour between two energetically equivalent skyrmionic config-

urations with different core orientation, even in the absence of both magnetocrys-

talline and demagnetisation-based shape anisotropies, suggesting the existence of novel

Dzyaloshinskii-Moriya-based shape anisotropy. We show that the skyrmionic state core

reversal is facilitated by the Bloch point occurrence and propagation. In this work, we

also study the dynamic properties (resonance frequencies and corresponding eigenmodes)

of these skyrmionic states in confined helimagnetic nanostructures. The eigenvalue

method allows us to identify all resonance frequencies and corresponding eigenmodes

that can exist in the simulated system. However, using a particular experimentally

feasible excitation can excite only a limited set of eigenmodes. Because of that, we

perform and report ringdown simulations that resemble the experimental setup using

both an in-plane and an out-of-plane excitations. In addition, we report the nonlinear

dependence of resonance frequencies on the external magnetic bias field and disk sample

diameter and report the possible reversal mode of skyrmionic states. Finally, we show

that neglecting the demagnetisation energy contribution or ignoring the magnetisation

variation in the out-of-film direction in either static or dynamic simulations is not always

justified.
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Chapter 1

Introduction

An ever increasing need for data storage creates great challenges for the development

of high-capacity storage devices that are cheap, fast, reliable, and robust. Nowadays,

hard disk drive technology uses magnetic grains pointing up or down to encode binary

data (0 or 1) in so-called perpendicular recording media. Practical limitations are well

understood and dubbed the “magnetic recording trilemma” [1]. It defines a trade-off

between three conflicting requirements: signal-to-noise ratio, thermal stability of the

stored data, and the ability to imprint information. Because of these fundamental

constraints, further progress requires radically different approaches.

In magnetic systems that lack some type of inversion symmetry, the Dzyaloshinskii-

Moriya Interactions [2, 3, 4, 5] (DMI) may occur. The inversion asymmetry can be

present in the magnetic system either because of a non-centrosymmetric crystal lat-

tice [3] (helimagnetic material) or due to the interfaces between different materials which

inherently lack inversion symmetry [6, 7]. Consequently, the DMI can be classified ei-

ther as bulk or interfacial. DMI favours magnetic moments at neighbouring lattice sites

to be perpendicular to each other, which is in contrast to the symmetric ferromagnetic

exchange interaction which tends to align them parallel or antiparallel. When acting

together, these two interactions mutually compete and find a compromise in the twist

between two neighbouring magnetic moments which could result in a rich variety of

different magnetisation textures. One of them is a topologically stable skyrmionic con-

figuration, with particle-like properties.

Now, we give a basic overview of interactions that lead to the magnetic skyrmion for-

mation. The first interaction we focus on is the exchange energy. The exchange energy

for two neighbouring magnetic moments (spins) Si and Sj equals to −JSi ·Sj , where J

is the exchange energy constant [8]. We can conclude that depending on the exchange

energy constant, this energy tends to align two neighbouring spins either parallel (J > 0)

or antiparallel (J < 0) in order to minimise its energy. Let us assume that the exchange

energy constant is positive and parallel alignment (ferromagnetic order) is preferred.

1



2 Chapter 1 Introduction

Figure 1.1: One-dimensional helical configuration with helical period LD.

Also, it is worth noting that this interaction does not have a preferential direction in

which all magnetic moments should be aligned. Two energies that introduce preferential

directions to the magnetic configuration are Zeeman and magnetocrystalline anisotropy

energies. Zeeman energy of a single magnetic moment µ in external magnetic field B is

−µ ·B [8]. In order to minimise itself, this energy tends to align the magnetic moment

µ in the same direction (parallel) to the external magnetic field B. There are different

types of magnetocrystalline anisotropy energies, and one of them is uniaxial anisotropy.

The uniaxial anisotropy energy of a spin is −k(S · û)2, where k is the uniaxial anisotropy

constant and û is the uniaxial anisotropy axis [9]. This energy is minimum when spin

is either parallel or antiparallel to û if k > 0 (easy-axis anisotropy) or perpendicular

to û if k < 0 (easy-plane anisotropy). Both Zeeman and uniaxial anisotropy energies

are local which is in contrast to the exchange energy. More precisely, both Zeeman and

uniaxial anisotropy energies do not depend on the neighbouring spins, which is not the

case with non-local exchange energy. Finally, the last non-local interaction we discuss

now is the Dzyaloshinskii-Moriya energy, which between two neighbouring spins Si and

Sj is d · (Si×Sj), where d is the Dzyaloshinskii vector [2, 3]. This energy tends to align

two neighbouring spins perpendicular to each other so that they are in the plane which

is perpendicular to the Dzyaloshinskii vector d. The much more detailed overview of

magnetic energies will be presented in Chapter 2.

However, rarely a single magnetic energy exists in the system, so let us predict what

would be the preferential configuration if both exchange and DMI energies are present

in the system. As we have previously seen, ferromagnetic exchange energy (with J > 0)

tends to align two neighbouring magnetic moments so the the angle between them is

0◦ (parallel). On the other hand, Dzyaloshinskii-Moriya energy prefers a 90◦ angle

(perpendicular configuration). Consequently, we can conclude that none of these two

energies if acting together can be minimised. So, they mutually compete and find a

compromise, which in this case would be an angle in the [0◦, 90◦] range. This configura-

tion is called a one-dimensional helical modulation and we show how this configuration

looks like for an array of magnetic moments in Fig. 1.1. What is the angle between

neighbouring magnetic moments depends on the relative strengths between ferromag-

netic exchange and Dzyaloshinskii-Moriya energies. In other words, a length over which

the spins cover a 2π angle, called the helical period LD depends on J and D, so that



Chapter 1 Introduction 3

Figure 1.2: Two-dimensional chiral skyrmion configuration.

LD ∝ J/D [10, 11, 12, 13, 14, 15, 16, 17, 18]. Magnetic materials which support the

formation of helical configurations are called the helimagnetic materials.

Helical configuration as a consequence of mutual competition between exchange and

Dzyaloshinskii-Moriya energies was an example which could be easily intuitively un-

derstood. Now, let us assume we have a two-dimensional array of magnetic moments

(spins) and all previously introduced energies (exchange, Dzyaloshinskii-Moriya, uni-

axial anisotropy, and Zeeman) are present in the system. The question is: What is

the magnetisation configuration which has the minimum energy for a particular set

of energy parameters J , D, k, and external magnetic field B. We assume that both

uniaxial anisotropy axis û and external magnetic field B are out-of-plane. Now, it is

highly non-intuitive what the preferred configuration would look like. One of the pos-

sible configurations that can emerge under these circumstances is the chiral skyrmion

configuration, that we show in Fig. 1.2.

We see that a skyrmion looks like a whirl in the ferromagnetic background. All magnetic

moments outside the skyrmion are in the opposite direction then a single magnetic

moment at the skyrmion centre. If this configuration is mapped on a sphere, we could

see that it covers the sphere exactly once. How many times a magnetisation configuration

covers the sphere can be determined by computing the skyrmion number [19]

S =
1

4π

∫
m ·

(
∂m

∂x
× ∂m

∂y

)
dxdy, (1.1)

where m is the continuous magnetisation field and will be described in Chapter 2. For

the skyrmion configuration, the skyrmion number value is S = ±1.

Recent research demonstrated that magnetic skyrmions have the potential for the devel-

opment of future data storage and information processing devices, due to their compet-

itive size [19, 20, 21] and easy manipulation using spin-polarised currents [22, 23]. For
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instance, a skyrmion lattice formed in a monoatomic Fe layer grown on a Ir(111) sur-

face [19] revealed skyrmions with diameters as small as a few atom spacings. In addition,

it has been demonstrated that skyrmions can be easily manipulated using spin-polarised

currents of the 106 A m−2 order [22, 23] which is a factor 105 to 106 smaller than the

current densities required in conventional magneto-electronics. These unique skyrmion

properties point to an opportunity for the realisation of ambitious novel high-density,

power-efficient storage [24, 25] and logic [26] devices.

Magnetic skyrmions, after being predicted [27, 28, 29], were later experimentally ob-

served in magnetic systems with both bulk [30, 31, 32, 33, 20, 16] and interfacial [19, 21]

types of DMI. So far, a major challenge obstructing the development of skyrmion-based

devices has been their thermal and magnetic stability [34]. Only recently, skyrmions

were observed at the room temperature in magnetic systems with bulk [35] and in-

terfacial [36, 37, 38] DMI. However, the magnetic stability of skyrmions in absence of

external magnetic field was reported only for magnetic systems with interfacial DMI in

one-atom layer thin films [19, 39], where the skyrmion state is stabilised in the presence

of magnetocrystalline anisotropy.

The first focus of this work is on the zero-field stability of skyrmionic states in con-

fined geometries of bulk DMI (helimagnetic) materials. Zero-field stability is a crucial

requirement for the development of skyrmion-based devices: devices that require exter-

nal magnetic fields to be stabilised are volatile, harder to engineer and consume more

energy. We address the following questions that are relevant for the skyrmion-based

data storage and processing nanotechnology. Can skyrmionic states be the ground state

(i.e. have the lowest energy) in helimagnetic materials at zero external magnetic field,

and if they can, what is the mechanism responsible for this stability? Do the demag-

netisation energy and magnetisation variation along the out-of-film direction [40] have

important contribution to the stability of skyrmionic states? Is the magnetocrystalline

anisotropy an essential stabilisation mechanism? Are there any other equilibrium states

that emerge in confined helimagnetic nanostructures? How robust are skyrmionic states

against varying geometry? Do skyrmionic states undergo hysteretic behaviour in the

presence of an external magnetic field (crucial for data imprint), and if they do, what is

the skyrmionic state reversal mechanism?

Some stability properties of DMI-induced isolated skyrmions in two-dimensional con-

fined systems have been studied analytically [41, 42, 43] and using simulations [39, 44].

However, in all these studies, either magnetocrystalline anisotropy or an external mag-

netic field (or both) are crucial for the stabilisation of skyrmionic states. In addition,

an alternative approach to the similar problem, in absence of chiral interactions, where

skyrmionic states can be stabilised at zero external magnetic field and at room tem-

perature using a strong perpendicular anisotropy, has been studied analytically [45],

experimentally [46, 47], as well as using simulations [48]. Our new results, and in partic-

ular the zero-field skyrmionic ground state in isotropic helimagnetic materials, can only
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be obtained by allowing the chiral modulation of magnetisation direction along the film

normal, which has recently been shown to radically change the skyrmion energetics [40].

In this work, we use a full three-dimensional simulation model that makes no assump-

tion about translational invariance of magnetisation in the out-of-film direction and takes

full account of the demagnetisation energy. We demonstrate, using this full model, that

DMI-induced skyrmionic states in confined thin film helimagnetic nanostructures are

the lowest energy states in the absence of both the stabilising external magnetic field

and the magnetocrystalline anisotropy and are able to adapt their size to hosting nanos-

tructures, providing the robustness for their practical use. We demonstrate that both

the demagnetisation energy and the magnetisation variation in the out-of-film direction

play an important role for the stability of skyrmionic states. In addition, we report the

parameter space regions where other magnetisation configurations are in equilibrium.

Moreover, we demonstrate that these zero-field stable skyrmionic states undergo hys-

teretic behaviour when their core orientation is changed using an external magnetic field,

which is crucial for data imprint. The hysteretic behaviour remains present even in the

absence of all relevant magnetic anisotropies (magnetocrystalline and demagnetisation-

based shape anisotropies), suggesting the existence of a novel Dzyaloshinskii-Moriya-

based shape anisotropy. We conclude the study by showing that the skyrmionic state

core orientation reversal is facilitated by the Bloch point occurrence and propagation,

where the Bloch point may propagate in either of the two possible directions. This

work is based on the specific cubic helimagnetic B20 (P213 space group) material, FeGe

with 70 nm helical period, in order to encourage the experimental verification of our

predictions. Other materials could allow either to reduce the helical period [30, 20] and

therefore the hosting nanostructure size or increase the operating temperature [35].

Understanding the dynamic response of skyrmionic states in confined helimagnetic nanos-

tructures is of importance both from the aspect of fundamental physics as well as for

their manipulation. In the second part of this work we explore the dynamics of three

equilibrium skyrmionic states using a full three-dimensional model which includes the

demagnetisation energy contribution and does not assume the translational invariance of

magnetisation in the out-of-film direction. A similar dynamics simulation study was per-

formed for the isolated skyrmion breathing eigenmodes [49] in confined two-dimensional

samples with interfacial DMI; and high-frequency skyrmion spin excitations were analyt-

ically studied in thin cylindrical dots [50]. The low-frequency (two lateral and one breath-

ing) eigenmodes were reported in two-dimensional simulations of a hexagonal skyrmion

lattice [51], where the demagnetisation energy was neglected. Later, microwave absorp-

tion measurements explored the low frequency eigenmodes in Cu2OSeO3 [52, 53, 54],

Fe1−xCoxSi and MnSi [54] helimagnetic bulk samples. In the case of a magnetic bub-

ble [45, 46, 47, 48] (skyrmionic state stabilised due to the strong uniaxial anisotropy

in the absence of DMI) analytic [55], simulation [56], and experimental [57] studies re-

ported the existence of two low frequency gyrotropic eigenmodes, suggesting that the
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skyrmion possesses mass. In contrast, a recent analytic work [58] suggests that only

one gyrotropic eigenmode exists in the confined DMI-induced skyrmion state, whereas

another low-frequency lateral eigenmode can be interpreted as an azimuthal spin-wave

mode [58].

Using our full three-dimensional model, employing the eigenvalue [59] method, we com-

pute all existing (both lateral and breathing) eigenmodes below 50 GHz in three differ-

ent skyrmionic states. In addition, using the ringdown [60] method, we determine what

eigenmodes can be excited using two different experimentally feasible excitations (in-

plane and out-of-plane). On the contrary to the magnetic bubble, in the confined DMI

stabilised skyrmionic states we find the existence of only one low frequency gyrotropic

eigenmode (characteristic of massless skyrmions). We also demonstrate the nonlinear

dependence of eigenmode frequencies on the external magnetic bias field and the disk

sample diameter, and show that the gyrotropic eigenmode might be the reversal mode

of the studied states. After we identify all eigenmodes of incomplete Skyrmion (iSk)

and isolated Skyrmion (Sk) ground states, we compare their Power Spectral Densities

(PSDs) in the same sample at different external magnetic field values. We discuss these

comparisons and observe several key differences that can contribute to the experimental

identification of the state present in the studied sample. We experimentally measure the

FeGe Gilbert damping, and using this value, show what power spectral densities are ex-

pected to be observed in experiments. Finally, we investigate how the demagnetisation

energy contribution and magnetisation variation in the out-of-film direction affects the

dynamics of skyrmionic states. We report that although the eigenmode magnetisation

dynamics is not significantly affected, the resonance frequencies change substantially,

concluding that ignoring the demagnetisation energy or modelling the thin film heli-

magnetic samples using two-dimensional meshes is not always justified. The results in

this work, apart from the contribution to the fundamental physics, could support ex-

perimentalists to determine what magnetisation configuration is present in the confined

helimagnetic sample by measuring ferromagnetic resonance spectra.

1.1 Thesis structure

In Chapter 2, the fundamental concepts of magnetism in condensed matter are intro-

duced. A relation between the basic building block of magnetic materials – magnetic mo-

ment and angular momentum is described via gyrotropic ratio. After that, the dynamics

of a magnetic moment in an external magnetic field is described by introducing Landau-

Lifshitz-Gilbert (LLG) equation which consists of both precession and damping terms.

Because magnetic materials are composed of a big number of magnetic moments, it is

crucial to understand the interactions between them. We present symmetric exchange,

Dzyaloshinskii-Moriya, uniaxial anisotropy, Zeeman, and demagnetisation interactions

by showing their atomistic expressions as well as deriving their models in a continuous
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form. Finally, we present the basic concepts of micromagnetics by introducing the basics

of finite elements method, time integration, and describing the simulation tool that was

used in this work. In Chapter. 3, we study the stability of skyrmionic states in con-

fined helimagnetic nanostructures through a systematic study of equilibrium states. We

find that skyrmionic states in the form of incomplete skyrmion and isolated skyrmion

can emerge as the ground state in the studied system at zero external magnetic field

and in absence of magnetocrystalline anisotropy. This is in contrast to infinitely large

thin film helimagnetic samples, and because of that, we explore the possible stabilisa-

tion mechanism. We also demonstrate the robustness of skyrmionic states in confined

helimagnetic nanostructures by showing they can adapt their size in order to accommo-

date the hosting nanostructure. Finally, we show that our results remain valid for an

artificial helimagnetic material with ordering temperature above room temperature. In

Chapter 4, we demonstrate that skyrmionic states exhibit hysteretic behaviour when the

orientation between two energetically equivalent skyrmionic states is changed using an

external magnetic field. We show that the reversal of an isolated skyrmion state is facil-

itated by the Bloch point occurrence and propagation, where its propagation direction

strongly depends on the simulation parameters. Because understanding the dynamic

response of skyrmionic states in confined helimagnetic nanostructures is important both

for the fundamental physics and their manipulation, in Chapter 5, we simulate their

dynamic properties using both eigenvalue and ringdown methods. We reveal how the

resonance frequencies depend on disk sample diameter and external magnetic field. In

addition, we compute the power spectral densities for the real value of FeGe Gilbert

damping and explore whether demagnetisation energy and magnetisation variation in

the out-of-film direction affect the dynamics of skyrmionic states. Chapter 6 provides

the discussion of all results presented in this thesis and concludes the work.





Chapter 2

Magnetism and micromagnetics

In this chapter, we present the fundamental concepts of magnetism in condensed matter

as well as computational micromagnetic models. Firstly, we define a basic building block

of all magnetic materials – magnetic moment – as a consequence of angular momentum.

Secondly, we present an equation governing its dynamics (Landau-Lifshitz-Gilbert equa-

tion) by deriving the precession term and introducing the phenomenological damping

term. Magnetic moments at different atoms mutually interact with each other via differ-

ent interactions as well as with their immediate environment, which can result in a rich

variety of different magnetisation configurations that can emerge in a magnetic system.

We introduce symmetric exchange, Dzyaloshinskii-Moriya, uniaxial anisotropy, Zeeman,

and dipolar (demagnetisation) interactions by presenting their atomistic models and

deriving their continuous energy and effective field expressions. Finally, we present the

basics of finite element approximation of continuous functions and time integration, that

we used for the simulation tool implementation.

2.1 Magnetic moment

A basic building block of any magnetic material is the magnetic moment µ. In conven-

tional (macroscopic) electromagnetics, the magnetic moment emerges as a consequence

of an electric current I in a closed loop of area A [61, 8], as shown in Fig. 2.1 (a). It is

defined as

µ = I

∫
A

dA, (2.1)

where dA = dAn̂, with n̂ being the unit vector perpendicular to the plane containing

dA, whose direction is uniquely defined by the direction of current I [61, 8] in the closed

loop.

9
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Figure 2.1: (a) The conventional electromagnetic definition of a magnetic mo-
ment as a consequence of current in the closed loop. (b) The magnetic moment
of a single electron orbiting the atomic nucleus, where its relation with the an-
gular momentum and the magnetic moment is given by the gyromagnetic ratio
γ (µ = −γL). Due to the negative charge of an electron, vectors L and µ are
antiparallel (have opposite directions).

2.1.1 Gyromagnetic ratio

If the conventional electromagnetic definition of a magnetic moment is scaled down to an

atomic level, we can make an analogy that an atomic magnetic moment is a consequence

of an electric current produced by an electron orbiting the atomic nucleus. A fact that

an orbiting electron has a mass me implies that it possesses an angular momentum L.

Therefore, one might attempt to find a relation between magnetic moment µ and angular

momentum L. The relation between L and µ was experimentally demonstrated [62, 63,

64] where the angular momentum was induced by changing the magnetisation of the

magnetic sample and this effect is now called Einstein-de Haas effect. Similarly, an

opposite effect – magnetisation occurrence by introducing the angular momentum to

the system was also demonstrated [65] and we refer to it as the Barnett effect. The

focus of this section is to derive the relation between electron’s magnetic moment and

its angular momentum.

In spite of being fundamentally wrong, an intuitive classical approach to magnetism can

provide some useful insights that can be used when the magnetic moment concepts are

studied from the quantum perspective. For instance, we can obtain the gyromagnetic

ratio γ that establishes the relationship between magnetic moment and angular momen-

tum. In the simplest Rutherford-Bohr model [66, 67] of a single electron with charge

−e and mass me orbiting the atomic nucleus, as shown in Fig. 2.1 (b), the electron’s

angular momentum is

L = r× p = rmevẑ, (2.2)

where r is the electron’s position vector with respect to the atomic nucleus (r is the orbit’s

radius), which is perpendicular to the electron’s linear velocity v. In order to compute

the magnetic moment, defined by Eq. (2.1), we must compute an electric current that

an orbiting electron produces. This current is I = e/τ , with τ = 2rπ/v being the orbital
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period. Consequently, the magnetic moment is

µ = IA = −1

2
evrẑ, (2.3)

where A = r2πẑ is the current loop area vector defined in Fig. 2.1 (a). Please note that

the direction of current I is opposite to the electron’s orbiting direction. After we found

both the angular momentum L and the magnetic moment µ, we can establish a relation

between them as

µ = − e

2me
L = −γL, (2.4)

where γ = e/2me > 0 is called the gyromagnetic ratio. The minus sign is present in

the gyromagnetic relation due to the negative charge of an electron. This means that

the electron’s magnetic moment µ and its angular momentum L are always antiparallel

(have opposite directions) as shown in Fig. 2.1 (b).

2.1.2 Quantised angular momentum

In the previously presented classical approach to the magnetic moment, where we estab-

lished how it is related to the angular momentum, electron’s velocity vector v changes its

direction as the electron orbits the atomic nucleus. This would result in the electromag-

netic energy radiation, violating the energy conservation law. In addition, the classical

model of magnetism also fails to explain a wide range of different magnetic phenomena.

Because of that, a fundamentally different quantum approach to the analysis of angular

momentum is required.

The fundamental commutation relations of angular momentum J are [68, 69, 70, 71]

[Ji, Jj ] = i~εijkJk, (2.5)

where Ji, Jj , and Jk are the components of angular momentum vector J, εijk is the

Levi-Civita symbol, ~ = h/2π is the reduced Planck constant, and i is the imaginary

unit. In this section, we use symbol J for the atomic angular momentum and later we

will show that it is actually a sum of orbital L and intrinsic (spin) S angular momenta. If

we define a ladder operator as J± = Jx± iJy and knowing that J2 = JxJx+JyJy+JzJz,

we can show that [J2, Jz] = 0, [Jz, J±] = ±~J±, and [J2, J±] = 0, which will be used

later. The zero value of [J2, Jz] implies that the operators J2 and Jz commute and that

their observables can be mutually known. Subsequently, we will determine what are

their eigenvalues, which would allow us to compute the atomic magnetic moment µ and

its z component µz.

We can assume that an eigenket of both J2 and Jz is |a, b〉, so that

J2 |a, b〉 = a |a, b〉 , (2.6)
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Jz |a, b〉 = b |a, b〉 , (2.7)

where a and b are eigenvalues of J2 and Jz operators, respectively. Now, we can compute

how the eigenvalue of operator J2 changes after the ladder operator is applied on the

eigenket |a, b〉. Knowing that J2 and J± mutually commute ([J2, J±] = 0), we obtain

J2(J± |a, b〉) = J±(J2 |a, b〉) = J±(a |a, b〉) = a(J± |a, b〉). (2.8)

This shows that applying the ladder operator on eigenket |a, b〉 does not change the

eigenvalue of J2. On the other hand, knowing the commutation relation [Jz, J±] = ±~J±,

for the operator Jz, we get

Jz(J± |a, b〉) = [Jz, J±] |a, b〉+ J±(Jz |a, b〉)

= ±~J± |a, b〉+ J±(b |a, b〉)

= (b± ~)(J± |a, b〉).

(2.9)

We conclude that if the ladder operator J± is applied on the eigenket |a, b〉, the z com-

ponent of angular momentum changes by ±~, while the angular momentum magnitude

remains unchanged. Intuitively, because the angular momentum component value can-

not exceed its magnitude (J2
z ≤ J2), we can impose a relation between eigenvalues a and

b as b2 ≤ a. This condition implies that there are eigenkets |a, bmax〉 and |a, bmin〉, so

that applying the raising or lowering operator is not allowed (results in the zero state):

J+ |a, bmax〉 = 0 and J− |a, bmin〉 = 0. At this point, we can show that

J−(J+ |a, bmax〉) = (J−J+) |a, bmax〉

= (J2 − J2
z − ~Jz) |a, bmax〉

= (a2 − b2max − ~bmax) |a, bmax〉

(2.10)

and

J+(J− |a, bmin〉) = (J+J−) |a, bmin〉

= (J2 − J2
z + ~Jz) |a, bmin〉

= (a2 − b2min + ~bmin) |a, bmin〉 .

(2.11)

Because the obtained eigenvalues a2− b2max− ~bmax and a2− b2min + ~bmin are both zero,

we get a relation bmax(bmax + ~) = bmin(bmin − ~). This relation results in two possible

solutions: physically impossible bmin = bmax + ~ and physically possible bmax = −bmin.

Because the bmax value can be obtained by N ∈ N0 successive applications of the raising

operator L+ on |a, bmin〉, we can write bmax = bmin +N~. From this relation we get that

bmax = (N/2)~ and total angular momentum quantum number j ≡ bmax/~ = N/2 can

be defined. Now, we know that the maximum eigenvalue of Jz is j~, and that we can

express any eigenvalue of Jz as m~, where m = −j,−j + 1,−j + 2, . . . , j − 2, j − 1, j.

From these relations, we can determine eigenvalues a =
√
bmax(bmax + ~) = ~

√
j(j + 1)
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and b = m~. Finally, if we change the eigenket notation from |a, b〉 to |j,m〉, we can

write

J2 |j,m〉 = ~2j(j + 1) |j,m〉 , (2.12)

Jz |j,m〉 = ~m |j,m〉 , (2.13)

where j = N/2 (N ∈ N0) is any half integer number and m = −j,−j + 1,−j + 2, . . . j −
2, j − 1, j has 2j + 1 possible values.

In reality, the atomic angular momentum J is a sum of two fundamentally different

angular momenta – orbital angular momentum L and intrinsic angular momentum (spin)

S:

J = L + S, (2.14)

The general theory of quantum angular momentum previously presented remains valid

for both L and S. The orbital angular momentum emerges as a consequence of electron’s

wave function in the central potential of nucleus and it is determined by the integer

quantum numbers l ∈ N and ml = −l,−l+ 1,−l+ 2, . . . l− 2, l− 1, l [8, 72, 73]. We can

conclude that the orbital angular momentum cannot have any value from a continuous

set of values, but it takes a value from a discrete set as it was firstly postulated by

Bohr [66, 67]. Accordingly, the orbital angular momentum magnitude µl and its z

component µzl are

µl = −γ~
√
l(l + 1), (2.15)

µzl = −γ~ml. (2.16)

Electron’s orbital angular momentum component for ml = 1 is Lz = ~ and the associated

magnetic moment is µzl = −γ~ = −e~/2me ≡ µB. This value is also known as Bohr

magneton µB and it is usually used as a “unit” for expressing the value of a magnetic

moment.

Orbital magnetic moment fails to explain some of the magnetic phenomena, due to

the existence of an additional electron’s angular momentum as discovered by Stern and

Gerlach [74]. The Stern-Gerlach experiment showed that electrons possess a quantised

intrinsic angular momentum, also known as spin [75, 76], whose z component may have

just one of the two possible values: −~/2 or ~/2. In other words, intrinsic angular

momentum is defined by two quantum numbers: s = 1/2 and ms = −1/2, 1/2. The spin

magnetic moment magnitude µs is

µs = −gγ~
√
s(s+ 1) = gγ~

√
3

2
, (2.17)

where g ≈ 2 is the correctional g-factor [77]. The gyromagnetic ratio for the spin mag-

netic moment is two times larger than the gyromagnetic ratio for the orbital magnetic
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moment. Similarly, the z component of a spin magnetic moment is

µzs = −gγ~ms = ±1

2
gγ~. (2.18)

Because of the very common quenching of the orbital angular momentum in a very wide

range of different magnetic materials, the magnetic moment is primarily determined by

an intrinsic magnetic moment and the orbital magnetic moment can usually be neglected.

Due to this, a single atomic magnetic moment µ is usually referred to as spin S. The

atomic magnetic moment expressions presented in this section are valid for isolated

atoms. However, in magnetic materials, magnetic moments are associated to atoms

that constitute a crystal lattice, which further modifies the value of atomic magnetic

moment in some cases.

2.2 Landau-Lifshitz-Gilbert equation

In this section, the Landau-Lifshitz-Gilbert (LLG) equation, governing the magnetic

moment dynamics is presented by introducing its two (precession and damping) terms.

Because the magnetic moment is always associated with the angular momentum, its

dynamics in an external magnetic field is not as simple as in the case of an electric

dipole. Therefore, the equation of motion must be derived taking into account the

angular momentum.

From the Heisenberg picture of quantum mechanics [68, 70]

d

dt
A(t) =

i

~
[H,A(t)], (2.19)

where A(t) is the time-dependent operator and H is the system’s Hamiltonian operator,

the rate of change of angular momentum x component is

d

dt
Jx =

i

~
[H,Jx]

=
i

~

[
∂H

∂Jx
[Jx, Jx] +

∂H

∂Jy
[Jy, Jx] +

∂H

∂Jz
[Jz, Jx]

]
=
i

~

[
∂H

∂Jy
(−i~Jz) +

∂H

∂Jz
i~Jy

]
=
∂H

∂Jy
Jz −

∂H

∂Jz
Jy,

(2.20)

where we obtain the values of commutators [Jx, Jx], [Jx, Jx], and [Jx, Jx] from the com-

mutation relations, given in Eq. 2.5. Also, we used the relation [f(A), B] = ∂f/∂A[A,B].
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Similarly, the rates of change of Jy and Jz are

d

dt
Jy =

i

~
[H,Jy]

=
i

~

[
∂H

∂Jx
[Jx, Jy] +

∂H

∂Jy
[Jy, Jy] +

∂H

∂Jz
[Jz, Jy]

]
=
i

~

[
∂H

∂Jx
i~Jz +

∂H

∂Jz
(−i~Jx)

]
=
∂H

∂Jz
Jx −

∂H

∂Jx
Jz

(2.21)

and

d

dt
Jz =

i

~
[H,Jz]

=
i

~

[
∂H

∂Jx
[Jx, Jz] +

∂H

∂Jy
[Jy, Jz] +

∂H

∂Jz
[Jz, Jz]

]
=
i

~

[
∂H

∂Jx
(−i~Jy) +

∂H

∂Jy
i~Jx

]
=
∂H

∂Jx
Jy −

∂H

∂Jy
Jx.

(2.22)

Accordingly, the rate of change of the angular momentum vector J is

dJ

dt
=

(
∂H

∂Jy
Jz −

∂H

∂Jz
Jy,

∂H

∂Jz
Jx −

∂H

∂Jx
Jz,

∂H

∂Jx
Jy −

∂H

∂Jy
Jx

)
, (2.23)

which can be written as
dJ

dt
= −J× ∂H

∂J
, (2.24)

if ∂H/∂J is defined as (∂H/∂Jx, ∂H/∂Jy, ∂H/∂Jz). Knowing that µ = −γJ, Eq. 2.24

can be written as
dµ

dt
= γµ× ∂H

∂µ
. (2.25)

The derivative of the Hamiltonian with respect to the magnetic moment ∂H/∂µ results

in a vector, which is called the effective field Beff = µ0Heff. We can now write the rate

of change of magnetic moment as

dµ

dt
= γµ0µ×Heff. (2.26)

This is the equation of precessive motion of a single atomic magnetic moment. However,

in micromagnetics, instead of studying all atomic magnetic moments individually, a

continuous vector field M, called magnetisation, is considered. It is defined as a spatial

density of atomic magnetic moments

M =

∑
i∈V µi

V
. (2.27)



16 Chapter 2 Magnetism and micromagnetics

This way, the atomistic structure of a studied material is ignored and the whole material

can be considered as a single continuous domain.

In general, the magnetisation is a function of both space and time M = M(r, t), but

due to simplicity, this dependence is usually omitted in writing. In micromagnetics the

magnetisation vector field M must satisfy the following two assumptions:

1. The magnetisation vector field M is continuous and slowly changing in both space

r and time t.

2. The magnitude of magnetisation Ms = |M| is constant and both space and time

invariant. Consequently, the magnetisation can be written as M = Msm, where

Ms is called the saturation magnetisation and m is the unit vector field |m| = 1.

If we use a definition of the magnetisation field M = Msm and define the effective field

as

Heff =
1

µ0
Beff =

1

µ0

(
−δE[m]

δM

)
= − 1

µ0Ms

δE[m]

δm
, (2.28)

where E[m] is the total magnetic energy functional, which will be discussed in Sec. 2.3,

the precession term becomes
dm

dt
= −γ0m×Heff, (2.29)

where γ0 = γµ0.

From Eq. 2.29, we can see that the rate of change dm/dt is perpendicular to both m

and Heff which means that the m precesses around the effective field and the parallel

alignment between µ and Heff is never reached. In reality, this is not true because the

macroscopic kinetic and potential energies of motion are transformed to the microscopic

thermal motion - heat. Therefore, an additional dissipative damping term must be

included. Landau and Lifshitz [78] introduced a phenomenological damping term, so

that the dynamics equation now becomes

dm

dt
= −γ0m×Heff − λm× (m×Heff), (2.30)

where λ is the damping constant and this equation is also called the Landau-Lifshitz (LL)

equation. This equation does not describe dynamics well for high values of damping, and

because of that, Gilbert [79] introduced a different damping term, so that the equation

of magnetisation dynamics becomes

dm

dt
= −γ∗0m×Heff + αm× dm

dt
, (2.31)

where α is the Gilbert damping constant and γ∗0 is the modified gyromagnetic ratio. We

refer to the Eq. 2.31 as the Landau-Lifshitz-Gilbert (LLG) equation.
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Landau-Lifshitz and Landau-Lifshitz-Gilbert equations are equivalent, and relations be-

tween γ0 and γ∗0 , as well as between λ and α can be established. If the cross product of

m and Eq. 2.31 is taken, we get

m× dm

dt
= −γ∗0m× (m×Heff) + αm×

(
m× dm

dt

)
. (2.32)

Using the Grassman identity a× (b× c) = (a · c)b− (a ·b)c and knowing that |m|2 = 1

and m ⊥ dm/dt, this equation becomes

m× dm

dt
= −γ∗0m× (m×Heff)− αdm

dt
, (2.33)

Now, m× dm
dt can be substituted back to Eq. 2.31, which results in

dm

dt
= − γ∗0

1 + α2
m×Heff −

γ∗0α

1 + α2
m× (m×Heff), (2.34)

which has the same form as LL equation, given by Eq. 2.30. By comparing the terms

in Eq. 2.30 and Eq. 2.34, we get the relations between the constants in LL and LLG

equations:

γ0 =
γ∗0

1 + α2
(2.35)

λ =
γ∗0α

1 + α2
. (2.36)

2.3 Magnetic energies

The local magnetic energy density w = w(r) can be calculated as a sum of different

energy density contributions

w = wex + wdmi + wa + wz + wd, (2.37)

where wex is the symmetric exchange, wdmi is Dzyaloshinskii-Moriya, wz is Zeeman, wa

is the magnetocrystalline anisotropy, and wd is the demagnetisation energy density. In

this section, we present both discrete and continuous models of these interactions and

derive their effective fields. In a continuous micromagnetic framework, using the local

energy density w(r), the total energy functional is

E[m] =

∫
V
w(r) d3r, (2.38)
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where V is the system’s volume. From the system’s total energy functional, we compute

an effective field Heff at point r0 using Eq. (2.28) as [80]

Heff(r0) =

H
x
eff(r0)

Hy
eff(r0)

Hz
eff(r0)

 = − 1

µ0Ms

δE[m(r)]

δm(r0)

= − 1

µ0Ms
lim
ε→0

1

ε

E[m + εx̂δ(r− r0)]− E[m]

E[m + εŷδ(r− r0)]− E[m]

E[m + εẑδ(r− r0)]− E[m]

 .

(2.39)

We then use the effective field to compute the magnetisation dynamics using Landau-

Lifshitz-Gilbert equation.

2.3.1 Symmetric exchange energy

At sufficiently low temperatures, magnetic moments of individual neighbouring atoms

order parallel or antiparallel to each other in ferromagnets and antiferromagnets, re-

spectively. This occurs as a consequence of interactions between different magnetic

moments at neighbouring crystal lattice sites due to the Coulomb forces and Pauli ex-

clusion principle [68]. Symmetric exchange interaction only orders magnetic moments

without selecting a preferred direction, and because of that, this interaction is also called

the isotropic exchange interaction. This interaction is well understood from the quan-

tum perspective, but the accurate solution of this interaction in a solid material is very

complex. Due to that, some simplified models are used instead. The simplest model,

which is still widely used to this day, is the Heisenberg exchange model [81]. According

to this model, the exchange energy between two neighbouring spins Si and Sj is

Eex = −Jij Si · Sj , (2.40)

where Jij is an exchange integral between two spins Si and Sj . Detailed derivations of

both Eq. 2.40 and the exchange integral Jij , can be found in the relevant literature [8,

72, 81, 9]. The exchange energy is minimal when spins Si and Sj are aligned parallel

for Jij > 0 (ferromagnets) or antiparallel for Jij < 0 (antiferromagnets).

The generalisation of Eq. 2.40 for many-body systems is difficult due to a very compli-

cated evaluation of an exchange integral J . However, in spite of this complexity, the

total exchange energy Eex in a crystal can be approximated as a sum of two-electron

exchange energies between all spins in the crystal:

Eex = −
∑
i,j

JijSi · Sj . (2.41)
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Exchange interactions are very strong over short ranges and we can assume that every

spin Si interacts only with the spins at its nearest neighbour lattice sites Snn. Thus,

this equation can be rewritten as

Eex = −J
∑
i

Si ·
∑
nn

Snn, (2.42)

where we assume that the exchange integral value between all nearest neighbours’ spins

is constant and equals J .

In order to implement this interaction into the micromagnetic framework, a continuous

model that ignores the system’s atomic structure must be derived. If we assume that

all spins in the magnetic system have the same magnitude S, we can use a continuous

unit vector field m(ri) = Si/S to represent the spins at different lattice sites. Using the

continuous vector field, Eq. 2.42 becomes

Eex = −JS2
∑
i

m(ri) ·
∑
nn

m(rnn). (2.43)

Now, we assume a simple cubic lattice with lattice constant a where every atom has

six nearest neighbours at positions r1 = (a, 0, 0), r2 = (−a, 0, 0), r3 = (0, a, 0), r4 =

(0,−a, 0), r5 = (0, 0, a), and r6 = (0, 0,−a). By expanding the continuous m(r) in the

vicinity of ri, we can compute the sum over six nearest neighbours as

∑
nn

m(rnn) =m(ri) +
∂m(ri)

∂x
a+

1

2

∂2m(ri)

∂x2
a2 +O(a3)

+ m(ri) +
∂m(ri)

∂x
(−a) +

1

2

∂2m(ri)

∂x2
(−a)2 +O(a3)

+ m(ri) +
∂m(ri)

∂y
a+

1

2

∂2m(ri)

∂y2
a2 +O(a3)

+ m(ri) +
∂m(ri)

∂y
(−a) +

1

2

∂2m(ri)

∂y2
(−a)2 +O(a3)

+ m(ri) +
∂m(ri)

∂z
a+

1

2

∂2m(ri)

∂z2
a2 +O(a3)

+ m(ri) +
∂m(ri)

∂z
(−a) +

1

2

∂2m(ri)

∂z2
(−a)2 +O(a3)

= 6m(ri) +

[
∂2m(ri)

∂x2
+
∂2m(ri)

∂y2
+
∂2m(ri)

∂z2

]
a2 +O(a4)

= 6m(ri) +∇2m(ri)a
2 +O(a4),

(2.44)

where ∇2 is the vector Laplacian operator. If we now insert this sum into Eq. 2.43 and

neglect all higher order terms, we get

Eex = −JS2
∑
i

m(ri) · [6m(ri) +∇2m(ri)a
2]. (2.45)
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Since m(ri) ·m(ri) = 1 and we can always choose the energy reference level so that the

constant energy terms can be ignored, this equation becomes

Eex = −JS2a2
∑
i

m(ri) · ∇2m(ri). (2.46)

In the continuous limit, we replace the sum with an integral, having in mind that the

volume d3r contains (n/a3)d3r atoms, with n being the number of atoms in a unit cell

Eex = −JS
2n

a

∫
V
m · ∇2m d3r = −A

∫
V
m · ∇2md3r, (2.47)

where A = JS2n/a is the exchange energy constant. The exchange energy density is

wex = −Am · ∇2m. However, in literature, an equivalent form of the exchange energy

density can be found

wex = A
[
(∇mx)2 + (∇my)

2 + (∇mz)
2
]
, (2.48)

where mx, my, and mz are Cartesian components of the magnetisation unit vector m.

This form of exchange energy density can be obtained using ∇· (ψA) = ψ∇·A+A ·∇ψ
identity.

We compute the effective field Heff = (Hx
eff, H

y
eff, H

z
eff)T as a consequence of the exchange

energy using Eq. 2.39. Consequently, the x component of effective field Heff is

Hx
eff =− 1

µ0Ms
lim
ε→0

1

ε
(Eex[m + εx̂δ(r− r0)]− Eex[m])

=− A

µ0Ms
lim
ε→0

1

ε

∫ [(
∂m

∂x
+ εx̂

∂δ(r− r0)

∂x

)2

+

(
∂m

∂y
+ εx̂

∂δ(r− r0)

∂y

)2

+

(
∂m

∂z
+ εx̂

∂δ(r− r0)

∂z

)2

−
(
∂m

∂x

)2

−
(
∂m

∂y

)2

−
(
∂m

∂z

)2 ]
d3r

=− 2A

µ0Ms
x̂ ·
∫ [

∂m

∂x

∂δ(r− r0)

∂x
+
∂m

∂y

∂δ(r− r0)

∂y
+
∂m

∂z

∂δ(r− r0)

∂z

]
d3r

=− 2A

µ0Ms
x̂ ·
(
−∂

2m

∂x2
− ∂2m

∂y2
− ∂2m

∂z2

)
=

2A

µ0Ms
x̂ · ∇2m

=
2A

µ0Ms
∇2mx

(2.49)
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Similarly, y and z components of the effective field are

Hy
eff =− 1

µ0Ms
lim
ε→0

1

ε
(Eex[m + εŷδ(r− r0)]− Eex[m])

=− 2A

µ0Ms
ŷ ·
∫ [

∂m

∂x

∂δ(r− r0)

∂x
+
∂m

∂y

∂δ(r− r0)

∂y
+
∂m

∂z

∂δ(r− r0)

∂z

]
d3r

=− 2A

µ0Ms
ŷ ·
(
−∂

2m

∂x2
− ∂2m

∂y2
− ∂2m

∂z2

)
==

2A

µ0Ms
ŷ · ∇2m

=
2A

µ0Ms
∇2my

(2.50)

Hz
eff =− 1

µ0Ms
lim
ε→0

1

ε
(Eex[m + εẑδ(r− r0)]− Eex[m])

=− 2A

µ0Ms
ẑ ·
∫ [

∂m

∂x

∂δ(r− r0)

∂x
+
∂m

∂y

∂δ(r− r0)

∂y
+
∂m

∂z

∂δ(r− r0)

∂z

]
d3r

=− 2A

µ0Ms
ẑ ·
(
−∂

2m

∂x2
− ∂2m

∂y2
− ∂2m

∂z2

)
==

2A

µ0Ms
ẑ · ∇2m

=
2A

µ0Ms
∇2mz

(2.51)

After we calculated all three components of the effective field, the total effective field is

Heff =
2A

µ0Ms

∇
2mx

∇2my

∇2mz

 =
2A

µ0Ms
∇2m. (2.52)

2.3.2 Dzyaloshinskii-Moriya energy

In magnetic systems that lack some type of inversion symmetry, chiral interactions may

occur. Chiral interactions occur either in materials with noncentrosymmetric crystal

structure [2, 3, 4] (helimagnets) or at interfaces between different materials [6, 7, 11, 13,

82, 5] which inherently lack inversion symmetry. This phenomenon was firstly introduced

by Dzyaloshinskii [2] who analysed the crystal structure symmetry and later Moriya [3, 4]

managed to explain chiral interactions as an extension of superexchange theory to include

the spin-orbit coupling effect. In recognition of their achievement, this interaction is now

called the Dzyaloshinskii-Moriya Interaction (DMI).

The Dzyaloshinskii-Moriya energy between two spins Si and Sj is [3, 5]

Edmi = dij · (Si × Sj) , (2.53)

where dij is the Dzyaloshinskii vector. The Dzyaloshinskii-Moriya energy is minimal

when neighbouring spins Si and Sj are perpendicular to each other in the plane perpen-

dicular to the Dzyaloshinskii vector dij .
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We can write an expression of the total DMI energy as a sum of energies between all

individual spins:

Edmi =
1

2

∑
i,j

dij · (Si × Sj) , (2.54)

where we add 1/2 factor in order to avoid the double counting in the sum. Similar to

the case of exchange energy, DMI energy is very strong over short ranges and it can

be assumed that every spin Si interacts only with spins at its nearest neighbour lattice

sites. Accordingly, we compute the DMI energy as

Edmi =
1

2

∑
i

∑
nn

di,nn · (Si × Snn) . (2.55)

Now, we derive a continuous expression suitable for the implementation in a micro-

magnetic framework. In helimagnetic materials, which are considered in this study,

we can write the Dzyaloshinskii vector between two neighbouring spins Si and Snn as

dij = dr̂ij [83], where r̂ij is a unit vector pointing from spin Si to Sj . Also, if we use

a continuous unit vector field m(ri) = Si/S to represent the spins at different lattice

sites, Eq. 2.55 becomes

Edmi =
dS2

2

∑
i

∑
nn

ri,nn · [m(ri)×m(rj)] . (2.56)

At this point, we assume a simple cubic lattice with lattice constant a where every atom

has six nearest neighbours at positions r1 = (a, 0, 0), r2 = (−a, 0, 0), r3 = (0, a, 0),

r4 = (0,−a, 0), r5 = (0, 0, a), and r6 = (0, 0,−a). By expanding the continuous m(r) in

the vicinity of the spin at lattice site ri in Taylor series, we can compute the sum over
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nearest neighbours as∑
nn

ri,nn · [m(ri)×m(rj)] =

x̂ ·
{
m(ri)×

[
m(ri) +

∂m(ri)

∂x
a+

1

2

∂2m(ri)

∂x2
a2 +O(a3)

]}
+ (−x̂) ·

{
m(ri)×

[
m(ri) +

∂m(ri)

∂x
(−a) +

1

2

∂2m(ri)

∂x2
(−a)2 +O(a3)

]}
+ ŷ ·

{
m(ri)×

[
m(ri) +

∂m(ri)

∂y
a+

1

2

∂2m(ri)

∂y2
a2 +O(a3)

]}
+ (−ŷ) ·

{
m(ri)×

[
m(ri) +

∂m(ri)

∂y
(−a) +

1

2

∂2m(ri)

∂y2
(−a)2 +O(a3)

]}
+ ẑ ·

{
m(ri)×

[
m(ri) +

∂m(ri)

∂z
a+

1

2

∂2m(ri)

∂z2
a2 +O(a3)

]}
+ (−ẑ) ·

{
m(ri)×

[
m(ri) +

∂m(ri)

∂z
(−a) +

1

2

∂2m(ri)

∂z2
(−a)2 +O(a3)

]}
= 2ax̂ ·

[
m(ri)×

∂m(ri)

∂x

]
+ 2aŷ ·

[
m(ri)×

∂m(ri)

∂y

]
+ 2aẑ ·

[
m(ri)×

∂m(ri)

∂z

]
+O(a3)

= 2a

[
mx

(
∂my

∂z
− ∂mz

∂y

)
+my

(
∂mz

∂x
− ∂mx

∂z

)
+mz

(
∂mx

∂y
− ∂my

∂x

)]
+O(a3)

=− 2am(ri) · (∇×m(ri)) +O(a3)

(2.57)

Now, we can substitute the sum into Eq. 2.56 and ignore all higher order terms and get

Edmi = −adS2
∑
i

m(ri) · (∇×m(ri)). (2.58)

In the continuous limit, we can replace the sum with an integral, knowing that the

volume d3r contains (n/a3)d3r atoms, where n is the number of atoms in a unit cell:

Edmi = −dS
2n

a2

∫
m · (∇×m) d3r = D

∫
m · (∇×m) d3r, (2.59)

where D = −dS2n/a2 is the Dzyaloshinskii-Moriya energy constant.

We compute the effective field Heff = (Hx
eff, H

y
eff, H

z
eff)T as a consequence of the DMI

energy using Eq. 2.39. Accordingly, the x component of effective field Heff is

Hx
eff = − 1

µ0Ms
lim
ε→0

1

ε
(Edmi[m + εx̂δ(r− r0)]− Edmi[m])

= − D

µ0Ms

∫ [
∂mz

∂y
δ(r− r0)− ∂my

∂z
δ(r− r0) +my

∂δ(r− r0)

∂z
−mz

∂δ(r− r0)

∂y

]
d3r

= − 2D

µ0Ms

(
∂mz

∂y
− ∂my

∂z

)
(2.60)
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Similarly, the other two components of the effective field are

Hy
eff = − 1

µ0Ms
lim
ε→0

1

ε
(Edmi[m + εŷδ(r− r0)]− Edmi[m])

= − D

µ0Ms

∫ [
∂mx

∂z
δ(r− r0)− ∂mz

∂x
δ(r− r0) +mz

∂δ(r− r0)

∂x
−mx

∂δ(r− r0)

∂z

]
d3r

= − 2D

µ0Ms

(
∂mx

∂z
− ∂mz

∂x

)
(2.61)

Hz
eff = − 1

µ0Ms
lim
ε→0

1

ε
(Edmi[m + εẑδ(r− r0)]− Edmi[m])

= − D

µ0Ms

∫ [
∂my

∂x
δ(r− r0)− ∂mx

∂y
δ(r− r0) +mx

∂δ(r− r0)

∂y
−my

∂δ(r− r0)

∂x

]
d3r

= − 2D

µ0Ms

(
∂my

∂x
− ∂mx

∂y

)
(2.62)

Finally, the effective field as a consequence of the DMI energy is

Heff = − 2D

µ0Ms


∂mz
∂y −

∂my

∂z
∂mx
∂z −

∂mz
∂x

∂my

∂x −
∂mx
∂y

 = − 2D

µ0Ms
∇×m. (2.63)

2.3.3 Uniaxial anisotropy energy

In real magnetic materials, the magnetisation m tends to be aligned along certain di-

rections depending on the material’s crystal structure. The electron’s orbitals depend

on the crystal electric field of the surrounding crystal order. Due to this electric field,

via spin-orbit interactions, the magnetic moments tend to align along some preferential

directions. If there is only one preferential direction, this type of anisotropy is called the

uniaxial anisotropy. The local anisotropy energy density of a single spin Si is [9]

Ea = −k(Si · û)2 = −k cos2(θ), (2.64)

where k is the anisotropy constant, û is the unit vector along the preferential anisotropy

axis, and theta is the angle between Si and û. From this expression, it can be seen

that the anisotropy energy is minimal if θ = 0 or θ = π. The uniaxial anisotropy

expression, given by Eq. (2.64), can also contain higher order terms, but they can be

usually neglected.

We can compute the total uniaxial anisotropy energy as

Ea = −k
∑
i

(Si · û)2. (2.65)
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If we introduce a continuous unit vector field m(ri) = Si/S, this expression becomes

Ea = −kS2
∑
i

(m(ri) · û)2. (2.66)

In the continuous limit, a sum can be replaced by an integral, so that the continuous

form of uniaxial anisotropy is

Ea = −kS
2n

a3

∫
V

(m · û)2 d3r = −K
∫
V

(m · û)2 d3r, (2.67)

because d3r volume contains (n/a3)d3r atoms, where K = kS2n/a3 is the uniaxial

anisotropy constant, with n being the number of atoms in the unit cell.

We derive the uniaxial anisotropy effective field Heff = (Hx
eff, H

y
eff, H

z
eff)T using Eq. 2.39.

Accordingly, the x component of effective field Heff is

Hx
eff = − 1

µ0Ms
lim
ε→0

1

ε
(Ea[m + εx̂δ(r− r0)]− Ea[m])

=
K

µ0Ms
lim
ε→0

1

ε

∫ [
(m · û + εx̂δ(r− r0) · û)2 − (m · û)2

]
d3r

=
2K

µ0Ms
mxux

(2.68)

Similarly, the other two components of the uniaxial anisotropy effective field are

Hy
eff = − 1

µ0Ms
lim
ε→0

1

ε
(Ea[m + εŷδ(r− r0)]− Ea[m])

=
K

µ0Ms
lim
ε→0

1

ε

∫ [
(m · û + εŷδ(r− r0) · û)2 − (m · û)2

]
d3r

=
2K

µ0Ms
myuy

(2.69)

and

Hz
eff = − 1

µ0Ms
lim
ε→0

1

ε
(Ea[m + εẑδ(r− r0)]− Ea[m])

=
K

µ0Ms
lim
ε→0

1

ε

∫ [
(m · û + εẑδ(r− r0) · û)2 − (m · û)2

]
d3r

=
2K

µ0Ms
mzuz.

(2.70)

Finally, the uniaxial anisotropy effective field is

Heff =
2K

µ0Ms

mxux

myuy

mzuz

 =
2K

µ0Ms
m · û. (2.71)
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In helimagnetic materials, the magnetocrystalline anisotropy is very weak in comparison

to other energy terms and it is usually neglected.

2.3.4 Zeeman energy

When a single magnetic moment µ is placed into an external magnetic field B, its

Zeeman energy is [8, 61]

Ez = −µi ·B. (2.72)

Zeeman energy tends to align the magnetic moment in the same direction as the external

magnetic field. Now, if the magnetic moment is replaced by a normalised magnetisation

vector field m(ri)/µ, the total Zeeman energy is

Ez = −µ0µ
∑
i

m(ri) ·H, (2.73)

since B = µ0H. In the continuous limit we replace the sum with an integral and the

total Zeeman energy is

Ez = −µ0µn

a3

∫
V
m ·H d3r = −µ0Ms

∫
V
m ·Hd3r, (2.74)

because d3r volume contains (n/a3)d3r atoms, with n being the number of atoms in a

unit cell. If Eq. 2.27 is applied on a unit cell volume we get Ms = µn/a3. It is obvious

that, the effective field associated to the Zeeman energy is

Heff =

H
x
eff

Hy
eff

Hz
eff

 = H. (2.75)

2.3.5 Demagnetisation energy

A magnetic field B(rj) at position rj of a single magnetic moment (magnetic dipole) µj

can be computed using [61]

Bj =
µ0

4π

[
3n̂j(n̂j · µj)− µj

|r3
j |

]
(2.76)

where n̂j = rj/|rj |. In magnetic samples, every magnetic moment “feels” the magnetic

field of all surrounding magnetic moments and, therefore, the total magnetic field on a

single magnetic moment B(ri) can be written as a sum of individual fields B(rj):

B(ri) =
µ0

4π

∑
j 6=i

[
3n̂ji(n̂ji · µj)− µj

|r3
ji|

]
. (2.77)
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Consequently, the energy of a magnetic moment µi due its interaction with magnetic

field of all surrounding magnetic moments is

Ed = −µi ·B(ri) = −µ0

4π
µi ·

∑
j 6=i

[
3n̂ji(n̂ji · µj)− µj

|r3
ji|

]
. (2.78)

Since this energy occurs as a consequence of mutual interaction of magnetic moments

(dipoles), it is also called the dipolar interaction energy. The total demagnetisation

energy Ed in a magnetic sample we can compute by summing Eq. 2.78 over all magnetic

moments in the sample as

Ed = −µ0

4π

∑
i

µi ·
∑
j 6=i

[
3n̂ji(n̂ji · µj)− µj

|r3
ji|

]
. (2.79)

In order to compute the dipolar interaction energy in a continuous magnetic sample,

ignoring the material’s atomistic structure, a continuous equation must be derived. The

Ampere’s law in differential form is [61]

∇×H = J + ε0
∂E

∂t
, (2.80)

where J is the current density and E is the electric field. In the case when no current

exists J = 0 and in the absence of time changing electric field ∂E/∂t = 0, the Ampere’s

law becomes

∇×H = 0, (2.81)

meaning that the magnetic field H is conservative. Knowing that, the magnetic field

can be computed from the magnetic scalar potential ΦM as

H = −∇ΦM. (2.82)

Furthermore, since B = µ0(H + M) and magnetic flux density has no conservative

component (∇ ·B = 0), we can write

∇ ·H = −∇ ·M = ∇2ΦM. (2.83)

The magnetic scalar potential ΦM(r) at position r we compute using

ΦM(r) =
1

4π

∫
V

1

|r− r′|
(−∇ ·M(r)) d3r′ +

1

4π

∫
A

1

|r− r′|
M(r) · dA′, (2.84)

where dA′ = dA′n(r), with n(r) being the vector normal to the plane containing the

element dA′. The first term is a solution to the Poisson equation, whereas the second

term takes into account the boundary conditions.
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Finally, knowing the magnetic scalar potential, the effective field due to the demagneti-

sation energy is

Heff = Hd = −∇ΦM, (2.85)

and the total demagnetisation energy of a magnetic sample we can compute using

Ed =
1

2
µ0Ms

∫
m · (∇ΦM) d3r. (2.86)

The factor 1/2 occurs in order to avoid “double counting”.

2.4 Numerical method

The main unknown in micromagnetics is the magnetisation vector field m = M/Ms,

where M is the magnetisation and Ms is the saturation magnetisation as it was described

in previous sections. So far, the magnetisation vector field m was a continuous function

of both space and time m = m(r, t). However, there is a very limited number of cases

where m can be solved analytically. In most cases, micromagnetic model must be solved

numerically.

Because computers are discrete machines with limited amount of operating memory, be-

fore the magnetisation vector m is numerically computed, the magnetisation field must

be discretised. There are two main methods of discretising continuous functions into a

discrete set of values: finite difference and finite elements. In this section, we present the

basics of finite difference and finite element discretisations, time integration, micromag-

netic software algorithm, and the micromagnetic simulation software implementation.

2.4.1 Finite difference method

In the finite difference method, the continuous field is discretised so that the three-

dimensional domain, where continuous function is defined, is divided into cuboids. More

precisely, the domain becomes an aggregate of cuboids. If the domain on which field

is defined is one-dimensional it is divided into line segments, whereas two-dimensional

domains are divided into rectangles. After that, it is assumed that the field value is

constant in each domain cuboid cell. The advantage of this method is that apart from

being very intuitive, it is also easy to implement and numerically solve. However, this

method has some serious disadvantages. First of all, cuboid aggregates can accurately

represent only the cuboid domain geometry. Usually, this is not the case and different

irregular domain shapes cannot be appropriately discretised. This introduces artefacts

and eventually error in the numerically computed solution. Secondly, because the finite

difference discretisation is always cuboidal, if we need to discretise a sphere, we would

have to discretise the cuboid which contains the sphere we are interested in, and set
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the values of the discretised field outside the sphere to be zero. This wastes memory

and computation time increases. Last but not least, the regularity of finite difference

mesh introduces anisotropy to the micromagnetic system which would could affect the

solution [84, 85].

2.4.2 Finite element method

An alternative to the finite difference method is the finite element method. In this

method, the domain where a continuous field is defined is discretised into an aggre-

gate of simplices (finite elements). In the three-dimensional case, a simplex is of the

tetrahedron shape with four vertices (nodes). This way, in the case of irregular shapes,

nodes (vertices) are placed at the domain boundaries, which are then connected with

line segments. This approximates the simulated domain better than the finite differ-

ence method. However, the main disadvantage of this method is that in addition to

being much less intuitive than the finite difference method, its numerical solution and

implementation is not trivial.

The first step in this method is to define a finite element mesh, which can be done using

various software packages – one of them is Gmsh [86]. Examples of three-dimensional

finite element meshes are shown in Fig. 2.2 for 5 nm thin film disk and square samples,

respectively. The discretisation is chosen so that the maximum spacing between two

neighbouring mesh nodes is less than 3 nm. Similar meshes are going to be used in later

chapters.

After the domain is discretised into finite elements (simplices), a set of basis function

is defined on that mesh. There are many different types of basis functions which can

be used for discretising continuous fields, but in this work we will use linear piecewise

basis functions (first-order polynomials). Because the discretised vector magnetisation

field m(r) consists of three scalar fields mc(r), where c = x, y, z, each component in one

mesh simplex (tetrahedron) can be approximated as

mc(r) =
4∑
i=1

mc
iψi(r), (2.87)

where 4 = dim+1 is the number of vertices associated to a single tetrahedron, with dim

being the simplex dimension, mc
i is the field component value at vertex i, and ψi(r) is a

basis function (shape function) associated to the node i [87].

Basis function ψi(r) is defined so that its value is 1 at the node i and zero at all other

nodes. Consequently,

ψi(rj) = δij (2.88)
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Figure 2.2: (a) A three-dimensional finite elements mesh of a 5 nm thin film
disk sample with diameter d = 50 nm. (a) A finite elements mesh of a 5 nm thin
film square sample with edge length d = 50 nm. The discretisation is chosen
so that the maximum spacing between two neighbouring mesh nodes is smaller
that 3 nm.

where δij is the Kronecker delta function. Also all basis functions in a single simplex

must be normalised so that
4∑
i=1

ψi(r) = 1. (2.89)

In the case of linear (first-order) approximation, a basis function associated to vertex i

is defined as

ψi(r) = ai + bix+ ciy + diz, (2.90)

where x, y, and z are components of position vector r [87, 88]. The values of coefficients

ai, bi, ci, and di for the node i = 1 are

a1 =
1

6Vs

∣∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣ (2.91)

b1 = − 1

6Vs

∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣ (2.92)

c1 = − 1

6Vs

∣∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣∣ (2.93)

d1 = − 1

6Vs

∣∣∣∣∣∣∣
x2 y2 1

x3 y3 1

x4 y4 1

∣∣∣∣∣∣∣ (2.94)
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where Vs is the simplex (finite element) volume [87] and can be computed as

Vs =
1

6

∣∣∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
. (2.95)

The coefficients associated to other simplex nodes 2, 3, and 4 can be computed using

previous expressions with cyclic permutation.

Using these basis functions, a continuous field can be discretised and uniquely described

with a set of discrete field values at nodes i. In the finite element discretisation, all

operations on fields can be written as operations on individual basis functions. Accord-

ingly, the spatial differentiation of a single magnetisation component at point r which

is contained in simplex becomes [87]

∂mc(r)

∂x
=

4∑
i=1

mc
i

∂ψi(r)

∂x
, (2.96)

∂mc(r)

∂y
=

4∑
i=1

mc
i

∂ψi(r)

∂y
, (2.97)

∂mc(r)

∂z
=

4∑
i=1

mc
i

∂ψi(r)

∂z
. (2.98)

or

∇mc(r) =
4∑
i=1

mc
i∇ψi(r). (2.99)

Similarly, the integration of discretised field over the entire domain discretised is

∫
V
mc(r) dV =

N∑
n=1

4∑
i=1

mc,n
i

∫
V
ψni (r) dV, (2.100)

where N is the number of simplices [88].

By performing these basic operations on discretised magnetisation field components, an

effective field Heff can be computed. Basis functions can be also defined using higher

order polynomials which would increase the accuracy of the approximation. However,

this would increase the number of coefficients which must be computed which further

affects the computation time.

In this work, all low-level finite element operations are performed using FEniCS pack-

age [89].
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2.4.3 Time integration

In micromagnetics, the magnetisation dynamics is governed by the Landau-Lifshitz-

Gilbert (LLG) equation, which in its explicit form is

dm

dt
= − γ∗0

1 + α2
m×Heff −

γ∗0α

1 + α2
m× (m×Heff) = f(m,Heff(m)), (2.101)

and was derived in previous sections. For a magnetisation configuration m, which is

discretised using finite elements, an effective field Heff can be computed by performing

operations on basis functions. Using that value, the rate of change of magnetisation

dm/dt is computed using the LLG equation. Knowing this, time integration can be

performed in order to compute the magnetisation at the next time step.

The simplest method for computing the magnetisation field at the next time step is the

Euler method. The magnetisation field at time tn+∆t can be expanded in Taylor series

in the vicinity of time tn

m(r, tn + ∆t) = m(r, tn) + ∆t
dm(r, tn)

dt
+

1

2
(∆t)2 d2m(r, tn)

dt2
+O(∆t3). (2.102)

If we neglect the second-order terms and higher, the magnetisation at time tn + ∆t is

m(r, tn + ∆t) ≈m(r, tn) + ∆t
dm(r, tn)

dt
, (2.103)

where dm(r, tn)/dt is computed using the LLG equation. This is the Euler method.

The Euler method is the first order method because it ignores all terms of the second

order and higher. Consequently, the error is of the (∆t)2 order. This means that using

two times smaller time step reduces the error four times. However, this leads to the

increased computation time. Consequently, an appropriate trade-off between accuracy

and computation time must be made.

If we want to increase the order of error associated to the time integration, we must

include higher order terms to the integration algorithm. Again, if we start from the

Taylor expansion:

m(r, tn + ∆t) = m(r, tn) + ∆t
dm(r, tn)

dt
+

1

2
(∆t)2 d2m(r, tn)

dt2
+O(∆t3). (2.104)

and neglect terms of the third order and higher, we obtain:

m(r, tn + ∆t) ≈m(r, tn) + ∆t
dm(r, tn)

dt
+

1

2
(∆t)2 d2m(r, tn)

dt2
. (2.105)

Now, if we want to compute the magnetisation field at time tn + ∆t, we have to know

both the first and second order derivatives of the magnetisation field m(r). The first

order we know how to compute by using the LLG equation. However, we do not know
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how to compute the second order derivative. We can approximate the second order

derivative as a forward difference

d2m(r, tn)

dt2
=

2

∆t

[
dm(r, tn + ∆t/2)

dt
− dm(r, tn)

dt

]
. (2.106)

If we substitute the second order derivative, we get

m(r, tn + ∆t) ≈m(r, tn) + ∆t
dm(r, tn + ∆t/2)

dt
. (2.107)

However, now instead of computing one time step, we have to perform two time step

computations. More precisely:

1. At time step tn with magnetisation configuration m(r, tn), we compute the effective

field Heff.

2. We compute the magnetisation configuration at tn + ∆t/2 by performing an Euler

step

m(r, tn + ∆t/2) = m(r, tn) +
∆t

2

dm(r, tn)

dt
(2.108)

3. After we computed the magnetisation configuration m(r, tn + ∆t/2), we again

compute the effective field Heff and the right hand side of LLG equation.

4. Finally, we perform an Euler step using this time derivative, but this time for the

entire time step:

m(r, tn + ∆t) = m(r, tn) + ∆t
dm(r, tn + ∆t/2)

dt
. (2.109)

Using this method, the error is of the third order (∆t)3. However, in order to progress

time for ∆t, we have to compute the effective field and the right hand side of the LLG

equation twice as well as to compute an Euler step two times.

In all previously described time integration algorithms, a constant time step ∆t is as-

sumed for the entire time evolution. However, in reality, we cannot predict how the

magnetisation field is going to evolve and whether the used time step is appropriate

at any time not to introduce an unacceptable error. This problem can be solved by

choosing a small time step for time integration. However, in the case of slowly chang-

ing magnetisation this would introduce unjustified number of computation steps which

would further increase the total simulation time. Because of that, an adaptive time step

algorithms can be used. Now, we briefly describe the background of adaptive time step

integration.
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If we perform the first order Euler time integration, as we previously showed, the error

is of the second order and can be computed as

∆merr ≈ 1

2
(∆t)2 d2m(r, tn)

dt2
. (2.110)

Using forward difference, the second order magnetisation derivative can be approximated

and the error at time step n can be defined as

εn =
1

2
∆t

∥∥∥∥dm(r, tn + ∆t)

dt
− dm(r, tn)

dt

∥∥∥∥ . (2.111)

Now we can specify two different errors. The first one is the absolute error εA and we

require that the error at any time step is smaller than the defined absolute error ε < εA.

The second one is the relative error using which we introduce a condition

εn < εR

∥∥∥∥dm(r, tn + ∆t)

dt
− dm(r, tn)

dt

∥∥∥∥ . (2.112)

By evaluating these conditions, we can determine at each time step whether our time

step ∆t is too large. If it is too large, we decrease ∆t and eventually increase the total

number of time steps [90].

In this work, we perform an adaptive time step integration using Sundials (CVODE)

software package [91, 92].

2.4.4 Simulation algorithm

In this subsection we summarise the algorithm that is used to compute the magnetisation

time evolution. Before we perform the time integration, we initialise the system with an

initial magnetisation configuration m0. This is the magnetisation configuration at time

t0. This magnetisation configuration (vector field) is discretised using finite elements, so

that each magnetisation component is discretised intoN discrete values which are defined

at mesh vertices (nodes). By performing differentiation operations on finite element

basis functions, we can compute the effective field Heff for the energies present in the

system. Using the effective field values at all finite element mesh vertices, together with

magnetisation configuration values, we can compute the magnetisation time derivative

using LLG equation. Now, we progress the time as it was previously explained. This

procedure is iterated until the final time is reached or until the system is fully relaxed.

We assume the system is relaxed when the torque which is exerted on magnetisation

Heff ×m at all mesh nodes is below the specified minimum value. In addition, if the

minimum torque tolerance is too small, zero torque could never be reached because

of the unavoidable numerical noise. In that case, we compute the total energy of the

system and when the energy increases (as a consequence of numerical noise) more than

the specified number of times, we stop the time integration.
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2.4.5 Simulation software

We implemented the presented model in the finite element method framework and de-

veloped a micromagnetic simulation tool Finmag1 (successor of Nmag [93]). For the

low-level finite element operations, we use the FEniCS project [89] and for the adaptive

step time integration we use Sundials/CVODE solver [91, 92]. For visualisation, we use

Matplotlib [94] and ParaView [95].

2.5 Summary

In this chapter, basic concepts of magnetism in condensed matter were presented. After

introducing the magnetic moment, the equation governing its dynamics was derived.

Magnetic energies (symmetric exchange, Dzyaloshinskii-Moriya, uniaxial anisotropy,

Zeeman, and demagnetisation) were presented in both their discrete and continuous

forms, and their effective fields were derived. Furthermore, basic concepts of discretis-

ing continuous fields (finite difference and finite element methods) were introduced as

well as the basics of time integration. Finally, we summarise the simulation algorithm

and provide some details of the micromagnetic code implementation.

1Finmag is a simulation tool developed at the University of Southampton as a joint work by Marc-
Antonio Bisotti, Dmitri Chernyshenko, Marijan Beg, Weiwei Wang, David Cortẽs-Ortuño, Maximilian
Albert, Rebecca Carey, Mark Vousden, and Hans Fangohr.
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Stability

Magnetic skyrmions have the potential to provide solutions for low-power, high-density

data storage and processing. One of the major challenges in developing skyrmion-based

devices is the skyrmions’ magnetic stability in confined helimagnetic nanostructures.

Through a systematic study of equilibrium states, using a full three-dimensional mi-

cromagnetic model including demagnetisation effects, we demonstrate that skyrmionic

states are the lowest energy states in helimagnetic thin film nanostructures at zero exter-

nal magnetic field and in the absence of magnetocrystalline anisotropy. We also report

the regions of metastability for non-ground state equilibrium configurations. This is in

contrast to the infinitely large helimagnetic thin film samples, where skyrmions must be

stabilised with an external magnetic field, and because of that, we explore what might

be the possible stabilisation mechanism in confined helimagnetic nanostructures. In par-

ticular, we study the effects of the demagnetisation energy contribution as well as the

magnetisation variation in the out-of-film direction. We find that if the demagnetisation

energy is neglected or the translational variance of magnetisation is not present, the iso-

lated skyrmion state is metastable, but not the ground state at zero external magnetic

field. Also, we examine the robustness of skyrmionic states and show that they are able

to adapt their size in order to accommodate the hosting nanostructure, which is a nec-

essary requirement for their possible technological use. Finally, we report whether our

findings remain valid in the case of a helimagnetic material with ordering temperature

above room temperature, which is required for the implementation of skyrmion-based

devices.

37
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3.1 Methods

3.1.1 Micromagnetic model

We use an energy model consistent with a non-centrosymmetric cubic B20 (P213 space

group) crystal structure. This is appropriate for a range of isostructural compounds and

pseudo-binary alloys in which skyrmionic states have been experimentally observed [23,

30, 31, 32, 33, 96, 97]. The magnetic free energy of the system E contains several

contributions and can be written in the form:

E =

∫
[wex + wdmi + wz + wd + wa] d3r. (3.1)

The first term wex = A
[
(∇mx)2 + (∇my)

2 + (∇mz)
2
]

is the symmetric exchange en-

ergy density with exchange stiffness material parameter A, where mx, my, and mz

are the Cartesian components of the vector m = M/Ms that describes the magnetisa-

tion M, with Ms = |M| being the saturation magnetisation. The second term is the

Dzyaloshinskii-Moriya Interaction (DMI) energy density wdmi = Dm·(∇×m), obtained

by constructing the allowed Lifshitz invariants for the crystallographic class T [10, 27],

where D is the material parameter. The third term is the Zeeman energy density term

wz = −µ0H ·M which defines the coupling of magnetisation to an external magnetic

field H. The wd term represents the demagnetisation (magnetostatic) energy density.

The last term wa is the magnetocrystalline anisotropy energy density, and because the

simulated material is assumed to be isotropic, we neglect it throughout this work. Ne-

glecting this term also allows us to determine whether magnetocrystalline anisotropy is

necessary to stabilise skyrmionic states in confined helimagnetic nanostructures.

The Landau-Lifshitz-Gilbert (LLG) equation [79, 78]:

∂m

∂t
= −γ∗0m×Heff + αm× ∂m

∂t
, (3.2)

governs the magnetisation dynamics, where γ∗0 = γ0(1+α2), with γ0 = 2.21×105 m A−1s−1

and α ≥ 0 being the gyromagnetic ratio and Gilbert damping, respectively. We compute

the effective magnetic field using

Heff = − 1

µ0Ms

δE[m]

δm
, (3.3)

where E[m] is the total energy functional given by Eq. (3.1). With this model, we

solve for magnetic configurations m using the condition of minimum torque arrived by

integrating a set of dissipative, time-dependent equations. The boundary conditions

are validated by a series of simulations reproducing the results reported by Rohart and

Thiaville [41].



Chapter 3 Stability 39

3.1.2 Material parameters

We estimate the material parameters in our simulations to represent the cubic B20

FeGe helimagnet with four Fe and four Ge atoms per unit cell [98] and crystal lattice

constant a = 4.7 Å [99]. The local magnetic moments of iron and germanium atoms

are 1.16µB and −0.086µB [100], respectively, where µB is the Bohr magneton constant.

Accordingly, we estimate the saturation magnetisation as Ms = 4N(1.16 − 0.086)µB =

384 kA m−1, with N = a−3 being the number of lattice unit cells in a cubic metre.

The spin-wave stiffness is Dsw = a2TC [101], where the FeGe ordering temperature

is TC = 278.7 K [102]. Consequently, the exchange stiffness parameter value is A =

DswMs/(2gµB) = 8.78 pJ m−1 [103], where g ≈ 2 is the Landé g-factor. The estimated

DMI material parameter D from the long-range FeGe helical period LD = 70 nm [102],

using LD = 4πA/|D| [96], is |D| = 1.58 mJ m−2.

3.1.3 Skyrmion number S and injective scalar value Sa

In order to support the discussion of skyrmionic states, the topological skyrmion num-

ber [19]

S2D =
1

4π

∫
m ·

(
∂m

∂x
× ∂m

∂y

)
d2r, (3.4)

can be computed for two-dimensional samples hosting the magnetisation configuration.

However, for confined systems, the skyrmion number S2D is not quantised into inte-

gers [39, 44], and therefore, a more suitable name for S2D may be the “scalar spin

chirality” (and consequently the expression under an integral would be called the “spin

chirality density”), but we will follow the existing literature [39, 44] and refer to S2D

as the skyrmion number. It will be shown subsequently in Sec. 3.2 that the skyrmion

number in confined geometries is not an injective function since it does not preserve dis-

tinctness (one-to-one mapping between skyrmionic states and skyrmion number value

S2D). Therefore, for two-dimensional samples, we define a different scalar value

S2D
a =

1

4π

∫ ∣∣∣∣m · (∂m∂x × ∂m

∂y

)∣∣∣∣ d2r. (3.5)

This scalar value is injective and provides necessary distinctness between S2D
a values for

different skyrmionic states as discussed in Sec. 3.2. In terms of the terminology discussion

above regarding S2D, the entity S2D
a describes the “scalar absolute spin chirality”. We

also emphasise that although the skyrmion number S2D has a clear mathematical [104]

and physical [105] interpretation, we define the artificial injective scalar value Sa only to

support the classification and discussion of different skyrmionic states observed in this

work.
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Skyrmion number S2D and artificially defined scalar value S2D
a , given by Eq. (3.4) and

Eq. (3.5), respectively, are valid only for the two-dimensional samples hosting the mag-

netisation configuration. However, in this work, we study three-dimensional samples

and, because of that, we now define a new set of expressions taking into account the

third dimension. The skyrmion number in three-dimensional samples S3D we compute

using

S3D =
1

8π

∫
m ·

(
∂m

∂x
× ∂m

∂y

)
d3r, (3.6)

as suggested by Lee et al. [106], which results in a value proportional to the anomalous

Hall conductivity. Similar to the two-dimensional case, we also define the artificial

injective scalar value S3D
a for three-dimensional samples as

S3D
a =

1

8π

∫ ∣∣∣∣m · (∂m∂x × ∂m

∂y

)∣∣∣∣ d3r. (3.7)

In order to allow the S3D
a value to fall within the two-dimensional skyrmionic states

classification scheme, we normalise the computed S3D
a value by a constant (t/2, where t

is the sample thickness).

For simplicity, in this work, we refer to both two-dimensional and three-dimensional

skyrmion number and scalar value expressions as S and Sa because it is always clear

what expression has been used according to the dimensionality of the sample.

3.2 Initial magnetisation configurations

The magnetisation configurations that we use as initial states in the micromagnetic simu-

lations are shown in Fig. 3.1. We vary the disk sample diameter d and external magnetic

field H, and for every point in the d–H parameter space, we relax twelve different initial

magnetisation configurations. These are the five skyrmionic configurations (A, B, C, D,

and E), three helical configurations (H2, H3, and H4), the uniform configuration (U),

and three random magnetisation configurations (R).

Now, we introduce an approximate analytic model1 that helps us generate a range of

physically meaningful and reproducible initial skyrmionic magnetisation configurations

labelled A-E in Fig. 3.1. The used DMI energy density term wdmi = Dm · (∇×m) is

consistent with the helimagnetic material of crystallographic class T, and one expects

a skyrmionic state configuration with no radial spin component (chiral skyrmion) to

emerge [29]. Consequently, if we consider a two-dimensional disk sample of radius R in

the plane containing the x and y axes, as shown in Fig. 3.2 (b) inset, an approximation of

the chiral skyrmionic magnetisation configuration (for D > 0), in cylindrical coordinates

1A zero-torque analytic model was initially proposed and derived by Robert L. Stamps (University
of Glasgow).
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Figure 3.1: The magnetisation configurations relaxed using the full three-
dimensional micromagnetic simulations. The configurations labelled A-E corre-
spond to the first five solutions of the approximate analytic model, whereas the
three helical states with 2, 3, and 4 helical half-periods are labelled as H2, H3,
and H4, respectively. The uniform out-of-plane magnetisation state is labelled
as U, and an example of random magnetisation state is marked with R.

(ρ, ϕ, z), is

mρ = 0,

mϕ = sin(kρ),

mz = − cos(kρ),

(3.8)

where k = 2π/s is a measure of the skyrmionic state size s.

An equilibrium configuration requires that the torque exerted on the magnetisation m

vanishes at every point in sample (m×Heff = 0), including the boundary. The effective

field functional Heff = −(δE[m]/δm)/(µ0Ms), due to only symmetric exchange and

DMI energy contributions, in absence of an external magnetic field, as we have shown

in Chapter 2, is

Heff =
2

µ0Ms

[
A∇2m−D (∇×m)

]
, (3.9)

for any magnetisation configuration. Computing this expression for the radially sym-

metric approximate skyrmionic state model m = sin(kρ)ϕ̂− cos(kρ)ẑ results in

Heff =
2

µ0Ms

[(
Dk −Ak2 − A

ρ2

)
sin(kρ) +

Ak

ρ
cos(kρ)

]
ϕ̂+

2

µ0Ms

[(
Ak

ρ
− D

ρ

)
sin(kρ) +

(
Ak2 −Dk

)
cos(kρ)

]
ẑ.

(3.10)
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Figure 3.2: (a) The zero-torque condition g(kR) plots, given by Eq. (3.12), for
different values of P = D/kA. All zero-torque conditions for P smaller than the
boundary case P = 2/3 (dotted line) have no solutions, whereas for P > 2/3,
multiple solutions (A-F) exist. (b) The non-injective dependence of skyrmion
number S and the injective dependence of scalar value Sa on kR. (c) The mag-
netisation configurations and the out-of-plane magnetisation component mz(x)
along the horizontal symmetry line for different solutions (A-F) of Eq. (3.12)
for P = 2.

Consequently, the torque exerted on the magnetisation m is

m×Heff =
2

µ0Ms

[
Ak

ρ
− D

ρ
sin2(kρ)− A

2ρ2
sin(2kρ)

]
r̂. (3.11)

Requiring the torque to vanish at the disk boundary ρ = R results in the zero-torque

condition:

g(kR) ≡ −P sin2(kR)− sin(2kR)

2kR
+ 1 = 0, (3.12)

where P = D/kA. The analysis of this condition shows that the parameter P must

satisfy the inequality P > 2/3 in order for g(kR) to have roots and, thus, a skyrmionic

state core to exist in at least metastable equilibrium. In Fig. 3.2 (a), we plot the zero-

torque condition as a function of kR for different values of P . Since P = 2/3 is the

boundary case (dotted line in the plot), all plots for P < 2/3 have no solutions, whereas

the zero-torque condition has multiple solutions if P > 2/3.

We show the skyrmionic magnetisation configurations, used as initial states in the energy

minimisation process, corresponding to the zero-torque condition solutions (marked A-

F) for P = 2, in Fig. 3.2 (c). In order to support the discussion of these magnetisation

configurations, we compute the skyrmion number S, which for our approximate analytic

model results in S = (cos(kR) − 1)/2. Its dependence on kR, presented in Fig. 3.2 (b)
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as a dashed line, shows that the skyrmion number for the skyrmionic states in confined

nanostructures is not an injective function since it does not preserve distinctness (one-to-

one mapping between kR and skyrmion number value S). Therefore, a different scalar

value Sa is computed and from its dependence on kR, shown in Fig. 3.2 (b) as a solid

line, we conclude that this scalar value is injective and provides necessary distinctness

between Sa values for different skyrmionic states.

For the helical state, which emerges as a consequence of the Dzyaloshinskii-Moriya inter-

action considered in this work, we expect that the magnetisation vector at any point is

perpendicular to the helical propagation direction (Bloch-wall-like configuration). Con-

sequently, if both x and y axis are in the plane of the thin-film sample and the x axis is

chosen as a propagation direction, the helical magnetisation configuration in Cartesian

coordinates is

mx = 0,

my = cos(khx),

mz = sin(khx),

(3.13)

where kh = 2π/LD, with LD being the helical period [10].

Now, we investigate whether the helical period LD in confined nanostructures is inde-

pendent on the sample diameter, and if not, what are the helical period values that can

occur in our simulated system. After relaxing helical configurations and varying both

the helical period and disk sample diameter (up to 180 nm), we find that all relax to a

limited set of helical states with different helical periods. More precisely, the observed

relaxed helical states consist of either 2, 3, or 4 helical half-periods along the disk sample

diameter, including the characteristic magnetisation tilting at the boundary [41]. Thus,

we define three different helical magnetisation configurations as initial states with helical

periods 2d/2, 2d/3, or 2d/4, where d is the disk sample diameter, and are named H2,

H3, and H4, respectively. Magnetisation configurations of these states, together with

their mz(x) profiles along the horizontal symmetry, are shown in Fig. 3.1.

In addition to the previously defined eight chiral initial states, we also use the uni-

form magnetisation configuration, where the magnetisation at all mesh nodes is in the

positive out-of-plane z direction, as shown in Fig. 3.1 marked as U. Finally, in order

to capture other equilibrium states that cannot be obtained by relaxing previously de-

scribed well-defined magnetisation configurations, we also use additional three random

magnetisation configurations. At every mesh node, we choose three random numbers in

the [−1, 1] range for three magnetisation components and then normalise them in order

to fulfil the |m| = 1 micromagnetic condition. An example of one random magnetisation

configuration is shown in Fig. 3.1 and labelled as R.
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Figure 3.3: The phase diagram with overlapping regions where different states
are in an equilibrium together with magnetisation configurations and out-of-
plane magnetisation component mz(x) along the horizontal symmetry line cor-
responding to different regions in the phase diagram.

3.3 Equilibrium states

In order to identify the lowest energy magnetisation state in confined helimagnetic nanos-

tructures, firstly, all equilibrium magnetisation states (local energy minima) must be

identified, and secondly, their energies compared. In this section, we focus on the first

step – identifying the equilibrium magnetisation states. We compute them by solving

a full three-dimensional model using a finite element based micromagnetic simulator.

In particular, we simulate a thin film helimagnetic FeGe disk nanostructure with thick-

ness t = 10 nm and diameter d, as shown in Fig. 3.3 inset. The relevant lengthscales

in the simulated system are: exchange length lex =
√

2A/µ0M2
s = 9.73 nm and helical

length LD = 4πA/D = 70 nm. Consequently, we choose the finite element mesh dis-

cretisation so that the maximum spacing between two neighbouring mesh nodes is below

lmax = 3 nm. We apply a uniform external magnetic field perpendicular to the thin film

sample, i.e. in the positive z direction.

In this section, we determine what magnetisation configurations emerge as the equilib-

rium states at different d–H parameter space points. In order to do that, we system-

atically explore the parameter space by varying the disk sample diameter d from 40 nm

to 180 nm and the external magnetic field µ0H from 0 T to 1.2 T in steps of ∆d = 4 nm

and µ0∆H = 20 mT, respectively. At every point in the parameter space, we minimise
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the energy for a set of different initial magnetisation configurations: (i) five different

skyrmionic configurations, (ii) three helical-like configurations with different helical pe-

riod, (iii) the uniform out-of-plane configuration, and (iv) three random magnetisation

configurations. We use the random magnetisation configurations in order to capture

other equilibrium states not obtained by relaxing the well-defined initial magnetisation

configurations.

The equilibrium states to which different initial magnetisation configurations relax in

the energy minimisation process (at every d–H parameter space point) we present and

discuss later in Sec. 3.7. We summarise the results from that section and determine the

parameter space regions where different magnetisation states are in an equilibrium, and

show them in Fig. 3.3. Among the eight computed equilibrium states, three are radially

symmetric and we label them as iSk, Sk, and T, whereas the other states, marked as

H2, H3, H4, 2Sk, and 3Sk, are not. Subsequently, we discuss the meaning of the chosen

labels.

Firstly, we focus on the analysis of radially symmetric skyrmionic equilibrium states,

supported by computing the skyrmion number S and scalar value Sa. In the first con-

figuration, marked in Fig. 3.3 as iSk, the out-of-plane magnetisation component mz(x)

profile along the horizontal symmetry line does not cover the entire [−1, 1] range, as

would be the case for a skyrmion configuration (where the magnetisation vector field m

needs to cover the whole sphere). Accordingly, the scalar value Sa is smaller than 1. For

these reasons we refer to this skyrmionic equilibrium state as the incomplete Skyrmion

(iSk) state. A similar magnetisation configuration has been predicted and observed in

other works for the case of two-dimensional systems in the presence of magnetocrys-

talline anisotropy where it is called either the quasi-ferromagnetic [41, 39] or edged

vortex state [44, 42]. Because the iSk equilibrium state clearly differs from the ferro-

magnetic configuration and using the word vortex implies the topological charge of 1/2,

we prefer calling this state the incomplete skyrmion state. The incomplete Skyrmion

(iSk) state emerges as an equilibrium state in the entire simulated d–H parameter space

range. In the second equilibrium state, marked as Sk in Fig. 3.3, mz(x) covers the en-

tire [−1, 1] range, the magnetisation covers the sphere at least once and, consequently,

the skyrmion configuration is present in the simulated sample. Although the skyrmion

number value for this solution is |S| < 1 due to the additional magnetisation tilting at

the disk boundary [41], which makes it indistinguishable from the previously described

iSk equilibrium state, the scalar value is 1 < Sa < 2. This state is referred to as the

isolated Skyrmion or just Skyrmion (Sk), in two-dimensional systems [41, 39], and we

use the same name subsequently in this work. We find that the Sk state is not in an

equilibrium for sample diameters smaller than 56 nm and external magnetic field values

larger than approximately 1.14 T. Finally, the equilibrium magnetisation state marked

as T in Fig. 3.3 covers the sphere at least twice. In other works, this state together

with all other predicted higher-order solutions (not observed in this work) are called the
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“target states” [43], and we use the same Target (T) state name. The analytic model

in Sec. 3.2, used for generating initial skyrmionic states, also predicts the existence of

target states. The T magnetisation configuration emerges as an equilibrium state for

samples with diameter d ≥ 144 nm and field values µ0H ≤ 0.24 T.

The equilibrium states lacking radial symmetry can be classified into two groups: helical-

like (marked as H2, H3, and H4) and multiple skyrmion (marked as 2Sk and 3Sk) states.

The difference between the three helical-like states is in their helical period. More

precisely, in the studied range of disk sample diameter values, either 2, 3, or 4 helical

half-periods, including the additional magnetisation tilting at the disk sample edge due

to the specific boundary conditions [41], fit in the sample diameter. Consequently, we

refer to these states, that occur as an equilibrium state for samples larger than 88 nm and

field values lower than 0.2 T, as H2, H3, and H4 . The other two radially non-symmetric

equilibrium states are the multiple skyrmion configurations with 2 or 3 skyrmions present

in the sample and we call these equilibrium states 2Sk and 3Sk, respectively. These

configurations emerge as equilibrium states for samples with d ≥ 132 nm and external

magnetic field values between 0.28 T ≤ µ0H ≤ 1.06 T.

3.4 Ground state

After we identified all observed equilibrium states in confined helimagnetic nanostruc-

tures, in this section, we focus on finding the equilibrium state with the lowest energy

at all d–H parameter space points. For every parameter space point (d, H), after we

compute and compare the energies of all found equilibrium states, we determine the

lowest energy state, and refer to it, in this context, as the ground state. For the identi-

fied ground state, we compute the scalar value Sa and use it for plotting a d–H phase

diagram shown in Fig. 3.4 (a). Discontinuous changes in the scalar value Sa define the

boundaries between regions where different magnetisation configurations are the ground

state. In the studied phase space, two different ground states emerge in the confined he-

limagnetic FeGe thin film disk samples: one with Sa < 1 and the other with 1 < Sa < 2.

The previous discussion of the Sa value suggests that these two regions correspond to

the incomplete Skyrmion (iSk) and the isolated Skyrmion (Sk) states. We confirm this

by visually inspecting two identified ground states, taken from the two phase space

points (marked with circle and triangle symbols) in different regions, and show them in

Fig. 3.4 (b) together with their out-of-plane magnetisation component mz(x) along the

horizontal symmetry line.

A key result of this study is that the incomplete Skyrmion (iSk) and isolated Skyrmion

(Sk) are the ground states at zero external magnetic field for different disk sample

diameters. More precisely, iSk is the ground state for samples with diameter d < 140 nm
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Figure 3.4: (a) The scalar value Sa for the thin film disk sample with thickness
t = 10 nm as a function of disk diameter d and external out-of-plane magnetic
field H (as shown in an inset). (b) Two identified ground states: incomplete
Skyrmion (iSk) and isolated Skyrmion (Sk) magnetisation configurations at sin-
gle phase diagram points together with their out-of-plane magnetisation com-
ponent mz(x) profiles along the horizontal symmetry line.

and Sk is the ground state for d ≥ 140 nm. The Sk changes to the iSk ground state for

large values of external magnetic field.

The phase diagram in Fig. 3.4 shows the phase space regions where iSk and Sk are the

ground states, which means that all other previously identified equilibrium states are

metastable. Now, we focus on computing the energies of metastable states relative to the

identified ground state. Firstly, we compute the energy density E/V for all equilibrium

states, where E is the total energy of the system and V is the disk sample volume, and

then subtract the ground state energy density corresponding to that phase space point.

We show the computed energy density differences ∆E/V when the disk sample diameter

is changed in steps of ∆d = 2 nm at zero external magnetic field in Fig. 3.5 (a). Similarly,

the case when the disk sample diameter is d = 160 nm and the external magnetic field

is changed in steps of µ0∆H = 20 mT is shown in Fig. 3.5 (b). The magnetisation

configurations are the equilibrium states in the d or H values range where the line is

shown and collapse otherwise.
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Figure 3.5: Energy density differences ∆E/V at (a) zero field for different
sample diameters d and for (b) sample diameter d = 160 nm and different
external magnetic field values. Configurations are in equilibrium where the line
is shown and collapse for other diameter or external magnetic field values.

The energy differences plotted in Fig. 3.5 are approximately of the 10−4 J/m3 order.

This could mean that even small thermal fluctuations could cause the transition be-

tween different states. This would further imply that these states cannot be used for

storing data in confined helimagnetic nanostructures in practical data storage devices.

However, the thermal stability of found states does not depend on the energy difference,

but on the energy barriers separating them in the energy landscape. For instance, in a

ferromagnetic grain with strong uniaxial anisotropy storing the bit, there are two en-

ergetically equivalent magnetisation states (up and down) storing the information bit

(0 or 1). Consequently, the energy difference between them is zero. However, thermal

fluctuations at room temperature do not disturb the system’s state. This is because a

large energy barrier (several dozens of kBT ) is present between two equilibrium states.

Consequently, in order to determine the thermal stability of individual equilibrium states

presented in this work, additional studies must be performed. One of the possible ways

is running nudged elastic band method [107, 108, 109, 110] simulations where a set of

initial state images are relaxed in the energy landscape.
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Figure 3.6: (a) Profiles of the out-of-plane magnetisation component mz(x)
along the horizontal symmetry line for different thin film disk sample diameters
with thickness t = 10 nm at zero external magnetic field µ0H = 0 T. The curves
for d ≤ 120 nm represent incomplete skyrmion (◦) states, and for d ≥ 140 nm
represent isolated skyrmion (×) states. (b) The skyrmionic state size s =
2π/k (that can be interpreted as the length along which the full magnetisation
rotation occurs) as a function of the hosting nanostructure size, obtained by
fitting mz(x) = ± cos(kx) to the simulated profile. (c) The ratio of skyrmionic
state size to disk sample diameter (s/d) as a function of hosting nanostructure
size d.



50 Chapter 3 Stability

3.5 Robustness

For the practical use of ground state skyrmionic states in helimagnetic nanostructures,

their robustness is of great significance due to the unavoidable variations in the pat-

terning process. Because of that, in Fig. 3.6 (a) we plot the out-of-plane magnetisation

component mz(x) along the horizontal symmetry line for the iSk and the Sk ground

state at zero external magnetic field for six different diameters d of the hosting disk

nanostructure: three iSk profiles for d ≤ 120 nm, and three Sk profiles for d ≥ 140 nm.

The profiles show that the two skyrmionic ground states have the opposite core ori-

entations. In the case of the Sk states, the magnetisation at the core is antiparallel

and at the outskirt parallel to the external magnetic field. This reduces the Zeeman

energy Ez = −µ0Ms

∫
H ·md3r because the majority of the magnetisation in the iso-

lated skyrmion outskirts points in the same direction as the external magnetic field H.

Once the disk diameter is sufficiently small that less than a complete spin rotation fits

into the sample, this orientation is not energetically favourable anymore and the iSk

state emerges. In this iSk state, the core magnetisation points in the same direction as

the external magnetic field in order to minimise the Zeeman energy. We compute and

plot the skyrmionic state size s = 2π/k as a function of the disk sample diameter d in

Fig. 3.6 (b). We obtain the size s, that can be interpreted as the length along which

the full magnetisation rotation occurs, by fitting k in the f(x) = ± cos(kx) function

to the simulated iSk and Sk mz(x) profiles. In Fig. 3.6 (c), we show how the ratio of

skyrmionic state size to disk sample diameter (s/d) depends on the hosting nanostruc-

ture size. Although this ratio is constant (s/d ≈ 0.6) for the Sk state, in the iSk case,

it is larger for smaller samples and decreases to s/d ≈ 1.5 in larger nanostructures. In

agreement with related findings for two-dimensional disk samples [42] we find that both

iSk and Sk are able to change their size s in order to accommodate the size of hosting

nanostructure, which provides robustness for the technological use.

3.6 Possible stabilisation mechanism

The emergence of skyrmionic configuration ground state in helimagnetic nanostructures

at zero external magnetic field and in absence of magnetocrystalline anisotropy is un-

expected [34]. Now, we discuss the possible mechanisms, apart from the geometrical

confinement, responsible for this stability, in particular (i) the demagnetisation energy

contribution, and (ii) the magnetisation variation along the out-of-film direction, shown

in Fig. 3.7, which can radically change the skyrmion energetics in infinitely large heli-

magnetic thin films [40]. We repeat the simulations using the same method and model

as above but ignoring the demagnetisation energy contribution (i.e. setting the demag-

netisation energy density wd in Eq. (3.1) artificially to zero). We then carry out the
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Figure 3.7: Translational variation of magnetisation in the out-of-film direction.

calculations (i) on a three-dimensional (3d) mesh (i.e. with spatial resolution in z di-

rection) and (ii) on a two-dimensional (2d) mesh (i.e. with no spatial resolution in z

direction, and thus not allowing a variation of the magnetisation along the z direction).

The disk sample diameter d is changed between 40 nm and 180 nm in steps of ∆d = 5 nm

and the external magnetic field µ0H is changed systematically between 0 T and 0.5 T

in steps of µ0∆H = 25 mT. The two resulting phase diagrams are shown in Fig. 3.8,

where subplots (a) and (c) show Sa as a function of d and H. Because the scalar value

Sa does not provide enough contrast to determine the boundaries of the new Helical (H)

ground state region, the skyrmion number S is plotted for the relevant phase diagram

areas and shown in Fig. 3.8 (b) and Fig. 3.8 (d).

We demonstrate the importance of including demagnetisation effects into the model

by comparing Fig. 3.8 (a) (without demagnetisation energy) and Fig. 3.4 (a) (with

demagnetisation energy). In the absence of the demagnetisation energy, the isolated

Skyrmion (Sk) configuration is not found as the ground state at zero applied field;

instead, Helical (H) configurations have lower energies. At the same time, the external

magnetic field at which the skyrmion configuration ground state disappears is reduced

from about 0.7 T to about 0.44 T.

By comparing Fig. 3.8 (a) computed on a 3d mesh and Fig. 3.8 (c) computed on a 2d

mesh, we can see the importance of spatial resolution in the out-of-plane direction of

the thin film, and how it contributes to the stabilisation of isolated Skyrmion (Sk) state.

In the 2d model, the field range over which skyrmions can be observed as the ground

state is further reduced to approximately [0.05 T, 0.28 T]. In the 3d mesh model the Sk

configuration can reduce its energy by twisting the magnetisation at the top of the disk

relative to the bottom of the disk so that along the z direction the magnetisation starts

to exhibit (a part of) the helix that arises from the competition between symmetric

exchange and DMI energy terms, similar to the work by Rybakov et al. [40] A similar

twist provides no energetic advantage to the helix configuration, thus the Sk state region
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Figure 3.8: The scalar value Sa as a function of disk sample diameter d and
external magnetic field H computed for the ground state at every phase space
point in absence of demagnetisation energy contribution for (a) a 3d mesh and
(c) for a 2d mesh. In order to better resolve the boundaries of the Helical
(H) state region, the skyrmion number S is shown in (b) and (d). (e) The
magnetisation configurations of three identified ground states as well as the
out-of-plane magnetisation component mz(x) along the horizontal symmetry
line.
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in Fig. 3.8 (a) is significantly larger than the Sk state region in Fig. 3.8 (c) where the 2d

mesh does not allow any variation of the magnetisation along the z direction and thus

the partial helix cannot form.

While the isolated Skyrmion (Sk) configuration at zero field is a metastable state in

the absence of demagnetisation energy, or in 2d models, it is not the ground state

anymore as there are Helical (H) equilibrium configurations that have lower total energy.

The demagnetisation energy appears to suppress these helical configurations which have

a lower energy than the skyrmion. The variation of the magnetisation along the z

direction stabilises the skyrmion configuration substantially. These findings demonstrate

the subtle nature of competition between symmetric exchange, DM and demagnetisation

interactions, and show that ignoring the demagnetisation energy or approximating the

thin film helimagnetic samples using two-dimensional models is not generally justified.

3.7 Relaxation diagrams

In this section, we present the equilibrium states at all points in the d–H parameter space

obtained by relaxing well-defined initial states, introduced in Sec. 3.2. More precisely,

we compute the equilibrium states (local energy minima) that result from a particular

initial condition. This allows us to provide a systematic overview of equilibrium states,

and gain additional insight about the energy landscape of the studied system. We

vary the sample diameter between 40 nm and 180 nm in steps of ∆d = 4 nm and the

external magnetic field between µ0H = 0 T and µ0H = 1.2 T in steps of µ0∆H = 20 mT.

Relaxation diagrams are represented by plotting the scalar value Sa as a function of disk

diameter d and applied field strength H, and Fig. 3.9 shows the relaxation diagrams

for skyrmionic initial configurations A-E, and Fig. 3.11 shows the relaxation diagrams

for helical H2, H3, H4, and uniform U initial configurations. These relaxation diagrams

were used to create the phase diagram of equilibrium states, shown in Fig. 3.3 as a

summary of the main results presented and discussed in this section. All equilibrium

states we found by relaxing a set of initial states are shown in Fig. 3.10.

We now discuss each of relaxation diagrams in Fig. 3.9 and 3.11, where each subplot

corresponds to one particular initial configuration. The scalar value Sa, as a function of

disk sample diameter d and external magnetic field H, computed for the final relaxed

equilibrium state, i.e. local or global energy minimum, we show in Fig. 3.9 (A) for the

energy minimisation process that started from the skyrmionic initial configuration A

(shown in Fig. 3.1). The “iSk↑” label refers to the incomplete Skyrmion (iSk) magneti-

sation configuration with the core magnetisation pointing in the positive z direction.

An example of this state, marked with the same label, is shown in Fig. 3.10. From the

Fig. 3.9 (A), we can see that for all examined diameters and external field values, the

final relaxed configuration is the iSk↑ state. Now, this relaxation diagram is compared
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Figure 3.9: The relaxation diagrams obtained by relaxing skyrmionic initial
state A-E. The initial states correspond to the first five solutions of the analytic
model and the phase diagrams are marked A-E accordingly. The relaxation
diagrams are represented as the dependence of scalar value Sa on the disk sample
diameter d and an external field H (as shown in insets).
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Figure 3.10: All identified equilibrium magnetisation configurations.

with the ground state phase diagram, shown in Fig. 3.4 (a), and the boundary between

two ground state (iSk and Sk) regions is shown as the dashed line in the discussed re-

laxation diagram. We can see that the iSk is indeed the ground state (i.e. the global

energy minimum) for d < 140 nm, but for larger diameters the isolated Skyrmion (Sk)

configuration has a lower energy, and thus the iSk configuration is only a local energy

minimum.

Similarly, if the energy minimisation process is started from the initial configuration B,

shown in Fig. 3.1 (B), the Sa(d,H) for the final relaxed magnetisation state is obtained

and shown in Fig. 3.9 (B). The vast majority of the final configurations (d ≥ 80 nm and

µ0H . 1.1 T), labelled as “Sk↓”, correspond to the isolated skyrmion state with the

core pointing in the negative z direction. An example of this state we show in Fig. 3.10,

marked with the same label. By comparison with the ground state phase diagram shown

in Fig. 3.4 (a), we can see that the Sk is the ground state for large diameters d ≥ 140 nm

and field values µ0H < 0.7 T. However, for smaller diameters the isolated skyrmion

configuration is only metastable (as the iSk configuration is the ground state). We can

see that in the vicinity of d ≈ 60 nm and µ0H ≈ 0.1 T parameter space point, the
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initial configuration B relaxes to the incomplete skyrmion state with core oriented in

the negative z direction (iSk↓), but for larger field values, configuration B falls into the

iSk↑ configuration (see Fig. 3.10 for detailed configurations of iSk↓ and iSk↑ states). The

iSk↓ has a higher energy than the iSk↑ as the majority of the magnetisation is pointing

in the direction opposite to the applied field. However, the initial configuration B is such

that the core is pointing down, and there appears to be a direct energy minimisation

path to the iSk↓ configuration for field values smaller than approximately 0.3 T. For

larger fields, the Zeeman energy becomes so important that the initial configuration B

leads to the the iSk↑ configuration.

The initial configuration C suppresses the iSk↓ state completely, as shown in Fig. 3.9 (C),

but is otherwise similar to the case when relaxation is started from the initial state B.

We note in particular that the Sk configuration cannot exist for d < 60 nm even if the

relaxation is started from a Sk-like configuration B or C, i.e. there are no metastable iso-

lated skyrmion states at the smallest diameters. If the system is relaxed from the initial

state D, shown in Fig. 3.1 (D), a qualitative change from Fig. 3.9 (B) and (C) is evident

as shown in Fig. 3.9 (D). In addition to the iSk↑ and Sk↓ states, there are now a number

of, according to Fig. 3.5, higher energy metastable states emerging as 2 or 3 skyrmions in

the disk (see Fig. 3.10 for detailed plots of 2Sk and 3Sk states). Furthermore, for small

field values µ0H . 0.2 T and large diameters d & 152 nm, the Target (T) equilibrium

state with core orientation in the negative z direction (T↓) arises. The T↓ state is shown

in Fig. 3.10. The scalar value Sa(d,H) computed for final equilibrium configurations in

Fig. 3.9 (E) we obtained by relaxing the initial configuration E shown in Fig. 3.1. The

initial skyrmionic state E does not relax to 2 and 3 skyrmion configurations but allows

the Sk↑ state to arise for small field values.

The Sa(d,H) for starting configurations H2, H3 and H4 (as shown in Fig. 3.1) we

show in Fig. 3.11 (H2), (H3), and (H4), respectively, . All three initial configurations

result in the incomplete Skyrmion configuration with core pointing up (iSk↑) for the

smallest diameters as well as for largest fields. The H3 initial configuration relaxes

into a configuration with two Skyrmions in the disk (2Sk) for d > 120 nm and field

values between 0.8 T and 1.1 T. These 2Sk configurations had appeared occasionally

when starting from configuration D (see Fig. 3.9 (D)). The H4 initial configuration also

encourages 3 skyrmions in the disk to arise as a metastable state. Fig. 3.10 (U) shows

Sa for final configurations when the simulation starts from a uniform magnetisation,

pointing up in the positive z direction. This results mostly in the incomplete Skyrmion

configuration with core pointing up (iSk↑). However, we also find the Skyrmion with core

pointing down Sk↓ and the Target configuration T↑ as the diameter increases and the

field decreases. Fig. 3.9 (A) is interesting to compare with Fig. 3.11 (U): in the former,

only the iSk↑ state results, presumably because from the initial state A, only the iSk↑
state is accessible in the relaxation. On the contrary, for the uniform configuration, the

system finds the energy minimum for the isolated Skyrmion state Sk↓ and the Target
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Figure 3.11: The relaxation diagrams obtained by relaxing helical and uniform
initial state. The initial states correspond to the helical states H2, H3, and
H4, as well as the uniform state U, and the relaxation diagrams are marked
accordingly. The relaxation diagrams are represented as the dependence of
scalar value Sa on the disk sample diameter d and an external field H (as shown
in insets).

T↑ because other energy minima can be accessed from this initial state. Fig. 3.5 (a)

shows the relative energies of the different metastable states for H = 0.

3.8 Higher ordering temperature material

The ordering temperature of simulated FeGe material, TC = 278.7 K [102], is lower than

the room temperature, which means that this material cannot be used to fabricate a

device operating at room temperature. Therefore, it is important to determine how

our results regarding the identified lowest energy state would change for the material

with higher ordering temperature. Because no high ordering temperature helical B20

material has been reported to this day, the best we can do is to artificially increase

the ordering temperature, estimate new material parameters, and repeat the study of

equilibrium states.

We increase the ordering temperature to TC = 350 K, and calculate new values of ex-

change and Dzyaloshinskii-Moriya energy constants (following the estimation described
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Figure 3.12: The energy density differences between all identified equilibrium
states and corresponding lowest energy state as a function of disk sample di-
ameter. A full set of initial state configurations are relaxed for different disk
sample diameter values at zero external magnetic field. The helimagnetic ma-
terial ordering temperature is artificially increased to TC = 350 K (above room
temperature).

in Sec. 3.1.2) and obtain A = 1.1× 10−11 J/m and D = 1.98× 10−3 J/m2. Using these

values, we relax the full set of initial magnetisation configurations at zero external mag-

netic field for different disk sample diameters. More precisely, we vary the disk sample

diameter between 40 nm and 180 nm in steps of 4 nm and compute the energy density

E/V of all identified relaxed equilibrium states, where V is the sample volume. After

that, from the computed energy density, we subtract the energy density of the corre-

sponding lowest energy state. We plot the calculated energy density differences of all

equilibrium states as a function of disk sample diameter d and show them in Fig. 3.12.

By comparing the Fig. 3.12 for higher ordering temperature material with Fig. 3.5 (a),

we conclude that the incomplete Skyrmion (iSk) state remains the lowest energy state

for d < 140 nm, whereas the isolated Skyrmion (Sk) state is the lowest energy state for

d ≥ 140 nm. However, the iSk state is not an equilibrium state for disk sample diameters

larger than 172 nm, which is in contrast to the FeGe material case where iSk is in an

equilibrium for all examined d values. Another difference is that the metastable Target

(T) state is the highest energy state for the whole d range where it is an equilibrium

state. Finally, we do not observe H4 state (helical state with four half periods) for this

high ordering temperature material.

3.9 Summary

In this section, we systematically relaxed a series of initial magnetisation configurations

in a 10 nm thin film helimagnetic FeGe disk sample with diameter d using full three-

dimensional micromagnetic simulations. An external magnetic field is applied uniformly

and perpendicular to the sample in the positive z direction. By varying d and H, we



Chapter 3 Stability 59

obtained equilibrium states that can emerge in the studied samples. After that, we com-

pared the energies of all obtained equilibrium states at different parameter space points

and selected the state with the lowest energy and refer to it as the ground state. The

key results of this systematic study is that skyrmionic states in the form of incomplete

Skyrmion (iSk) and isolated Skyrmion (Sk) states emerge as the ground state in confined

helimagnetic nanostructures in absence of both external magnetic field and magnetocrys-

talline anisotropy. We also show that skyrmionic states are able to adapt their size in

order to accommodate the hosting nanostructure which demonstrates their robustness

which is required for their possible technological use. The emergence of skyrmionic

states in thin film helimagnetic materials at zero external magnetic field and in absence

of magnetocrystalline anisotropy is unexpected in comparison to the infinitely large thin

films. Because of that, we also explored the possible mechanism that might be responsi-

ble for this stability. We found that neglecting the demagnetisation energy contribution

and/or restricting the magnetisation variation in the out-of-film direction increases the

energy of skyrmionic states with respect to the helical configurations. This results also

shows that neglecting the demagnetisation energy or modelling thin film helimagnetic

nanostructures using two-dimensional meshes in micromagnetic simulations is not always

justified. Finally, we show that if the ordering temperature of the simulated material

is artificially increased above the room temperature, both iSk and Sk states remain the

ground state configurations at zero external magnetic field. A more detailed discussion

of the stability of skyrmionic states can be found in Chapter 6. Since the publication

of this work, an experimental study of skyrmionic states in confined helimagnetic FeGe

nanostructures was published [111]. In that work, multiple skyrmion states, together

with different helical configurations were observed in thin film disk samples with 270 nm

diameter.





Chapter 4

Hysteretic behaviour and reversal

mechanism

In the previous chapter we found that skyrmionic configurations emerge as the ground

state in confined helimagnetic nanostructures in the form of incomplete Skyrmion (iSk)

and isolated Skyrmion (Sk) states. Now, we show that bistable skyrmionic states un-

dergo hysteretic behaviour between two energetically equivalent skyrmionic states with

different core orientation. The hysteretic behaviour remains present even in the absence

of both magnetocrystalline and demagnetisation-based shape anisotropies, suggesting

the existence of novel Dzyaloshinskii-Moriya-based shape anisotropy. Finally, we show

that the skyrmionic state core reversal dynamics is facilitated by the Bloch point occur-

rence and propagation, where the direction of its propagation strongly depends on the

simulation parameters.

4.1 Methods

We simulate 10 nm thin film helimagnetic FeGe disk samples using the same micro-

magnetic model presented in the Sec. 3.1.1. The used FeGe material parameters are:

magnetisation saturation Ms = 384 kA m−1, exchange energy constant A = 8.78 pJ m−1,

and Dzyaloshinskii-Moriya constant |D| = 1.58 mJ m−2 and we show their estimation

in Sec. 3.1.2. In order to support the discussion of presented results, we compute the

skyrmion number S and injective scalar value Sa as defined in Sec. 3.1.3.

4.2 Hysteretic behaviour

The phase diagram in Fig. 3.4 (a) shows the regions in which incomplete Skyrmion (iSk)

and isolated Skyrmion (Sk) configurations are the ground states. Intuitively, one can
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assume that for every sample diameter d at zero external magnetic field, there are two

possible skyrmionic magnetisation configurations of equivalent energy: core pointing up

or core pointing down, suggesting that these states can be used for an information bit

(0 or 1) encoding. We now investigate this hypothesis and study whether an external

magnetic field can be used to switch the skyrmionic state orientation (crucial for data

imprint) by simulating the hysteretic behaviour of ground state skyrmionic states.

We obtain the hysteresis loops in the usual way by evolving the system to an equilibrium

state after changing the external magnetic field, and then using the resulting state as

the starting point for a new evolution. In this way, a magnetisation loop takes into

account the history of the magnetisation configuration. The external magnetic field

µ0H is applied in the positive z direction and changed between −0.5 T and 0.5 T in

steps of µ0∆H = 5 mT. The hysteresis loops are represented as the dependence of the

average out-of-plane magnetisation component 〈mz〉 on the external magnetic field H.

The hysteresis loop for a 10 nm thin film disk sample with d = 80 nm diameter in which

the incomplete Skyrmion (iSk) is the ground state is shown in Fig. 4.1 (a) as a solid

line. Similarly, a solid line in Fig. 4.1 (b) shows the corresponding hysteresis loop for

a larger disk sample with d = 150 nm diameter in which the isolated Skyrmion (Sk)

is the ground state. The hysteresis between two energetically equivalent skyrmionic

magnetisation states with the opposite core orientation at zero external magnetic field,

shown in Fig. 4.1 (c), is evident. Moreover, the system does not relax to any other

equilibrium state at any point in the hysteresis loop, which demonstrates the bistability

of skyrmionic states in studied system. The area of the open loop in the hysteresis curve

is a measure of the work needed to reverse the core orientation by overcoming the energy

barrier separating the two skyrmionic states with opposite core orientation.

As throughout this work, it is assumed that the simulated helimagnetic material is

isotropic, and thus, the magnetocrystalline anisotropy energy contribution is neglected.

Due to that, one might expect that the obtained hysteresis loops are the consequence of

demagnetisation-based shape anisotropy. To address this, we simulate hysteresis using

the same method, but this time in absence of the demagnetisation energy contribution.

More precisely, the minimalistic energy model contains only the symmetric exchange

and Dzyaloshinskii-Moriya interactions together with Zeeman coupling to an external

magnetic field. We show the obtained hysteresis loops in Fig. 4.1 (a) and (b) as dashed

lines. The hysteretic behaviour remains, although all energy terms that usually give

rise to the hysteretic behaviour (magnetocrystalline anisotropy and demagnetisation

energies) were neglected. This suggests the existence of a new magnetic anisotropy that

we refer to as the Dzyaloshinskii-Moriya-based shape anisotropy.
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Figure 4.1: The average out-of-plane magnetisation component 〈mz〉 hysteretic
dependence on the external out-of-plane magnetic field H for 10 nm thin film
disk samples for (a) incomplete Skyrmion (iSk) magnetisation configuration in
d = 80 nm diameter sample and (b) isolated Skyrmion (Sk) magnetisation con-
figuration in d = 150 nm diameter sample. (c) The magnetisation states and
mz(x) profiles along the horizontal symmetry lines for positive and negative
iSk and Sk core orientations from H = 0 in the hysteresis loop, both in pres-
ence and in absence of demagnetisation energy (demagnetisation-based shape
anisotropy).

4.3 Reversal mechanism

The hysteresis loops in Fig. 4.1 show that skyrmionic states in confined thin film he-

limagnetic nanostructures undergo hysteretic behaviour and that an external magnetic

field can be used to change their orientation from core pointing up to core pointing down

and vice versa. In this section, we discuss the mechanism by which the skyrmionic state

core orientation reversal occurs. We simulate a 150 nm diameter thin film FeGe disk

sample with t = 10 nm thickness. The maximum spacing between two neighbouring
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Figure 4.2: (a) The spatially averaged magnetisation components 〈mx〉, 〈my〉,
and 〈mz〉 and (b) skyrmion number S, scalar value Sa, and total energy E
time evolutions in the reversal process over 1 ns. The simulated sample is a
10 nm thin film disk with 150 nm diameter. (c) The magnetisation states at
different instances of time (points A to F) together with mz colourmap in the
xz cross section and mz(x) profiles along the horizontal symmetry line. (d) The
mz colourmap and magnetisation field in the central part of xz cross section
as shown in an inset together with the position of Bloch point (BP). (e) The
BP structure along with colourmaps of magnetisation components which shows
that the magnetisation covers the closed surface (sphere surrounding the BP)
exactly once.

finite element mesh nodes is reduced to 1.5 nm in order to better resolve the magneti-

sation. According to the hysteresis loop in Fig. 4.1 (b), the switching field Hs of the

isolated skyrmion state in this geometry from core orientation down to core orientation

up is µ0Hs ≈ −235 mT. Therefore, we first relax the system at −210 mT external mag-

netic field and then decrease it abruptly to −250 mT. We simulate the magnetisation

dynamics for 1 ns, governed by a dissipative LLG equation [79] with Gilbert damping

α = 0.3 [39], and record it every ∆t = 0.5 ps.

We now look at how certain magnetisation configuration parameters evolve during the
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reversal process. We show the time-dependent average magnetisation components 〈mx〉,
〈my〉, and 〈mz〉 in Fig. 4.2 (a), and on the same time axis, the skyrmion number S, scalar

value Sa and total energy E in Fig. 4.2 (b). The initial magnetisation configuration at

t = 0 ns is denoted as A and the final relaxed magnetisation at t = 1 ns as F. We show

in Fig. 4.2 (c) the out-of-plane magnetisation field component mz in the whole sample,

in the xz cross section, as well as along the horizontal symmetry line. At approximately

662 ps the skyrmionic core reversal occurs and Fig. 4.2 (b) shows an abrupt change both

in skyrmion number S and total energy E. We summarise the reversal process with

the help of six snapshots shown in Fig. 4.2 (c). Firstly, in (A-B), the isolated skyrmion

core shrinks. At some point the maximum mz value lowers from 1 to approximately

0.1 (C). After that, the core reverses its direction (D) and an isolated skyrmion of

different orientation is formed (E). From that time onwards, the core expands in order

to accommodate the size of hosting nanostructure, until the final state (F) is reached.

In order to better understand the actual reversal of the skyrmionic state core between

t1 ≈ 661 ps and t2 ≈ 663 ps, we show additional snapshots of the magnetisation vector

field and mz colourmap in the xz cross section in Fig. 4.2 (d). The location marked by a

circle in subplots L, M, and N identifies a Bloch Point (BP): a noncontinuous singularity

in the magnetisation pattern where the magnetisation magnitude vanishes to zero [112,

113]. Because micromagnetic models assume constant magnetisation magnitude, the

precise magnetisation configuration at the BP cannot be obtained using micromagnetic

simulations [114]. However, it is known how to identify the signature of the BP in

such situations: the magnetisation direction covers any sufficiently small closed surface

surrounding the BP exactly once [115, 116]. We illustrate this property in Fig. 4.2 (e)

using a vector plot together with mx, my, and mz colour plots that show the structure

of a Bloch point. We conclude that the isolated skyrmion core reversal occurs via Bloch

Point (BP) occurrence and propagation. Firstly, at t ≈ 661.5 ps the BP enters the

sample at the bottom boundary and propagates upwards until t ≈ 663 ps when it leaves

the sample at the top boundary.

One could ask whether we can get a better resolution of Bloch point configuration

by reducing the maximum spacing between two neighbouring nodes lmax in the finite

element mesh. However, reducing lmax would also reduce the size of Bloch point which

would further increase the energy of magnetisation configuration containing the BP. In

order to illustrate this, let us assume a hedgehog type of Bloch point [116, 117], where

the magnetisation on a sphere surrounding the BP points in the direction from the

sphere’s centre. Along any sphere diameter, there are two points on the sphere at which

magnetisation vectors point in the opposite direction. Accordingly, the exchange energy

between them is large and increases by reducing their distance (diameter). Therefore, by

reducing the sphere diameter (mesh discretisation lmax), the exchange energy increases.

When the BP energy becomes too high in the skyrmionic state core reversal, the system

would probably choose a different transition path instead of the one containing the BP.
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Figure 4.3: The isolated skyrmion orientation reversal in confined three-
dimensional helimagnetic nanostructure with downwards Bloch point propa-
gation direction. (a) The mz colourmap and magnetisation field in the central
part of xz cross section as shown in an inset together with the position of Bloch
Point (BP). (b) The BP structure along with colourmaps of magnetisation com-
ponents which shows that the magnetisation covers the closed surface (sphere
surrounding the BP) exactly once.

Because of that, although the continuous micromagnetic simulations give us enough

information to determine whether a BP is present in the sample, the only appropriate

way of determining its configuration by using discrete spin lattice models [114].

4.3.1 Different Bloch point propagation direction

We note that the Bloch point moves upwards in Fig. 4.2 (d) but one may ask whether

an opposite propagation direction can occur and how the Bloch point structure is going

to change. We hypothesise that both reversal paths (Bloch point moving upwards or

downwards) exhibit the same energy barriers and that the choice of path is a stochastic

process. In order to illustrate a different direction of the Bloch Point (BP) propagation,

we show a result from another skyrmion reversal. The simulation parameters are the

same as in Fig. 4.2, except that the Gilbert damping α is increased from 0.3 to 0.35. We

show the results of isolated skyrmion core orientation reversal dynamics with modified

Gilbert damping in Fig. 4.3.

Now, the obtained reversal dynamics is compared with the reversal dynamics shown in

Fig. 4.2. From the Fig. 4.3 (a), we can see that the Bloch point enters the sample at

the top boundary at approximately 684 ps, then propagates downwards to the bottom

boundary, where it leaves the sample at approximately 685 ps. Because of the opposite

BP propagation direction, the structure of the Bloch Point changes (compare Fig. 4.2 (e)

with Fig. 4.3 (b)). More precisely, the out-of-plane magnetisation component mz field

in the vicinity of BP is changed so that for the upper half of BP mz > 0, whereas in the

lower half mz < 0.

In this study, there can be several different factors which could affect the direction

of Bloch point propagation in the skyrmionic core reversal process. Firstly, the finite
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element mesh used to model the disk sample geometry is generated so that the only

condition in mesh generation is that the distance between two neighbouring mesh nodes

is always less than lmax = 3 nm. This means that in mesh generation no regularity

or symmetry in the mesh structure is guaranteed. Secondly, using different Gilbert

damping values and relaxing the system with the same stopping criteria would also

result in somewhat different relaxed configurations. Both of them are within acceptable

tolerances, but their subtle difference could be the cause of what path in the energy

landscape the system is going to take and, consequently, in what direction Bloch point

is going to propagate.

4.4 Summary

Because in the previous chapter we demonstrated that skyrmionic states (incomplete

and isolated skyrmions) are the ground states in helimagnetic nanostructures at zero

external magnetic field, it is expected that two energetically equivalent states with dif-

ferent core orientation exist. Consequently, we studied whether it is possible to change

the orientation of the skyrmionic state using an external magnetic field by simulating

their hysteretic behaviour. We demonstrated that it is possible to change the orientation

using an external magnetic field, which is crucial for data imprint. Since throughout

this work we assumed that the simulated material is isotropic, and accordingly, the

magnetocrystalline anisotropy is neglected, one might expect that the hysteretic be-

haviour is a consequence of demagnetisation-based shape anisotropy. However, when

we repeated the hysteresis simulations in absence of demagnetisation energy contri-

bution, the presence of hysteretic behaviour remains, which suggests the existence of

novel Dzyaloshinskii-Moriya based shape anisotropy. Finally, we explore the reversal

mechanism of skyrmionic states and show that it occurs via Bloch point occurrence

and propagation. The direction of Bloch point propagation is stochastic and strongly

depends on the simulation parameters, which we showed by repeating the reversal sim-

ulations with increased Gilbert damping parameter. In addition, we discuss how the

finite element mesh asymmetry and different relaxed state configurations could be the

cause of different Bloch point propagation direction. Further discussion of the hysteretic

behaviour and reversal mechanism of skyrmionic states can be found in Chapter 6.





Chapter 5

Dynamics

In Chapter 3, a systematic study of equilibrium states in confined helimagnetic nanos-

tructures demonstrated that skyrmionic states, in the form of incomplete and isolated

skyrmion states, can be the ground state in absence of both external magnetic field and

magnetocrystalline anisotropy, whereas the higher order target skyrmionic configuration

emerges as a metastable state. An understanding of dynamic properties of skyrmionic

states in confined helimagnetic nanostructures is of importance both from the aspect

of fundamental physics as well as for their manipulation. In this chapter, we study the

dynamic properties (resonance frequencies and corresponding eigenmodes) of these three

skyrmionic equilibrium magnetisation states in thin film FeGe disk samples. We employ

two different methods in finite-element based micromagnetic simulation: eigenvalue and

ringdown method. The eigenvalue method allows us to identify all resonance frequencies

and corresponding eigenmodes that can exist in the simulated system. However, using a

particular experimentally feasible excitation can excite only a limited set of eigenmodes.

Because of that, we perform and report ringdown simulations that resemble the exper-

imental setup using both an in-plane and an out-of-plane excitations. In addition, we

report the nonlinear dependence of resonance frequencies on the external magnetic bias

field and disk sample diameter and report the possible reversal mode of skyrmionic states.

We obtain experimentally the FeGe Gilbert damping value and repeat simulations in

order to determine what eigenmodes can be expected to be observed in experiments.

Finally, we show that neglecting the demagnetisation energy contribution or ignoring

the magnetisation variation in the out-of-film direction – although not changing the

eigenmodes magnetisation dynamics significantly – changes their resonance frequencies

substantially. This systematic work is of interest to both fundamental physics studies

and to guide experimental identification of skyrmionic states in confined helimagnetic

disks.
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Figure 5.1: (a) A thin film FeGe disk sample with 10 nm thickness and diameter
d. An external magnetic bias field H is applied uniformly and perpendicular
to the sample (in the positive z direction). (b) A “sinc” excitation magnetic
field h(t), used in the ringdown method, is applied for 0.5 ns in either in-plane
(x̂) or out-of-plane (ẑ) direction. (c) The Fourier transform of excitation field
h(t) shows that all eigenmodes (allowed by the used excitation direction) with
frequencies lower than fc = 100 GHz are excited approximately equally.

5.1 Methods

5.1.1 Micromagnetic model

We simulate a thin film helimagnetic cubic B20 FeGe disk with 10 nm thickness and

diameter d, as shown in Fig. 5.1 (a). The thin film sample is in the xy plane and

perpendicular to the z axis. An external magnetic bias field H is applied uniformly and

perpendicular to the sample (in the positive z direction).

The total energy of the system we simulate contains several energy contributions and

can be written as

E =

∫
[wex + wdmi + wz + wd + wa] d3r. (5.1)

The first term wex = A
[
(∇mx)2 + (∇my)

2 + (∇mz)
2
]

is the symmetric exchange energy

density with material parameter A. The unit vector field m = m(r, t), with Cartesian

components mx, my, and mz, represents the magnetisation field M(r, t) = Msm(r, t),

where Ms is the saturation magnetisation. The second term wdmi = Dm · (∇×m) is

the Dzyaloshinskii-Moriya energy density with material parameter D, which is obtained
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by including Lifshitz invariants suitable for materials of the crystallographic class T,

such as the cubic B20 FeGe (P213 space group) used in this study. The coupling of

magnetisation to an external magnetic field H is defined by the Zeeman energy density

term wz = −µ0MsH ·m, with µ0 being the magnetic constant. The wd term is the de-

magnetisation (magnetostatic) energy density. Because wd is crucial for the stability of

skyrmionic states in confined helimagnetic nanostructures as we have shown in Sec. 3.6,

we include its contribution in all subsequent simulations. The last term is the magne-

tocrystalline anisotropy energy density wa, and because it does not play an important

role in the stability of skyrmionic states in the studied system, we assume the simulated

material is isotropic and neglect the magnetocrystalline anisotropy energy contribution.

The FeGe material parameters we use are: saturation magnetisation Ms = 384 kA m−1,

exchange energy constant A = 8.78 pJ m−1, and Dzyaloshinskii-Moriya energy con-

stant D = 1.58 mJ m−2. The estimation of FeGe material parameters can be found

in Sec. 3.1.2. In our model, we do not assume any translational invariance of magneti-

sation in the out-of-film direction which significantly changes the energy landscape both

in infinitely large thin films [40] and in confined thin film nanostructures. The relevant

lengthscales in the simulated system are: exchange length lex =
√

2A/µ0M2
s = 9.73 nm

and helical length LD = 4πA/D = 70 nm. Consequently, we choose the finite element

mesh discretisation so that the maximum spacing between two neighbouring mesh nodes

is below lmax = 3 nm.

The magnetisation dynamics is governed by the Landau-Lifshitz-Gilbert (LLG) equa-

tion [78, 79]
∂m

∂t
= −γ∗0m×Heff + αm× ∂m

∂t
, (5.2)

where γ∗0 = γ0(1+α2), with γ0 = 2.21×105 m A−1s−1 and α ≥ 0 is the Gilbert damping.

We compute the effective magnetic field Heff using

Heff = − 1

µ0Ms

δE[m]

δm
, (5.3)

where E[m] is the total energy density functional, given by Eq. (5.1). We validated

the boundary conditions by running a series of simulations and reproducing the results

reported by Rohart and Thiaville [41].

5.1.2 Dynamics simulations

We study the dynamic properties of skyrmionic states using two different methods:

eigenvalue method [59] and ringdown method [60]. In both eigenvalue and ringdown

methods, we firstly compute an equilibrium magnetisation configuration m0 by inte-

grating a set of dissipative time-dependent equations, starting from a specific initial

magnetisation configuration, until the condition of minimum torque (m ×Heff) is sat-

isfied. The details on selecting the initial magnetisation configurations can be found
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in Sec. 3.2. We perform all relaxations in this work down to the maximum precision

limited by the unavoidable numerical noise. Because the magnetisation dynamics is not

of interest in the relaxation process, we set the Gilbert damping in this stage to α = 1.

5.1.2.1 Eigenvalue method

We perform the eigenvalue method computations in a finite element framework, moti-

vated by the analytic procedure implemented using finite difference method by d’Aquino

et al. [59] The perturbation of system’s magnetisation from its equilibrium state m0 can

be written as m(t) = m0 + εv(t), where ε > 0 and v(t) ⊥ m0 because of the imposed

micromagnetic condition |m| = 1. If this perturbation expression is inserted into the

undamped LLG equation, we obtain

∂

∂t
(m0 + εv(t)) = −γ∗0(m0 + εv(t))×Heff(m0 + εv(t)). (5.4)

Now, by expanding Heff(m0 + εv(t)) = H0 + εH′eff(m0) · v(t) + O(ε2), where H0 =

Heff(m0), and knowing that ∂m0/∂t = 0 and m0 ×H0 = 0, we get

∂

∂t
v(t) = −γ∗0

[
v(t)×H0 + m0 × (H′eff(m0) · v(t))

]
, (5.5)

where all O(ε2) terms and higher are neglected. When the system is in its equilibrium,

because Heff(m0) ‖ m0 and |m0| = 1, the equilibrium effective field can be written as

H0 = h0m0, where h0 = |H0|. Now, if all vector fields are discretised on the finite

elements mesh, Eq. (5.5) becomes

∂

∂t
v(t) = γ∗0m0 ×

[
(h01−H′eff(m0)) · v(t)

]
. (5.6)

Using the matrix Λ(m0) with property m0× x = Λ(m0) · x, Eq. (5.6) can be written as

∂

∂t
v(t) = A · v(t), (5.7)

where A = γ∗0Λ(m0) [h01−H′eff(m0)]. This linear differential equation has a full set of

solutions that can be expressed as v(t) = ṽei2πft. Using this ansatz, Eq. (5.7) becomes

the eigenvalue problem

i2πf ṽ = Aṽ. (5.8)

We solve this eigenvalue problem using the SciPy [118, 119] package, which results in the

set of resonant frequencies f and eigenvectors ṽ from which we express the magnetisation

dynamics as m(t) = m0 + ṽei2πft.
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5.1.2.2 Ringdown method

In the ringdown method, similar to the eigenvalue method, we firstly relax the system

to its equilibrium magnetisation state m0. After that, we perturb the system from its

equilibrium by applying a time-dependent h(t) = hmax sinc(2πfct)ê external magnetic

field excitation [49, 120] over texc = 0.5 ns, where hmax is the maximum excitation field

value, fc = 100 GHz is the cut-off frequency, ê is the direction in which the excitation is

applied, and sinc(2πfct) is the unnormalised cardinal sine function

sinc(2πfct) =


sin(2πfct)

2πfct
, for t 6= 0

1, for t = 0.
(5.9)

The time-dependence of the used excitation h(t) is shown in Fig. 5.1 (b). Computing

the Fourier transform of h(t) shows that using this excitation enables us to excite all

eigenmodes (which are allowed by the direction of excitation ê) in the [0, fc] range

approximately equally, as demonstrated in Fig. 5.1 (c). We compute the hmax value

so that Hf = 0.5 mT is the excitation amplitude at any frequency. [49] More precisely,

the maximum value of the cardinal sine wave excitation is hmax = 2fctexcH
f = 50 mT.

We apply the excitation in two experimentally feasible directions: (i) in-plane ê = x̂

and (ii) out-of-plane ê = ẑ. After the system is perturbed from its equilibrium state, we

simulate the magnetisation dynamics for tsim = 20 ns and sample the magnetisation field

m(ri, tj) at all mesh nodes ri at uniform time steps tj = j∆t (∆t = 5 ps). Although the

excitation is sufficiently small so that the perturbation from the equilibrium state can

be approximated linearly, in order to make sure we do not introduce any nonlinearities

to the system’s dynamics with excitation, we delay sampling by 2 ns after the excitation

field is removed.

Finally, we analyse the recorded magnetisation dynamics m(ri, tj) using: (i) spatially

averaged and (ii) spatially resolved methods [121]. We subtract the time-independent

equilibrium magnetisation configuration m0(ri) from the recorded magnetisation dy-

namics and perform the Fourier analysis only on the time-dependent part ∆m(ri, tj) =

m(ri, tj) −m0(ri). In the spatially averaged analysis, we compute all three spatially

averaged magnetisation components 〈∆mk(tj)〉, k = x, y, z at all time steps tj . After

that, we apply a discrete Fourier transform and sum their squared Fourier coefficient

moduli (which are proportional to power) to obtain the Power Spectral Density (PSD):

Psa(f) =
∑

k=x,y,z

∣∣ n∑
j=1

〈∆mk(tj)〉 e−i2πftj
∣∣2, (5.10)

where n is the number of time steps at which the magnetisation dynamics was sampled.

On the other hand, in the spatially resolved analysis, we firstly compute the discrete

Fourier transform at all mesh nodes (separately for all three magnetisation components)
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and then compute the PSD as the spatial average of squared Fourier coefficient mod-

uli [60]:

Psr(f) =
∑

k=x,y,z

1

N

N∑
i=1

∣∣ n∑
j=1

mk(ri, tj)e
−i2πftj

∣∣2, (5.11)

where N is the number of finite element mesh nodes. Because the power values in PSD

are in arbitrary units (a.u.), we normalise all PSDs in this work so that
∫ fmax

0 P (f) df =

1, where fmax = 50 GHz, and show them in the logarithmic scale. Although, the fre-

quency resolution in the eigenvalue method is determined by the machine precision, the

frequency resolution for the ringdown method is ∆f = (n∆t)−1 ≈ tsim
−1 = 0.05 GHz,

where n = tsim/∆t+ 1 is the number of sampling points during the sampling simulation

stage.

We normalise and show only the first half [0, 50 GHz] of the Power Spectral Density

(PSD) frequency range in order to avoid the presence of artefact peaks in PSDs for

frequencies higher than 100 GHz, due to the aliasing effect [122] as a consequence of

discrete time sampling limitations. In order to illustrate this effect, let us define a

simple periodic signal as

s(t) = sin(2πft), (5.12)

with f being its frequency. We vary the signal’s frequency between 0 GHz and 200 GHz

in steps of ∆f = 0.5 GHz and keep the sampling period to be 5 ps at any frequency f .

The sampling frequency fs = (∆t)−1 = 200 GHz implies that in the Fourier transform we

expect not to observe any harmonics above the Nyquist frequency fN = fs/2 = 100 GHz.

Now, we compute a discrete Fourier transform of the signal s(t) at all frequencies and

show a Fourier transform dependence on signal’s frequency f in Fig. 5.2. Although we

did not expect to observe any peaks in Fourier transforms for signal frequencies f > fN,

we observe them at

fpeak =

f, for f ≤ fN

2fN − f, for f > fN.
(5.13)

Therefore, in order to avoid the artefact peaks in PSDs caused by the aliasing of fre-

quencies larger than fN, we limit our analysis of skyrmionic states dynamics to [0, fN/2]

range. As an alternative, we could have limited the cut-off frequency fc of cardinal sine

wave excitation defined in the main text to be 50 GHz, but this would introduce irregular

excitations at the frequency band edges due to the limited excitation duration.

Although we base this study on the specific helimagnetic material FeGe, in order to

make this study relevant to any helimagnetic material, we need to determine as many as

possible resonance frequencies that can be detected using a specific excitation. Because

of that we need to reduce the linewidth and allow sufficient separation between peaks

in the power spectral density (computed from the ringdown method). Consequently, in

the first part of this work, we use the Gilbert damping [49] α′ = 0.002. After we identify

all resonance frequencies and corresponding eigenmodes using α′, we experimentally
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Figure 5.2: The dependence of Fourier transform on signal’s frequency for a
simple periodic signal s(t) = sin(2πft) with varying frequency f between 0 GHz
and 200 GHz in steps of ∆f = 0.5 GHz, illustrating the aliasing of harmonics
above the Nyquist frequency fN = 100 GHz.

measure the real value of FeGe Gilbert damping and use it to determine which (out of

all previously identified eigenmodes) can be experimentally detected in the FeGe sample.

5.2 Dynamics of skyrmionic states

We study the dynamics of all three equilibrium skyrmionic states that can be observed at

zero external magnetic field in confined thin film helimagnetic disk samples with diame-

ters d ≤ 180 nm. More precisely, we explore the resonance frequencies and corresponding

eigenmode magnetisation dynamics of ground state incomplete Skyrmion (iSk) and iso-

lated Skyrmion (Sk) states, as well as the metastable Target (T) configuration. The

difference between these states is in how many times the magnetisation configuration

covers the sphere, and consequently, the scalar value Sa.

Using the eigenvalue method, we find all existing eigenmodes by computing their res-

onance frequencies and magnetisation dynamics. However, this method does not allow

us to determine what eigenmodes can be excited using a particular excitation. There-

fore, we employ the ringdown method for an in-plane and an out-of-plane excitation and

overlay the resulting spatially averaged and spatially resolved Power Spectral Densities

(PSDs) with the resonance frequencies obtained from the eigenvalue method. If the

eigenvalue method resonance frequency coincides with the PSD peak, this implies that

the corresponding eigenmode can be “activated” using a specific excitation and we mark

it using a triangle (4) symbol. All other eigenmodes, that cannot be activated using

a particular excitation, we mark with a circle (◦) symbol. Throughout this work, we

study the magnetisation dynamics below 50 GHz.
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5.2.1 Incomplete Skyrmion (iSk) state

The first magnetisation configuration that we study is the incomplete Skyrmion (iSk)

state. The magnetisation component mz of the iSk state, along the sample diameter,

does not cover the whole [−1, 1] range, which is required for the skyrmion configuration

to be present in the sample, and because of that, the scalar value Sa is in the [0, 1]

range. In other works, this state is called either the quasi-ferromagnetic [39, 41] or the

edged vortex [44, 42] state. The incomplete skyrmion state is in an equilibrium for

all studied disk sample diameters 40 nm ≤ d ≤ 180 nm and at all external magnetic

bias field values. We explore the resonance frequencies and corresponding eigenmode

magnetisation dynamics in a 80 nm diameter disk sample at zero external magnetic field,

where the iSk state is not only in an equilibrium, but is also the ground state (global

energy minimum).

Firstly, we compute all existing eigenmodes using the eigenvalue method and show the

schematic representations in Appendix A. Then, we excite the system using an in-plane

excitation and show the Spatially Averaged (SA) and Spatially Resolved (SR) Power

Spectral Densities (PSDs) overlaid with the eigenvalue method resonant frequencies in

Fig. 5.3 (a) and (b), respectively. In these two PSDs, we identify five peaks (A, D,

E, F, and H) and schematically represent their corresponding eigenmode magnetisation

dynamics in Fig. 5.3 (e). The lowest frequency and the most dominant eigenmode A

at 2.35 GHz consists of a dislocated incomplete skyrmion state core (where mz = 1)

revolving (gyrating) around its equilibrium position in the ClockWise (CW) direction.

Schematically, we represent the skyrmionic state core with a circle symbol, together with

a directed loop if it gyrates around its equilibrium position. Consequently, we classify

the eigenmode A as the gyrotropic (translational) mode. The eigenmode F at 23.04 GHz

is the second most dominant eigenmode. Its magnetisation dynamics consists of a ring

contour, defined by the constant magnetisation z component distribution, revolving

around the sample centre in the CounterClockWise (CCW) direction. This eigenmode

is not gyrotropic because the iSk state core remains at its equilibrium position. The

eigenmode H at 41.65 GHz, present in both SA and SR PSDs, is composed of the iSk

state core together with two mz contour rings revolving in the CW direction. However,

the inner contour revolves out-of-phase with respect to both the outer contour and the

iSk state core. Because of that, we depict the inner contour ring using a dashed line

and both the iSk state core loop and the outer contour ring using a solid line as a way

of visualising the mutually out-of-phase dynamics. The eigenmode D is present only in

the SR PSD at 13.83 GHz and consists of the iSk state core and a contour ring revolving

in the CW direction, but mutually out-of-phase. So far, all identified eigenmodes are

lateral, but in the SA PSD at 14.49 GHz, we also identify a very weak eigenmode E with

radially symmetric magnetisation dynamics. Although we expect that all eigenmodes

present in SA PSD are also present in SR PSD, this is not the case for eigenmode E.

We believe this is the case because this breathing eigenmode cannot be excited with
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Figure 5.3: The Power Spectral Densities (PSDs) of an incomplete Skyrmion
(iSk) ground state at zero external magnetic field in a 80 nm diameter FeGe disk
sample with 10 nm thickness. (a) Spatially averaged and (b) spatially resolved
PSDs for an in-plane excitation, together with overlaid resonance frequencies
computed using the eigenvalue method. The resonant frequencies obtained us-
ing the eigenvalue method are marked with a triangle symbol (4) if they can be
activated using a particular excitation and with a circle symbol (◦) otherwise.
(c) Spatially averaged and (d) spatially resolved PSDs for an out-of-plane excita-
tion. (e) Schematic representations of magnetisation dynamics associated with
the identified eigenmodes. Schematically, we represent the skyrmionic state core
with a circle symbol, together with a directed loop if it gyrates around its equi-
librium position. Contour rings represented using dashed lines revolve/breathe
out-of-phase with respect to the those marked with solid lines. The schematic
representations of all identified eigenmodes are provided in Appendix A.

an in-plane excitation, but emerges in simulations due to the numerical noise, which

is consistent with its small amplitude. This eigenmode, together with other breathing

eigenmodes, will be discussed subsequently when we excite the iSk state using an out-

of-plane excitation.

Now, we perturb the incomplete skyrmion state from its equilibrium using an out-of-

plane excitation and show the Spatially Averaged (SA) and Spatially Resolved (SR)

Power Spectral Densities (PSDs) in Fig. 5.3 (c) and Fig. 5.3 (d), respectively. Using

this excitation, we identify five eigenmodes (A, B, C, E, and G) and schematically

represent their magnetisation dynamics in Fig. 5.3 (e). The most dominant eigenmode E



78 Chapter 5 Dynamics

is present in both SA and SR PSDs at 13.83 GHz. Its magnetisation dynamics consists of

a mz contour ring that shrinks and expands periodically, while the overall magnetisation

configuration remains radially symmetric. Because of that, we classify this eigenmode

as a breathing mode. The second most dominant eigenmode is the gyrotropic mode

A, which was also observed when the system was excited using an in-plane excitation,

suggesting that it can be experimentally detected independent of the used excitation

direction. The last eigenmode G present in both SA and SR PSDs at 32.37 GHz consists

of two contour rings breathing mutually out-of-phase. More precisely, when one contour

shrinks, another one expands, and vice versa. We schematically illustrate this out-

of-phase breathing using dashed and solid lines depicting the contours. Finally, the

eigenmodes B and C, visible only in the SR PSD at 2.57 GHz and 3.76 GHz, respectively,

can be understood as a particular magnetisation configuration rotating in the sample in

the CW direction without dislocating their core, as shown in Fig. 5.3 (e).

After analysing the incomplete skyrmion power spectral densities for d = 80 nm and

H = 0, we now explore how the resonance frequencies depend on the external magnetic

bias field H and the disk sample diameter d for both an in-plane and an out-of-plane

excitation. Firstly, we fix the disk sample diameter at 80 nm and vary the external

magnetic field between −0.5 T and 1.2 T in steps of 10 mT and show the resulting H-

dependent Power Spectral Density (PSD) maps for an in-plane and an out-of-plane

excitation in Fig. 5.4 (a) and Fig. 5.4 (b), respectively. In these H-dependent PSD

maps, a discontinuity in resonance frequencies at −0.26 T is evident. This is the case

because for d = 80 nm and −0.26 T ≤ µ0H ≤ 1.2 T, the iSk state with positive (mz = 1)

core orientation (iSk↑) is in an equilibrium. However, for µ0H < −0.26 T, the iSk↑ is

not in an equilibrium anymore and the iSk state reverses its orientation to the negative

(mz = −1) direction (iSk↓) in order to reduce its Zeeman energy. This is consistent with

the incomplete skyrmion hysteretic behaviour study reported in Sec. 4.2. Secondly, we

change the disk sample diameter d between 40 nm and 180 nm in steps of 2 nm at zero

external magnetic bias field and show in Fig. 5.4 (c) and Fig. 5.4 (d) the d-dependent

PSD maps for an in-plane and an out-of-plane excitation, respectively. In PSD maps,

we show the spatially resolved PSDs, computed using Eq. (5.11), because in comparison

to the spatially averaged PSDs, they exhibit more resonance peaks [60]. We show two

plots for every PSD map: one for the complete studied frequency range (0 − 50 GHz)

and another plot in order to better resolve the low-frequency (0 − 10 GHz) part of the

PSD map.

In the case of an in-plane excitation, three lateral eigenmodes (A, D, and F) are visible

in the H-dependent PSD map, shown in Fig. 5.4 (a), and in the iSk↑ range their fre-

quencies nonlinearly and monotonically increase with H. Eigenmodes D and F are not

as dominant as eigenmode A in the PSD map below approximately 0.3 T, which results

in the lack of sufficient contrast for them to be visible. Now, if we change the direction

of excitation, five eigenmodes (A, B, C, E, and G) are visible in the H-dependent PSD



Chapter 5 Dynamics 79

Figure 5.4: Power Spectral Density (PSD) maps showing the dependence of
incomplete Skyrmion (iSk) state resonant frequencies on the external magnetic
bias field changed between −0.5 T and 1.2 T in steps of 10 mT for d = 80 nm
when the system is excited using (a) in-plane and (b) out-of-plane excitation.
The dependence of resonance frequencies on the disk sample diameter varied
between 40 nm and 180 nm in steps of 2 nm at zero external magnetic field for
(c) in-plane and (d) out-of-plane excitation. We show two plots for every PSD
map: one for the complete studied frequency range (0 − 50 GHz) and another
plot in order to better resolve the low-frequency (0− 10 GHz) part of the PSD
map.
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map, as shown in Fig. 5.4 (b). In the iSk↑ range, eigenmodes A, B, and C are visible only

between Hs and approximately 0.4 T. In Fig. 5.3 (d), at zero external magnetic field,

eigenmodes A, B, and C have very similar frequencies which makes it difficult for the

experimentalists to determine which eigenmode the resonance frequency they measure

belongs to. From the out-of-plane H-dependent PSD map in Fig. 5.4 (b), we observe

that this can be resolved by reducing the external magnetic field towards the switching

field. More precisely, the frequencies of eigenmodes A and B both decrease, but only

the frequency of eigenmode A approaches zero. On the other hand, the frequency of

eigenmode C increases by reducing external magnetic field. In addition, both increas-

ing and decreasing H improves the separation of these eigenmodes. The dependence of

their frequencies at high external magnetic field we show in Fig. 5.5 using the eigenvalue

method and demonstrate that no eigenmode crossing occurs. The eigenmodes E and G

are visible in the whole examined range of H, and their frequencies increase nonlinearly

and monotonically with external magnetic bias field. Interestingly, the frequency of

eigenmode A approaches zero near the switching field µ0Hs = −0.26 T, suggesting that

this gyrotropic eigenmode might be the reversal (zero) mode of the incomplete skyrmion

state in the studied sample.

By varying the disk sample diameter d, for an in-plane excitation, we observe the gy-

rotropic eigenmode A frequency increasing between 40 nm and 64 nm (where it reaches

its maximum), and then decreasing with d, as shown in Fig. 5.4 (c). Another visible

eigenmode in the PSD map above approximately 74 nm, for an in-plane excitation, is

the eigenmode F whose frequency monotonically decreases with d. In the case of an

out-of-plane excitation, we identify seven (A, B, C, E, G, X1, and X2) eigenmodes in the

PSD map shown in Fig. 5.4 (d). The magnetisation dynamics of all these eigenmodes

was discussed before, except X1 and X2, because they were not present in the PSDs be-

low the maximum studied frequency 50 GHz for d = 80 nm. The eigenmode A frequency

dependence is the same as for an in-plane excitation and another six eigenmodes (B, C,

E, G, X1, and X2) frequencies monotonically decrease with the disk sample diameter.

For every ringdown simulation in our study, we also carried out the eigenvalue compu-

tation. In Power Spectral Density (PSD) maps we discussed, some of the eigenmodes

become invisible at certain values of external magnetic field H and disk sample diameter

d due to their small amplitude. We show the dependences of incomplete Skyrmion (iSk)

resonance frequencies on H and d in Fig. 5.5 (a) and Fig. 5.5 (b), respectively. We

represent discrete eigenvalue computed resonance frequencies using a circle (◦) symbol

and emphasise the dependences of eigenmodes identified in the main text using a solid

line. We find a perfect agreement between eigenvalue and ringdown methods in d and

H ranges where eigenmodes are visible in PSD maps.
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Figure 5.5: The external magnetic field H and disk sample diameter d de-
pendence of incomplete Skyrmion (iSk) state resonance frequencies computed
using the eigenvalue method. Discrete eigenvalue computed resonance frequen-
cies are represented using a circle (◦) symbol and the dependences of eigenmodes
identified in the main text are emphasised using a solid line.

5.2.2 Isolated Skyrmion (Sk) state

In this section, we explore the dynamics of an isolated Skyrmion (Sk) state, for which

the magnetisation z component covers the [−1, 1] range once (plus the additional mag-

netisation tilting at the boundaries due to the specific boundary conditions [41]) along

the disk sample diameter, and consequently, the scalar value Sa is in the [1, 2] range.

The Sk state is in an equilibrium for d ≥ 70 nm and µ0H ≤ 1.1 T. We study the Sk

state dynamics for a 150 nm diameter disk sample at zero external magnetic bias field,

where the Sk state is not only in an equilibrium, but is also the ground state.

After we perform the eigenvalue method computations, we excite the system using an

in-plane excitation and show the Spatially Averaged (SA) and Spatially Resolved (SR)

Power Spectral Densities (PSDs) in Fig. 5.6 (a) and Fig. 5.6 (b), respectively. The

schematic representations of all identified eigenmodes are provided in Appendix A. In

both SA and SR PSDs, we identify nine peaks (eigenmodes A, B, D, E, G, I, J, L, and M),

and show their schematic representations in Fig. 5.6 (e). The lowest frequency eigenmode
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at 0.67 GHz is the gyrotropic eigenmode A. Its magnetisation dynamics consists of a

dislocated Sk state core (where mz = −1) gyrating around its equilibrium position in

the CCW direction. In both PSDs, the eigenmode B at 1.91 GHz is the most dominant

one, and consists of a contour ring (defined as a constant magnetisation z component

distribution) revolving in the CW direction. The eigenmode D at 7.61 GHz is composed

of both the Sk state core and a magnetisation contour ring revolving in the CCW

direction, but mutually out-of-phase. At 14.54 GHz, we identify an eigenmode E with

two magnetisation contour rings revolving mutually out-of-phase in the CW direction.

Similarly, the eigenmode G at 18.89 GHz also consists of two contour rings revolving

mutually out-of-phase, but now in the CCW direction. The four remaining eigenmodes

(I, J, L, and M) are significantly weaker in both PSDs when compared to the power of

previously discussed eigenmodes. Their magnetisation dynamics, shown in Fig. 5.6 (e),

are all lateral and contain different combinations of revolving contour rings and the Sk

state core.

Now, we change the excitation to be in the out-of-plane direction. The computed spa-

tially averaged and spatially resolved power spectral densities, overlaid with the reso-

nance frequencies obtained from the eigenvalue method, are shown in Fig. 5.6 (c) and

Fig. 5.6 (d), respectively. In this case, we observe five peaks (eigenmodes A, C, F, H, and

K) in both PSDs, and a significantly weaker lateral eigenmode G (previously discussed)

in SA PSD. We show the schematic representation of their magnetisation dynamics in

Fig. 5.6 (e). Similarly to the incomplete skyrmion state, the gyrotropic eigenmode A

can also be activated with an out-of-plane excitation. The lowest frequency breathing

eigenmode C at 2.00 GHz consists of a single contour ring that shrinks and expands

periodically. An eigenmode F at 16.12 GHz is composed of two contour rings breathing

mutually out-of-phase. Similarly to the eigenmode C, the eigenmode H at 25.22 GHz

consists of a single breathing contour, but now with a smaller contour diameter (larger

mz). At 39.25 GHz, we identify the highest frequency breathing eigenmode K in the

studied frequency range, which contains three breathing contours, where the inner and

the outer contours breathe out-of-phase with respect to the middle one.

So far, we analysed the isolated skyrmion state dynamics for d = 150 nm and H = 0.

Now, we explore how the resonance frequencies change when H and d are varied. Firstly,

we fix the disk sample diameter at d = 150 nm and vary the external magnetic bias field

between −0.5 T and 1.2 T in steps of 10 mT. We show the H-dependent PSD maps for

an in-plane and an out-of-plane excitation in Fig. 5.7 (a) and Fig. 5.7 (b), respectively.

In these PSD maps, two discontinuities in resonant frequencies at −0.24 T and 1.12 T

are present. The first discontinuity occurs because decreasing H causes the Sk state core

with negative (mz = −1) orientation (Sk↓) to switch to the positive (mz = 1) direction

(Sk↑) at the switching field µ0Hs = −0.24 T. On the other hand, the discontinuity

at 1.12 T occurs because, above this value, the Sk↓ is not in an equilibrium anymore

and the system relaxes to the incomplete skyrmion state with positive core orientation
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Figure 5.6: The Power Spectral Densities (PSDs) of an isolated Skyrmion (Sk)
ground state in a 150 nm diameter FeGe disk sample with 10 nm thickness at zero
external magnetic bias field. (a) Spatially averaged and (b) spatially resolved
PSDs for an in-plane excitation, together with overlaid resonance frequencies
computed using the eigenvalue method. The resonant frequencies obtained us-
ing the eigenvalue method are marked with a triangle symbol (4) if they can
be activated using a particular excitation and with a circle symbol (◦) other-
wise. (c) Spatially averaged and (d) spatially resolved PSDs computed when
the Sk state is perturbed from its equilibrium with an out-of-plane excitation.
(e) Schematic representations of magnetisation dynamics associated with the
identified eigenmodes. Schematically, we represent the skyrmionic state core
with a circle symbol, together with a directed loop if it gyrates around its equi-
librium position. Contour rings represented using dashed lines revolve/breathe
out-of-phase with respect to the those marked with solid lines. The schematic
representations of all identified eigenmodes are provided in Appendix A.
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(iSk↑). Secondly, at H = 0, we vary d between 40 nm and 180 nm in steps of 2 nm

and show the d-dependent PSD maps in Fig. 5.7 (c) and Fig. 5.7 (d) for an in-plane

and an out-of-plane excitation, respectively. Now, a single discontinuity in resonance

frequencies is present at 70 nm, below which the disk sample diameter becomes too small

to accommodate the full magnetisation rotation and the iSk state emerges. The external

magnetic bias field and disk sample diameter values at which the discontinuities occur

are consistent with the equilibrium and hysteretic behaviour studies reported in Sec. 4.2

and Sec. 3.3.

For an in-plane excitation, in the H-dependent PSD map, shown in Fig. 5.7 (a), five

previously discussed eigenmodes (A, B, D, E, and G) are visible in the H range where

the Sk↓ state is in an equilibrium. The frequency of gyrotropic eigenmode A firstly

increases, reaches its maximum at approximately 0.15 T, and then decreases down to its

minimum at approximately 0.9 T, after which it keeps increasing with H. In comparison

to the other eigenmodes, its frequency varies over a much smaller range (less than 1 GHz)

over the entire H range where the Sk↓ state is in an equilibrium. Similar to the incom-

plete skyrmion state, the frequency of gyrotropic eigenmode A approaches zero near

the switching field µ0Hs = −0.24 T, suggesting that this eigenmode might govern the

isolated skyrmion reversal process. The eigenmode B frequency increases approximately

linearly up to 0.6 T, after which it continues increasing nonlinearly. The frequency of

eigenmode D, firstly decreases, reaches its minimum at approximately 0.22 T, and then

continues increasing nonlinearly with H. The frequencies of eigenmodes E and G exhibit

more complicated behaviour where two extremes (maximum and minimum) are present

in their H-dependences. When an out-of-plane excitation is used, we observe five pre-

viously discussed eigenmodes (A, C, F, H, and J) in the H-dependent PSD map, shown

in Fig. 5.7 (b). The eigenmode A now becomes invisible in the PSD map below 0.2 T.

The breathing eigenmode C frequency increases monotonically over the entire Sk↓ field

range. The frequency dependences of eigenmodes F, H, and J, exhibit more complicated

behaviour having both local maximum and minimum in their H-dependences.

In the d-dependent PSD map, shown in Fig. 5.7 (c), obtained when an in-plane excitation

is used, five previously discussed eigenmodes (A, B, D, E, and G) are present. In contrast

to the frequencies of eigenmodes D, E, and G that monotonically decrease with d over a

wide range of frequencies, the eigenmodes A and B frequencies vary in a much smaller

(less than 1 GHz) range over entire studied d range. Eigenmodes D, E, and G become

invisible in the PSD map below approximately 120 nm. In Fig. 5.7 (d), we show the

d-dependent PSD map for an out-of-plane excitation, where five eigenmodes (A, C,

F, H, and J) are visible. Similarly to the eigenmodes A and B, the lowest frequency

breathing eigenmode frequency changes over a much smaller range than the frequencies

of eigenmodes F, H, and J, when the disk sample diameter is changed.

Similar to the incomplete Skyrmion (iSk) state, for every ringdown simulation, we also

carried out the eigenvalue computation. Eigenvalue method allows us to determine how
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Figure 5.7: Power Spectral Density (PSD) maps showing the dependence of
isolated Skyrmion (Sk) state resonant frequencies on the external magnetic bias
field changed between −0.5 T and 1.2 T in steps of 10 mT for d = 80 nm when
the system is excited using (a) in-plane and (b) out-of-plane excitation. The
dependence of resonance frequencies on the disk sample diameter varied between
40 nm and 180 nm in steps of 2 nm at zero external magnetic field for (c) in-
plane and (d) out-of-plane excitation. We show two plots for every PSD map:
one for the complete studied frequency range (0− 50 GHz) and another plot in
order to better resolve the low-frequency (0− 10 GHz) part of the PSD map.
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Figure 5.8: The external magnetic field H and disk sample diameter d depen-
dence of isolated Skyrmion (Sk) state resonance frequencies computed using the
eigenvalue method. Discrete eigenvalue computed resonance frequencies are rep-
resented using a circle (◦) symbol and the dependences of eigenmodes identified
in the main text are emphasised using a solid line.

the resonance frequencies of particular eigenmodes change with external magnetic fieldH

and disk sample diameter d over the entire range of studied d and H values. We show the

dependences of isolated Skyrmion (Sk) resonance frequencies on H and d in Fig. 5.8 (a)

and Fig. 5.8 (b), respectively. We represent discrete eigenvalue computed resonance

frequencies using a circle (◦) symbol and emphasise the dependences of eigenmodes

identified in the main text using a solid line. We find a perfect agreement between

eigenvalue and ringdown methods in d and H ranges where eigenmodes are visible in

PSD maps.

5.2.3 Target (T) state

In this section, we study the dynamics of the Target (T) state. This state is characterised

by the scalar value Sa being in the [1, 2] range, because the magnetisation component mz

covers the [−1, 1] range twice, plus an additional magnetisation tilting at the boundary

due to the specific boundary conditions [41]. Although the T state is never the ground

state (global energy minimum) in the studied system, it is in an equilibrium for the
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Figure 5.9: The Power Spectral Densities (PSDs) of a Target (T) equilibrium
state in a 160 nm diameter FeGe disk sample with 10 nm thickness at zero
external magnetic bias field. (a) Spatially averaged and (b) spatially resolved
PSDs for an in-plane excitation, together with overlaid resonance frequencies
computed using the eigenvalue method. The resonant frequencies obtained using
the eigenvalue method are marked with a triangle symbol (4) if they can be
activated using a particular excitation and with a circle symbol (◦) otherwise.
(c) Spatially averaged and (d) spatially resolved PSDs computed when the
target state is perturbed from its equilibrium with an out-of-plane excitation.
(e) Schematic representations of magnetisation dynamics associated with the
identified eigenmodes. Schematically, we represent the target state core with a
circle symbol, together with a directed loop if it gyrates around its equilibrium
position. Contour rings represented using dashed lines revolve/breathe out-
of-phase with respect to the those marked with solid lines. The schematic
representations of all identified eigenmodes are provided in Appendix A.

disk sample diameters 144 nm ≤ d ≤ 180 nm and the external magnetic bias field µ0H ≤
0.24 T. More precisely, for these d and H values, target state is in the local and not global

energy minimum state. We explore the target state dynamics in a 160 nm diameter disk

sample with 10 nm thickness at zero external magnetic bias field. In order to obtain the

target state in the sample, the magnetisation is initialised with a state having similar

configuration as explained in Sec. 3.2.

In the first step, we compute all existing eigenmodes below 50 GHz and show their
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schematic representations in Appendix A. Using the ringdown method, we compute

the Spatially Averaged (SA) and Spatially Resolved (SR) Power Spectral Densities

(PSDs) for an in-plane excitation, overlaid with the eigenvalue results, and show them in

Fig. 5.9 (a) and Fig. 5.9 (b), respectively. In these power spectral densities, we observe

eleven peaks (eigenmodes A, B, C, D, E, F, G, I, J, L, and M) and show their schematic

representations in Fig. 5.9 (e). We identify the two lowest frequency peaks at 0.72 GHz

and 0.89 GHz, which correspond to the gyrotropic eigenmode A and lateral eigenmode

B, respectively. Similar to the incomplete skyrmion and isolated skyrmion states, the

gyrotropic eigenmode A magnetisation dynamics consists of a target state core (where

mz = −1) gyrating around its equilibrium position in the CounterClockWise (CCW)

direction. The magnetisation dynamics of eigenmode B is composed of a magnetisation

z component contour ring revolving in the ClockWise (CW) direction around the sample

centre. At 2.86 GHz, we identify another dominant eigenmode D, which consists of a

T state core and a contour ring rotating in the CCW direction, but mutually out-of-

phase. In the case of the eigenmode F at 8.17 GHz, the T state core is static, but two

magnetisation contour rings revolve mutually out-of-phase in the CW direction. The

magnetisation dynamics of all other eigenmodes (G, I, J, L, and M) present in the in-

plane power spectral densities have significantly lower power. They are all lateral and

consist of different combinations of revolving contour rings and the T state core, and we

show their schematic representations in Fig. 5.9 (e). All discussed eigenmodes so far are

lateral (in-plane), but in the discussed in-plane PSDs, two breathing eigenmodes C and

E are also present with significantly lower power and we will discuss them subsequently

when an out-of-plane excitation is used to perturb the system.

Now, we excite the system with an out-of-plane excitation, compute the SA and SR

PSDs, and show them in Fig. 5.9 (c) and Fig. 5.9 (d), respectively. In this case, we ob-

serve five dominant breathing eigenmodes (C, E, H, K, and N) and significantly weaker

lateral eigenmodes (A, B, D, F, G, I, J, and L) discussed previously. The lowest frequency

breathing eigenmode C at 1.60 GHz contains a single magnetisation z component con-

tour ring that shrinks and expands periodically. Another two dominant peaks in these

PSDs correspond to eigenmodes E and H at 5.59 GHz and 18.93 GHz, respectively. The

eigenmode E magnetisation dynamics consists of two contour rings breathing mutually

out-of-phase. Similarly, the magnetisation dynamics of the eigenmode H consists of

three breathing contour rings where the middle contour ring breathes out-of-phase with

respect to the inner and the outer one. The eigenmodes K and N magnetisation dynam-

ics consist of different combinations of breathing contours and we show their schematic

representations in Fig. 5.9 (e).
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5.2.4 Comparison of incomplete skyrmion and isolated skyrmion power

spectral densities

One of the challenges in the study of skyrmionic states in confined helimagnetic nanos-

tructures is the detection of what state emerged in the studied sample. In this subsection

we discuss how measuring resonance frequencies can contribute to the identification of

the emerged state. Previously, in Sections 5.2.1 and 5.2.2, we studied the dynamics of

both incomplete Skyrmion (iSk) and isolated Skyrmion (Sk) states in disk samples with

diameters for which these states were the ground states. Now, we compare the Power

Spectral Densities (PSDs) of iSk and Sk states in a 100 nm diameter disk sample with

10 nm thickness at different external magnetic field values µ0H (between 0 T and 1 T in

steps of 0.25 T). In this sample size and at all simulated external magnetic field values,

both iSk and Sk states are in equilibrium. More specifically, the Sk state is metastable

and the iSk state is the ground state [123]. We show the comparison of spatially re-

solved iSk and Sk PSDs at different external magnetic field values for an in-plane and an

out-of-plane excitation in Fig. 5.10. Because in a 100 nm diameter disk sample there are

no dominant iSk and Sk eigenmodes that can be easily detected in experiments above

30 GHz, we now limit our discussion of PSDs below 30 GHz in order to better resolve

the key differences, that can contribute to the identification of the present state.

Firstly, in the case of an in-plane excitation (left column in Fig. 5.10), the frequency of

iSk gyrotropic eigenmode A (the lowest frequency iSk eigenmode), increases with H. On

the contrary, the Sk gyrotropic eigenmode A (again the lowest frequency Sk eigenmode)

frequency remains approximately the same. Furthermore, by increasing the external

magnetic field the Sk eigenmode B frequency increases, and consequently, the frequency

difference between two lowest frequency Sk eigenmodes ∆AB increases in a wide range of

frequencies. In contrast, the frequencies of two lowest frequency iSk eigenmodes A and D

both increase with H, so that the frequency difference ∆AD between them changes over

a small range of frequencies (remains approximately the same). However, at low values

of external magnetic field, it could be difficult to measure the iSk eigenmode D due to

its relatively small amplitude. In that case, between 0.25 T and 0.75 T, the frequency

of dominant iSk eigenmode F does not change, so the ∆AF = ∆AD + ∆DF difference

reduces with H for about 5 GHz.

When we excite the system using an out-of-plane excitation (right column in Fig. 5.10),

at H = 0, several resonance frequencies below 5 GHz are present, which does not allow

a clear identification of the emerged state by measuring resonance frequencies in that

region. However, by increasing the external magnetic field, the low frequency part of

PSDs simplifies. More specifically, the Sk eigenmode A frequency again does not change,

while the Sk breathing eigenmode C, and therefore the difference ∆AC, increase with

H. In addition, for a Sk state above 0.25 T, the frequency of eigenmode F remains

approximately the same, and therefore, the difference ∆CF decreases with H. On the
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Figure 5.10: Comparisons of Power Spectral Densities (PSDs) of ground in-
complete Skyrmion (iSk) state (solid red line) and metastable isolated Skyrmion
(Sk) state (dashed blue line) in a 100 nm disk sample with 10 nm thickness at
different values of external magnetic field H, computed for an in-plane (left
column) and an out-of-plane (right column) excitation.

contrary, iSk eigenmodes A, B, and C disappear from the PSD after µ0H = 0.5 T,

whereas the frequency difference ∆EG between two most dominant iSk eigenmodes E

and G remains approximately the same, since their frequencies both increase.

The dependences of resonant frequencies in this sample with d = 100 nm are in a good

agreement with the PSD maps shown in Fig. 5.4 (a) and Fig. 5.7 (a) and eigenvalue

computed results in Supplementary Section S2. This suggests that these identification

differences can probably be applied to different sample sizes. At µ0H = 1 T, we approach

the transition from Sk to iSk state and additional peaks in Sk state PSDs, shown in

Fig. 5.10, occur.
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Figure 5.11: The linewidth ∆H (half width at half maximum) measurement
points at different resonance frequencies f for a FeGe thin film, together with
a first degree polynomial fit from which the Gilbert damping was extracted.

5.3 Simulations with real FeGe damping

In the previous analysis of skyrmionic states dynamics, we intentionally used the small

Gilbert damping value α = 0.002 as used in other eigenmode studies [49], in order to

allow enough separation between peaks in the power spectral densities (enabled by the

reduced linewidth) and identify all eigenmodes that can be excited using a particular

experimentally feasible excitation. However, in experiments, what eigenmodes can be

observed strongly depends on the real value of Gilbert damping. Therefore, in this

section, we experimentally measure the FeGe Gilbert damping value α and repeat our

simulations in order to determine what eigenmodes are expected to be experimentally

observed in helimagnetic FeGe confined nanostructures.

We perform the ferromagnetic resonance measurements1 in a FeGe thin film with 67.8±
0.1 nm thickness, grown on the Si substrate in the (111) direction and capped with a

4.77± 0.07 nm thin Ge layer. We show the linewidth ∆H (half width at half maximum)

measurement points at different resonance frequencies f , together with a first degree

polynomial fit in Fig. 5.11. The polynomial fit allows us to decompose the ∆H depen-

dence into a frequency independent inhomogeneously-broadened component ∆H0 and

an intrinsic damping-related part [124, 125, 126]:

∆H = ∆H0 +
αf

γ
, (5.14)

where α is the Gilbert damping and γ is the gyromagnetic ratio. From the slope of

the polynomial fit and using the frequency-dependent term that reflects the “viscous”

damping of the precessive magnetisation motion associated with the FMR, we find α =

0.28± 0.02.

1Ferromagnetic resonance measurements and estimation of Gilbert damping were performed by
Charles S. Spencer and Christopher H. Marrows (University of Leeds) together with Chiara Ciccarelli
and Andrew J. Ferguson (University of Cambridge).
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Figure 5.12: The spatially resolved Power Spectral Densities (PSDs) of an
incomplete skyrmion state in a 80 nm diameter FeGe disk sample with 10 nm
thickness at zero external magnetic bias field for (a) in-plane and (b) out-of-
plane excitation direction. The isolated skyrmion state in a 150 nm diameter
thin film disk with 10 nm thickness at H = 0 when the system is excited with
(c) in-plane and (d) out-of-plane excitation. The PSDs are computed using the
experimentally measured value of FeGe Gilbert damping α = 0.28.

Now, we use the measured α = 0.28 and repeat the ringdown simulations for the two

skyrmionic ground states that can exist in the studied system. We show the spatially

resolved power spectral density of an incomplete skyrmion state in a 80 nm diameter disk

sample at zero external magnetic bias field for an in-plane and an out-of-plane excitation

in Fig. 5.12 (a) and Fig. 5.12 (b), respectively. We observe that, when the system is

excited using an in-plane excitation, only the gyrotropic eigenmode A is present in the

PSD. On the other hand, for an out-of-plane excitation, we identify two eigenmodes in

the PSD shown in Fig. 5.12 (b). The first one is the gyrotropic eigenmode A, which

is also present in the in-plane PSD, and another one is the lowest frequency breathing

eigenmode E. The PSDs of the isolated skyrmion state in a 150 nm diameter disk sample

at zero external magnetic bias field are shown in Fig. 5.12 (c) and Fig. 5.12 (d) for an in-

plane and an out-of-plane excitation, respectively. Now, only the three lowest frequency

isolated skyrmion eigenmodes are present. The gyrotropic eigenmode A and eigenmode

B can be identified when the system is excited using an in-plane excitation. On the

other hand, for the out-of-plane excitation, only the breathing eigenmode C is present.
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Figure 5.13: The comparison of power spectral densities computed using 3d
and 2d models in absence of demagnetisation energy contribution with the PSD
obtained using a full simulation model for an isolated skyrmion state in the case
of (a) in-plane and (b) out-of-plane excitation. Simulated sample is a 150 nm
diameter disk with 10 nm thickness at zero external magnetic field.

5.4 Demagnetisation energy and out-of-plane magnetisa-

tion variation effects

Usually, in the simulations of skyrmionic states dynamics in helimagnetic samples, for

simplicity, the demagnetisation energy contribution is neglected and/or a helimagnetic

thin film sample is modelled using a two-dimensional mesh. It has been shown in Sec. 3.6

that the demagnetisation energy contribution and the magnetisation variation in the out-

of-film direction [40] radically change the energy landscape. Consequently, using these

assumptions when the static properties of skyrmionic states are explored is not justified.

Because of that, in this section, we investigate how these two assumptions affect the

dynamics of the isolated Skyrmion (Sk) state in studied helimagnetic nanostructure.

Firstly, we repeat the isolated skyrmion state simulations in a 150 nm diameter disk

sample at zero external magnetic bias field, but this time we set the demagnetisation

energy contribution wd in Eq. (5.1) artificially to zero. Secondly, again in the absence

of demagnetisation energy contribution, we simulate the Sk state dynamics under the

same conditions, but this time using a two-dimensional mesh to model a thin film sample

(i.e. not allowing the magnetisation variation in the out-of-film direction). We show

the comparison of power spectral densities computed using three-dimensional and two-

dimensional models in absence of demagnetisation energy contribution with the one

computed using a full model in Fig. 5.13 (a) and Fig. 5.13 (b), for an in-plane and an

out-of-plane excitation, respectively.
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We observe that although the magnetisation dynamics of identified eigenmodes do not

change significantly, the resonance frequencies of some eigenmodes change substantially.

In the 3d simulations in absence of demagnetisation energy, while the frequency of

eigenmode D remains approximately the same, the frequencies of eigenmodes A and B

increase by 71% and 18%, respectively. On the other hand, the frequencies of eigenmodes

E and G decrease by 14% and 21%, respectively. Furthermore, power spectral densities

in Fig. 5.13 (b), computed for the out-of-plane excitation, show that the frequency

of breathing eigenmode C increases by 17%, whereas the frequency of eigenmode F

decreases by 34%.

If the thin film sample is modelled using a 2d mesh, which does not allow the magneti-

sation to vary in the z direction, the frequencies of lateral eigenmodes A, B, and G do

not change significantly in comparison to the 3d model in absence of demagnetisation

energy contribution. Although the frequency of eigenmode D does not change in the 3d

simplified (wd = 0) model, neglecting the sample thickness, increases its frequency by

20%. The frequency of eigenmode E increases so that its frequency is approximately the

same as in the full 3d model. In comparison to the 3d simplified model, the frequency of

breathing eigenmodes C and F further increase by 19% and 7%, respectively. In the low

frequency region of Fig. 5.13 (b) we observe several eigenmodes that are not present in

the three-dimensional model. The number of existing eigenmodes is equal to the number

of degrees of freedom in the system. This implies that in a two-dimensional mesh we

have fewer existing eigenmodes. We believe the reason for this is that although the state

is the same, its dynamics quilitatively changes at low frequencies due to the missing

thickness dimension.

5.5 Summary

In this chapter we explored the dynamic properties of skyrmionic states in confined

helimagnetic nanostructures. We employed two different methods: eigenvalue and ring-

down methods. Eigenvalue method allowed us to compute all existing eigenmodes in

studied skyrmionic states. However, what eigenmodes can be expeted to be present in

power spectral densities strongly depends on the excitation used to perturb the system

from its equilibrium state. Because of that, we performed ringdown simulations using

two experimentally feasible excitations (in-plane and out-of-plane). We simulated all

three skyrmionic states that can emerge in the studied system and found that for all

these states, only one low frequency gyrotropic mode exists, which is in contrast to the

magnetic bubble. This is a characteristic of massless skyrmion. We also examine what

eigenmodes are present in the power spectral density when when a real FeGe Gilbert

damping is used. Finally, we show that neglecting the demagnetisation energy and/or

modelling helimagnetic nanostructures of finite thickness using two-dimensional meshes

does not change the magnetisation dynamics associated to the existing eigenmodes, but
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their frequencies are changed substantially. A more detailed discussion of the findings

in this chapter is in Chapter 6.





Chapter 6

Conclusion

Through systematic micromagnetic study of equilibrium states in helimagnetic confined

nanostructures we identified the ground states and reported the (meta)stability regions of

other equilibrium states. We demonstrated that skyrmionic states in the form of incom-

plete Skyrmion (iSk) and isolated Skyrmion (Sk) configurations are the ground states in

disk helimagnetic nanostructures, and that this occurs in a wide d–H (diameter–field)

parameter space. Of particular importance is that iSk and Sk states are the ground

states at zero external magnetic field which is in contrast to infinite thin film and bulk

helimagnetic samples. We note that neither an external magnetic field is necessary nor

magnetocrystalline anisotropy is required for this stability. We also note that there is

significant flexibility in the skyrmionic state size which provides robustness for tech-

nology built on skyrmions, where fabrication of nanostructures and devices introduces

unavoidable variation in geometries.

We have established that including the demagnetisation interaction is crucial for the

system investigated here, i.e. in the absence of demagnetisation effects, there are other

magnetisation configurations with energies lower than that of the incomplete and iso-

lated skyrmion. We also note that the translational variation of the magnetisation from

the lower side of the thin film to the top is essential for the physics reported here: if we

use a two-dimensional micromagnetic simulation (i.e. assuming translational invariance

of the magnetisation m in the out-of-plane direction), the isolated skyrmion configu-

ration does not arise as the ground state. Our interpretation is that for skyrmion-like

configurations the twist of m between top and bottom layer allows the system’s energy

to reduce significantly while such a reduction is less beneficial for other configurations

such as helices; inline with recent predictions in the case of infinite thin films [40]. Ac-

cordingly, we conclude that three-dimensional helimagnetic nanostructure models, where

demagnetisation energy contribution is neglected, or the geometry is approximated using

a two-dimensional mesh, are not generally justified.

97
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Because of the specific boundary conditions [41] and the importance of including the de-

magnetisation energy contribution, our predictions cannot be directly applied to other

helimagnetic materials without repeating the stability study. For instance, although the

size of skyrmionic states in this study was based on cubic FeGe helimagnetic material

with helical period LD = 70 nm, in order to encourage the experimental verification of

our predictions, this study could be repeated for materials with smaller LD. In such

materials the skyrmionic core size is considerably reduced, which allows the reduction

of hosting nanostructure size and is an essential requirement for advancing future in-

formation storage technologies. Similarly, the ordering temperature of simulated FeGe

helimagnetic material, TC = 278.7 K [102], is lower than the room temperature, which

means that a device operating at the room temperature cannot be constructed using

this material. Because of that, we also demonstrate that our predictions are still valid if

the ordering temperature of simulated B20 helimagnetic material is artificially increased

to 350 K.

We demonstrate that skyrmionic states in confined helimagnetic nanostructures exhibit

hysteretic behaviour as a consequence of energy barriers between energetically equiva-

lent stable configurations (skyrmionic state core pointing up or down). In the absence

of magnetocrystalline anisotropy and if the demagnetisation energy (demagnetisation-

based shape anisotropy) is removed from the system’s Hamiltonian, the hysteretic be-

haviour is still present, demonstrating the existence of a novel Dzyaloshinskii-Moriya-

based shape anisotropy. Finally, we show how the reversal of the isolated skyrmion core

orientation is facilitated by the Bloch point occurrence and propagation, and demon-

strate that the Bloch point can propagate in both directions along the out-of-plane z

direction.

Using the eigenvalue method, we compute all eigenmodes with frequencies below 50 GHz

for the incomplete skyrmion, isolated skyrmion, and target states in helimagnetic thin

film disk samples at zero external magnetic field. Because the eigenmodes that are

present in the power spectral density depend strongly on the excitation used to per-

turb the system from its equilibrium state, we perform the ringdown simulations us-

ing two different experimentally feasible excitations (in-plane and out-of-plane). We

demonstrate that in all three simulated states, two lateral and one breathing low-

frequency eigenmodes exist as previously demonstrated in two-dimensional skyrmion

lattice simulations [51] and microwave absorption measurements in bulk helimagnetic

materials [52, 53, 54]. However, only one lateral eigenmode is gyrotropic, where the

skyrmionic state core gyrates around its equilibrium position. The other lateral eigen-

mode we observe is not gyrotropic because it consists of a single contour ring (defined

by the magnetisation z component distribution) revolving around the static skyrmionic

state core. The existence of only one gyrotropic eigenmode is in accordance with the

recent analytic (rigid skyrmion two-dimensional model) findings by Guslienko and Ga-

reeva, [58] but in contrast to the magnetic bubble where two gyrotropic eigenmodes
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were found. [55, 56, 57] Because the two gyrotropic eigenmodes with opposite gyra-

tion direction in a magnetic bubble imply it possesses mass, our findings suggest that

the confined DMI-induced skyrmionic states in the studied system are massless. The

low-frequency breathing eigenmode we observe, where a single magnetisation z compo-

nent contour ring shrinks and expands periodically, is in accordance with findings in

Ref. [51, 52, 53, 49, 54, 127, 128].

For the incomplete skyrmion and the isolated skyrmion states we find that the resonance

frequencies depend nonlinearly on both the disk sample diameter and the external mag-

netic bias field. We observe that the frequency of the gyrotropic eigenmode approaches

zero near the switching field Hs (where the reversal of skyrmionic state core occurs)

for both incomplete skyrmion and isolated skyrmion states, suggesting that this eigen-

mode might be the reversal mode of studied skyrmionic states. We find that when the

skyrmionic state core orientation reverses, the revolving direction of all lateral eigen-

modes changes, which confirms that the revolving direction depends on the direction of

gyrovector as shown in Ref. [51, 58].

After we identified all existing eigenmodes of iSk and Sk ground states, we compared

their PSDs in the same sample at different external magnetic field values. We identified

several characteristics that can contribute to the experimental identification of the state

that emerged in the sample by measuring the resonance frequencies.

In the identification and analysis of eigenmodes, we used a small Gilbert damping value

in order to provide enough separation between peaks in the Power Spectral Density

(PSD). However, what eigenmodes are expected to be observed in experiments strongly

depends on the real Gilbert damping value α. Therefore, we measure α in the FeGe thin

film, and carry out ringdown simulations with this α. We show that for the incomplete

skyrmion, two eigenmodes (gyrotropic and breathing) are present in the out-of-plane

PSD, whereas only the gyrotropic eigenmode is present in the in-plane PSD. In the

isolated skyrmion case, two lateral eigenmodes are present in the in-plane PSD, whereas

a single breathing eigenmode is present in the out-of-plane PSD.

Our simulations take into account the demagnetisation energy contribution, which is

usually neglected for simplicity in both analytic and simulation works. To explore the

importance of model assumptions, we carry out further systematic simulation studies in

which we set the demagnetisation energy contribution artificially to zero. We also repeat

the simulations under the same conditions on 3d and 2d meshes (with and without per-

missible magnetisation variation in the out-of-film direction, respectively). We find that

although the magnetisation dynamics of eigenmodes does not change significantly, their

frequencies change substantially. This suggests that ignoring the demagnetisation energy

contribution or approximating a thin film helimagnetic sample using a two-dimensional

mesh is not always justified.
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This work revealed some of the basic static and dynamic properties of skyrmionic states

in confined helimagnetic nanostructures. The stability at zero external magnetic field

and the ability to change the skyrmionic state core orientation using an external mag-

netic field, suggest that these states can be used for the development of skyrmion-based

memory devices. This work provides a systematic dynamics study of skyrmionic states

in confined helimagnetic nanostructures, which can be used as a reference guide for

determining what skyrmionic state is present in the sample by measuring the set of

resonance frequencies.



Appendix A

All eigenmodes of skyrmionic

states computed using the

eigenvalue method

In this Appendix, we show the schematic representations of all identified eigenmodes

with frequencies below 50 GHz computed using the eigenvalue method. We show the

incomplete Skyrmion (iSk) eigenmodes in Fig. A.1, isolated Skyrmion (Sk) eigenmodes

in Figures A.2 and A.3, and Target (T) eigenmodes in Figures A.4 and A.5.

Figure A.1: The schematic representation of magnetisation dynamics corre-
sponding to the identified eigenmodes in the 0− 50 GHz frequency range for an
incomplete Skyrmion (iSk) state, obtained using the eigenvalue method. The
simulated sample is a 80 nm diameter disk sample with 10 nm thickness at zero
external magnetic bias field.
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method

Figure A.2: The schematic representation of magnetisation dynamics corre-
sponding to the identified eigenmodes in the 0 − 27 GHz frequency range for
an isolated Skyrmion (Sk) state, obtained using the eigenvalue method. The
simulated sample is a 150 nm diameter disk sample with 10 nm thickness at zero
external magnetic bias field.
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Figure A.3: The schematic representation of magnetisation dynamics corre-
sponding to the identified eigenmodes in the 27 − 50 GHz frequency range for
an isolated Skyrmion (Sk) state, obtained using the eigenvalue method. The
simulated sample is a 150 nm diameter disk sample with 10 nm thickness at zero
external magnetic bias field.



104
Appendix A All eigenmodes of skyrmionic states computed using the eigenvalue
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Figure A.4: The schematic representation of magnetisation dynamics corre-
sponding to the identified eigenmodes in the 0 − 28 GHz frequency range for a
Target (T) state, obtained using the eigenvalue method. The simulated sample
is a 160 nm diameter disk sample with 10 nm thickness at zero external magnetic
bias field.
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Figure A.5: The schematic representation of magnetisation dynamics corre-
sponding to the identified eigenmodes in the 28− 50 GHz frequency range for a
Target (T) state, obtained using the eigenvalue method. The simulated sample
is a 160 nm diameter disk sample with 10 nm thickness at zero external magnetic
bias field.
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[117] Eĺıas, R. G. & Verga, A. Magnetization structure of a Bloch point singularity.

Eur. Phys. J. B 82, 159–166 (2011).

[118] Oliphant, T. E. Python for Scientific Computing. Comput. Sci. Eng. 9, 10–20

(2007).

[119] van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy Array: A Structure

for Efficient Numerical Computation. Comput. Sci. Eng. 13, 22–30 (2011).

[120] Venkat, G. et al. Proposal for a Standard Micromagnetic Problem: Spin Wave

Dispersion in a Magnonic Waveguide. IEEE Trans. Magn. 49, 524–529 (2013).



REFERENCES 115

[121] Baker, A. et al. Proposal of a micromagnetic standard problem for ferromagnetic

resonance simulations. J. Magn. Magn. Mater. 421, 428–439 (2017).

[122] Antoniou, A. Digital Signal Processing: Signals, Systems, and Filters (McGraw-

Hill Professional, 2005).

[123] Beg, M. et al. Ground state search, hysteretic behaviour, and reversal mechanism

of skyrmionic textures in confined helimagnetic nanostructures. Sci. Rep. 5, 17137

(2015).

[124] Xiaomin L., Rantschler, J., Alexander, C. & Zangari, G. High-frequency behavior

of electrodeposited Fe-Co-Ni alloys. IEEE Trans. Magn. 39, 2362–2364 (2003).

[125] Kalarickal, S. S. et al. Ferromagnetic resonance linewidth in metallic thin films:

Comparison of measurement methods. J. Appl. Phys. 99, 093909 (2006).

[126] Kawai, T., Itabashi, A., Ohtake, M., Takeda, S. & Futamoto, M. Gilbert damping

constant of FePd alloy thin films estimated by broadband ferromagnetic resonance.

EPJ Web Conf. 75, 02002 (2014).

[127] Wang, W., Beg, M., Zhang, B., Kuch, W. & Fangohr, H. Driving magnetic

skyrmions with microwave fields. Phys. Rev. B 92, 020403 (2015).

[128] Zhang, B., Wang, W., Beg, M., Fangohr, H. & Kuch, W. Microwave-induced

dynamic switching of magnetic skyrmion cores in nanodots. Appl. Phys. Lett.

106, 102401 (2015).


