Retrieving Relative Soft Biometrics
for Semantic Identification

Daniel Martinho-Corbishley, Mark S. Nixon and John N. Carter
School of Electronics and Computer Science,
University of Southampton, United Kingdom.
{dmc, msn, jnc}@ecs.soton.ac.uk

Abstract—Automatically describing pedestrians in surveillance
footage is crucial to facilitate human accessible solutions for
suspect identification. We aim to identify pedestrians based solely
on human description, by automatically retrieving semantic at-
tributes from surveillance images, alleviating exhaustive label an-
notation. This work unites a deep learning solution with relative
soft biometric labels, to accurately retrieve more discriminative
image attributes. We propose a Semantic Retrieval Convolutional
Neural Network to investigate automatic retrieval of three soft
biometric modalities, across a number of ‘closed-world’ and
‘open-world’ re-identification scenarios. Findings suggest that
relative-continuous labels are more accurately predicted than
absolute-binary and relative-binary labels, improving semantic
identification in every scenario. Furthermore, we demonstrate a
top rank-1 improvement of 23.2% and 26.3% over a traditional,
baseline retrieval approach, in one-shot and multi-shot re-
identification scenarios respectively.

I. INTRODUCTION

Conventionally searching hours of surveillance footage for
suspects is extraordinarily time consuming. Automatically
describing and identifying pedestrians from eye-witness testi-
mony is therefore a pivotal challenge. Soft biometrics are hu-
man characteristics, designed to precisely and reliably describe
subjects through semantic attributes [!], [2]. This enables
human accessible, semantic identification, without the need
to re-identify a prerequisite image. Soft biometrics are also
applicable in less constrained environments and when hard
biometrics e.g. face, fingerprint or gait are unavailable. This
paper investigates the automatic retrieval of absolute and
relative soft biometric labels from images, evaluating their
semantic identification performance.

A. Problem

Convolutional Neural Networks (CNNs) and deep learn-
ing techniques are now common place for re-identification
metric learning [3]-[5] and image attribute prediction [6]-
[8]. However, almost all works alluding to attribute-based
re-identification assume binary or categorical ground-truth
labels [60], [8]-[10]. Meanwhile, comparative soft biometrics,
that describe subjects with relative continuous values, have
been shown to outperform their categorical counterparts for
subject recognition [11]-[13]. Although such novel labels are
more discriminative, their interactions with automatic image
retrieval and attribute-based re-identification have yet to be
fully investigated.
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Fig. 1: Visual overview of semantic identification, illustrating seman-
tic retrieval with relative attributes estimated by SRCNN.

Consequently, performing semantic identification encapsu-
lates two sets of challenges. First, the traditional reidenti-
fication challenges of large intra-class variations and inter-
class ambiguities owing to disjointly captured person images.
Secondly, the distinctiveness, predictability and reproducibility
of ground-truth labelling methods. Both sets of issues affect
semantic retrieval accuracy, the resulting semantic space and
overall identification performance.

B. Proposal

We propose to jointly retrieve binary and continuous at-
tributes from subject images, using a deep learning Semantic
Retrieval Convolutional Neural Network (SRCNN). Subjects
are identified in a ‘semantic space’, matching predicted image
attributes to subject descriptions, illustrated in Figure 1.

SRCNN is used to evaluate three modalities of soft bio-
metric label from the public Soft Biometric Retrieval (SoBiR)
dataset [13]. The characteristics of each labelling technique
are explored by performing semantic retrieval in one-shot
and multi-shot re-identification scenarios, and the challenging
‘open-world’ zero-shot identification scenario. We follow the
evaluation methodology of [13], directly comparing our results
to a baseline solution.

Similarly to [6], our proposed SRCNN incorporates a grid of
convolutional layers to jointly predict attributes, with several
important distinctions. Firstly, we investigate retrieving both
binary and continuous label measures, discussing alterations
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Fig. 2: SoBiR camera views top-to-bottom; front, back, top and side.

to the learning process and scrutinising variations in behaviour
during training. Secondly, we present an extended performance
enhancing training strategy, including image augmentation,
early stopping and attribute recognition weighting. Finally, we
emphasise the facilitation of soft biometric retrieval, over the
application of state-of-the-art deep learning techniques.

C. Our Main Contributions

(1) A deep learning SRCNN architecture and training
strategy, to jointly learn and retrieve soft biometric labels.
(2) The evaluation of three modalities of soft biometric la-
bel, across several challenging surveillance scenarios. (3) A
demonstration of semantic identification using relative labels
and SRCNN, and its improvement over a baseline approach.

II. RELATED WORK

Two soft biometrics surveys discuss estimating attributes
from whole body images and the progression from categori-
cal to relative descriptions [!], [2]. Continuous and relative
attributes are now widely accepted over traditional binary
and multi-class annotations [14], and can be jointly learnt
with minimal guidance. Thus far, relative attributes have been
established for facial verification [15], to facilitate zero-shot
learning [16] and generate fine-grained image descriptions
[17]. In soft biometrics, comparative annotations are proven
to outperform categorical annotations for subject recognition
from body [! 1], [12], face [18] and clothing [19]. We investi-
gate semantic retrieval with the SoBiR dataset, introduced by
[13], and extend its methodology.

The first attribute-based re-identification work [9] predicted
a set of 23 binary attributes for re-identification and reported
results from a zero-shot identification scenario. Since then,
advances in image attribute prediction with CNNs [20] have
influenced the study of pedestrian re-identification. At present,
some CNN approaches exist for deep learning similarity met-
rics between pairs of images [3]-[5] and predicting pedestrian
attributes [6]-[8], [10], [21]. While many of these works
discuss the estimation of a large number of ‘fine-grained’ at-
tributes, they all perform binary classification. One study found
that regression outperformed classification for demographic
age estimation from faces [22]. It is therefore imperative

[ Name [ Annotation [ Measure [ Label type [ Combi. | Bal. |
abs-bin | Categorical Absolute | Binary 4096 No
rel-bin Comparative | Relative Binary 4096 Yes
rel-con Comparative | Relative Continuous | oo -

TABLE I: Semantic space characteristics of SoBiR labels [13].

to investigate the amalgamation of state-of-the-art pedestrian
attribute prediction techniques and enhanced relative labels, to
indicate the direction of future research.

Recently, several works investigate the domain transfer
of semantic representations, performing semi-supervised and
unsupervised semantic recognition [7], [23]-[25]. Attributes
are often learnt from images captured in ideal conditions,
and transferred to images captured in more unconstrained
environments. These methods attempt to address the scalability
issue of camera specific annotations and facilitate zero-shot
recognition using binary attributes.

III. SOFT BIOMETRIC RETRIEVAL DATASET

The Soft Biometric Retrieval (SoBiR) dataset is designed
to be a pragmatic, flexible and challenging framework with
which to investigate automatic semantic retrieval [13]. SoBiR
is a relatively small dataset of 1,600 images of 100 subjects,
captured from four pairs of viewpoints. Instead of pursuing a
large number of image samples, it emphasises a comprehensive
set of 4,800 soft biometric ground-truth labels, derived from
over 100,000 human annotations. Image resolutions and view
orientations are such that pedestrian faces are unobservable
in detail, necessitating a reliance on body characteristics for
identification, as seen in Figure 2a.

A. Soft biometric labels

SoBiR comprises a compact lexicon of 12 soft trait, se-
mantic attributes, drawn from two sources of categorical
and comparative ground-truth annotations. In this study we
investigate three labelling techniques, outlined in Table I.

Absolute-categorical annotations are first presented by [26],
collecting a number of visually assessable, global and body
features. Subjects are described in an absolute sense, using
pre-defined categories e.g. ‘very short’, ‘short’, ‘average’,
‘tall’, ‘very tall’ for height. However, we exclude absolute-
categorical labels following consistently poorer performance
reported in [13]. Instead, absolute-binary (abs-bin) representa-
tions are derived from these multi-class labels, by combining
classes into two semantic groups, e.g. ‘shorter’ and ‘taller’,
‘lighter’ and ‘darker’ etc. Groupings are formed such that the
new binary labels are as equally balanced as possible.

Relative labels are objectively crowdsourced by [!12], an-
notating pairwise comparisons between each pair of subject
images. Annotations are expressed as an ordered relation
from one image to another e.g. ‘much more feminine’, ‘more
feminine’, ‘same’, ‘more masculine’, ‘much more masculine’
for gender. Relative-continuous (rel-con) labels are derived
from these responses, by applying a similarity constrained
RankSVM [17] to all pairwise comparisons. By ranking sub-
jects on a bi-polar scale, a continuous value is attained to de-
scribe a subject’s possession of each soft trait, e.g. from ‘most
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Fig. 3: Semantic Retrieval Convolutional Neural Network architecture.
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feminine’ to ‘most masculine’, from ‘shortest’ to ‘tallest’
etc. Relative-binary (rel-bin) representations are derived by
separating subject ranks into two balanced halves, forming
binary classes. These binary labels are coarser estimations
than the fine-grained continuous values, but are still relative
measurements.

IV. SEMANTIC RETRIEVAL CONVOLUTIONAL NEURAL
NETWORK

We propose a deep learning, feed-forward, SRCNN archi-
tecture to jointly learn and predict a set of semantic attributes
from input images, illustrated in Figure 3. We explain the
overall architecture of our SRCNN and detail the training
strategy employed to alleviate overfitting.

By designing the neural network as a whole, image features
and attributes are learnt in conjunction, overcoming many of
the challenges associated with empirically matching feature
descriptors to machine learning methods. Our solution could
also perform demographic estimation, by scaling human per-
ceived ground-truths, in order to denote real-world anthropo-
metric measurements.

A. SRCNN Architecture

Input images of size DX x DIV x 3 are fed into the
network, represented as three channels in the HSV colour
space, portraying semantic concepts of colour and shade.

Three convolutional and max-pooling layer pairs are applied
sequentially, learning low-level features from image samples.
Each layer is fully-connected to the last, causing learnt filters
to have global spatial invariance within the image. Although
highly variant, person images do exhibit some regularities in
alignment around the sagittal axis. We aim to preserve this
global spatial information, learning attribute-centric detectors
for specific body regions.

Therefore, images are divided into a grid of 6 x 3 over-
lapping cells in place of body-part detection, similarly to [6].
Cells are of dimensions D{f x D}V, chosen to be D{f = D}V =
24. Each layer pair convolves its input with square kernels in
decreasing sizes, K1 = 7, Ko = 5, K3 = 3, and square pool

sizes of P = 2. All layers learn F' = 16 filters, with output
maps of size DY = DX | —K,+1and DV = DIV, —K;+1.

The final layers of max-pooling are concatenated as a
layer of size 6 x 3 x DX x DYV x F. Outputs are then fed
through two dense hidden layers of size |y|?. The last fully-
connected layer represents the final output, of size |y|. In this
way, attributes are jointly learnt, exploiting any relationships
that occur between labels. Unlike [6], we do not predefine
connections between image regions and semantic attributes,
as many of our soft traits are global descriptions, learning
correlations automatically through training to generalise our
solution. We use a sigmoid activation for the final layer and
Rectified Linear Unit (ReLU) activations for all other layers.

B. Loss Functions

As labels are learnt together, we define two separate multi-
label loss functions for classification and regression formu-
lations. Loss values are averaged over all K attributes. For
binary classification we define Binary Cross-Entropy (BCE):

! (yi-log(yﬁ) + (1 —y;) - log(1 *yi))

Lpcg = ——
BCE |K‘ =

where y}, is the ground-truth target label and y}, is the predicted
label of the k-th attribute. For continuous regression, we define
a Mean Squared Error (MSE):

Lyse = % > i —vp)?
keK
To optimise all 1,259,436 parameters, the SRCNN is trained
through back propagation with the ADADELTA stochastic
gradient descent method [27]. The solution is implemented
in Python using the Theano library and run on a GPU using
CUDA and CuDNN.

V. TRAINING STRATEGY

We employ several training strategies to reduce overfitting
and help find a robust solution. For classification tasks, dropout
regularisation [28] is applied between convolutional layers,
with a dropout ratio of 0.5. It was found that including



dropout for certain regression experiments excessively pro-
longed training time, due to the characteristics of the MSE
loss function, discussed in Section VI-A. No subsequent fine-
tuning is required after implementing our training strategy.

A. Data Augmentation

During taining, input images are randomly augmented, arti-
ficially increasing the training set size, to resemble variations
in pose and camera angle. We employ five label-preserving
data transformations in the augmentation pipeline; horizontal
reflection, horizontal scaling, rotation, shearing and horizontal
translation.

Half the training images are mirrored at random. Horizontal
reflection is the most common data augmentation method,
significantly reducing overfitting. The next pipeline stage
involves rotation, shearing and horizontal scaling around the
image mid-point, sampled uniformly from respective ranges

0 s ™ s ™ d D7V‘E/TL D7.'m.
‘6 [_ﬁa‘ﬁ]’ S [_'ﬁvﬁ] and s € [—==, =]
Flnall‘};/, horizontal translation is applied in the range x; €
3D;7  3D[ . . . e
[—=5o™, —7g™]. Rotation and shearing echo disparities in

pose, namely the position of the head and legs through the
walking action and viewpoint rotation around the longitudinal
axis. Horizontal scaling reproduces the affects of rotation
around the frontal axis, caused by variations in camera ele-
vation. Horizontal translation compensates for discrepancies
in bounding-box alignment and is especially important as
images are subdivided into non-continuous regions. Images are
cropped to their original size around the mid-point and edge
pixels are repeated to fill any gaps. Example augmentations of
SoBiR images can be seen in Figure 2b.

B. Early Stopping

To mitigate overfitting of the training data, we define an
early stopping function, based on the semantic recognition
accuracy of the validation set, rather than on its loss value
as is common, reasoned in Section VI-A. Training is halted
if AR(e) < AE(e —w) and e > w, where AR(e) represents
the average semantic recognition rank of the validation set
at epoch e. A trailing window of w = 30 epochs is chosen,
balancing premature stopping against responsiveness.

C. Attribute Recognition Weighting

Soft traits do not have equal discriminative ability, affected
by label distributions, retrieval accuracy and ground-truth
annotation methods. Therefore a set of attribute weightings
are discovered, with which to perform semantic recognition,
following the formulation of [13].

The objective function, O, finds a weight vector w, such
that semantic recognition ranks for the validation set are
minimised. We wish to attain a lower loss value between probe
s predicted and ground-truth labels L(p;, t;), than between
probe ’s predicted label and gallery subject j’s ground-truth
labels L(p;,t;), for all probe and gallery subjects ¢ and j:

0= Z Z 1, if WTL<pi,tj) < WTL(pi,ti)
0,

el \jc7 otherwise

No. Samples No. Subjects No. Cameras

Experiment Tr. Va.+Te. Tr. Va+Te. | Tr.  Va+Te.
SoBiR One-shot 100 100 100 100 1 1
SoBiR Multi-shot | 700 100 100 100 7 1
SoBiR Zero-shot 720 80 90 10 8 8

TABLE II: Non-overlapping train (Tr.), validation (Va.) and test (Te.)
set criteria.

where L is either a Hamming loss vector for binary classi-
fication, or a Mean Squared Error loss vector for continuous
regression. By setting 0 < A < 1, precedence is given to
improving already low ranks over higher ones. We empirically
choose A = 0.8 to optimise the number of low-end ranks,
while minimising the average overall rank. To prevent over-
fitting, elements of w are randomly initialised in the range of
[0.5,1.5].

VI. EXPERIMENTS

We present three experiments, each evaluating abs-bin, rel-
bin and rel-con soft biometric label modalities. Experiments
follow the non-overlapping, train-validation-test split criteria
in Table II.

One-shot re-identification performs semantic retrieval with
one camera pair at a time, randomly selecting alternative train-
test viewpoints per subject. The process is repeated across
all four camera pairs from the SoBiR dataset. Multi-shot re-
identification samples one camera image per subject for the
test set and allocates the remaining 7 camera images to the
training set. Zero-shot identification is the most challenging
scenario, simulating identification of a previously unseen sus-
pect, given only an eye-witness description. In this scenario,
train-test sets are split across subjects, allocating all 8 camera
samples of 10 subjects to the test set and training on the
remaining subject images.

Results are reported as the average of 10-fold cross valida-
tion, with equally divided validation-test splits. In all experi-
ments, probe subjects are identified by first retrieving semantic
labels from a sample image, and then performing semantic
recognition against a gallery of known descriptions. Results
are contrasted against a traditional semantic retrieval approach
that uses hand-crafted descriptors and an Extra Trees ensemble
learning method (ET), reported as a baseline on SoBiR [13].

A. One-shot Re-identification

Figure 4a and 4b summarise the semantic identification re-
sults achieved by applying SRCNN to front, back, top and side
camera views from SoBiR. All three labelling modes clearly
surpass the ET semantic retrieval approach, with a top rank-1
increase of 23.2%. Rel-con recognition accuracy outperforms
both abs-bin and rel-bin modes, gaining an average of 6.5%
and 4.8% at rank-1 respectively, Table Illa.

To investigate why this is, we plot a side-by-side example
of the validation loss and average label prediction accuracy
during training time in Figure 5. In rel-con retrieval mode,
the validation loss is consistently minimised, while attribute
prediction accuracy steadily increases.
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Fig. 4: SoBiR one-shot, multi-shot and zero-shot semantic recognition
with SRCNN and ET [13].

[ Labelling | r=1 r=5  r=10  r=25 r=50 r=75 | nAUC |

(a) One-shot re-identification (average)
abs-bin | 29.2  50.8 58.1 71.0 85.8 94.5 80.7
rel-bin | 309 534 61.5 74.3 86.2 95.3 82.0
rel-con | 35.7 56.9 67.2 84.1 95.1 98.7 88.1
best ET | 12.5 36.0 53.7 80.4 85.4 99.3 84.8
(b) Multi-shot re-identification
abs-bin | 43.0  68.8 75.8 85.2 95.6 98.6 89.8
rel-bin | 432  67.6 76.0 82.8 91.6 97.6 88.1
rel-con | 464  72.2 81.8 90.2 98.8 99.6 92.8
best ET | 20.1  49.5 77.1 86.3 95.4 99.4 88.1
(c) Zero-shot identification
abs-bin 39 11.3 20.8 44.7 67.0 83.9 61.9
rel-bin 0.5 53 11.0 39.85 65.8 90.0 60.9
rel-con 6.5 15.5 26.0 57.35 82.0 92.5 714
best ET 6.7 16.4 28.2 53.9 81.4 94.1 70.8

TABLE III: SoBiR semantic recognition CMC% and normalised Area
Under Curve (nAUC) with SRCNN and best ET scores [13].

Meanwhile, in binary classification modes, validation loss
values reverse around epoch 25, as recognition accuracy con-
tinues to increase, breaking their monotonicity. This suggests
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Fig. 5: Example training time characteristics, contrasting validation
loss and average recognition accuracy.

Attribute weightings average+std
SRCNN [ ET [13]
Trait abs-bin | rel-bin [ rel-con | Average [ Average
Gender 1.3+0.4 1.140.1 1.24+0.5 1.24+04 2.11+0.6
Height 1.24+0.4 1.240.3 1.51+0.6 1.3£+0.5 1.6+1.0
Age 1.2+0.2 1.240.2 1.240.1 1.3+0.4 0.5£0.8
Weight 1.240.2 1.240.4 0.940.6 1.1+0.5 0.540.5
Figure 1.3+0.7 1.3£0.2 0.840.7 1.1£0.6 0.940.7
Chest size 1.3£0.3 1.34+0.1 1.0+0.6 1.24+04 0.7+0.5
Arm thickness 1.0£0.5 1.1+0.2 1.1£0.3 1.1+04 1.14+0.7
Leg thickness 1.24+04 | 14401 | 1.2+0.7 | 1.3£0.5 | 0.2+0.6
Skin colour 1.4+03 | 1.5£0.5 1.7+£0.7 1.54+0.5 1.6+0.4
Hair colour 1.2+04 1.2£0.3 1.31+0.6 1.2+04 3.140.7
Hair length 1.2+0.5 1.240.1 1.6+£0.5 1.3+0.4 2.0+0.6
Muscle build 14104 1.34+0.2 1.1£0.5 1.3+04 0.7£0.9

TABLE IV: Average attribute recognition weightings for one-shot
scenario (top four emboldened).

that the SRCNN is still learning important prediction deci-
sions, enhancing recognition performance, while overfitting in
terms of prediction error.

This influenced our choice of early stopping function, which
analyses the semantic recognition rate of the validation set,
rather than its loss value. In fact, evaluating Spearman’s rank-
order correlation, we find a strong negative coefficient (-0.95)
between validation loss and prediction accuracies for rel-con
training, compared to weak positive coefficients for rel-bin and
abs-bin training modes (0.17 and 0.63). As a result, rel-con
performs particularly well, as SRCNN’s negated loss values
correlate more closely to final semantic recognition rates.

We also compare learnt attribute weightings to weights
found after applying the ET method [13], Table IV. With ET,
attribute weightings are quite divisive, as better performing
attributes are weighted distinctly higher than others. However,
with our SRCNN approach, the range of weightings is nar-
rower, implying that attributes are retrieved with similar accu-
racy (being jointly learnt). Interestingly, skin colour and hair
length are strongest in both approaches, while leg thickness
and muscle build are given more significance than gender, at
odds with the weightings of ET. Continuous regression takes
around 1.6 longer to train than binary classification, in this
experiment.



B. Multi-shot Re-identification and Zero-shot Identification

Figure 4 reports our last set of results, again performing
semantic recognition with SoBiR, but now in ‘open-world’
mutli-shot and zero-shot scenarios. In both tasks, SRCNN is
trained and tested on all camera samples.

Multi-shot re-identification far outperforms the ET ap-
proach’s top rank-1 by 26.3%, Table IIIb. By providing a larger
number of training samples per probe subject, recognition
performance is radically increased.

In stark contrast, zero-shot identification attains relatively
low recognition performance across all labels, with rel-bin
fairing particularly poorly. In fact, only rel-con labelling offers
any improvement over the ET approach in this scenario,
gaining 1.2% nAUC, Table Illc. Intriguingly, in both scenarios,
abs-bin outperforms rel-bin labels, in contrast to the baseline
solution. This indicates that imbalances in labelling are less
detrimental to SRCNN, and that the abs-bin split may actually
better describe the demographic distribution of SoBiR.

By excluding all probe subject images from the training
set, attribute retrieval rates are drastically reduced, similarly
to Layne et al.’s findings [9]. This shows that while SRCNN
is able to semantically retrieve viewpoint-invariant descrip-
tions of known subjects, there is some difficulty in learning
stand-alone semantic attributes that are independent of the
subjects who possess them. Improving this scenario is a crucial
step in being able to perform automatic semantic pedestrian
identification, given only a human description or eye-witness
testimony of a suspect. Compared to single-shot, the multi-shot
experiment requires on average 1.6x more training epochs and
zero-shot requires 0.4 x fewer epochs, indicating the extent and
depth of each learning process.

VII. CONCLUSIONS

In this paper we have demonstrated the semantic retrieval of
three soft biometric modalities, using a deep learning Semantic
Retrieval Convolutional Neural Network (SRCNN). SRCNN
jointly learns and predicts semantic attributes, enabling se-
mantic identification from only an eye-witness testimony. Our
approach achieves a top rank-1 increase of 23.2% and 26.3%
over a traditional retrieval method in ‘closed-world” and ‘open-
world’ re-identification scenarios on the SoBiR dataset.

Our findings indicate that relative continuous labels not only
provide more discriminative labels than binary alternatives,
but also enhance semantic identification performance when
automatically retrieved using SRCNN. Furthermore, we have
shown that both attribute predicition and semantic identifica-
tion are facilitated by uniting deep learning techniques with
relative attributes.

Future work points towards improving the zero-shot identifi-
cation scenario, perhaps by applying domain transfer learning
techniques to relative attributes. Very large-scale comparative
annotation may also be alleviated by extending a subset
of labelled data to the whole, moving towards real-world
applications of semantic identification.
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