1 Mutation of *EPT1* underlie a new disorder of Kennedy pathway phospholipid

2 biosynthesis

3

- 4 Mustafa Y. Ahmed,^{1,*} Aisha Al-Khayat,^{2,*} Fathiya Al-Murshedi,^{3,*} Amna Al-Futaisi,^{4,*} Barry A.
- 5 Chioza, 1,* J. Pedro Fernandez-Murray, 4_5_Jay E. Self, 5_6_Claire G. Salter, 6_7_Gaurav V. Harlalka, 1
- 6 Lettie E. Rawlins, ¹ Sana Al-Zuhaibi, ⁷-8 Faisal Al-Azri, ⁸-9 Fatma Al-Rashdi, ⁹-10 Amaury Cazenave-
- 7 Gassiot, ^{10,11}11.12 Markus R. Wenk, ^{10,11}11.12 Fatema Al-Salmi, ² Amna Al-Futaisi, ¹²—Michael A.
- 8 Patton, ^{1,2} David L. Silver, ¹³ Emma L. Baple, ¹ Christopher R. McMaster ⁴⁵ and Andrew H. Crosby ¹

- 10 1 Medical Research (Level 4), University of Exeter Medical School, RILD Wellcome Wolfson
- 11 Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
- 12 2 Department of Biology, College of Science, Sultan Qaboos University, Sultanate of Oman
- 13 3 Department of Genetics, College of Medicine, Sultan Qaboos University, Sultanate of Oman
- 14 <u>124</u> Department of Pediatrics, Sultan Qaboos University Hospital, Sultanate of Oman
- 45 Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4H7, Canada
- 16 <u>5-6</u> Faculty of Medicine, University of Southampton, UK
- 17 6-7 West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust,
- 18 Mindelsohn Way, Birmingham, B15 2TG, UK
- 19 7-8 Department of Ophthalmology, Sultan Qaboos University Hospital, Sultanate of Oman
- 20 8-9 Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital,
- 21 Sultanate of Oman
- 22 9-10 Department of Pediatrics, Sameal Hospital, Ministry of Health, Sultanate of Oman
- 23 10-11 SLING, Life Sciences Institute, National University of Singapore, Singapore

25	12 Department of Pediatries, Sultan Qaboos University Hospital, Sultanate of Oman	
26	13 Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Medical	
27	School, Singapore	
28	*These authors contributed equally to this work.	
29		
30	Correspondence to: Professor Andrew H. Crosby,	
31	Medical Research (Level 4),	
32	RILD Wellcome Wolfson Centre,	
33	Royal Devon & Exeter NHS Foundation Trust,	
34	Barrack Road, Exeter, EX2 5DW, UK.	
35	E-mail: A.H.Crosby@exeter.ac.uk	
36		
37	Correspondence to: Dr Emma L. Baple,	
38	Medical Research (Level 4),	
39	RILD Wellcome Wolfson Centre,	
40	Royal Devon & Exeter NHS Foundation Trust,	
41	Barrack Road, Exeter, EX2 5DW, UK.	
42	E-mail: E.Baple@exeter.ac.uk	
43		
44	Running title	
45	EPT1 mutation in a new disorder of phospholipid biosynthesis	Formatted: Font: Times New Roman, 12 pt

11-12 Department of Biochemistry, National University of Singapore, Singapore

Abstract

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

70

Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neurone disorders characterised by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene, responsible for the final step in Kennedy pathway forming phosphatidylethanolamine (PE) from CDP-ethanolamine. PE is a glycerophospholipid that, together with phosphatidylcholine (PC), constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in PE synthesis. Additionally, due to CNS inaccessibility we undertook quantification of PE levels and species in patient and control blood samples as an indication of liver PE biosynthesis. Although this revealed alteration to levels of specific PE fatty acyl species in patients, overall PE levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function.

Keywords

- 68 EPT1 mutation; Kennedy pathway; phospholipid biosynthesis; hereditary spastic paraplegia;
- 69 whole exome sequencing

Abbreviations

71

72 AUC = Area under the curve; CDP-ethanolamine = cytidine diphosphate ethanolamine; CEPT1 = choline/ethanolamine phosphotransferase 1; CK = choline kinase; CPT = choline 73 phosphotransferase; CT = phosphocholine cytidylyltransferase; DAG = diacylglycerol; EK = 74 ehtanolamine kinase; EPT1 = ethanolaminephosphotransferase 1; ET = phosphoethanolamine 75 cytidylyltransferase; Etn = Ethanolamine; ExAC = Exome Aggregation Consortium; HSP = 76 hereditary spastic paraplegia; LPEAT = lyso-PE acyltransferase; PC = phosphatidylcholine; PE = 77 phosphatidylethanolamine; PSD = phosphatidyl serine decarboxylase; PSS = phophatidyl serine 78 synthase; RCDP = rhizomelic chondrodysplasia punctata 79

Introduction

Hereditary spastic paraplegia (HSP) encompasses a highly heterogeneous group of disorders characterised clinically by features of upper motor neurone lesion including spasticity, weakness, increased tendon reflexes and upward going plantar reflexes, the term complex HSP is used when these features are associated with other neurological or non-neurological features (Finsterer *et al.*, 2012; Fink, 2013; Lo Giudice *et al.*, 2014; Noreau *et al.*, 2014). Many genes have been implicated in the pathology of HSP, encoding molecules with diverse functional roles (Lo Giudice *et al.*, 2014; Noreau *et al.*, 2014), including a number of genes involved in lipid metabolism (*CYP7B1*, *CYP2U1*, *DDHD1*, *DDHD2*, *BSCL2*, *ERLIN2*, *FA2H* and *NTE*) (Windpassinger *et al.*, 2004; Rainier *et al.*, 2008; Goizet *et al.*, 2009; Alazami *et al.*, 2011; Schuurs-Hoeijmakers *et al.*, 2012; Tesson *et al.*, 2012; Cao *et al.*, 2013; Gonzalez *et al.*, 2013). Here, we investigated four individuals from a single consanguineous Omani family aged between 19 months and 15 years (Fig. 1A) that presented with an unusual neurodegerative condition best categorised clinically as a complex form of HSP with brain white matter involvement.

Materials and methods 96 Standard protocol approvals, registrations, and patient consents 97 Informed consent was obtained from participating individuals or their legal guardians and research 98 was performed according to institutional, national and international human subject research 99 guidelines. 100 101 Genetic studies 102 Genomic DNA samples were extracted from peripheral blood following standard protocols. 103 104 Genome wide genotyping was carried out using Illumina HumanCytoSNP-12 v2.1SNP arrays. 105 Data output was visualised in Illumina's GenomeStudio software. Multipoint linkage analysis was performed assuming a recessive mode of inheritance, full penetrance, and a disease allele 106 107 frequency of 0.0001 using SimWalk2 (Sobel and Lange, 1996). Whole exome sequencing was performed by Otogenetics Corp. using the SureSelect Human All 108 109 Exon V4 (Agilent Technologies) exome enrichment kit on an Illumina HiSeq2000. Reads were analysed on the DNAnexus (Mountain View, CA) platform for exome coverage, SNP/InDel 110 variant calling and quality filtering. The exome sequencing produced 21,907,356 mapped 100bp 111 paired-end reads, matching 95.92% of targeted sequences adequately covered for variant calling 112 (>10x coverage; mean depth, 38.4x). 113 The identified putative mutations were validated by PCR amplification followed by di-deoxy 114 sequence analysis (Applied Biosystems 3130 DNA Sequencer, Life Technologies, San Francisco). 115 Primer design to amplify the coding exon 5 of EPT1 gene was done using Primer3 online tool 116

(Rozen and Skaletsky, 2000). Primer sequences specificity was verified by using the UCSC In-

Silico PCR tool and their sequences were screened to exclude common single nucleotide polymorphisms.

Expression of human EPT1 in yeast

Open reading frames encoding full length wild type human EPT1, and the c.335G>C (p.Arg112Pro) mutated allele identified in patients, were subcloned into the Saccharomyces cerevisiae expression vector p416-GPD with a 3' extension encoding Myc and DDK tags allowing for constitutive expression from the GPD1 promoter. The TGA codon encoding selenocysteine at amino acid 387 of EPT1 was changed to a cysteine encoding TGT codon by site directed mutagenesis. Plasmids bearing the wild type and the mutant allele of human EPT1 were transformed into the yeast strain HJ091 ($ept1-1 \ cpt1::LEU2$) which is devoid of endogenous ethanolaminephosphotransferase activity (Henneberry and McMaster, 1999; Henneberry $et \ al.$, 2000). Yeast cells containing the EPT1 expression plasmids were grown to mid-log phase and whole cell extracts were prepared and fractionated into soluble and membranous fractions by centrifugation at $100,000 \times g$ for 1 hour. Western blots using anti-DDK antibodies were performed to determine EPT1 protein expression, with Pgk1 (cytosolic fraction) and Dpm1 (membrane fraction) used as loading controls.

In vivo phospholipid radiolabelling

Yeast cells were grown to mid log phase in 10mL of synthetic defined medium. Cells were pelleted, washed with synthetic define medium without ammonium sulfate and re-suspended in 4mL of the same medium containing [14 C]ethanolamine (3 μ M, 244,000 dpm/nmol). Cells were cultivated for 1 hr at 30°C. At the end of the radiolabelling period cells were harvested, washed

with ice-cold water and processed for lipid extraction. Briefly, cells were re-suspended in 1mL of CHCl₃/CH₃OH (1:1) and disrupted by bead beating for 1 min at 4°C. The beads were washed with 1mL of CHCl₃/CH₃OH (2:1), and 1.5mL of H₂O and 1mL of CHCl₃/CH₃OH (5:1) were added to the combined supernatant to facilitate phase separation. Phospholipids in the organic phase were analysed by thin layer chromatography on Whatman Silica Gel 60A plates using the solvent system CHCl₃/CH₃OH/H₂O/CH₃COOH (70/30/2/2). Plates were scanned with a BioScan radiolabel imaging scanner, and the bands corresponding to phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were scraped into vials for liquid scintillation counting (Henneberry and McMaster, 1999). Lipid phosphorous was determined as described by Ames and Dubin (Ames and Dubin, 1960). Data represent the mean ± SE of three independent determinations.

Lipidomic analysis of blood samples

Whole blood from the four affected individuals and their parents (carriers) as well as from five controls was taken for blood phospholipid measurements. Lipid extraction was performed using a modified Bligh and Dyer extraction (Bligh and Dyer, 1959). Briefly, 10μL of blood was transferred into weighed 2.0mL Eppendorf tubes. 180μL of chilled chloroform/methanol (1:2; v/v) containing internal standards was added. Incubate was vortexed to mix (15 sec) with agitation on a thermo mixer (400rpm) at 4°C in the dark for 1 hour (single phase). 60μL chilled chloroform and 50μL chilled MQ water was added. It was then vortexed to mix (15 sec) and centrifuged at 10,000rpm for 7 minutes to separate the phases. Lower organic phase was transferred into clean 2.0 mL microfuge tube (first organic extract). The first organic extract was centrifuged in a vacuum concentrator (SpeedVac) for 10 minutes. The remaining aqueous phase was re-extracted using 100μL of chilled chloroform. It was then vortexed to mix (15 sec), and centrifuged at 10,000rpm

for 7 minutes to separate the phases. Lower organic phase was transferred into the first organic extract. The pooled organic extract was dried in a vacuum concentrator (SpeedVac). The lipid extract was re-suspended with 200µL of chilled chloroform/methanol (1:2; v/v). It was then stored at -80°C until mass spectrometry analysis. For LC/MS analysis, 20µl aliquots of samples were added into glass vials with glass inserts. QC sample is made by pooling $10\mu l$ of each sample together. The sample injection volume was $2\mu L$. Lipids were separated using gradient elution. Mobile phase A: 40% Acetonitrile / 60% 10mM ammonium formate in H₂O; mobile phase B: 90% isopropanol / 10% 10mM ammonium formate in H₂O. Column: Agilent Zorbax Eclipse plus C18, length: 50mm, internal diameter: 4.6mm, particle size: 1.8µm. Column temperature: 40°C. The flow rate was 0.4mL/min and the gradient as follows: initial: 20% B, increase to 60% B in 2 minutes, increase to 100% B in 5 minutes, stay at 100% B for 2 minutes, decrease to 20% B in 0.01 minutes, keep at 20% B until end of run (10.8 minutes). Samples were randomised using excel for injection into LC/MS instrument and the QC sample was injected after every six samples. To avoid carry over, every QC injection was followed by a blank injection. This injection sequence was repeated thrice (technical triplicates). Quantification data was extracted using Agilent MassHunter Quantitative Analysis (QQQ) software. The data were manually curated to ensure that the software integrated the correct peaks. Area under the curve (AUC) of lipids were normalised to AUC of internal standards.

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

Results

185

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

186 Clinical studies

Four children from an extended Omani pedigree aged between 19 months and 15 years and affected by a complex neurodegenerative phenotype. The affected individuals presented in infancy/early childhood with delayed gross motor development, progressive spastic paraperesis and gradual decline in motor function. The oldest affected individual has evidence of upper limb involvement. All affected individuals also manifest an apparently non progressive mild intellectual impairment. A delay in language acquisition was universal, with dysathria becoming more noticeable with advancing age. Neuroimaging in all four individuals revealed increased T2 intensity signal in the periventricular white matter. The oldest affected child had neurophysiological evidence of a demyelinating peripheral neuropathy, however upper motor neurone signs predominate over any clinical manifestations of this. Associated variable features included microcephaly, seizure activity and bifid uvula with or without cleft palate. Generalised retinal pigment epithelium level pigmentary disturbance was seen in two of the children, Full-Field Electroretinography, performed in one of these children was consistent with cone-rod dysfunction. Therefore, a clinical diagnosis of complicated hereditary spastic paraplegia had been assigned to these families, although there are additional features present in some individuals that provide evidence of a broader phenotype associated with disturbance of the Kennedy pathway phospholipid cascade (see Table 1).

203204

205

206

207

Genetic studies

In order to determine the genomic location of the gene responsible, we undertook genome-wide

SNP genotyping of DNA extracted from blood from family members assuming, autosomal

recessive inheritance and that a founder mutation was responsible. This identified a single notable autozygous region of 21.75Mb on chromosome 2p, delimited by markers rs4669407 and rs207423 (Fig. 1A and Supplementary Fig. 1), likely to correspond to the disease locus. To identify the causative mutation, we performed whole exome sequencing on an affected family member (V:1). After filtering the identified variants for call quality, potential pathogenicity, population frequency (0.01%) and localisation within the candidate interval a single sequence variant located within the disease locus was identified, in ethanolaminephosphotransferase 1 (*EPT1*;NM_033505.2; chr2:26,373,391G>C; c.335G>C; p.Arg112Pro; Fig. 1B). The variant affects a stringently conserved arginine residue (p.Arg112Pro; Fig. 1C), which is predicted to be damaging by *in silico* analysis (PolyPhen-2 (Majava *et al.*, 2007) and PROVEAN (Choi *et al.*, 2012)), and was found to co-segregate in the family as appropriate for an autosomal recessive condition (Fig. 1A), is not present in online genomic variant databases (1000 Genomes, Exome Variant Server, and Exome Aggregation Consortium (ExAC) and was also absent in 100 regional Omani controls.

Expression of human EPT1 in yeast

In order to determine the likely pathogenicity of the variant, we next investigated the effect of the p.Arg112Pro mutation on EPT1 activity. *EPT1* encodes a CDP-ethanolamine specific enzyme that catalyses the final step in the synthesis of PE via the Kennedy pathway (Fig. 2A) (Horibata and Hirabayashi, 2007). EPT1 belongs to a superfamily of integral membrane phospholipid synthesising enzymes that catalyse displacement of CMP from a CDP-alcohol by a second alcohol with formation of a phosphodiester bond to synthesize a phospholipid. This family of enzymes contains a highly conserved catalytic motif, the CDP-alcohol phosphotransferase motif $\mathbf{DG}(\mathbf{X}_2)\mathbf{AR}(\mathbf{X}_8)\mathbf{G}(\mathbf{X}_3)\mathbf{D}(\mathbf{X}_3)\mathbf{D}$ (Williams and McMaster, 1998), which for EPT1 is found between

amino acid residues 107-129 (107DGKQAR112RTNSSTPLGELFDHGLD129). As the sequence alteration described here affects the highly conserved arginine residue (p.Arg112Pro) within this CDP-alcohol phosphotransferase motif, we examined whether the alteration affects EPT1 catalytic activity. In order to determine this, human EPT1 and mutant EPT1 Arg112Pro were expressed from a constitutive promoter in a S. cerevisiae strain devoid of endogenous ethanolaminephosphotransferase activity, and their capacity to synthesize PE was determined by metabolic labelling studies. Western blots demonstrated that both human EPT1 alleles were expressed in yeast at comparable levels indicating that protein stability was not affected, were associated with the membrane fraction as would be expected for an integral membrane protein, and exhibited their projected molecular weight of 46 kDa (Fig. 2B).

241

242

243

244

245

246

247

248

249

250

251

252

253

231

232

233

234

235

236

237

238

239

240

In vivo phospholipid radiolabelling

We next determined the capacity of human EPT1 and mutant EPT1^{Arg112Pro} to synthesize PE *in vivo*. To do so, the level of radiolabelled ethanolamine incorporated into phospholipid was determined as described previously (Henneberry and McMaster, 1999). Radiolabelled ethanolamine is incorporated into PE by the CDP-ethanolamine pathway, in yeast the PE synthesised by this pathway can be converted to phosphatidylcholine (PC) by PE methyltransferases (Kodaki and Yamashita, 1987; Henry *et al.*, 2012). Thus, the total radiolabel present in the PE plus PC fraction is indicative of the total activity of the ethanolaminephosphotransferase enzyme present. The amount of radiolabelled ethanolamine incorporated into phospholipid for mutant EPT1^{Arg112Pro} was dramatically diminished, being only 3% that of wild type EPT1 (Fig. 2C). Consistent with this, previous enzyme activity studies of yeast Cpt1 determined that amino acid substitutions at this residue also result in significant

decrease in enzyme activity (Williams and McMaster, 1998). Thus, there is a substantive reduction in EPT1 activity due to mutation of p.Arg112 to Pro, consistent with a loss-of-function mutation.

Lipidomic analysis of blood samples

As we were unable to directly quantify PE levels in brain of affected individuals, and as brain does not efflux PE into the blood, we investigated the amount of PE in blood using mass spectrometry as an indicator for liver EPT1 activity. While there were notable increases in certain individual PE species in patients (e.g. PE36:2, PE36:4 and PE38:5; Supplementary Fig. 2A), there was no significant difference in levels of total PE (Supplementary Fig. 2B), PC, LPC or PS (not shown) compared with controls. Given the variation in other individual species between patients, controls and parental carriers, we are not able to determine definitively whether changes to individual biochemical species reflect abnormal biosynthesis as a result of the EPT1 mutation, or coincidental natural variation. Thus while we are unable to assess the outcome of the EPT1 mutation in brain, these findings indicate that in blood a substantive decrease in EPT1 activity does not affect overall

PE levels in blood.

Discussion

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

Glycerophospholipids are the primary lipid species of eukaryotic cell membranes, of which the major classes include phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (Gibellini and Smith, 2010). PE is normally the second most abundant phospholipid in eukaryotic membranes after PC, constituting 25-45% of phospholipid content (Vance and Tasseva, 2013). PE provides vital structural support to cellular membranes, sustains the function of intrinsic membrane proteins, and is involved in anti-inflammatory, proapoptotic, autophagic, and cell surface attachment functions (Menon et al., 1993; Momchilova and Markovska, 1999; Ichimura et al., 2000; Okamoto et al., 2004; Raetz et al., 2007; Braverman and Moser, 2012; Rockenfeller et al., 2015). PE also plays an integral role in membrane architecture via its unique biophysical properties that are essential for key cell division and membrane fusion processes (Mileykovskaya and Dowhan, 2005; Signorell et al., 2009). These properties are conferred by the shape of PE and its ability to form reverse non-lamellar structures. The Kennedy pathway is the main biosynthetic route for PE in most mammalian cells including the brain (Zelinski and Choy, 1982; Tijburg et al., 1989; Arthur and Page, 1991). The final step of this Kennedy pathway transfers phosphoethanolamine from CDP-ethanolamine to a lipid anchor such as DAG, and is catalysed by two known enzymes; EPT1 and CEPT1 (Henneberry and McMaster, 1999; Henneberry et al., 2002; Wright and McMaster, 2002; Schuiki and Daum, 2009). Here we identify autosomal recessive p.Arg112Pro alteration of EPT1 in patients with a complex form of HSP. Our enzyme activity studies show a markedly deleterious effect of the substitution on EPT1 catalytic activity. This may be predicted to lead to altered PE fatty acyl Kennedy pathway content and/or synthesis, and the potentially significant alterations to some PE species detected in blood of patients may be consistent with this. Notably, we detected no clear alteration in overall

PE content in blood. This may be explained by compensatory activity of CEPT that synthesises PE from the same biochemical source (CDP-ethanolamine), or by the synthesis of PE from PS, either of which may potentially mask changes in specific species PE levels arising due to EPT1 mutation. Thus despite the apparent normalisation of total PE levels in blood, potential differences with respect to PE level in the central nervous system which could not be assessed in this study, or the abnormalities that we detected in levels of specific PE species in blood, seem likely to account for the clinical features associated with EPT1 mutation. Consistent with this, there is some clinical overlap between the affected individuals described here with those of PE plasmalogen deficiency disorders such as rhizomelic chondrodysplasia punctata (RCDP), a condition characterised by skeletal abnormalities. While there are significant clinical differences between these disorders, cleft palate, spasticity and neuroimaging findings consistent with hypomyelination are features of both conditions, which may be indicative of a common outcome on developmental pathways and neuromorphogenesis due to aberrant PE biosynthesis and reduced levels of plasmalogens, substantial components of myelin. Taken together, our findings provide new and important insight into the biological role of the Kennedy pathway in mammalian development and neurological function, and document the first human disorder arising due to Kennedy pathway dysfunction.

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

311	Acknowledgements
312	The authors would like to thank the family described herein for participating in our study. The
313	study was supported by the Medical Research Council (G1002279, G1001931), Newlife
314	Foundation for Disabled Children, The Research Council-Oman Grant # ORG-SQU-HSS-09-016,
315	the National University of Singapore via the Life Sciences Institute (LSI, to M.R.W.), the National
316	Research Foundation (NRFI2015-05, to M.R.W.), the Agency for Science, Technology and
317	Research (A*Star) via a BMRC-SERC joint grant (BMRC-SERC 112 148 0006, to M.R.W.), the
318	Singapore Ministry of Health's National Medical Research Council (CBRG/069/2014,to D.L.S.),
319	and the Singapore Ministry of Education's (Tier2 grant MOE2014-T2-2-018, to D.L.S.).
320	
321	Web resources
322	BWA (http://bio-bwa.sourceforge.net)
323	SAMTools (http://samtools.sourceforge.net/)
324	UCSC Genome Browser (http://genome.ucsc.edu/)
325	NHLBI Exome Sequencing Project Exome Variant Server (http://evs.gs.washington.edu/EVS/)
326	Complete Genomics 69 Genomes Data (http://www.completegenomics.com/public-data/69-
327	Genomes/)
328	PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)
329	$PROVEAN~(\underline{\textbf{Pro}} tein~\underline{\textbf{V}} ariation~\underline{\textbf{E}} ffect~\underline{\textbf{An}} alyzer)~(http://provean.jcvi.org/index.php)$
330	dbSNP (http://www.ncbi.nlm.nih.gov/SNP/)
331	1000 Genomes Project (http://www.1000genomes.org/)
332	GATK (http://www.broadinstitute.org/gatk/)
333	Dindel (https://www.sanger.ac.uk/resources/software/dindel/)

- 334 SNP Effect Predictor (http://www.ensembl.org/info/docs/tools/vep/index.html)
- 335 Exome Aggregation Consortium (ExAC) Browser (http://exac.broadinstitute.org/)

Table 1: Clinical features of patients

Male Male Male Male Female		V:1	V:5	V:6	V:7
Height (SDS/cm) -3.23 (51.0) -1.69 (51.0) -2.97 (108) -2.17 (88.3) -1.93 (76.2) Development: Gross motor A few independent steps, gradual decline in motor function function motor function function function function function motor function	Age at time of assessment (yrs)	15.06	7.28	3.12	1.60
Height (SDS/cm) -2.24 (149.5) -2.27 (108) -2.27 (108) -2.27 (183.3) -1.93 (76.2) Development: Gross motor A few independent steps, gradual decline in motor function Dysarthric nasal speech Short sentences Dysarthric nasal speech Dysarthric nasal speech Short sentences Dysarthric nasal speech Dysarthric n	Sex	Male	Male	Male	Female
Cruises furniture, gradual decline in motor function Dysarthric nasal speech Short sentences S	Head circumference (SDS/cm)	-3.23 (51.0)	-1.69 (51.0)	- 2.03 (48.7)	-3.55 (44.0)
Gross motor A few independent steps, gradual decline in motor function Dysarthric nasts speech A few single words Babbling Trulectual disability Mild Mild Mild Mild Neurology: Upper limb Spanicity Lower limb Spanicity High intensity signal in the periventricular trigonal area with atrophy in surrounding white matter Brain MRI Motor conduction study of median/ulnar and common peroneal nerves - normal CMAP parameters (amplitude, latency, Fresponses and conduction velocity). Median/ulnar and stynal nerve sensory study - normal Posterior tibial CMAP amplitude – severely reduced and dispersed, borderline decline in conduction velocity. (age 11 years) Ophthalmic phenotype: Reduced visual acuity No refractive error No further phenotyping Reduced visual acuity No refractive error No further phenotyping A few single words Babbling Cruises furniture Crawing A few single words Babbling Cruises furniture Crawing A few single words Babbling A few single words Babbling A few single words Babbling Cruises furniture Crawing Babbling A few single words A few single words Babbling A few single words A few single words A few single words Babbling A few single words A few single words Babbling A few single words A few single words Babbling A few single words A few single words Babbling A few single words A few single	Height (SDS/cm)	-2.24 (149.5)	-2.97 (108)	-2.17 (88.3)	-1.93 (76.2
Poserch (short motor function (short mast speech short sentences) Dysarthric mast speech (short sentences) Dysar	Development:				
Intellectual disability Mild	Gross motor			Cruises furniture	Crawling
Variable	Speech	Dysarthric nasal speech		A few single words	Babbling
Upper llimb Spasificity Lower limb Spasificity Spasificity Lower limb Spasificity Spasificity Lower limb Spasificity Lower limb Spasificity Spasificity Lower limb Lower li	Intellectual disability	Mild	Mild	Mild	
Lower limb Spasticity	Neurology:				
Physicide Phys	1 2	✓	х	х	х
High intensity signal in the periventricular trigonal area with atrophy in surrounding white matter and along optic radiation Nerve Conduction Studies Motor conduction study of mediar/ulnar and common peroneal nerves – normal CMAP parameters (amplitude, latency, Fresponses and conduction velocity). Median/ulnar and sural nerve sensory study – normal Posterior tibial CMAP amplitude – severely reduced and dispersed, borderline decline in conduction velocity. (age 11 years) Photophobic Reduced visual acuity No refractive error No further phenotyping No refractive error No further phenotyping High intensity signal in the periventricular and subcortical white matter and along optic radiation Increased T2 signal intensity in the periventricular white matter Borderline prolongation of the median nerve motor latencies, otherwise normal (age 3 years) Normal (age 5 years) Photophobic Reduced visual acuity Mild hyperopic astigmatism Mild retiral vessel tortuosity Generalised RPE level pigmentary disturbance Normal anterior segment fIERG findings of Cone-rold dysfunction. No further phenotyping Mild retiral vessel tortuosity Dull macular refex No further phenotyping Age appropriate visual behaviour Normal refraction Normal anterior segment RPE pigmentary disturbance No further phenotyping Mild representation Age appropriate visual behaviour Normal anterior segment RPE pigmentary disturbance No further phenotyping Mild representation Mild representation Mild representation Mild phyeropic astigmatism Mild retiral vessel tortuosity Dull macular refex No further phenotyping	Spasticity Hyperreflexia Ankle clonus	* * *	✓ ✓ ✓	√ X	* * *
Motor conduction study of median/ulnar and common peroneal nerves – normal CMAP parameters (amplitude, latency, F-responses and conduction velocity). Median/ulnar and sural nerve sensory study – normal Posterior tibial CMAP amplitude – severely reduced and dispersed, borderline decline in conduction velocity. (age 11 years) Photophobic Reduced visual acuity Mild hyperopic astigmatism Mild retinal vessel tortuosity Generalised RPE level pigmentary disturbance Dull macular reflex Normal anterior segment ffERG findings of Cone-rod dysfunction. No further phenotyping Motor conduction study of median/ulnar and common peroneal nerves – normal CMAP amplitude – severely responses and conduction velocity. Median/ulnar and sural nerves – normal CMAP amplitude – severely responses and conduction velocity. Mormal (age 5 years) Photophobic Reduced visual acuity Mild hyperopic astigmatism Mild retinal vessel tortuosity Generalised RPE level pigmentary disturbance Normal anterior segment RPE pigmentary disturbance No further phenotyping Mild retinal vessel tortuosity On further phenotyping Age appropriate visual behaviour Normal anterior segment RPE pigmentary disturbance No further phenotyping		trigonal area with atrophy in surrounding	periventricular and subcortical white matter		periventricular region more pronounced
Reduced visual acuity Ophthalmic phenotype: No refractive error No further phenotyping No further phenotyping Reduced visual acuity Mild retinal vessel tortuosity Generalised RPE level pigmentary disturbance Dull macular reflex Normal anterior segment Normal anterior segment Normal anterior segment FERG findings of Cone-rodd dysfunction. No further phenotyping Reduced visual acuity Mild retinal vessel tortuosity Normal anterior segment RPE pigmentary disturbance RPE pigmentary disturbance No further phenotyping No further phenotyping No further phenotyping	Nerve Conduction Studies	Motor conduction study of median/ulnar and common peroneal nerves – normal CMAP parameters (amplitude, latency, F- responses and conduction velocity). Median/ulnar and sural nerve sensory study - normal Posterior tibial CMAP amplitude – severely reduced and dispersed, borderline decline		nerve motor latencies, otherwise normal	
	Ophthalmic phenotype:	No refractive error	Reduced visual acuity Mild hyperopic astigmatism Mild retinal vessel tortuosity Generalised RPE level pigmentary disturbance Dull macular reflex Normal anterior segment ffERG findings of Cone-rod dysfunction.	Normal refraction Normal anterior segment RPE pigmentary disturbance	Mild hyperopic astigmatism Mild retinal vessel tortuosity Dull macular reflex
	Cleft palate/bifid uvula:	Bifid uvula, cleft palate		High arched palate	Bifid uvula

Abbreviations; SDS, standard deviation scores; ('), indicates presence of a feature in an affected subject; (-), indicates presence of a feature in an affected subject. Height, weight and OFC Z-scores were calculated using a Microsoft Excel add-in to access growth references based on the LMS method ¹ using a reference European population ²

Supplementary References:
1. Pan H, Cole TJ. LMS growth, a Microsoft Excel add-in to access growth references based on the LMS method. Version 2.77, http://www.healthforallchildren.co.uk/2012
2. Cole TJ, Freeman JV, Preece MA: British 1990 growth reference centiles for weight, height, body mass index and head circum ference fitted by maximum penalized likelihood. Stat Med 1998, 17(4):407–429

Figure Legends

Figure 1 Genetic and clinical summary of the pedigree investigated (A) The Omani pedigree with a pictorial representation of the homozygous SNP genotypes across the critical interval (red hashed box) with 'A' and 'B' genotypes indicated by blue and yellow bars. *EPT1* genotypes shown in red ('+' indicates presence of c.335G>C alteration, '-' indicates wild type). (B) Sequence electropherograms showing the DNA encompassing the *EPT1* c.335G>C alteration. (C) Species alignment of EPT1 amino acids encompassing the altered p.Arg112 residue showing stringent conservation within the CDP catalytic motif. (D-G) Clinical features of affected individuals. (D) Photograph of V:1 showing bifid uvula. (E) Retinal photograph from the right eye of individual V:5 showing: mild retinal vessel tortuosity, a dull macular reflex and a mild RPE level pigmentary disturbance most noticeable inferiorly. (F-G) Brain MRI scan of V:6 reveals bilateral symmetrical periventricular hyperintensity in the trigon, frontal subcortical white matter and U fibre. All 4 children displayed similar MRI findings.

Figure 2 Outcomes of the p.Arg112Pro EPT1 sequence alteration Yeast cells devoid of endogenous ethanolaminephosphotransferase activity were transformed with plasmids bearing wild type human EPT1 (hEPT1) or EPT1 containing the p.Arg112Pro mutation (hEPT1*) each tagged with a DDK epitope. (A) Schematic representation of the CDP-ethanolamine branch of Kennedy pathway showing the role of EPT1 in PE formation. Etn; ethanolamine, EK; ehtanolamine kinase, ET; phosphoethanolamine cytidylyltransferase, CK; choline kinase, CT; phosphocholine cytidylyltransferase, LPEAT; lyso-PE acyltransferase, PSS; phophatidyl serine synthase, PSD; phosphatidyl serine decarboxylase, CPT; choline phosphotransferase. (B) Western blot versus whole cell extracts (WCE) which were fractionated into soluble (S100) and membrane

(P100) fractions were probed using anti-DDK antibodies. Pgk1 and Dpm1 are soluble and membrane fraction loading and fractionation purification controls, respectively. EV; empty vector control. (C) Mid-log phase cells were radiolabelled with [14C]ethanolamine for 1 hour. As a positive control yeast strain HJ001 (cpt1::LEU2) transformed with an empty vector was also radiolabelled; this strain possess the wild type genomic allele of yeast EPT1 (yEPT1). Cells were processed for lipid extraction and the radioactivity associated with (PE) and (PC) was determined.

372 373	References
374	Alazami AM, Adly N, Al Dhalaan H, Alkuraya FS. A nullimorphic ERLIN2 mutation defines a
375	complicated hereditary spastic paraplegia locus (SPG18). Neurogenetics 2011; 12(4): 333-6.
376	Ames BN, Dubin DT. The role of polyamines in the neutralization of bacteriophage
377	deoxyribonucleic acid. J Biol Chem 1960; 235: 769-75.
378	Arthur G, Page L. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the
379	CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver. Biochem J 1991;
380	273(Pt 1): 121-5.
381	Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem
382	Physiol 1959; 37(8): 911-7.
383	Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim
384	Biophys Acta 2012; 1822(9): 1442-52.
385	Cao L, Huang XJ, Chen CJ, Chen SD. A rare family with Hereditary Spastic Paraplegia Type 35
386	due to novel FA2H mutations: a case report with literature review. Journal of the neurological
387	sciences 2013; 329(1-2): 1-5.
388	Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid
389	substitutions and indels. PLoS One 2012; 7(10): e46688.
390	Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular
391	mechanisms. Acta Neuropathol 2013; 126(3): 307-28.

Finsterer J, Loscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary 392 spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of 393 inheritance. Journal of the neurological sciences 2012; 318(1-2): 1-18. 394 Gibellini F, Smith TK. The Kennedy pathway--De novo synthesis of phosphatidylethanolamine 395 and phosphatidylcholine. IUBMB Life 2010; 62(6): 414-28. 396 Goizet C, Boukhris A, Durr A, Beetz C, Truchetto J, Tesson C, et al. CYP7B1 mutations in pure 397 and complex forms of hereditary spastic paraplegia type 5. Brain 2009; 132(Pt 6): 1589-600. 398 399 Gonzalez M, Nampoothiri S, Kornblum C, Oteyza AC, Walter J, Konidari I, et al. Mutations in phospholipase DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54). Eur J 400 Hum Genet 2013; 21(11): 1214-8. 401 402 Henneberry AL, McMaster CR. Cloning and expression of a human 403 choline/ethanolaminephosphotransferase: synthesis of phosphatidylcholine and phosphatidylethanolamine. Biochem J 1999; 339 (Pt 2): 291-8. 404 Henneberry AL, Wistow G, McMaster CR. Cloning, genomic organization, and characterization 405 of a human cholinephosphotransferase. J Biol Chem 2000; 275(38): 29808-15. 406 Henneberry AL, Wright MM, McMaster CR. The major sites of cellular phospholipid synthesis 407 and molecular determinants of Fatty Acid and lipid head group specificity. Mol Biol Cell 2002; 408 409 13(9): 3148-61.

Henry SA, Kohlwein SD, Carman GM. Metabolism and regulation of glycerolipids in the yeast

Saccharomyces cerevisiae. Genetics 2012; 190(2): 317-49.

410

- Horibata Y, Hirabayashi Y. Identification and characterization of human
- ethanolaminephosphotransferase1. J Lipid Res 2007; 48(3): 503-8.
- 414 Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like
- 415 system mediates protein lipidation. Nature 2000; 408(6811): 488-92.
- 416 Kodaki T, Yamashita S. Yeast phosphatidylethanolamine methylation pathway. Cloning and
- characterization of two distinct methyltransferase genes. J Biol Chem 1987; 262(32): 15428-35.
- 418 Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic
- 419 paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol
- 420 2014; 261: 518-39.
- 421 Majava M, Bishop PN, Hagg P, Scott PG, Rice A, Inglehearn C, et al. Novel mutations in the
- small leucine-rich repeat protein/proteoglycan (SLRP) genes in high myopia. Hum Mutat 2007;
- 423 28(4): 336-44.
- 424 Menon AK, Eppinger M, Mayor S, Schwarz RT. Phosphatidylethanolamine is the donor of the
- 425 terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. EMBO J
- 426 1993; 12(5): 1907-14.
- 427 Mileykovskaya E, Dowhan W. Role of membrane lipids in bacterial division-site selection. Curr
- 428 Opin Microbiol 2005; 8(2): 135-42.
- 429 Momchilova A, Markovska T. Phosphatidylethanolamine and phosphatidylcholine are sources of
- 430 diacylglycerol in ras-transformed NIH 3T3 fibroblasts. Int J Biochem Cell Biol 1999; 31(2): 311-
- 431 8.

- 432 Noreau A, Dion PA, Rouleau GA. Molecular aspects of hereditary spastic paraplegia. Exp Cell
- 433 Res 2014; 325(1): 18-26.
- 434 Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a
- phospholipase D generating anandamide and its congeners. J Biol Chem 2004; 279(7): 5298-305.
- 436 Raetz CR, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in gram-negative
- 437 bacteria. Annu Rev Biochem 2007; 76: 295-329.
- 438 Rainier S, Bui M, Mark E, Thomas D, Tokarz D, Ming L, et al. Neuropathy target esterase gene
- mutations cause motor neuron disease. Am J Hum Genet 2008; 82(3): 780-5.
- Rockenfeller P, Koska M, Pietrocola F, Minois N, Knittelfelder O, Sica V, et al.
- 441 Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ 2015;
- 442 22(3): 499-508.
- 443 Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers.
- 444 Methods Mol Biol 2000; 132: 365-86.
- 445 Schuiki I, Daum G. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism.
- 446 IUBMB Life 2009; 61(2): 151-62.
- 447 Schuurs-Hoeijmakers JH, Geraghty MT, Kamsteeg EJ, Ben-Salem S, de Bot ST, Nijhof B, et al.
- 448 Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of
- complex hereditary spastic paraplegia. Am J Hum Genet 2012; 91(6): 1073-81.

Signorell A, Gluenz E, Rettig J, Schneider A, Shaw MK, Gull K, et al. Perturbation of 450 phosphatidylethanolamine synthesis affects mitochondrial morphology and cell-cycle 451 progression in procyclic-form Trypanosoma brucei. Mol Microbiol 2009; 72(4): 1068-79. 452 Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location 453 scores, and marker-sharing statistics. Am J Hum Genet 1996; 58(6): 1323-37. 454 Tesson C, Nawara M, Salih MA, Rossignol R, Zaki MS, Al Balwi M, et al. Alteration of fatty-455 acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic 456 paraplegia. Am J Hum Genet 2012; 91(6): 1051-64. 457 Tijburg LB, Geelen MJ, Van Golde LM. Biosynthesis of phosphatidylethanolamine via the CDP-458 ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem Biophys Res 459 Commun 1989; 160(3): 1275-80. 460 461 Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 2013; 1831(3): 543-54. 462 Williams JG, McMaster CR. Scanning alanine mutagenesis of the CDP-alcohol 463 phosphotransferase motif of Saccharomyces cerevisiae cholinephosphotransferase. J Biol Chem 464 465 1998; 273(22): 13482-7. Windpassinger C, Auer-Grumbach M, Irobi J, Patel H, Petek E, Horl G, et al. Heterozygous 466 467 missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver 468 syndrome. Nat Genet 2004; 36(3): 271-6.

- Wright MM, McMaster CR. PC and PE synthesis: mixed micellar analysis of the
- 470 cholinephosphotransferase and ethanolaminephosphotransferase activities of human
- choline/ethanolamine phosphotransferase 1 (CEPT1). Lipids 2002; 37(7): 663-72.
- 472 Zelinski TA, Choy PC. Phosphatidylethanolamine biosynthesis in isolated hamster heart. Can J
- 473 Biochem 1982; 60(8): 817-23.