OR58 Annual Conference — Keynote Papers and Extended Abstracts
University of Portsmouth, Portsmouth, 6 — 8 September 2016
Transport and Mobility

A Conic-Programing-Based Approach for Trajectory Optimisation
of Unmanned Gliders

Walton P. Coutinho ¢, Joerg Fliege ¢, Maria Battarra

¢ University of Southampton, Department of Mathematical Sciences, Southampton, United Kingdom
b University of Bath, School of Management, Bath, United Kingdom
w.p.coutinho@soton.ac.uk, j.fliege@soton.ac.uk, m.battarra@soton.ac.uk

Abstract

In recent years, employing Unmanned Aerial Vehicles (UAV) to collect data and make
measurements has gained momentum. Often, the use of UAVs allows for a reduction in costs
and improvements of other performance criteria. Those characteristics make UAVs suitable
for disaster assessment, response and management. While the utilisation of powered UAVs
has been broadly investigated in the literature, the employment of unpowered UAVs such as
gliders has not been well explored. In fact, specialised control systems based on optimisation
must be developed in order to guide such vehicles during their operations. In this paper we
consider the problem of guiding a glider, along predetermined waypoints, in a wind field. We
propose a Conic Programming Glider Trajectory Optimisation Problem, motivated by disaster
assessment applications, and a solution framework. Some preliminary computational results
are presented at the end of this work.

Keywords: Trajectory Optimisation, Unmanned Gliders, Quadratic Programming
1. Introduction

Unmanned Aerial Vehicles (UAV), a.k.a. drones, are aircrafts that do not need a human pilot
on board. In general, these vehicles need to be controlled either by automated commands from
an embedded computer and/or by a pilot operating a remote control. Unmanned aerial systems
have been first used in special operations in which the presence of human pilots was either
infeasible or life threatening (Beard and McLain, 2012). However, the popularity of UAVs in
civil and commercial applications, e.g. in aerial reconnaissance, aerial forest fire detection,
ship tracking, hazard management, disaster assessment and response, has recently increased
(Ruzgieng et al. 2015).

The development of aerial survey systems based on powered UAVs is well advanced.
However, unpowered UAV-based systems have not been extensively investigated in the
literature. Gliders possess some advantages over other fixed-wing powered UAVs, the most
significant one is unit cost, allowing the employment of larger and more flexible fleets. By
using fleets of aerial gliders, disaster response teams would be able to quickly acquire data
that would otherwise only be possible to gather in sifu. This data would then help teams to
focus their response efforts and apply their resources more efficiently and accurately.
However, due to the absence of thrust, gliders are more difficult to control. Therefore,
trajectory optimisation for such vehicles is more challenging.

183

W. P. Coutinho et al. / OR58 Keynote Papers and Extended Abstracts, pp.183—187 (2016)

This work aims to develop a general framework for coupling glider trajectory optimisation
and routing problems in disaster assessment and response applications. We will refer to this
general concept as Glider Routing and Trajectory Optimisation Problem. In this paper, we
will focus on the trajectory optimisation aspects of the problem.

2. Glider Kinematics and Dynamics

In this section we present a linearisation of equations of motion based on Newton's second
law for the motion of the glider under a horizontal wind shear around steady-state conditions.

2.1 Glider's equations of motion

Let Y(t) = (x(t),y(t),z(t),v(t),y(t),go(t)) represent the state of the glider at time t €
[to, tr], where the first triple (x,y, z) denotes the glider's position, and the last three elements
(v,v,®) denote its velocity, relative pitch and relative yaw angles, respectively. Let also
U(t) = (CL(t),y(t)) represent the glider's controls, where the first component denotes the
lift-coefficient and the second element the relative bank-angle.

In this work, we use the set of Ordinary Differential Equations (ODEs) described in (Flanzer
2012) to model the motion of the glider. In general, these equations take the form Y (t) =
f(Y(t),U(t),t), where the LHS corresponds to the time derivative of the state variable.
Using this set of equations directly in an optimisation problem generally leads to non-convex
formulations. In addition, very good initial guesses should be provided if one intends to solve
NLP problems using a nonlinear optimisation solver (Zhao 2004). Hence, we will linearise
these equations in order to make this problem more tractable.

The glider's equations of motion can be linearised using the first order Taylor's expansion
around certain equilibrium conditions. These equilibrium conditions are defined under the
assumption that all forces acting upon the glider are summing up to zero, thus causing the
equilibrium state. After applying Taylor, we define a linear system of differential equations
that describe the movement of the glider. Assuming that the linearisation error & can be
neglected and applying Euler's method to integrate the resulting linear equations of motion,
we write this linear system in the form of Equation (1).

Let t € [to, tr] be a time interval and h = (tf - to) /T be a predefined integration time step,
where T is the number of time steps (so-called discretisation size). Let also Y; and U;
represent approximations to Y (t) and U (t)at time t. We can then replace the system of ODEs
Y(t) = f(Y(t),U(t),t) with

Yisr = (hRA+ DY, + hBU, — h(Aqu + BUeQ)’ o

where the matrices A and B represent the Jacobians of this system of ODEs with respect to
the state and control variables, respectively, and Iis the identity matrix. In this work, Equation

184

W. P. Coutinho et al. / OR58 Keynote Papers and Extended Abstracts, pp.183—187 (2016)

(1) will be used as a constraint in order to to derive a conic programming problem to optimise
the trajectory of a glider.

3. Glider Trajectory Optimisation Problem

In this section, we define a quadratic programming problem and an optimisation framework
for computing trajectories over a set of targets.

3.1 Conically constrained model

Given a set of targets to be visited V = {0, ..., n}, described by their position vector (¥, y, 2),
and a sequence S = (io,...; iq), iqg €V,q <n, we divide the trajectory into g —1 paths
according to each arc of the route S, such that in each path the distance between the glider and
the final target of this arc at the last time step dr is minimised. For each arc,a = 1,...,q — 1,
the initial conditions at that arc are set equal to the final conditions of the previous arc.

In the model described by Equations (2), given a fixed flight time At® = t}? — t§ for the arc
a, we aim to minimise the distance from the glider to the target at the final time step T. The
second term in the objective function penalises unstable solutions, i.e., solutions that present a
ringing effect (Vanderbei, 2001). The first constraint is a conic constraint that measures the
distance from the glider to the final target at time step T. The second constraint accounts for
the glider's dynamics. The set of inequalities involving ; 7, and 73, and the subsequent two
inequalities define a penalisation over solutions associated to harsh manoeuvres. The equality
constraints involving Y% and U® represent the link between subsequent arcs of a sequence.
Finally, the last four equations define the variables bounds and domains.

3.2 Flight time optimisation

Section 3.1 only considers to optimise the trajectories of the glider over a fixed time interval.
We now consider an approach for finding a minimum flight time between two targets. For
this, we use a bisection algorithm that solves in each arc a the trajectory optimisation problem
given by Equations (2) iteratively for different values of At®.

Equation (3) defines a single variable optimisation problem to minimise the flight time
between every pair of subsequent targets in a sequence S = (io,_", iq), iq €V,q <n, where
At® denotes the flight time of arc a and f(4t%) denotes the objective function value of the
problem defined by (2) at At®. The bounds on the flight time that are necessary to solve this
problem were calculated using the lower and upper bounds on the velocity of the glider and
the Euclidean distances between the targets.

185

W. P. Coutinho et al. / OR58 Keynote Papers and Extended Abstracts, pp.183—187 (2016)

mindy_; + e(my + 1y + m3)
2 2 2
sit.dd_y 2 (%, —xr1) + (9o, —vr-1) + (%, —2zr-1) Sig €V
Yes1 = (hA+ DY, + hBU; — h(AY,q + BU,,),t =0,...,T — 1
T-1
Ty = Z(CLt+1 — CLy)?
t=0

-1

Ty 2 (Hes1 — He)?

~

t=0
T—1 @)
3 2 hZZ((le + (Pt)2/4'
t=0
(CLyyy — CL)? < &t=0,...,T—1
(Mt+1—[it)2 <{,t=0,,T_1
g =Y7o]
ug = UfZ{
0<dr<d*,d,eR
Yp <Y, <Yy t=0,...,T—1
Ulb < Ut < Uub,t=0,...,T—1
Y, ERS, U, eR*t=0,...,T
rzltiglAta+f(At“),a=1,...,q—1 (3)

Finally, the total flight time of a route is then calculated as the sum of all flight times of each
arc of the given sequence.

3.3 Computational Experiments

The algorithm was coded in C++ and the tests were carried out in an Intel Core 17 with 3.40
GHz and 16 GB of RAM running under Linux Mint 17. The conic problems were solved
using CPLEX 12.4. Only a single thread was used in our experiments.

Table 1 shows the results of our approach for several random example problems. In this table,
the first column shows the name of the instance, which also specifies the number of targets.
The second column shows the resulting flight time for each instance. The last two columns
show the CPU time in seconds and the total number of iterations (total number of calls to the
optimisation solver) required to compute the whole trajectory.

186

W. P. Coutinho et al. / OR58 Keynote Papers and Extended Abstracts, pp.183—187 (2016)

Table 1 Result of experiments

Inst. Name Flight time (s) CPU (s) QP Iter.
2targets 71.541 1.409 35
3targets 127.971 2.602 29
4targets 290.154 6.221 26
6targets 323.878 8.408 30
7targets 389.301 10.572 28
8targets 454.000 13.846 25

4. Conclusion

In this paper, we present an optimisation framework based on Conic Programming to compute
trajectories for a glider over a set of sequenced targets. The equations of motion of the glider
take into account all the forces and velocities that are natural to the dynamics and kinematics
of an unpowered flight under the influence of the wind. In our algorithm, these equations
were linearised in order to make the problem more tractable. The main advantages of
linearising the equations of motion are that the trajectory optimisation can be performed by
any appropriate optimisation software and the user does not need to provide an initial guess to
the final solution. The trajectories computed by this algorithm are, in general, sub-optimal,
since the whole flight path is divided into arcs and the trajectories for each arc are computed
individually. Even though this approach only yields sub-optimal solutions, the CPU times
required to solve each instance are very promising. Promising further avenues of research
include embedding this trajectory optimisation framework into an algorithm for the Vehicle
Routing Problem, so that routes can be generated automatically from a given set of targets.

5. References

Beard R and McLain T (2012). ‘Small Unmanned Aircraft: Theory and Practice’. Princenton
Press, Princenton, NJ.

Flanzer T (2012). ‘Robust Trajectory Optimisation and Control of a Dynamic Soaring
Unmanned Aerial Vehicle.” PhD. Thesis, Stanford: Stanford University.

Ruzgiené B, Tautvydas B, Silvija G, Edita J and Vladislovas C A (2015). ‘The Surface
Modelling Based on UAV Photogrammetry and Qualitative Estimation’. Measurement
73 (September): 619-27.

Vanderbei R J (2001). ‘Case Studies in Trajectory Optimization: Trains, Planes, and Other
Pastimes’. Optimization and Engineering 2 (2): 215-43.

Zhao Y J (2004). ‘Optimal Patterns of Glider Dynamic Soaring’. Optimal Control
Applications and Methods 25 (2): 67—89. doi:10.1002/oca.739.

187

