
ODD PRIMARY HOMOTOPY TYPES OF SU(n) GAUGE GROUPS

STEPHEN THERIAULT

Abstract. Let Gk(SU(n)) be the gauge group of the principal SU(n)-bundle with second Chern

class k. If p is an odd prime and n ≤ (p − 1)2 + 1, we classify the p-local homotopy types of

Gk(SU(n)).

1. Introduction

Let G be a topological group, B be a space, and P −→ B be a principal G-bundle over B.

The gauge group G(P ) is the group of G-equivariant automorphisms of P that fix B. Crabb and

Sutherland [2] showed that, even though there may be infinitely many inequivalent principal G-

bundles over B, their gauge groups have only finitely many distinct homotopy types. However, their

argument did not give an explicit enumeration of the homotopy types. Using different methods,

Kono [15] gave an explicit enumeration in the case of gauge groups of principal SU(2)-bundles

over S4. He then asked whether this can be done more generally.

Since then there has been considerable effort to classify the homotopy types of gauge groups in

specific cases. Let G be a simply-connected, simple compact Lie group and let BG be its clas-

sifying space. The number of equivalence classes of principal G-bundles over S4 is in one-to-one

correspondence with homotopy classes of maps [S4, BG] ∼= Z, and the correspondence in the case of

G = SU(n) is given by the value of the second Chern class. Let Pk −→ S4 be the principal G-bundle

corresponding to k ∈ Z and let Gk(G) be its gauge group. For integers a and b, let (a, b) be their

greatest common divisor. Then:

• Gk(SU(2)) ' Gk′(SU(2)) if and only if (12, k) = (12, k′) [15];

• Gk(SU(3)) ' Gk′(SU(3)) if and only if (24, k) = (24, k′) [6];

• Gk(Sp(2)) '(p) Gk′(Sp(2)) if and only if (40, k) = (40, k′) [23];

• Gk(SU(5)) '(p) Gk′(SU(5)) if and only if (120, k) = (120, k′) [24];

where the homotopy equivalence in the third and fourth cases is p-local for any prime p or rational

(using p = 0 to indicate rational localization). Bounds, but not a classification, were obtained in

the case of Gk(G2) [14], and classifications involving spheres of different dimensions or non-simply-

connected Lie groups can be found in [7, 10, 13]. In all cases the fixed number in the greatest
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common divisor is the order of the Samelson product S3 ∧G 〈i,1〉−→ G, where i is the inclusion of the

bottom cell and 1 is the identity map on G.

In this paper we consider Gk(SU(n)) for any n. There is a canonical map jn : ΣCPn−1 −→ SU(n)

that induces a projection onto the generating set in cohomology. In what follows, while spaces will

be localized at a prime p, it is more illuminating to write the order of a map as an integer m rather

than the p-component of m. We prove the following.

Theorem 1.1. Localize at an odd prime p. Then:

(a) if n ≥ 2 the composite S3 ∧ ΣCPn−1 1∧jn−−→ S3 ∧ SU(n)
〈i,1〉−−→ SU(n) has order at

most n(n2 − 1);

(b) if n ≤ (p− 1)2 + 1 the composite S3 ∧ΣCPn−1 1∧jn−−→ S3 ∧ SU(n)
〈i,1〉−−→ SU(n) has

order exactly n(n2 − 1);

(c) if n ≤ (p− 1)2 + 1 the map S3 ∧ SU(n)
〈i,1〉−→ SU(n) has order n(n2 − 1);

(d) if n ≤ (p − 1)2 + 1 there is a homotopy equivalence Gk(SU(n)) ' Gk′(SU(n)) if

and only if (n(n2 − 1), k) = (n(n2 − 1), k′).

Theorem 1.1 (d) significantly improves on the known classifications of the homotopy types of

gauge groups. It is the first general result; all the previous results held for specific Lie groups G

and involved proofs that used particular properties of that Lie group. It recovers the known odd

primary information for SU(2), SU(3) and SU(5) and gives exact information in a large range of

previously unknown cases. For example, Gk(SU(4)) '(p) Gk′(SU(4)) at odd primes if and only if

(60, k) = (60, k′).

Hamanaka and Kono [6], refining a result of Sutherland [20], showed that for any n ≥ 2 the

(integral) order of 〈i, 1〉 is at least n(n2−1) by considering certain homotopy sets [X,SU(n)] where X

is a sphere or a suspension of CP 2. Theorem 1.1 (a) and (b) are much stronger reformulations of

their result at odd primes. We obtain part (a) by closely examining a map constructed by Toda [25]

to give a topological proof of Bott periodicity. The restriction to n ≤ (p−1)2 +1 in parts (b) and (c)

arises from the fact that for these n the space ΣCPn−1 “generates” SU(n) in a sense that will be

made precise in Section 5. Part (d) follows as a consequence of part (c) and other general results,

to be discussed in Section 6.

The author would like to thank the referee for making many suggestions that have improved the

exposition of the paper.

2. Gauge groups and function spaces

In this section we discuss some general results that translate the study of gauge groups into that of

function spaces, which is more suited to topological methods. This holds for any simply-connected,

simple compact Lie group G, so it is stated that way. Since [S4, BG] ∼= Z, principal G-bundles
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over S4 are classified by their second chern class, which can take any integer value. Let Pk −→ S4

be the principal G-bundle corresponding to k ∈ Z, and let Gk(G) be its gauge group. As this is a

group it has a classifying space BGk(G).

Let Map(S4, BG) and Map∗(S4, BG) respectively be the spaces of freely continuous and pointed

continuous maps between S4 and BG. The components of each space are in one-to-one correspon-

dence with the integers, where the integer is determined by the degree of a map S4 −→ BG. By [3]

or [1], there is a homotopy equivalence BGk(G) ' Mapk(S4, BG) between BGk(G) and the com-

ponent of Map(S4, BG) consisting of maps of degree k. Evaluating a map at the basepoint of S4,

we obtain a map ev : BGk(G)
ev−→ BG whose fibre is homotopy equivalent to Map∗k(S4, BG). It is

well known that each component of Map∗(S4, BG) is homotopy equivalent to Ω3
0G, the component

of Ω3G containing the basepoint. Putting all this together, for each k ∈ Z, there is a homotopy

fibration sequence

(1) G
∂k−→ Ω3

0G −→ BGk(G)
ev−→ BG

where ∂k is the fibration connecting map. In particular, the gauge group Gk(G) is the homotopy

fibre of ∂k, and it is by understanding the map ∂k that information will be deduced about Gk(G).

Note that while the components of Map∗(S4, BG) are all homotopy equivalent, the same is not

true in general of the components of Map(S4, BG). For example, in [26, 27] it was shown that there is

a homotopy equivalence Mapk(S4, BSU(2)) ' Mapk′(S
4, BSU(2)) if and only if k = ±k′. However,

many components become homotopy equivalent after looping. In the SU(2) example, Kono [15]

showed that ΩMapk(S4, BSU(2)) ' ΩMapk′(S
4, BSU(2)) (that is, Gk(SU(2)) ' Gk′(SU(2))) if and

only if (12, k) = (12, k′). This example also shows that Theorem 1.1 (d) likely cannot be upgraded

to a statement about the classifying spaces of the relevant gauge groups.

The triple adjoint of ∂k was described in [16, Theorem 2.7]. More precisely, the homotopy class

of a homotopy fibration connecting map is determined only up to self-homotopy equivalences of

its domain and range; in [16, Theorem 2.7] it was shown that choices of self-homotopy equivalences

could be made which allow for the triple adjoint of ∂k to be described in terms of Samelson products.

In fact, in [16] a four-fold adjoint is taken using the fact that G ' ΩBG, and this four-fold adjoint

is described in terms of Whitehead products. We choose for ease of presentation to use only a

three-fold adjoint, which is described in terms of a Samelson product.

Let i : S3 −→ G be the inclusion of the bottom cell and let 1 : G −→ G be the identity map. In

general, for an H-space Y , let k : Y −→ Y be the kth-power map.

Lemma 2.1. The triple adjoint of the map G
∂k−→ Ω3

0G is homotopic to the Samelson product

S3 ∧G 〈k◦i,1〉−−→ G. �

The linearity of the Samelson product implies that 〈k ◦ i, 1〉 ' k ◦ 〈i, 1〉. Taking adjoints therefore

implies the following.
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Corollary 2.2. There is a homotopy ∂k ' k ◦ ∂1. �

In what follows we will prove results about the order of ∂1 by proving them about the order

of 〈i, 1〉.

3. Properties of Toda’s map

Take cohomology with Z-coefficients. Recall that H∗(CP∞) ∼= Z[x] where x has degree 2.

Write σxi for the image of xi under the suspension isomorphism H2i(CP∞)
∼=−→ H2i+1(ΣCP∞). In

his topological proof of Bott periodicity, Toda [25] constructed a map

f : Σ3CP∞ −→ ΣCP∞

with the property that f∗(σxm) = mσ3xm−1 for m ≥ 2. Composing, we obtain a composite

g : Σ5CP∞ Σ2f−→ Σ3CP∞ f−→ ΣCP∞

with the property that g∗(σxm) = m(m− 1)σ5xm−2 for m ≥ 3.

Let

g2n+1 : Σ5CPn−2 −→ ΣCPn

be the restriction of g to (2n+ 1)-skeletons. Then skeletal inclusions give a commutative square

Σ5CPn−3
g2n−1 //

��

ΣCPn−1

��
Σ5CPn−1

g2n+3 // ΣCPn+1.

Let Xn+1 = CPn+1/CPn−1 be the stunted complex projective space. The commutativity of the

preceding square implies that there is a homotopy cofibration diagram

(2)

Σ5CPn−3
g2n−1 //

��

ΣCPn−1

��
Σ5CPn−1

g2n+3 //

��

ΣCPn+1

��
Σ5Xn−1

g2n+3 //

��

ΣXn+1

��
Σ6CPn−3

Σg2n−1// Σ2CPn−1

for some map g2n+3.

We describe some properties of Xn+1 and g2n+3. The quotient map CPn+1 −→ Xn+1 =

CPn+1/CPn−1 induces a map H∗(Xn+1) −→ H∗(CPn+1). A straightforward long exact sequence

argument immediately shows that H∗(Xn+1) ∼= Z{yn, yn+1} where yn and yn+1 are the images of xn
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and xn+1 respectively. The homotopy commutativity of the middle square in (2) and the description

of g∗ immediately imply the following.

Lemma 3.1. We have:

(a) (g2n+3)∗(σyn) = n(n− 1)σ5yn−2;

(b) (g2n+3)∗(σyn+1) = (n+ 1)nσ5yn−1. �

It is useful to identify the homotopy type of Xn+1. Observe that Xn+1 has a CW -structure

consisting of two cells, one each in dimensions 2n and 2n + 2. The structure of the Steenrod

algebra on CPn+1 (see, for example, [28, Chapter VIII, Theorem 9.2]) implies that there is a Sq2

connecting the two generators in H∗(Xn+1;Z/2Z) if and only if n is odd. Also, Sq2 detects the

stable generator ηm of πm+1(Sm) ∼= Z/2Z (see, for example, [28, Chapter VIII, Corollary 8.8]). As

the cofibre of ηm is Σm−2CP 2, we obtain the following.

Lemma 3.2. The following hold:

(a) if n is odd then Xn+1 ' Σ2n−2CP 2;

(b) if n is even then Xn+1 ' S2n ∨ S2n+2. �

At this point we localize at an odd prime p; the explanation as to why this is done will be

deferred to Remark 4.5. At odd primes, the map ηm generating the stable group πm+1(Sm) ∼= Z/2Z

is null homotopic. Thus Σm−2CP 2 ' Sm ∨ Sm+2 for m ≥ 3. Consequently, Lemma 3.2 implies the

following.

Corollary 3.3. Localize at an odd prime p. Then Xn+1 ' S2n ∨ S2n+2. �

By Corollary 3.3, the map Σ5Xn−1
g2n+3−−→ ΣXn+1 is a self-map of S2n+1 ∨ S2n+3. This lets us

determine the homotopy class of g2n+3. In general, suppose that there is a map h : Sm ∨ Sm+2 −→

Sm ∨ Sm+2 where m ≥ 3. Let h1 and h2 be the restrictions of h to Sm and Sm+2 respectively. The

map h1 : Sm −→ Sm ∨ Sm+2 is determined by pinching to Sm and Sm+2. The pinch map to Sm

is a map of some degree, say d1, and the pinch to Sm+2 is null homotopic for dimensional reasons.

Thus h1 ' d1 + ∗. Since m ≥ 2, the Hilton-Milnor Theorem implies that πm+2(Sm ∨ Sm+2) ∼=

πm+2(Sm) ⊕ πm+2(Sm+2). Therefore, the map h2 : Sm+2 −→ Sm ∨ Sm+2 is also determined by

pinching it to Sm and Sm+2. The pinch map to Sm is an element of πm+2(Sm) ∼= 0 (at odd primes)

and the pinch map to Sm+2 is a map of some degree, say d2. Therefore h2 ' ∗+d2. Thus h ' d1∨d2.

In particular, the homotopy class of h is determined by the map it induces in cohomology. Hence,

from Lemma 3.1 we immediately obtain the following.

Lemma 3.4. Localize at an odd prime p. The map Σ5Xn−1
g2n+3−−→ ΣXn+1 is homotopic to the wedge

of degree maps d1 ∨ d2 where d1 = n(n− 1) and d2 = (n+ 1)n. �
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4. An upper bound for the order of ∂1 in the unitary case

We wish to estimate the order of the map SU(n)
∂1−→ Ω3

0SU(n). By Lemma 2.1, it is equivalent

to calculate the order of the Samelson product S3 ∧ SU(n)
〈i,1〉−→ SU(n). Let SU(∞) be the infinite

special unitary group and let t be the standard inclusion t : SU(n) −→ SU(∞). There is a homotopy

fibration sequence

Ω(SU(∞)/SU(n)) −→ SU(n)
t−→ SU(∞) −→ SU(∞)/SU(n).

Since t is a group homomorphism, it is an H-map, and so it commutes with Samelson products.

That is, t ◦ 〈i, 1〉 ' 〈t ◦ i, t〉. Since SU(∞) is an infinite loop space it is homotopy commutative.

Therefore the Samelson product 〈t ◦ i, t〉 is null homotopic, implying that there is a lift

Ω(SU(∞)/SU(n))

��
S3 ∧ SU(n)

〈i,1〉
//

λ
66mmmmmmmmmmmm
SU(n)

for some map λ.

There is a canonical map

jn : ΣCPn−1 −→ SU(n)

which induces an epimorphism in cohomology (see, for example, [28, Chapter VII, 4.6]). Let

qn : CPn−1 −→ Xn−1 = CPn−1/CPn−3

be the quotient map. Observe that Ω(SU(∞)/SU(n)) is (2n− 1)-connected. Therefore, the restric-

tion of the composite S3 ∧ ΣCPn−1 1∧jn−−→ S3 ∧ SU(n)
λ−−→ Ω(SU(∞)/SU(n)) to S3 ∧ ΣCPn−3 is

null homotopic. This implies that there is a homotopy commutative diagram

(3)

S3 ∧ ΣXn−1
ν // Ω(SU(∞)/SU(n))

��

S3 ∧ ΣCPn−1
1∧jn //

Σ4qn
77nnnnnnnnnnnnn

S3 ∧ SU(n)
〈i,1〉

//

λ
66mmmmmmmmmmmmm
SU(n)

for some map ν. Hamanaka and Kono [5, Proposition 5.2] showed that λ can be chosen so that

λ∗◦(1∧jn)∗ is a degree one isomorphism in dimensions 2n and 2n+2. The homotopy commutativity

of the left square in (3) therefore implies that ν∗ is a degree 1 isomorphism in dimensions 2n

and 2n+ 2.

Let Y be the (2n+2)-skeleton of Ω(SU(∞)/SU(n)) and let ν : Σ4Xn−1 −→ Y be the factorization

of ν through the (2n+2)-skeleton. An integral homology Serre spectral sequence calculation applied

to the homotopy fibration ΩSU(∞) −→ Ω(SU(∞)/SU(n)) −→ SU(n) immediately shows that Y

can be given a CW -structure with two cells, one each in dimensions 2n and 2n + 2. Localized at

an odd prime this implies that Y ' S2n ∨ S2n+2. Thus ν is a self-map of S2n ∨ S2n+2, so arguing
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as for Lemma 3.4 shows that ν is homotopic to a wedge of degree maps. Since ν∗ is a degree 1

isomorphism in dimensions 2n and 2n + 2. Hence, including Y into Ω(SU(∞)/SU(n)) we obtain

the following.

Lemma 4.1. The map Σ4Xn−1 ν−→ Ω(SU(∞)/SU(n)) induces a degree one isomorphism in coho-

mology in dimensions 2n and 2n+ 2. �

We now assemble several pieces of information, aimed at establishing the homotopy commutativity

of (10). The naturality of the Samelson product implies that the composite S3 ∧ ΣCPn−1 1∧jn−−→

S3∧SU(n)
〈i,1〉−−→ SU(n) is the Samelson product 〈i, jn〉. Notice that the map Ω(SU(∞)/SU(n)) −→

SU(n) is a loop map. So we can take the adjoint of diagram (3) to obtain a homotopy commutative

diagram

(4)

Σ5Xn−1
ν̃ // SU(∞)/SU(n)

��

Σ5CPn−1
〈̃i,jn〉 //

Σ5qn

OO

BSU(n).

where 〈̃i, jn〉 and ν̃ are the adjoints of 〈i, jn〉 and ν respectively.

On the other hand, by Corollary 3.3, Σ5Xn−1 ' ΣXn+1 ' S2n+1 ∨ S2n+3, and by Lemma 4.1,

ν̃ induces a degree one isomorphism in cohomology in dimensions 2n + 1 and 2n + 3. So we may

choose a homotopy equivalence Σ5Xn−1 ' ΣXn+1 so that there is a homotopy commutative diagram

(5)

Σ5CPn−1 // Σ5Xn−1

'
��

ν̃

''OOOOOOOOOOO

ΣXn+1
ι // SU(∞)/SU(n)

where ι is the inclusion.

Next, the map ΣCPn−1 jn−→ SU(n) is natural with respect to the usual inclusion of SU(n) into

SU(n+ 1). Let j be the composite ΣCPn+1 jn+2−→ SU(n+ 2) −→ SU(∞). Consider the diagram

ΣCPn−1 //

jn

��

ΣCPn+1
Σqn+2 //

j

��

ΣXn+1 //

a

��

Σ2CPn−1

b

��
SU(n) // SU(∞) // SU(∞)/SU(n) // BSU(n).

The left square commutes by the naturality of jn. As the top row is a homotopy cofibration and

the bottom row is a homotopy fibration, the homotopy commutativity of the left square induces

the middle square and right square for some maps a and b. It is standard that the CW -structure

of SU(∞)/SU(n) is taken so that a is the inclusion of the (2n + 3)-skeleton. The Peterson-Stein

formulas (see [8, 3.4.2]) imply that the map b may be taken to be the adjoint j̃n of jn. Therefore,
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reorienting the right square in the previous diagram, we obtain a homotopy commutative square

(6)

ΣXn+1
a //

��

SU(∞)/SU(n)

��

Σ2CPn−1
j̃n // BSU(n).

The last preparatory step is to manipulate degree maps on Σ5CPn−1. By [18], there is a p-local

homotopy equivalence

ΣCPn−1 '
p−1∨
i=1

Ai

where H∗(Ai;Z/pZ) consists of those elements in H∗(ΣCPn−1;Z/pZ) that are in degress of the

form 2i + 2(p − 1)k + 1 for some k ≥ 0. Let i0 and i1 be such that 2i0 + 2(p − 1)k0 + 1 = 2n − 3

and 2i1 + 2(p − 1)k1 + 1 = 2n − 1 for some integers k0, k1. Then Ai0 and Ai1 inherit the mod-p

cohomology generators of ΣCPn−1 in degrees 2n − 3 and 2n − 1 respectively. For dimension and

connectivity reasons, there is a homotopy commutative diagram

(7)

ΣCPn−1
Σqn //

'
��

ΣXn−1

'
��∨p−1

i=1 Ai
Q

// Ai0 ∨Ai1
qi0∨qi1// S2n−3 ∨ S2n−1

where Q is the pinch map onto the two designated summands and qi0 and qi1 are the pinch maps

onto the top cells of Ai0 and Ai1 respectively. Let γ be the composite

γ : Σ5CPn−1 '−→
p−1∨
i=1

Σ4Ai
Σ4Q−→ Σ4Ai0 ∨ Σ4Ai1

d1∨d2−−−−→ Σ4Ai0 ∨ Σ4Ai1 ↪→
p−1∨
i=1

Σ4Ai
'−→ Σ5CPn−1

where d1 = n(n−1) and d2 = (n+1)n are the degree maps. Notice that all the maps in the composite

defining γ are suspensions and so they commute with degree maps. Therefore, the definition of γ

and (7) imply that there is a homotopy commutative diagram

(8)

Σ5CPn−1
γ

//

Σ5qn
��

Σ5CPn−1

Σ5qn
��

Σ5Xn−1

'
��

Σ5Xn−1

'
��

S2n+1 ∨ S2n+3
d1∨d2 // S2n+1 ∨ S2n+3.

It is also useful at this point to define the map γ by the composite

γ : Σ5CPn−1 '−→
p−1∨
i=1

Σ4Ai
Σ4Q−→ Σ4Ai0 ∨ Σ4Ai1

d∨d−→ Σ4Ai0 ∨ Σ4Ai1 ↪→
p−1∨
i=1

Σ4Ai
'−→ Σ5CPn−1
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where d = n(n2 − 1). As before, the definition of γ and (7) imply that there is a homotopy

commutative diagram

(9)

Σ5CPn−1
γ

//

Σ5qn
��

Σ5CPn−1

Σ5qn
��

Σ5Xn−1

d // Σ5Xn−1.

Now we put things together. Consider the diagram

(10)

Σ5CPn−1
γ

//

Σ5qn

��

Σ5CPn−1

Σ5qn
��

Σ5Xn−1

'
��

ν̃

''PPPPPPPPPPP

Σ5Xn−1
g2n+3 //

��

ΣXn+1
a //

��

SU(∞)/SU(n)

��

Σ6CPn−3
Σg2n−1// Σ2CPn−1

j̃n // BSU(n).

The upper left rectangle homotopy commutes by (8) and the description of g2n+3 in Lemma 3.4; the

upper right triangle homotopy commutes by (5); the lower left square homotopy commutes by (2);

and the lower right square homotopy commutes by (6). Thus the entire diagram homotopy com-

mutes. In the upper direction around the diagram, by (4) the composite Σ5CPn−1 Σ5qn−→ Σ5Xn−1 ν̃−→

SU(∞)/SU(n) −→ BSU(n) is homotopic to 〈̃i, jn〉, so the upper direction around the diagram is

homotopic to 〈̃i, jn〉 ◦ γ. On the other hand, in the lower direction around the diagram the left

column is null homotopic since it is two consecutive maps in a homotopy cofibration. Therefore

〈̃i, jn〉 ◦ γ is null homotopic.

Lemma 4.2. Localize at an odd prime p. The map Σ5CPn−1 〈̃i,jn〉−→ BSU(n) has order divid-

ing n(n2 − 1).

Proof. We wish to show that the composite Σ5CPn−1 d−→ Σ5CPn−1 〈̃i,jn〉−→ BSU(n) is null homotopic,

where d = n(n2−1). For convenience, label the map from SU(∞)/SU(n) to BSU(n) by δ. Consider

the string of homotopies

〈̃i, jn〉 ◦ d ' δ ◦ ν̃ ◦ Σ5qn ◦ d ' δ ◦ ν̃ ◦ d ◦ Σ5qn ' δ ◦ ν̃ ◦ Σ5qn ◦ γ ' 〈̃i, jn〉 ◦ γ.

From left to right, the first homotopy holds by (4), the second holds since maps which are suspensions

commute with degree maps, the third holds by (9), and the fourth holds by (4). Observe that by

its definition, γ factors through γ. Therefore, as 〈̃i, jn〉 ◦ γ is null homotopic, so is 〈̃i, jn〉 ◦ γ. Hence

〈̃i, jn〉 ◦ d is null homotopic, as asserted. �
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Recall that by definition, 〈̃i, jn〉 is the adjoint of the Samelson product 〈i, jn〉, which is homotopic

to the composite S3 ∧ ΣCPn−1 1∧jn−→ S3 ∧ SU(n)
〈i,1〉−→ SU(n). Therefore Lemma 4.2 immediately

implies the following.

Corollary 4.3. Localize at an odd prime p. The composite S3∧ΣCPn−1 1∧jn−−→ S3∧SU(n)
〈i,1〉−−→ SU(n)

has order at most n(n2 − 1). �

As well, the map 〈i, 1〉 is the triple adjoint of the map SU(n)
∂1−→ Ω3

0SU(n). Therefore Corol-

lary 4.3 implies the following.

Proposition 4.4. Localize at an odd prime p. The composite ΣCPn−1 jn−→ SU(n)
∂1−→ Ω3

0SU(n)

has order at most n(n2 − 1). �

Remark 4.5. It is unclear whether an analogue of Proposition 4.4 holds at the prime 2. At odd p

the splitting ΣCPn−1 '
∨p−1
i=1 Ai lets us work with the two different degree maps d1 = n(n− 1) and

d2 = (n+ 1)n on S2n+1 and S2n+3 separately. However, at 2 there is no such splitting of ΣCPn−1

so it is unclear how a map γ can be defined so as to obtain a diagram as in (8).

5. Retractile Lie groups and an upper bound for the order of ∂1

This section is aimed at proving parts (b) and (c) of Theorem 1.1. To do so we consider those n

for which SU(n) has the special property of being retractile (a term defined momentarily). The

results in this section hold in more generality than just the SU(n) case, so they are stated this way.

Throughout this section spaces and maps have been localized at an odd prime p and homology is

taken with mod-p coefficients.

Definition 5.1. An H-space B is retractile if there is a space A and a map i : A −→ B with the

following properties:

(i) there is an algebra isomorphism H∗(B) ∼= Λ(H̃∗(A));

(ii) i∗ is the inclusion of the generating set in homology;

(iii) the map ΣA
Σi−→ ΣB has a left homotopy inverse.

Many simply-connected, simple compact Lie groups are retractile. In [21] it was shown that the

retractile cases are:

SU(n) n ≤ (p− 1)2 + 1; G2, F4, E6 p ≥ 3

Sp(n) 2n ≤ (p− 1)2 + 1; E7 p ≥ 5

Spin(2n+ 1) 2n ≤ (p− 1)2 + 1; E8 p ≥ 7

Spin(2n) 2(n− 1) ≤ (p− 1)2 + 1;

Further, in each of these cases the space A is a co-H-space.
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Let G be a simply-connected, simple compact Lie group which is retractile. Recall the map

G
∂1−→ Ω3

0G from Section 2. Define the map ∂1 by the composite

∂1 : A
i−→ G

∂1−→ Ω3
0G.

We will prove the following, which relates the order of ∂1 to that of ∂1.

Proposition 5.2. Let G be a retractile simply-connected, simple compact Lie group. If pr ◦ ∂1 is

null homotopic then so is pr ◦ ∂1.

Proposition 5.2 is very useful, in practise it tends to be much easier to prove facts about ∂1 rather

than ∂1. The proposition says that this is good enough. Granting Proposition 5.2, we obtain the

following corollary, which lets us go on to prove parts (a) to (c) of Theorem 1.1.

Corollary 5.3. Let G be a retractile simply-connected, simple compact Lie group. Then ∂1 has

order pr if and only if ∂1 has order pr.

Proof. If ∂1 has order pr then, as ∂1 factors through ∂1, the order of ∂1 is at most pr. Conversely,

if ∂1 has order pr then by Proposition 5.2 ∂1 has order at most pr. Hence, if a and b are the orders

of ∂1 and ∂1 respectively then a ≤ b ≤ a, implying that a = b. �

Proof of Theorem 1.1 (a) to (c). Part (a) is the statement of Corollary 4.3. For part (c), SU(n) is

retractile if n ≤ (p − 1)2 + 1, and in this case the space A is ΣCPn−1 and the map i is the map

ΣCPn−1 jn−→ SU(n). Therefore the composite ΣCPn−1 jn−→ SU(n)
∂1−→ Ω3

0SU(3) is ∂1. Let pr be

the p-component of n(n2−1). By Proposition 4.4, pr◦∂1 is null homotopic, so Proposition 5.2 implies

that pr◦∂1 is null homotopic. By [6, Theorem 2.4 and Lemma 2.5], ∂1 has order at least pr. Therefore

the order of ∂1 equals pr. This proves part (c), and part (b) now follows by Corollary 5.3. �

It remains to prove Proposition 5.2. To do so we describe a homotopy decomposition of ΣG which

is designed to behave well with respect to pr ◦ ∂1. In [4] it was shown that if G is retractile then

ΣG ' ΣA ∨ C where C can be chosen so that it factors through the Hopf construction on G. We

need a refinement of this so the construction will be described in more detail.

In general, let X and Y be path-connected, pointed spaces and let I be the unit interval. The

reduced join of X and Y is the quotient space X ∗ Y = (X × Y × I)/ ∼ where (x, y, 0) ∼ (x, y′, 0),

(x, y, 1) ∼ (x′, y, 1) and (∗, ∗, t) ∼ (∗, ∗, 0) for all x, x′ ∈ X, y, y′ ∈ Y and t ∈ I. The reduced

suspension Σ(X × Y ) is also a quotient of X × Y × I, given by Σ(X × Y ) = (X × Y × I)/ ∼′

where (x, y, 0) ∼′ (x′, y′, 0), (x, y, 1) ∼′ (x′, y′, 1) and (∗, ∗, t) ∼′ (∗, ∗, 0). The relations imply that

the quotient map from X × Y × I to Σ(X × Y ) factors through X ∗ Y . Thus there is a map

X ∗Y −→ Σ(X×Y ). Note that this map is natural in both variables. Note also that the composites

X ∗Y −→ Σ(X×Y )
Σπ1−→ ΣX and X ∗Y −→ Σ(X×Y )

Σπ2−→ ΣY are null homotopic, where π1 and π2
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are the projections onto the first and second factors respectively. There is also a natural homotopy

equivalence ΣX ∧ Y ' X ∗ Y (see, for example, [19, Proposition 7.7.1]), so we obtain a natural map

(11) ΣX ∧ Y −→ Σ(X × Y )

which composes trivially with Σπ1 and Σπ2. Iterating, if X1, . . . , Xk are path-connected, pointed

spaces, then there is a map

(12) ΣX1 ∧ · · · ∧Xk −→ Σ(X1 × · · · ×Xk)

which is natural in all k variables. In particular, if X×k is the Cartesian product of k copies of X

with itself and X∧k is the k-fold smash product of X with itself, then there is a natural map

ΣX∧k −→ ΣX×k.

Suppose now that X is an H-space with multiplication µ : X×X −→ X. Let µ∗ be the composite

µ∗ : ΣX ∧X −→ Σ(X ×X)
Σµ−→ ΣX.

This composite is known as the Hopf construction on X. In particular, if G is a simply-connected,

simple compact Lie group then there is a Hopf construction ΣG ∧G µ∗−→ ΣG.

Now we bring in the space A. As G is homotopy associative, the James construction [9] implies

that the map A
i−→ G extends to an H-map j : ΩΣA −→ G. By the Bott-Samelson Theorem,

there is an algebra isomorphism H∗(ΩΣA) ∼= T (H̃∗(A)), where T ( ) is the free tensor algebra

functor. Since G is retractile, there is an algebra isomorphism H∗(G) ∼= Λ(H̃∗(A)); observe also that

Λ(H̃∗(A)) ∼= S(H̃∗(A)), where S( ) is the free symmetric algebra functor. Since j is an H-map, j∗

is an algebra map and so is determined by its restriction to the generating set H̃∗(A) of T (H̃∗(A)).

Since j is an extension of i and i∗ is the inclusion of the generating set into Λ(H̃∗(A)) ∼= S(H̃∗(A)),

the map j∗ is therefore the abelianization of the tensor algebra. Let m be the number of generators

in H̃∗(A). For 1 ≤ k ≤ m, let Mk be the submodule of H∗(G) ∼= Λ(H̃∗(A)) consisting of monomials

of length k. Observe that there is a module isomorphism H∗(G) ∼= ⊕mk=1Mk.

Let E : A −→ ΩΣA be the suspension map. Let Ek be the composite

Ek : A×k
E×k

−→ (ΩΣA)×k −→ ΩΣA

where the left map is the iterated loop space multiplication. In [4] it was shown that if 1 ≤ k ≤ m

then there is a retract Sk(A) of ΣA∧k such that S1(A) = ΣA, H∗(Sk(A)) ∼= ΣMk, and the composite

φk : Sk(A) −→ ΣA∧k −→ ΣA×k
ΣEk−→ ΣΩΣA

Σj−→ ΣG

induces an isomorphism onto the submodule ΣMk of H∗(ΣG). Taking the wedge sum over 1 ≤ k ≤ m

gives a map

φ :

m∨
k=1

Sk(A) −→ ΣG
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which induces an isomorphism in homology and so is a homotopy equivalence. Notice that when

k = 1, S1(A) = ΣA and φ1 ' Σi. Thus if we let C =
∨m
k=2 Sk(A) then there is a homotopy

equivalence

ΣA ∨ C φ−→ ΣB

where φ restricted to ΣA is φ1 ' Σi. The refinement on φ we need is to show that its restriction

to C factors not just through the Hopf construction ΣG ∧G µ∗−→ ΣG, as stated in [4], but through

the composite

µ∗ : ΣG ∧A Σ1∧i−−→ ΣG ∧G µ∗−−→ ΣG.

Lemma 5.4. The restriction of the homotopy equivalence ΣA ∨ C φ−→ G to C factors through µ∗.

Proof. Consider the diagram

(13)

Sk(A) // ΣA∧k
ΣE∧k //

��

Σ(ΩΣA)∧k
Σj∧k

//

��

ΣG∧k

��
ΣA×k

ΣE×k

//

ΣEk %%LLLLLLLLLL
Σ(ΩΣA)×k

Σj×k

//

Σµk

��

ΣG×k

Σµk

��
ΣΩΣA

Σj
// ΣG

where µk is the interated multiplication on ΩΣA and G (both of which are homotopy associative,

so the order in which the multiplication is taken is irrelevant). The two upper squares homotopy

commute by the naturality of (12), the left lower triangle homotopy commutes by the definition

of Ek, and the lower right square homotopy commutes since j is an H-map. By the definition of φk,

the lower direction around the diagram is Σφk. On the other hand, since j ◦ E ' i, if k ≥ 2 then

the upper direction around the diagram can be rewritten as the composite

Sk(A) −→ ΣA∧k
i∧(k−1)∧1−−−−−−→ ΣG∧(k−1) ∧A −→ ΣG×(k−1) ∧A Σµk−1∧1−−−−−−→ ΣG ∧A Σ1∧i−−→ ΣG ∧G µ∗−→ ΣG.

Notice that the last two maps in this composite define µ∗, so the homotopy commutativity of (13)

shows that φk factors through µ∗. �

Now we relate the homotopy equivalence for ΣG to the order of the boundary map G
∂1−→ Ω3

0G.

In general, if ΩB
∂−→ F −→ E −→ B is a homotopy fibration sequence then there is a homotopy

action

θ : ΩB × F −→ F
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such that the restriction of θ to ΩB is ∂, the restriction of θ to F is the identity map, and there is

a homotopy commutative diagram

(14)

ΩB × ΩB
µ

//

1×∂
��

ΩB

∂

��
ΩB × F

θ // F.

In our case, since G
∂1−→ Ω3

0G is a homotopy fibration connecting map there is a homotopy action

θ : G× Ω3
0G −→ Ω3

0G.

Let ev : ΣΩ3
0G −→ Ω2G be the canonical evaluation map. For anH-spaceX, recall that pr : X −→

X is the pr-power map. For a co-H-space Y , let pr : Y −→ Y be the map of degree pr. Recall that ∂1

is the composite ∂1 : A
i−→ G

∂1−→ Ω3
0G. Let

φC : C −→ ΣG

be the restriction of the homotopy equivalence ΣA ∨ C φ−→ ΣG to C.

Lemma 5.5. Let G be a retractile, simply-connected simple compact Lie group. Suppose that pr ◦∂1

is null homotopic. Then for 2 ≤ k ≤ m the composite

C
φC−→ ΣG

Σ∂1−→ ΣΩ3
0G

ev−→ Ω2G
pr−→ Ω2G

is null homotopic.

Proof. Consider the diagram

G×A
π1 //

1×pr

��

G

i1

��

G×A

1×i
��

G×G
1×∂1 //

µ

��

G× Ω3
0G

θ

��
G

∂1 // Ω3
0G

where π1 is the projection onto the first factor and i1 is the inclusion of the first factor. Since

∂1 = ∂1 ◦ i, the hypothesis that pr ◦ ∂1 is null homotopic implies that the upper rectangle homotopy

commutes. The lower square homotopy commutes by (14). Suspending and using the naturality
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of (11) and the definition of µ∗, we obtain a homotopy commutative diagram

ΣG ∧A //

Σ(1∧pr)

��

Σ(G×A)
Σπ1 //

Σ(1×pr)

��

ΣG

Σi1

��

ΣG ∧A //

µ∗

��9
99

99
99

99
99

99
99

99
99

Σ(G×A)

Σ(1×i)
��

Σ(G×G)
Σ(1×∂1)

//

Σµ

��

Σ(G× Ω3
0G)

Σθ

��
ΣG

Σ∂1 // ΣΩ3
0G

ev // Ω2G.

By (11), the composite along the top row is null homotopic. Thus the lower direction around the

diagram is null homotopic. Observe that the map Σ1 ∧ pr is homotopic to the degree pr map on

ΣG∧A, so we obtain a null homotopy for ev◦Σ∂1 ◦µ∗ ◦pr. In [ΣX,ΩY ] the group structure induced

by the comultiplication equals that induced by the multiplication, so we obtain a null homotopy for

the composite ΣG ∧A µ∗−→ ΣG
Σ∂1−→ ΣΩ3

0G
ev−→ Ω2G

pr−→ Ω2G. By Lemma 5.4, the restriction of the

homotopy equivalence ΣA ∨ C φ−→ ΣG to C factors through µ∗. Thus the composite

C
φC−→ ΣG

Σ∂1−→ ΣΩ3
0G

ev−→ Ω2G
pr−→ Ω2G

is null homotopic. �

Putting all this together, we prove Proposition 5.2.

Proof of Proposition 5.2. Consider the composite

ψ : ΣA ∨ C φ−→ ΣG
Σ∂1−→ Ω3

0G
ev−→ Ω2G

pr−→ Ω2G.

The restriction of φ to ΣA is homotopic to Σi, and by definition ∂1 = ∂1 ◦ i. So the restriction

of ψ to ΣA is homotopic to pr ◦ ev ◦ Σ∂1, which is null homotopic since pr ◦ ∂1 is null homotopic.

By Lemma 5.5, the hypothesis that pr ◦ ∂1 is null homotopic implies that the restriction of ψ to C

is null homotopic. Thus ψ is null homotopic. As φ is a homotopy equivalence, this implies that

pr ◦ ev ◦ Σ∂1 is null homotopic. Taking adjoints, we obtain that pr ◦ ∂1 is null homotopic. �

6. Applications to gauge groups

The first application is to prove Theorem 1.1 (d) by counting the number of distinct homotopy

types of gauge groups. This requires two known results. Hamanaka and Kono [6] proved the

following.

Theorem 6.1. If Gk(SU(n)) ' Gk′(SU(n)) then (n(n2 − 1, k) = (n(n2 − 1), k′). �
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Theorem 6.1 improved an earlier result of Sutherland [20] by a factor of 2 in the case when n is

odd. On the other hand, the author [23] proved the following. For positive integers a and b, let (a, b)

be their greatest common divisor.

Theorem 6.2. Let X be a space and Y be an H-space with a homotopy inverse. Suppose there is

a map X
f−→ Y of order m, where m is finite. For a positive integer k ≥ 0, let Fk be the homotopy

fibre of k ◦ f . If (m, k) = (m, k′) then Fk and Fk′ are homotopy equivalent when localized rationally

or at any prime. �

Proof of Theorem 1.1 (d). Consider the map SU(n)
∂1−→ Ω3

0SU(n). By Lemma 2.1, k ◦∂1 ' ∂k, and

recall that the homotopy fibre of ∂k is Gk(SU(n)). Localize at an odd prime p. If n ≤ (p−1)2+1 then

Theorem 1.1 (c) says that ∂1 has order n(n2−1). So by Theorem 6.2, if (n(n2−1), k) = (n(n2−1), k′)

then Gk(SU(n)) ' Gk′(SU(n)) when localized at any odd prime. The converse is Theorem 6.1. �

The next application is to a p-local homotopy decomposition of Gk(SU(n)). Assume from now

on that all spaces and maps are localized at p. In [17] it was shown that there is a homotopy

equivalence SU(n) '
∏p−1
i=1 Bi where the generators of H∗(Bi;Z/pZ) are those of H∗(SU(n);Z/pZ)

which occur in dimensions of the form 2i+ 2(p− 1)t+ 1 for some t ≥ 0. Let i0 and i1 be such that

2n− 3 = 2i0 + 2(p− 1)t0 + 1 and 2n− 1 = 2i1 + 2(p− 1)t1 + 1 for some integers t0 and t1. In what

follows, when we write Bi+2 and i = p − 2 or p − 1 we mean B1 or B2 respectively. In [22] in the

retractile case and in [11] in the general case it was shown that there is a homotopy equivalence

(15) Gk(SU(n)) '

 p−1∏
i=1

i6=i0,i1

Bi × Ω4
0Bi+2

×Xi0 ×Xi1

where for j ∈ {i0, i1} there are homotopy fibrations Ω4
0Bj+2 −→ Xj −→ Bj .

The extra information we can now add is when the spaces Xi0 and Xi1 decompose as products.

If SU(n) is retractile and k is a multiple of n(n2 − 1) then by, Theorem 1.1 (c) and Lemma 2.1,

∂k ' k ◦ ∂1 is null homotopic. Therefore Gk(SU(n)) ' SU(n) × Ω4
0SU(n), implying that there are

homotopy equivalences Xi0 ' Bi0 × Ω4Bi0+2 and Xi1 ' Bi1 × Ω4
0Bi1+2. On the other hand, by

Theorem 1.1 (d), there is a homotopy equivalence Gk(SU(n)) ' SU(n) × Ω4
0SU(n)) if and only

if k is a multiple of n(n2 − 1). Hence if k is not a multiple of n(n2 − 1) then there cannot be

simultaneous homotopy equivalences Xi0 ' Bi0 × Ω4Bi0+2 and Xi1 ' Bi1 × Ω4
0Bi1+2. Thus we

obtain the following.

Theorem 6.3. Localize at an odd prime p and suppose that n ≤ (p−1)2 +1. Then in (15) there are

homotopy equivalences Xi0 ' Bi0 ×Ω4Bi0+2 and Xi1 ' Bi1 ×Ω4
0Bi1+2 if and only if k is a multiple

of n(n2 − 1). �
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