ODD PRIMARY HOMOTOPY TYPES OF SU(n) GAUGE GROUPS
STEPHEN THERIAULT

ABSTRACT. Let Gi(SU(n)) be the gauge group of the principal SU(n)-bundle with second Chern
class k. If p is an odd prime and n < (p — 1)2 4 1, we classify the p-local homotopy types of
Gr(SU(n)).

1. INTRODUCTION

Let G be a topological group, B be a space, and P — B be a principal G-bundle over B.
The gauge group G(P) is the group of G-equivariant automorphisms of P that fix B. Crabb and
Sutherland [2] showed that, even though there may be infinitely many inequivalent principal G-
bundles over B, their gauge groups have only finitely many distinct homotopy types. However, their
argument did not give an explicit enumeration of the homotopy types. Using different methods,
Kono [15] gave an explicit enumeration in the case of gauge groups of principal SU(2)-bundles
over S*. He then asked whether this can be done more generally.

Since then there has been considerable effort to classify the homotopy types of gauge groups in
specific cases. Let G be a simply-connected, simple compact Lie group and let BG be its clas-
sifying space. The number of equivalence classes of principal G-bundles over S* is in one-to-one
correspondence with homotopy classes of maps [S*, BG] = Z, and the correspondence in the case of
G = SU(n) is given by the value of the second Chern class. Let P, — S* be the principal G-bundle
corresponding to k € Z and let Gi(G) be its gauge group. For integers a and b, let (a,b) be their

greatest common divisor. Then:

o Gi(SU(2)) ~ Gr (SU(2)) if and only if (12,k) = (12, %) [15];

o Gi(SU(3)) ~ G (SU(3)) if and only if (24,k) = (24, k') [6];

® Gr(Sp(2)) ~@ Gr (Sp(2)) if and only if (40, k) = (40, k") [23];

o GL(SU(5)) ~(p) Gr (SU(5)) if and only if (120, k) = (120, k') [24];

where the homotopy equivalence in the third and fourth cases is p-local for any prime p or rational
(using p = 0 to indicate rational localization). Bounds, but not a classification, were obtained in
the case of G (G2) [14], and classifications involving spheres of different dimensions or non-simply-

connected Lie groups can be found in [7, 10, 13]. In all cases the fixed number in the greatest
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common divisor is the order of the Samelson product S3 A G (Z—lg G, where i is the inclusion of the
bottom cell and 1 is the identity map on G.

In this paper we consider G (SU(n)) for any n. There is a canonical map j, : SCP"~! — SU(n)
that induces a projection onto the generating set in cohomology. In what follows, while spaces will
be localized at a prime p, it is more illuminating to write the order of a map as an integer m rather

than the p-component of m. We prove the following.

Theorem 1.1. Localize at an odd prime p. Then:

(a) if n > 2 the composite S A XCP"~1 Iy 63 A SU(n) &1 SU(n) has order at
most n(n? —1);

(b) if n < (p—1)2+1 the composite S3 N XCP"~1 LA L N SU(n) &n, SU(n) has
order exactly n(n? —1);

(c) ifn < (p—1)2+1 the map S*> A SU(n) &y SU(n) has order n(n? — 1);

(d) if n < (p—1)% + 1 there is a homotopy equivalence Gy(SU(n)) =~ G (SU(n)) if
and only if (n(n? —1),k) = (n(n? — 1), k).

Theorem 1.1 (d) significantly improves on the known classifications of the homotopy types of
gauge groups. It is the first general result; all the previous results held for specific Lie groups G
and involved proofs that used particular properties of that Lie group. It recovers the known odd
primary information for SU(2), SU(3) and SU(5) and gives exact information in a large range of
previously unknown cases. For example, Gi(SU(4)) ~(,) G (SU(4)) at odd primes if and only if
(60, k) = (60, k").

Hamanaka and Kono [6], refining a result of Sutherland [20], showed that for any n > 2 the
(integral) order of (i, 1) is at least n(n?—1) by considering certain homotopy sets [X, SU(n)] where X
is a sphere or a suspension of CP?. Theorem 1.1 (a) and (b) are much stronger reformulations of
their result at odd primes. We obtain part (a) by closely examining a map constructed by Toda [25]
to give a topological proof of Bott periodicity. The restriction to n < (p—1)?+1 in parts (b) and (c)
arises from the fact that for these n the space XCP" ! “generates” SU(n) in a sense that will be
made precise in Section 5. Part (d) follows as a consequence of part (¢) and other general results,
to be discussed in Section 6.

The author would like to thank the referee for making many suggestions that have improved the

exposition of the paper.

2. GAUGE GROUPS AND FUNCTION SPACES

In this section we discuss some general results that translate the study of gauge groups into that of
function spaces, which is more suited to topological methods. This holds for any simply-connected,

simple compact Lie group G, so it is stated that way. Since [S*, BG] = Z, principal G-bundles
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over S* are classified by their second chern class, which can take any integer value. Let P, — S*
be the principal G-bundle corresponding to k € Z, and let G;(G) be its gauge group. As this is a
group it has a classifying space BGy(G).

Let Map(S4, BG) and Map*(S4, BG) respectively be the spaces of freely continuous and pointed
continuous maps between S* and BG. The components of each space are in one-to-one correspon-
dence with the integers, where the integer is determined by the degree of a map S* — BG. By [3]
or [1], there is a homotopy equivalence BGy(G) ~ Map,(S?*, BG) between BGy(G) and the com-
ponent of Map(S*, BG) consisting of maps of degree k. Evaluating a map at the basepoint of S*,
we obtain a map ev: BGy(G) —% BG whose fibre is homotopy equivalent to Mapj(S*, BG). Tt is
well known that each component of Map*(S%, BG) is homotopy equivalent to Q3G, the component
of Q3G containing the basepoint. Putting all this together, for each k € Z, there is a homotopy

fibration sequence
(1) G 25 3G — BGL(G) < BG

where 0y is the fibration connecting map. In particular, the gauge group Gi(G) is the homotopy
fibre of J, and it is by understanding the map 9y that information will be deduced about Gi(G).

Note that while the components of Map*(S4, BG) are all homotopy equivalent, the same is not
true in general of the components of Map(S*, BG). For example, in [26, 27] it was shown that there is
a homotopy equivalence Map,, (S*, BSU(2)) ~ Map,, (S*, BSU(2)) if and only if k = +k’. However,
many components become homotopy equivalent after looping. In the SU(2) example, Kono [15]
showed that QMap, (5%, BSU(2)) >~ QMapy, (S*, BSU(2)) (that is, G, (SU(2)) ~ Gk (SU(2))) if and
only if (12,k) = (12,k’). This example also shows that Theorem 1.1 (d) likely cannot be upgraded
to a statement about the classifying spaces of the relevant gauge groups.

The triple adjoint of 9y was described in [16, Theorem 2.7]. More precisely, the homotopy class
of a homotopy fibration connecting map is determined only up to self-homotopy equivalences of
its domain and range; in [16, Theorem 2.7] it was shown that choices of self-homotopy equivalences
could be made which allow for the triple adjoint of Jj to be described in terms of Samelson products.
In fact, in [16] a four-fold adjoint is taken using the fact that G ~ QBG, and this four-fold adjoint
is described in terms of Whitehead products. We choose for ease of presentation to use only a
three-fold adjoint, which is described in terms of a Samelson product.

Let i: 83 — G be the inclusion of the bottom cell and let 1: G — G be the identity map. In

general, for an H-space Y, let k: Y — Y be the k"-power map.

Lemma 2.1. The triple adjoint of the map G LN Q3G is homotopic to the Samelson product
Y eRtye) O

The linearity of the Samelson product implies that (ko4,1) ~ ko (i,1). Taking adjoints therefore

implies the following.
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Corollary 2.2. There is a homotopy O ~ k o 0. (]

In what follows we will prove results about the order of 0y by proving them about the order
of (i,1).
3. PROPERTIES OF TODA’S MAP

Take cohomology with Z-coefficients. Recall that H*(CP*) = Z[z] where x has degree 2.
Write oz for the image of z° under the suspension isomorphism H?2(CP>) = H ZFL(XCP>). In

his topological proof of Bott periodicity, Toda [25] constructed a map
f:23CP>® — XCP>®

3xm=1 for m > 2. Composing, we obtain a composite

with the property that f*(cz™) = mo
2
g: ¥ocp= 24 s3cpe L nope
with the property that g*(cz™) = m(m — 1)o®z™~2 for m > 3.
Let
Gony1: Z°CP"™2 — ©.CP"

be the restriction of g to (2n + 1)-skeletons. Then skeletal inclusions give a commutative square

gan—1
yscpr3 —— xCpnt

|

$SCP*t — TCPML.

Let X"t! = CP"*1/CP"~! be the stunted complex projective space. The commutativity of the

preceding square implies that there is a homotopy cofibration diagram
gan—1
¥ Ccpr—3 —— wCpr!

92n+3
ES(CPnfl R Ecpn+1

Gont3
ZSX"_l [, ZX"+1

Xgon-1
$6Cpn-3 ——> $2Cpn-
for some map gy, 3.
We describe some properties of X"*1 and g, 5. The quotient map CP"*1 — X"l =
CP™t1/CP" ! induces a map H*(X"t1) — H*(CP"*!). A straightforward long exact sequence

argument immediately shows that H*(X" 1) 2 Z{y,,, y,+1} where y,, and y,,11 are the images of "
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and 2" respectively. The homotopy commutativity of the middle square in (2) and the description

of ¢g* immediately imply the following.

Lemma 3.1. We have:

(@) (Gany3)"(oyn) = n(n — 1)o°yn_2;

(0) (Gons3)*(OYns1) = (n+ 1)nodyn_1. O

It is useful to identify the homotopy type of X" *!. Observe that X"t! has a C'W-structure
consisting of two cells, one each in dimensions 2n and 2n 4 2. The structure of the Steenrod
algebra on CP" ! (see, for example, [28, Chapter VIII, Theorem 9.2]) implies that there is a Sq?
connecting the two generators in H*(X"1;7Z/27Z) if and only if n is odd. Also, S¢* detects the
stable generator 7, of m,,1+1(S™) = Z/27 (see, for example, [28, Chapter VIII, Corollary 8.8]). As
the cofibre of n,, is ¥ ~2CP?2, we obtain the following.

Lemma 3.2. The following hold:
(a) if n is odd then X"t! ~ ¥2n=2CP2;
(b) if n is even then X"+l ~ §2n v §2n+2, O

At this point we localize at an odd prime p; the explanation as to why this is done will be
deferred to Remark 4.5. At odd primes, the map 7, generating the stable group m,,+1(S™) & Z/27Z
is null homotopic. Thus ™ 2CP? ~ 8™ v §™*2 for m > 3. Consequently, Lemma 3.2 implies the

following.
Corollary 3.3. Localize at an odd prime p. Then X" ~ §27\ §2n+2, ]

By Corollary 3.3, the map X?X"! Bty mxntl ig a self-map of §?"+1 v §27+3  This lets us
determine the homotopy class of gy, ;3. In general, suppose that there is a map h: S™V Sgmt2
S™ v 8m*2 where m > 3. Let hy and hy be the restrictions of h to S™ and S™*2 respectively. The
map hi: 8™ — S™V §™+2 is determined by pinching to S™ and S™*2. The pinch map to S™
is a map of some degree, say dy, and the pinch to S™*?2 is null homotopic for dimensional reasons.
Thus h; ~ dy + *. Since m > 2, the Hilton-Milnor Theorem implies that 7, 2(S™ V Sm+2) =
Tmt2(S™) @ Tpi2(S™F2). Therefore, the map hy: S™+2 — S™ v §™+2 5 also determined by
pinching it to S™ and S™*2. The pinch map to S™ is an element of 7, 12(S™) = 0 (at odd primes)
and the pinch map to S™*2 is a map of some degree, say do. Therefore hy ~ *+dy. Thus h ~ di Vds.
In particular, the homotopy class of h is determined by the map it induces in cohomology. Hence,

from Lemma 3.1 we immediately obtain the following.

Lemma 3.4. Localize at an odd prime p. The map X° X1 Tantg 5 L g homotopic to the wedge

of degree maps dy V da where di = n(n —1) and da = (n+ 1)n. O
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4. AN UPPER BOUND FOR THE ORDER OF O; IN THE UNITARY CASE

We wish to estimate the order of the map SU(n) — i 5 Q3SU(n). By Lemma 2.1, it is equivalent
to calculate the order of the Samelson product S® A SU(n —; SU(n). Let SU(oo) be the infinite
special unitary group and let ¢ be the standard inclusion ¢t: SU(n) — SU(00). There is a homotopy

fibration sequence
Q(SU(0)/SU(n)) — SU(n) N SU(c0) — SU(00)/SU(n).

Since t is a group homomorphism, it is an H-map, and so it commutes with Samelson products.
That is, t o (i,1) ~ (t o i,t). Since SU(co) is an infinite loop space it is homotopy commutative.

Therefore the Samelson product (¢ o ¢,t) is null homotopic, implying that there is a lift

Q(SU(00)/5U(n))
A
S3 A SU(n) : SU(n)

for some map .

There is a canonical map
gn: XCP"t — SU(n)
which induces an epimorphism in cohomology (see, for example, [28, Chapter VII, 4.6]). Let
gn: CP" ' — X"t =cprt/Ccp?

be the quotient map. Observe that Q(SU(c0)/SU(n)) is (2n — 1)-connected. Therefore, the restric-
NJn

tion of the composite S3 A SCP"~1 X% 63 A SU(n) -2 Q(SU(00)/SU(n)) to S3 A DCP3 is

null homotopic. This implies that there is a homotopy commutative diagram

§8 A RX"—1 — > Q(SU(c0)/SU(n))

@ = l

$3 A xCPr1 —>S3ASU ) ————— SU(n

for some map v. Hamanaka and Kono [5, Proposition 5.2] showed that A can be chosen so that
A*0(1Aj,)* is a degree one isomorphism in dimensions 2n and 2n+2. The homotopy commutativity
of the left square in (3) therefore implies that v* is a degree 1 isomorphism in dimensions 2n
and 2n + 2.

Let Y be the (2n+2)-skeleton of Q(SU(00)/SU(n)) and let 7: 4 X"~1 — Y be the factorization
of v through the (2n+2)-skeleton. An integral homology Serre spectral sequence calculation applied
to the homotopy fibration QSU(c0) — Q(SU(c0)/SU(n)) — SU(n) immediately shows that Y
can be given a CW-structure with two cells, one each in dimensions 2n and 2n + 2. Localized at

an odd prime this implies that Y ~ $2" v/ §2"+2 Thus ¥ is a self-map of S$?" Vv §?"*2, 50 arguing
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as for Lemma 3.4 shows that 7 is homotopic to a wedge of degree maps. Since v* is a degree 1
isomorphism in dimensions 2n and 2n + 2. Hence, including Y into Q(SU(c0)/SU(n)) we obtain
the following.

Lemma 4.1. The map * X"~ 5 Q(SU(00)/SU(n)) induces a degree one isomorphism in coho-

mology in dimensions 2n and 2n + 2. O

‘We now assemble several pieces of information, aimed at establishing the homotopy commutativity
of (10). The naturality of the Samelson product implies that the composite S A SCP" ! 1Ay
S3ASU(n) & SU (n) is the Samelson product (i, j,,). Notice that the map Q(SU(c0)/SU(n)) —
SU(n) is a loop map. So we can take the adjoint of diagram (3) to obtain a homotopy commutative

diagram

s5xn-1 — > SU(00)/SU(n)

(4) T _ l

s5cpr-1 BSU(n).

—_~

where (i, j,,) and v are the adjoints of (i, j,) and v respectively.
On the other hand, by Corollary 3.3, 2° X"~ ! ~ R X"+l ~ §2n+ly §2n+3 and by Lemma 4.1,
v induces a degree one isomorphism in cohomology in dimensions 2n + 1 and 2n + 3. So we may

choose a homotopy equivalence ¥° X"~ 1 ~ ¥ X"+ g0 that there is a homotopy commutative diagram

E5CPn_1 > E5Xn_1

-

SXH —> SU(c0)/SU(n)

—~
t
~

where ¢ is the inclusion.
Next, the map XCP"~1 ELN SU(n) is natural with respect to the usual inclusion of SU(n) into

SU(n +1). Let j be the composite CP"+1 Int SU(n+2) — SU(c0). Consider the diagram

Sqnt2
NCPr~l — NCPM ———— nxnH n2Ccpr!

AR

SU(n) SU(c0) ——= SU(00)/SU(n) —= BSU(n).

The left square commutes by the naturality of j,. As the top row is a homotopy cofibration and
the bottom row is a homotopy fibration, the homotopy commutativity of the left square induces
the middle square and right square for some maps a and b. It is standard that the CW-structure
of SU(00)/SU(n) is taken so that a is the inclusion of the (2n + 3)-skeleton. The Peterson-Stein

formulas (see [8, 3.4.2]) imply that the map b may be taken to be the adjoint j, of j,. Therefore,
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reorienting the right square in the previous diagram, we obtain a homotopy commutative square

nX"H — > SU(c0)/SU(n)

0 l 7 |

s2Cpr-l — > BSU(n).

The last preparatory step is to manipulate degree maps on L°CP"~!. By [18], there is a p-local

homotopy equivalence
p—1
neprt e \/ A
i=1

where H*(A;;Z/pZ) consists of those elements in H*(SCP"~1;Z/pZ) that are in degress of the
form 2i + 2(p — 1)k + 1 for some k > 0. Let ig and 41 be such that 2ig +2(p — 1)kg +1 =2n —3
and 2iy +2(p — 1)k; + 1 = 2n — 1 for some integers ko, k1. Then A;; and A;, inherit the mod-p
cohomology generators of SCP™ ! in degrees 2n — 3 and 2n — 1 respectively. For dimension and

connectivity reasons, there is a homotopy commutative diagram

2qn
scpr-t s xn-l

™) iz l:

1 QigVaiy
\/f 1 Az I Aio \/Ail — §2n=3\ §2n—l

where () is the pinch map onto the two designated summands and ¢;, and g;, are the pinch maps

onto the top cells of A;, and A;, respectively. Let ¥ be the composite

p—1 4 p—1
y:Eoep Tt 2 \/ 24, T8 wia,, veta, Y s vt <\ 544, S sepnt
i=1 i=1
where dy = n(n—1) and d2 = (n+1)n are the degree maps. Notice that all the maps in the composite
defining 7 are suspensions and so they commute with degree maps. Therefore, the definition of 7

and (7) imply that there is a homotopy commutative diagram

7
PCPrt ——— $CP!

\L Esqn \L Esqn

(8) Y5 X, 4 Y5 X, 1

e L

divd
G2n+1 ) G2n+3 2 gan+l .y, G2n+3

It is also useful at this point to define the map v by the composite

p—1 4 p—1
y: £5CPt Z \[ wta, TE A, vsta, Y s, veta, < \/ Bt S siept

i=1 1=1
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where d = n(n? — 1). As before, the definition of v and (7) imply that there is a homotopy

commutative diagram

3
$CPr-l —> $iCpnl
9) l =g, l 5qn

d
Z5Xn,1 —— E5Xn,1.

Now we put things together. Consider the diagram

Z5(CPTL—1 ; Z5CPTL—1

S qn
ESQn EE)XTL— 1
(10) - N
Gon+3 a
5 x -1 P ezt SU(00)/SU(n)

Ygon— in
»6cpn—3 L; 2 pr-1 J_) BSU(TL)

The upper left rectangle homotopy commutes by (8) and the description of Gy, , 3 in Lemma 3.4; the
upper right triangle homotopy commutes by (5); the lower left square homotopy commutes by (2);
and the lower right square homotopy commutes by (6). Thus the entire diagram homotopy com-

v

5
mutes. In the upper direction around the diagram, by (4) the composite X°CP"~1 Yy 55 xn-1 7,

SU(0)/SU(n) — BSU(n) is homotopic to (i, j,), so the upper direction around the diagram is

—~—

homotopic to (i,j,) ©7. On the other hand, in the lower direction around the diagram the left

column is null homotopic since it is two consecutive maps in a homotopy cofibration. Therefore

(i, jn) ©7 is null homotopic.

—

(

Lemma 4.2. Localize at an odd prime p. The map L2CP"1 ﬂQ BSU(n) has order divid-

ing n(n?® —1).

Proof. We wish to show that the composite X°C P71 4, yscprt <ﬂ>> BSU(n) is null homotopic,
where d = n(n?—1). For convenience, label the map from SU(c0)/SU(n) to BSU(n) by 6. Consider
the string of homotopies

—_~— —~—

(i,jn) 0od~ 60D 0%q,0d~5ovodo¥’q, ~dovo%q, 0y~ (ij,)0n.

From left to right, the first homotopy holds by (4), the second holds since maps which are suspensions
commute with degree maps, the third holds by (9), and the fourth holds by (4). Observe that by

—~ —_—

its definition, ~y factors through 7. Therefore, as (i, j,,) o7 is null homotopic, so is (i, j,) o y. Hence

—_~—

(i, jn) o d is null homotopic, as asserted. (Il
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—_~—

Recall that by definition, (i, j,) is the adjoint of the Samelson product (7, j, ), which is homotopic
to the composite S3 A XCP"~1 W g3 5 SU(n LZ SU(n). Therefore Lemma 4.2 immediately

implies the following.

Corollary 4.3. Localize at an odd prime p. The composite SEALCP™ 1 WAin S3ASU (n) —

has order at most n(n? —1). O

As well, the map (i, 1) is the triple adjoint of the map SU(n) SN Q3SU(n). Therefore Corol-
lary 4.3 implies the following.

Proposition 4.4. Localize at an odd prime p. The composite YXCP"~1 =" In -~ SU(n) RN Q3SU(n)

has order at most n(n? — 1). O

Remark 4.5. It is unclear whether an analogue of Proposition 4.4 holds at the prime 2. At odd p
the splitting XCP" ! ~ \/f:_l1 A; lets us work with the two different degree maps d; = n(n — 1) and
dy = (n+ 1)n on S?"*! and S§?7*3 separately. However, at 2 there is no such splitting of SCP"~!

so it is unclear how a map ¥ can be defined so as to obtain a diagram as in (8).

5. RETRACTILE LIE GROUPS AND AN UPPER BOUND FOR THE ORDER OF 0

This section is aimed at proving parts (b) and (¢) of Theorem 1.1. To do so we consider those n
for which SU(n) has the special property of being retractile (a term defined momentarily). The
results in this section hold in more generality than just the SU(n) case, so they are stated this way.
Throughout this section spaces and maps have been localized at an odd prime p and homology is

taken with mod-p coefficients.

Definition 5.1. An H-space B is retractile if there is a space A and a map i: A — B with the
following properties:

(i) there is an algebra isomorphism H, (B) = A(H,(A));

(ii) 4. is the inclusion of the generating set in homology;

(iii) the map XA 2% 5B has a left homotopy inverse.

Many simply-connected, simple compact Lie groups are retractile. In [21] it was shown that the

retractile cases are:

SU(n) n<(p-1°%+1 Gy, Fy,Bg p>3

Sp(n) < (p-10°+1 Er p>5
Spin(2n+1) 2n < (p—1)*+1; Eg p>T7
Spin(2n) 2n—1) < (p—1)2+1;

Further, in each of these cases the space A is a co-H-space.
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Let G be a simply-connected, simple compact Lie group which is retractile. Recall the map

G2 Q3G from Section 2. Define the map 9; by the composite
9 A6k,
We will prove the following, which relates the order of d; to that of ;.

Proposition 5.2. Let G be a retractile simply-connected, simple compact Lie group. If p" o 0y is

null homotopic then so is p" o 0;.

Proposition 5.2 is very useful, in practise it tends to be much easier to prove facts about 9, rather
than 0. The proposition says that this is good enough. Granting Proposition 5.2, we obtain the

following corollary, which lets us go on to prove parts (a) to (c) of Theorem 1.1.

Corollary 5.3. Let G be a retractile simply-connected, simple compact Lie group. Then 01 has

order p" if and only if 0, has order p".

Proof. If 0, has order p” then, as 9, factors through 9y, the order of 9; is at most p”. Conversely,
if 0, has order p" then by Proposition 5.2 d; has order at most p”. Hence, if @ and b are the orders

of 8; and 0; respectively then a < b < a, implying that a = b. |

Proof of Theorem 1.1 (a) to (c). Part (a) is the statement of Corollary 4.3. For part (c), SU(n) is
retractile if n < (p — 1)2 + 1, and in this case the space A is SCP"~! and the map i is the map
wepr-t I SU(n). Therefore the composite SCP"~! ELN SU(n) SN Q3SU(3) is 01. Let p” be
the p-component of n(n?—1). By Proposition 4.4, p"0d; is null homotopic, so Proposition 5.2 implies
that p" o0, is null homotopic. By [6, Theorem 2.4 and Lemma 2.5], 9, has order at least p”. Therefore
the order of 9y equals p". This proves part (c), and part (b) now follows by Corollary 5.3. |

It remains to prove Proposition 5.2. To do so we describe a homotopy decomposition of G which
is designed to behave well with respect to p” o d;. In [4] it was shown that if G is retractile then
3G ~ XAV C where C can be chosen so that it factors through the Hopf construction on G. We
need a refinement of this so the construction will be described in more detail.

In general, let X and Y be path-connected, pointed spaces and let I be the unit interval. The
reduced join of X and Y is the quotient space X *Y = (X x Y x I)/ ~ where (x,y,0) ~ (z,y,0),
(z,y,1) ~ (2/,y,1) and (x,*,t) ~ (*,%,0) for all z,2’ € X, y,yy’ € Y and ¢ € I. The reduced
suspension (X x Y) is also a quotient of X x Y x I, given by (X xY) = (X xY x I)/ ~/
where (x,y,0) ~' (2/,y',0), (z,y,1) ~ (2',9y',1) and (*,*,t) ~" (*,%,0). The relations imply that
the quotient map from X x Y x I to X(X x Y) factors through X x Y. Thus there is a map
X*xY — 3(X xY). Note that this map is natural in both variables. Note also that the composites
X*xY — 2(X xY) 2T $X and X +Y —» S(X xY) =T Y are null homotopic, where 7; and my
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are the projections onto the first and second factors respectively. There is also a natural homotopy

equivalence XX AY ~ X «Y (see, for example, [19, Proposition 7.7.1]), so we obtain a natural map
(11) EXANY — E(X xY)

which composes trivially with Y7, and Xmy. Iterating, if Xq,..., X are path-connected, pointed

spaces, then there is a map
(12) SXa A AXp — B(Xy X x Xy)

which is natural in all k variables. In particular, if X** is the Cartesian product of k copies of X
with itself and X”* is the k-fold smash product of X with itself, then there is a natural map
LXN s mX xR

Suppose now that X is an H-space with multiplication p: X x X — X. Let u* be the composite

P EX AX — B(X x X) 25 BX.

This composite is known as the Hopf construction on X. In particular, if G is a simply-connected,
simple compact Lie group then there is a Hopf construction XG A G #—> YG.

Now we bring in the space A. As G is homotopy associative, the James construction [9] implies
that the map A '3 @ extends to an H-map j: QXA — G. By the Bott-Samelson Theorem,
there is an algebra isomorphism H,(QXA) = T(H,(A)), where T( ) is the free tensor algebra
functor. Since G is retractile, there is an algebra isomorphism H, (G) = A(H,(A)); observe also that
A(H,(A)) = S(H,(A)), where S( ) is the free symmetric algebra functor. Since j is an H-map, j,
is an algebra map and so is determined by its restriction to the generating set H,(A) of T(H,(A)).
Since j is an extension of i and i, is the inclusion of the generating set into A(H,(A)) = S(H,(A)),
the map j,. is therefore the abelianization of the tensor algebra. Let m be the number of generators
in H,(A). For 1 <k <m, let My be the submodule of H,(G) = A(H,(A)) consisting of monomials
of length k. Observe that there is a module isomorphism H,(G) = &} | M.

Let E: A — QXY A be the suspension map. Let Ej be the composite

Ep: A ES (Qna)<h 5 oxA

where the left map is the iterated loop space multiplication. In [4] it was shown that if 1 <k < m

then there is a retract S (A) of BAM such that S1(A) = A, H.(S(A)) = £ M}, and the composite
br: Si(A) — DAMN s A%k ZE S04 2 ng

induces an isomorphism onto the submodule XMy, of H,(XG). Taking the wedge sum over 1 < k < m

gives a map

¢: \/ Sk(4) — G
k=1
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which induces an isomorphism in homology and so is a homotopy equivalence. Notice that when
k=1, S1(A) = ZA and ¢ ~ Xi. Thus if we let C = \/;_, Sx(A4) then there is a homotopy

equivalence

SAVC -2 2B

where ¢ restricted to XA is ¢ ~ 3i. The refinement on ¢ we need is to show that its restriction
to C factors not just through the Hopf construction G A G £ £G, as stated in [4], but through

the composite

PVAV

T YGA AN v A G S G
Lemma 5.4. The restriction of the homotopy equivalence YAV C G toC factors through @*.

Proof. Consider the diagram

SENF njnk
Sk(A) —— AN ——= S(QVA)N —— nG/k

e b

(13) ZAXk - o E(QEA)Xk S EGXk
lE#k \LEIU@
YFEg
X
YOXA G

where iy, is the interated multiplication on QXA and G (both of which are homotopy associative,
so the order in which the multiplication is taken is irrelevant). The two upper squares homotopy
commute by the naturality of (12), the left lower triangle homotopy commutes by the definition
of Ey, and the lower right square homotopy commutes since j is an H-map. By the definition of ¢y,
the lower direction around the diagram is Y¢g. On the other hand, since jo E ~ i, if £ > 2 then

the upper direction around the diagram can be rewritten as the composite

PN — _ - i *
S(A) — £ AN I Sant-1) f 4y Xt p g B g A BN g A G 2 s

Notice that the last two maps in this composite define 7i*, so the homotopy commutativity of (13)

shows that ¢y factors through 7*. |

Now we relate the homotopy equivalence for 3G to the order of the boundary map G O, 0G.
In general, if QB 9 F 3 E-—Bisa homotopy fibration sequence then there is a homotopy

action

0: QB x F — F
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such that the restriction of 6 to QB is 0, the restriction of 6 to F' is the identity map, and there is

a homotopy commutative diagram

OB x OB —— QB

(14) lua ia

OB x F —— F.

In our case, since G N Q3G is a homotopy fibration connecting map there is a homotopy action
0: G x QG — QBG.

Let ev: Q3G — Q2G be the canonical evaluation map. For an H-space X, recall that p™: X —
X is the p"-power map. For a co-H-space Y, let p": Y — Y be the map of degree p”. Recall that 01

is the composite 0;: A - G LN Q3G. Let
(250: C — XG

be the restriction of the homotopy equivalence XA VvV C 259G to C.

Lemma 5.5. Let G be a retractile, simply-connected simple compact Lie group. Suppose that p” o0,

is null homotopic. Then for 2 < k < m the composite
C 2% n6 24 no3a <% 026 2 06
is null homotopic.

Proof. Consider the diagram

Gx A G
1xp”
Gx A i1
1x4
1><61
GxG—GxWBG
W 0
O
G ——— 3G

where 71 is the projection onto the first factor and ¢; is the inclusion of the first factor. Since
01 = 0y o1, the hypothesis that p” 0 9; is null homotopic implies that the upper rectangle homotopy

commutes. The lower square homotopy commutes by (14). Suspending and using the naturality
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of (11) and the definition of 7*, we obtain a homotopy commutative diagram

YTGAA —— E(Gx A) G
lz(m;ﬁ) (1xp")
SGAA— X(G x A) iy
B(1x1i)

E(1><81)
NG x G) —= (G x BE)

Su 6

0 ev
NG ———— SOG ——— 2.

By (11), the composite along the top row is null homotopic. Thus the lower direction around the
diagram is null homotopic. Observe that the map 31 A p" is homotopic to the degree p” map on
YG A A, so we obtain a null homotopy for evo¥0; ofi* op”. In [¥X, QY] the group structure induced
by the comultiplication equals that induced by the multiplication, so we obtain a null homotopy for
the composite XG A A ona 2 YOG 5 Q%G LNy ot e By Lemma 5.4, the restriction of the

homotopy equivalence YAV C 24 %G to C factors through z*. Thus the composite
C 2% 96 2% 2036 % 026 2 026
is null homotopic. O
Putting all this together, we prove Proposition 5.2.
Proof of Proposition 5.2. Consider the composite
b YAV O -5 26 2 0da < 026 2 026,

The restriction of ¢ to ¥ A is homotopic to ¥4, and by definition 0; = 0; o i. So the restriction
of 1 to A is homotopic to p” o ev o £9;, which is null homotopic since p” o 0; is null homotopic.
By Lemma 5.5, the hypothesis that p” o 9; is null homotopic implies that the restriction of ¥ to C
is null homotopic. Thus ¢ is null homotopic. As ¢ is a homotopy equivalence, this implies that

p" o ev o X0; is null homotopic. Taking adjoints, we obtain that p” o 9y is null homotopic. O

6. APPLICATIONS TO GAUGE GROUPS

The first application is to prove Theorem 1.1 (d) by counting the number of distinct homotopy
types of gauge groups. This requires two known results. Hamanaka and Kono [6] proved the

following.

Theorem 6.1. If G, (SU(n)) ~ G (SU(n)) then (n(n? —1,k) = (n(n? — 1), k). O
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Theorem 6.1 improved an earlier result of Sutherland [20] by a factor of 2 in the case when n is
odd. On the other hand, the author [23] proved the following. For positive integers a and b, let (a, b)

be their greatest common divisor.

Theorem 6.2. Let X be a space and Y be an H-space with a homotopy inverse. Suppose there is
a map X i> Y of order m, where m is finite. For a positive integer k > 0, let F}, be the homotopy
fibre of ko f. If (m,k) = (m, k') then Fy and Fy are homotopy equivalent when localized rationally

or at any prime. O

Proof of Theorem 1.1 (d). Consider the map SU(n) BN Q3SU(n). By Lemma 2.1, ko d; ~ 0, and
recall that the homotopy fibre of 9y is G, (SU(n)). Localize at an odd prime p. If n < (p—1)2+1 then
Theorem 1.1 (c) says that 9; has order n(n?—1). So by Theorem 6.2, if (n(n?—1),k) = (n(n?—1),&’)
then G (SU(n)) ~ G/ (SU(n)) when localized at any odd prime. The converse is Theorem 6.1. [

The next application is to a p-local homotopy decomposition of Gi(SU(n)). Assume from now
on that all spaces and maps are localized at p. In [17] it was shown that there is a homotopy
equivalence SU(n) ~ Hf;ll B; where the generators of H*(B;;Z/pZ) are those of H*(SU(n); Z/pZ)
which occur in dimensions of the form 2i + 2(p — 1)t + 1 for some t > 0. Let iy and 4 be such that
2n—3=2ip+2(p— Dto+1 and 2n — 1 = 2i; + 2(p — 1)t; + 1 for some integers to and ¢;. In what
follows, when we write B;1o and ¢ = p — 2 or p — 1 we mean B; or By respectively. In [22] in the

retractile case and in [11] in the general case it was shown that there is a homotopy equivalence

p—1
(15) gk(SU(n)) o H B; x QéBi+2 X Xio X Xil

idioria

where for j € {ip,i1} there are homotopy fibrations Q§B;+2 — X; — B;.

The extra information we can now add is when the spaces X;, and X;, decompose as products.
If SU(n) is retractile and k is a multiple of n(n? — 1) then by, Theorem 1.1 (c) and Lemma 2.1,
Ok ~ k o 8y is null homotopic. Therefore G, (SU(n)) ~ SU(n) x Q2SU(n), implying that there are
homotopy equivalences X;, ~ B;, x Q*B; 12 and X;, ~ B;, X Q¢B;,42. On the other hand, by
Theorem 1.1 (d), there is a homotopy equivalence Gy (SU(n)) ~ SU(n) x Q4SU(n)) if and only
if k is a multiple of n(n? — 1). Hence if k is not a multiple of n(n? — 1) then there cannot be
simultaneous homotopy equivalences X;, ~ B;, X Q4BZ-0+2 and X;, ~ B;, X QgBi1+2. Thus we

obtain the following.

Theorem 6.3. Localize at an odd prime p and suppose that n < (p—1)2+1. Then in (15) there are
homotopy equivalences X;, =~ B;, x Q*B;, 12 and X;, ~ B;, x Q4 B;, 42 if and only if k is a multiple
of n(n? —1). O
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