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Abstract. We determine an upper bound for the number of homotopy associative multiplications

on certain H-spaces. This is applied to SU(3) and Sp(2) at odd primes, and to give examples of

p-local H-spaces with more than one multiplication but a unique homotopy associative multipli-

cation.

1. Introduction

Throughout this paper, all spaces are pointed, connected and have the homotopy type of a CW -

complex. A space X is an H-space if there is a continuous map m : X ×X −→ X whose restriction

to either factor is homotopic to the identity map on X. The map m is called a multiplication

on X. Counting the number of distinct (non-homotopic) multiplications on an H-space is a problem

with a long history. James [J2] showed that there are 12 distinct multiplications on S3. Arkowitz

and Curjel [AC] generalized this greatly by showing that if X is an H-space with a homotopy

associative multiplication then there is a one-to-one correspondence between the number of distinct

multiplications on X and the homotopy classes of maps [X ∧X,X]. Zabrodsky [Z, Theorem 1.4.3]

later showed that the same result holds for any H-space. These generalizations recovered James’

result, since [S3 ∧ S3, S3] ∼= π6(S3) ∼= Z/12Z. Mimura [M] used Arkowitz and Curjel’s result to

determine the number of distinct multiplications on SU(3) and Sp(2).

When X is both homotopy associative and homotopy commutative more counting results are

known. Hubbuck [H] showed that if X is a finite H-space then there are no multiplications which

are both homotopy associative and homotopy commutative unless X is a torus, and then the multi-

plication is unique. (In fact, the homotopy associativity hypothesis is not needed for this.) Localized

at a prime p there can be non-torus finite H-spaces with multiplications which are both homotopy as-

sociative and homotopy commutative, but the third author [Th2] showed that if they are “retractile”

then the homotopy associative and homotopy commutative multiplication is unique.

There remains the question of counting the number of homotopy associative multiplications.

James [J2] showed that, of the 12 distinct multiplications on S3, precisely 8 of them are homotopy

associative. This does not obviously correspond to the number of classes in a homotopy set [A,S3] for
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any space A related to S3, so the problem of counting the number of distinct homotopy associative

multiplications is inherently more subtle than counting the number of multiplications.

In this paper we give an upper bound on the number of homotopy associative multiplications for

retractile H-spaces. Let p be an odd prime, localize spaces and maps at p, and take homology with

mod-p coefficients. An H-space B is retractile if there is a triple (A, i,B) such that: (i) H∗(B) ∼=

Λ(H̃∗(A)), where Λ( ) is the free exterior algebra functor, (ii) there is a map i : A −→ B inducing

the inclusion of the generating set in H∗(B), and (iii) Σi has a left homotopy inverse. As will be

discussed in Section 2 there are many examples of retractile H-spaces, and these include simply-

connected, simple compact Lie groups when localized at sufficiently large primes. We determine an

upper bound on the number of p-local homotopy associative multiplications on retractile H-spaces B.

Theorem 1.1. Let B be a retractile H-space. If B has a homotopy associative multiplication then

the number of homotopy associative multiplications on B is bounded above by the order of the group

[A ∧B,B].

Theorem 1.1 is in line with Arkowitz and Curjel’s statement regarding the number of multiplica-

tions on B. Note that if B = S2m+1 then A = S2m+1 as well, so [A∧B,B] ∼= [B∧B,B] and no new

information is gained. However, if B has more than one generator in homology then A has fewer

cells than B so [A∧B,B] may be a much smaller group than [B ∧B,B]. Theorem 1.1 is applied to

SU(3) and Sp(2) at primes p ≥ 3 to show that many of the multiplications are not homotopy asso-

ciative. Observe also that Theorem 1.1 implies that if [A∧B,B] ∼= 0 then the homotopy associative

multiplication on B is unique. We give examples where B has multiple distinct multiplications but

a unique homotopy associative multiplication.

It is tempting to suspect that, as A “generates” B in some sense, the number of homotopy

associative multiplications should be in terms of [A ∧ A,B]. But this would be like saying that

different group structures G1 and G2 on a set T , which have the same generating set S and the

same list of elements, are determined by products involving only two generators. However, this is

not true. For example, D8 × Z/2Z = 〈a, b, c | a4 = b2 = c2 = e, ab = ba, bc = cb, cac = a3〉 and

SmallGroup(16, 3) = 〈a, b, c | a4 = b2 = c2 = e, ab = ba, bc = cb, cac = ab〉 are nonisomorphic groups

of order 16, have the same generating set and the same list of elements, but the product structure

on SmallGroup(16, 3) is not determined by products involving only two elements. So it is unlikely

that, in general, the number of homotopy associative multiplications on a retractile H-space B is

bounded above by [A ∧A,B].
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2. Properties of loop suspensions and retractile H-spaces

This section discusses the background results needed for what is to come. We begin with some

properties of loop suspensions. Let A be a path-connected, pointed space and let

E : A −→ ΩΣA

be the suspension map. For k ≥ 1, let A×k be the Cartesian product of A with itself k times and

let ek be the composite

ek : A×k
E×k

−→ (ΩΣA)×k
µ−→ ΩΣA

where µ is the loop multiplication (which is homotopy associative). Note that e1 = E.

It is well known that there is a natural homotopy equivalence Σ(X ×Y ) ' ΣX ∨ΣY ∨Σ(X ∧Y ).

Iterating, we obtain a retraction of ΣA∧k off ΣA×k, where A∧k is the k-fold smash product of A

with itself. Using this we obtain a composite

ψk : ΣA∧k −→ ΣA×k
Σek−→ ΣΩΣA.

Taking the wedge sum of the maps ψk for k ≥ 1 gives a map

ψ :

∞∨
k=1

ΣA∧k −→ ΣΩΣA.

James [J1] proved the following.

Theorem 2.1. The map ψ is a homotopy equivalence. �

The map ψ will be used to prove a criterion for when two maps out of a product ΩΣA × B are

homotopic. For a space X let 1X be the identity map on X.

Lemma 2.2. Let Y be an H-space and suppose that there are maps f, g : ΩΣA × B −→ Y . If

the composites A×k × B ek×1B−−−−→ ΩΣA × B f−−−−→ Y and A×k × B ek×1B−−−−→ ΩΣA × B g−−−−→ Y are

homotopic for each k ≥ 1, then f is homotopic to g.

Proof. Since Y is an H-space, it retracts off ΩΣY , so to show that f ' g it suffices to show that

Σf ' Σg. Let f1 and f2 be the restrictions of f to ΩΣA and B respectively. After suspending, we

have Σ(ΩΣA × B) ' ΣΩΣA ∨ ΣB ∨ Σ(ΩΣA ∧ B), and Σf is homotopic to the wedge sum of Σf1,

Σf2 and the map

f3 : Σ(ΩΣA ∧B)
q−→ Σ(ΩΣA×B)

Σf−→ Y

where q has been chosen so that it has a left homotopy inverse. Similarly, Σg is the wedge sum of

maps Σg1, Σg2 and g3 = Σg ◦ q. To show that Σf ' Σg we will show that Σf1 ' Σg1, Σf2 ' Σg2,

and f3 ' g3.

First consider f1 and g1. The hypotheses imply that the composites A×k
ek−→ ΩΣA

f1−→ Y and

A×k
ek−→ ΩΣA

g1−→ Y are homotopic for all k ≥ 1. Therefore, by the definition of ψk, the composites
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ΣA∧k
ψk−→ ΣΩΣA

Σf1−→ ΣY and ΣA∧k
ψk−→ ΣΩΣA

Σg1−→ ΣY are homotopic for all k ≥ 1. Taking the

wedge sum of the maps ψk then implies that the composites
∨∞
k=1 ΣA∧k

ψ−→ ΣΩΣA
Σf1−→ ΣY and∨∞

k=1 ΣA∧k
ψ−→ ΣΩΣA

Σg1−→ ΣY are homotopic. But ψ is a homotopy equivalence by Theorem 2.1,

implying that Σf1 ' Σg1.

A similar argument using (
∨∞
k=1 ΣA∧k) ∧B ψ∧1B−−−−−−→ (ΣΩΣA) ∧B shows that f3 ' g3.

Finally, observe that the restrictions of f◦(e1×1B) and g◦(e1×1B) to B are f2 and g2 respectively.

By hypothesis, f ◦ (e1 × 1B) ' g ◦ (e1 × 1B), so f2 ' g2. �

One more property about loop suspensions proved by James [J1] that we will need is the following.

Theorem 2.3. If Y is a homotopy associative H-space then any map f : A −→ Y can be extended

to an H-map f : ΩΣA −→ Y . �

Now we turn to retractile H-spaces. Let p be an odd prime, localize spaces and maps at p, and

take homology with mod-p coefficients. Recall from the Introduction that an H-space B is retractile

if there is a triple (A, i,B) such that: (i) H∗(B) ∼= Λ(H̃∗(A)), where Λ( ) is the free exterior algebra

functor, (ii) there is a map i : A
i−→ B inducing the inclusion of the generating set in H∗(B), and

(iii) Σi has a left homotopy inverse. A large family of examples was constructed in different ways by

Cooke, Harper and Zabrodsky [CHZ] and Cohen and Neisendorfer [CN]. They showed that if A is

any CW -complex consisting of ` odd dimensional cells, where ` < p− 1, then after localization at p

there is a retractile triple (A, i,B). In [Th1] it was shown that if ` < p− 2 then B has a homotopy

associative, homotopy commutative multiplication. Sometimes for other reasons it is known that

there are retractile H-spaces when ` = p−1. For instance, SU(p) at p is retractile, with the space A

being ΣCP p−1, and Sp((p+ 1/2)) at p is also retractile. Note that in these cases the loop structure

on the Lie group is homotopy associative.

We need to establish some properties of homotopy assocative retractile H-spaces. Let B be a

retractile H-space with an associated triple (A, i,B), and suppose that B has a homotopy associative

multiplication m. By Theorem 2.3 there is an extension

(1)

A
i //

E

��

B

ΩΣA

r(m)

<<zzzzzzzz

where r(m) is an H-map with respect to the multiplication m on B. Since B is retractile, there is

a map

t : ΣB −→ ΣA

which is a left homotopy inverse of Σi. Let s(m) be the composite

s(m) : B
E−→ ΩΣB

Ωt−→ ΩΣA.
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Lemma 2.4. The following hold:

(a) there is a homotopy commutative diagram

A
E

""EEEEEEEE

i

��
B

s(m)
// ΩΣA;

(b) the composite B
s(m)−−→ ΩΣA

r(m)−−→ B is a homotopy equivalence.

Proof. By the naturality of E and the definition of s(m) there is a homotopy commutative diagram

A
i //

E

��

B

E

��

s(m)

$$IIIIIIIII

ΩΣA
ΩΣi // ΩΣB

Ωt // ΩΣA.

Since the composite along the bottom row is the identity map, we obtain E ' s(m) ◦ i as asserted

in part (a).

For part (b), first observe that s(m) ◦ i ' E by part (a) and i ' r(m) ◦ E by (1). Therefore

r(m) ◦ s(m) ◦ i ' r(m) ◦E ' i. Since i∗ is the inclusion of the generating set in H∗(B) ∼= Λ(H̃∗(A)),

we see that r(m) ◦ s(m) is a self-map of B with the property that r(m)∗ ◦ s(m)∗ is the identity

map when restricted to H̃∗(A). An inductive argument using the reduced diagonal (or dualizing to

cohomology) then shows that r(m)∗ ◦ s(m)∗ is an isomorphism, and so r(m) ◦ s(m) is a homotopy

equivalence. �

We wish to replace the map s̄(m) in Lemma 2.4 with one that gives the identity map on B in

part (b) but preserves property (a). To do this, let e = r(m) ◦ s(m) be the homotopy equivalence

from Lemma 2.4 (b). Define i by the composite

i : A
i−→ B

e−→ B.

Consider the diagram

(2)

A

i

��

E

""DDDDDDDD
i

��~~
~~

~~
~

B
e−1

// B
s(m)

// ΩΣA
r(m)

// B.

The left triangle commutes by the definition of i, and the right triangle homotopy commutes by

Lemma 2.4 (a). Since r(m) ◦ s(m) = e, the bottom row is the identity map on B. Thus the

homotopy commutativity of (2) implies that i ' r(m) ◦E, but r(m) ◦E ' i by (1). Therefore i ' i.

So if we define s(m) by the composite

s(m) : B
e−1

−−→ B
s(m)−−→ ΩΣA
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then we obtain s(m) ◦ i ' s(m) ◦ i = s(m) ◦ e−1 ◦ i ' E, where the last homotopy is from the

homotopy commutativity of the two triangles in (2). Further, by definition of s(m), the composite

r(m) ◦ s(m) is homotopic to the identity map on B. We record these properties for later use.

Lemma 2.5. Let B be a retractile H-space with an associated triple (A, i,B) and let m be a homotopy

associative multiplication on B. Then there is a map B
s(m)−−→ ΩΣA such that:

(a) there is a homotopy commutative diagram

A
E

""EEEEEEEE

i

��
B

s(m)
// ΩΣA;

(b) the composite B
s(m)−−→ ΩΣA

r(m)−−→ B is homotopic to the identity map on B.

�

3. An upper bound on the number of homotopy associative multiplications

Let B be an H-group, that is, B is a homotopy associative H-space with a homotopy inverse.

(Note that the homotopy inverse hypothesis is redundant since a homotopy associative H-space

having the homotopy type of a CW -complex is equivalent to an H-group by using the shearing

map.) Fix a map

m : B ×B −→ B

inducing an H-group structure on B. Then for any space X, the multiplication m induces a group

structure on the homotopy classes of maps [X,B]. In what follows, we will compare the fixed

multiplication m with other homotopy associative multiplications m′ on B, and all additions and

differences calculated in [X,B] will be made with respect to the structure induced by the fixed

multiplication m.

Let m′ be a homotopy associative multiplication on B. By Theorem 2.3 there is an extension

(3)

A
i //

E

��

B

ΩΣA

r(m′)

<<zzzzzzzz

where r(m′) is an H-map with respect to the multiplication m′. Observe that there is also an H-

map r(m) corresponding to the fixed multiplication m, and r(m′) need not be homotopic to r(m).

Let

s(m′) : B −→ ΩΣA

be the right homotopy inverse of r(m′) given in Lemma 2.5.
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Define θ(m′) by the composite

(4) θ(m′) : A×B E×s(m′)−−−−→ ΩΣA× ΩΣA
µ−−−−→ ΩΣA

r(m′)−−−−→ B.

In the next several lemmas we will determine some properties of θ(m′).

Lemma 3.1. The map A×B θ(m′)−−→ B has the following properties:

(a) the restriction of θ(m′) to A is homotopic to i;

(b) the restriction of θ(m′) to B is homotopic to 1B;

(c) there is a homotopy commutative diagram

A×B
θ(m′)

//

i×1B

��

B

B ×B
m′ // B.

Proof. The restriction of θ(m′) to A is the composite A
E−−→ ΩΣA

r(m′)−−→ B. By (3) this composite is

homotopic to i.

The restriction of θ(m′) to B is the composite B
s(m′)−−→ ΩΣA

r(m′)−−→ B. Since s(m′) is a right

homotopy inverse of r(m′), this composite is homotopic to 1B .

Finally, by parts (a) and (b) and the fact that r(m′) is an H-map, there is a homotopy commu-

tative diagram

A×B
E×s(m′)

//

i×1B &&NNNNNNNNNNN
ΩΣA× ΩΣA

µ
//

r(m′)×r(m′)
��

ΩΣA

r(m′)

��
B ×B

m′ // B.

The upper direction around the diagram is the definition of θ(m′). Thus θ(m′) ' m′ ◦ (i× 1B). �

The next lemma combines with Lemma 3.1 to show that the map A × B θ(m′)−−→ B is a kind of

action of A on B. Recall the map A×k
ek−→ ΩΣA defined at the beginning of Section 2.

Lemma 3.2. There is a homotopy commutative diagram

A×A
e2 //

1A×i
��

ΩΣA

r(m′)

��
A×B

θ(m′)
// B.

Proof. Consider the diagram

A×A

1A×i
��

A×A
e2

&&MMMMMMMMMM

E×E
��

A×B
E×s(m′)

// ΩΣA× ΩΣA
µ

// ΩΣA
r(m′)

// B.
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The square homotopy commutes by Lemma 2.5 (a) and the triangle commutes by the definition

of e2. Therefore the diagram as a whole homotopy commutes. Observing that the bottom row is

the definition of θ(m′), the lemma is proved. �

We next show that the “action” of A on B has an associativity property which is compatible with

the multiplication m′ on B. Define the map ϕ(m′) by the composite

ϕ(m′) : ΩΣA×B 1ΩΣA×s(m′)−−−−−−→ ΩΣA× ΩΣA
µ−−−−−−→ ΩΣA

r(m′)−−−−−−→ B.

Note that ϕ(m′) ◦ (E × 1B) = θ(m′).

Lemma 3.3. There are homotopy commutative diagrams

A×A×B
1A×θ(m′) //

e2×1B

��

A×B

θ(m′)

��

A×A×B
1A×θ(m′) //

i×i×1B

��

A×B

θ(m′)

��
ΩΣA×B

ϕ(m′)
// B B ×B ×B

1×m′ // B ×B
m′ // B.

Proof. We begin with the right diagram. Consider the string of homotopies

θ(m′) ◦ (1A × θ(m′)) ' m′ ◦ (i× 1B) ◦ (1A × (m′ ◦ (i× 1B)))

' m′ ◦ (i× (m′ ◦ (i× 1B)))

' m′ ◦ (1B ×m′) ◦ (i× i× 1B).

The first homotopy holds by Lemma 3.1 (c), the second just compresses the data, and the third

reorganizes it. Thus the right diagram in the statement of the lemma homotopy commutes.

Next, consider the diagram

A×A×B
e2×1B //

i×i×1B

��

ΩΣA×B
1ΩΣA×s(m′) //

r(m′)×1B

��

ΩΣA× ΩΣA
µ

//

r(m′)×r(m′)
��

ΩΣA

r(m′)

��
B ×B ×B

m′×1B // B ×B B ×B
m′ // B.

The left square homotopy commutes since e2 = µ ◦ (E ×E), r(m′) is an H-map, and r(m′) ◦E ' i;

the middle square homotopy commutes since s(m′) is a right homotopy inverse for r(m′); and the

right square homotopy commutes since r(m′) is an H-map. Therefore the diagram as a whole

homotopy commutes. By definition, ϕ(m′) = r(m′) ◦ µ ◦ (1ΩΣA × s(m′)), so the upper direction

around the diagram is ϕ(m′) ◦ (e2 × 1B). Thus the homotopy commutativity of the diagram gives

ϕ(m′)◦(e2×1B) ' m′◦(m′×1B)◦(i×i×1B). Refining, as m′ is homotopy associative, m′◦(m′×1B) '

m′ ◦(1B×m′), and by the first part of the lemma, m′ ◦(1B×m′)◦(i× i×1B) ' θ(m′)◦(1A×θ(m′)).

Thus we obtain ϕ(m′) ◦ (e2 × 1B) ' θ(m′) ◦ (1A × θ(m′)), proving that the left diagram in the

statement of the lemma homotopy commutes. �
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The associativity properties in Lemma 3.3 allow us to iterate with repeated actions of A on B.

Let Θ1(m′) = θ(m′) and for k ≥ 2, define Θk(m′) recursively by the composite

Θk(m′) : A×k ×B = A× (A(k−1) ×B)
1A×Θk−1(m′)−−−−−−→ A×B θ(m′)−−−−−−→ B.

For k ≥ 2, let

M ′k : B×k −→ B

be the map obtained by iteratively using m′ to multiply the identity map on B with itself. Note

that as m′ is homotopy associative, the order in which this multiplication occurs does not matter.

Then arguing exactly as in Lemma 3.3 proves the following.

Lemma 3.4. For k ≥ 1 there are homotopy commutative diagrams

A×k ×B
Θk(m′)

((PPPPPPPPPPPPPP

ek×1B

��

A×k ×B
Θk(m′)

((PPPPPPPPPPPPPP

i×k×1B

��
ΩΣA×B

ϕ(m′)
// B B×k ×B

M ′k+1 // B.

�

Notice that Lemmas 3.1, 3.3 and 3.4 all hold for any homotopy associative multiplication m′. In

particular, the analogous diagrams hold for the fixed multiplication m. This is now used to prove a

reduction: to show that m′ and m are homotopic it suffices to prove the weaker statement that θ(m′)

and θ(m) are homotopic.

Proposition 3.5. Let m′ be a homotopy associative multiplication on B. Then θ(m′) ' θ(m) if

and only if m′ ' m.

Proof. Suppose that m′ ' m. Then by Lemma 3.1 (c), θ(m′) ' m′ ◦ (i× 1B) ' m ◦ (i× 1B) ' θ(m).

Conversely, suppose that θ(m′) ' θ(m). The recursive definition sof Θk(m′) and Θk(m) in terms

of θ(m′) and θ(m) respectively imply that for each k ≥ 1 we have Θk(m′) ' Θk(m). Therefore, by

Lemma 3.4 the composites

A×k ×B ek×1B−−−−→ ΩΣA×B ϕ(m′)−−−−→ B

A×k ×B ek×1B−−−−→ ΩΣA×B ϕ(m)−−−−→ B

are homotopic for all k ≥ 1. By Lemma 2.2, this implies that ϕ(m′) ' ϕ(m).

We now relate ϕ(m′) and ϕ(m) to the multiplications m′ and m. Consider the diagram

B ×B
s(m′)×1B // ΩΣA×B

1ΩΣA×s(m′) // ΩΣA× ΩΣA
µ

//

r(m′)×r(m′)
��

ΩΣA

r(m′)

��
B ×B B ×B

m′ // B.
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The left rectangle homotopy commutes since s(m′) is a right homotopy inverse for r(m′) and the

right square homotopy commutes since r(m′) is an H-map. Therefore the entire diagram homotopy

commutes. By definition, ϕ(m′) = r(m′) ◦ µ ◦ (1ΩΣA × s(m′)), so the upper direction around the

diagram is homotopic to ϕ(m′)◦(s(m′)×1B). The homotopy commutativity of the diagram therefore

implies that ϕ(m′) ◦ (s(m′)× 1B) ' m′. On the other hand, consider the diagram

B ×B
s(m′)×1B //

(r(m)◦s(m′))×1B

��

ΩΣA×B
1ΩΣA×s(m)

// ΩΣA× ΩΣA
µ

//

r(m)×r(m)

��

ΩΣA

r(m)

��
B ×B B ×B

m // B.

Arguing as before, the diagram homotopy commutes. This time we only obtain ϕ(m)◦(s(m′)×1B) '

m ◦ ((r(m) ◦ s(m′))× 1B). We claim that r(m) ◦ s(m′) ' 1B . If so then ϕ(m) ◦ (s(m′)× 1B) ' m,

and therefore as ϕ(m′) ' ϕ(m) we obtain

m′ ' ϕ(m′) ◦ (s(m′)× 1B) ' ϕ(m) ◦ (s(m′)× 1B) ' m,

completing the proof.

It remains to show that r(m)◦s(m′) is homotopic to the identity map on B. Since ϕ(m′) ' ϕ(m),

their restrictions to ΩΣA are homotopic. By the definition of ϕ(m′), its restriction to ΩΣA is the

map ΩΣA
r(m′)−−→ B, and similarly the restriction of ϕ(m) to ΩΣA is the map ΩΣA

r(m)−−→ B. So

we have r(m′) ' r(m). Therefore, as s(m′) is a right homotopy inverse for r(m′), we obtain

r(m) ◦ s(m′) ' r(m′) ◦ s(m′) ' 1B , as required. �

Recall that the fixed multiplication m on B is used to induce the group structure in [X,B] for

any space X. Let m′ be any homotopy associative multiplication on B. By Lemma 3.1 (a) and (b),

the restrictions of θ(m) and θ(m′) to A ∨B are both homotopic to i ∨ 1B . Therefore in [A×B,B]

the difference D(m′) = θ(m′)− θ(m) is null homotopic when restricted to A ∨B, and so it extends

to a map d(m′) : A ∧ B −→ B. Note that the choice of extension is uniquely determined since the

connecting map δ in the homotopy cofibration sequence A ∨B −→ A×B −→ A ∧B δ−→ Σ(A ∨B)

is null homotopic.

Let HA(B) be the set of homotopy associative multiplications on B. Define a map

ψ : HA(B) −→ [A ∧B,B]

by ψ(m′) = d(m′). We now prove Theorem 1.1, restated as follows.

Theorem 3.6. The map HA(B)
ψ−→ [A ∧B,B] is an injection.

Proof. Let m′ be in the kernel of ψ. Then ψ(m′) = d(m′) is null homotopic. This implies that

D(m′) = θ(m′) − θ(m) is null homotopic. Therefore θ(m′) ' θ(m) and so by Proposition 3.5,

m′ ' m. Hence the kernel of ψ consists only of the element m, implying that ψ is an injection. �
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One immediate consequence of Theorem 3.6 identifies cases when the homotopy associative mul-

tiplication on B is unique.

Corollary 3.7. If [A∧B,B] ∼= 0 then there is a unique homotopy associative multiplication on B. �

Before moving on to some examples in the next section, we make two further observations. First,

recall that the set of all multiplications on B is in one-to-one correspondence with [B ∧B,B]. The

correspondence is constructed in [AC] by means of a difference map analogous to ψ. Observe that

[A ∧B,B] injects into [B ∧B,B], for if m is a fixed multiplication on B, then the composite

[A∧B,B]
E∗−−→ [A∧B,ΩΣB] ∼= [ΣA∧B,ΣB]

(t∧1)∗−−−−→ [ΣB∧B,ΣB] ∼= [B∧B,ΩΣB]
r(m)∗−−−−→ [B∧B,B]

is a right inverse of the map (i ∧ 1)∗ : [B ∧ B,B] → [A ∧ B,B]. Thus the composite HA(B)
ψ−→

[A∧B,B] −→ [B ∧B,B] represents the inclusion of the homotopy associative multiplications on B

into the full set of multiplications on B.

Second, we relate HA(B) to a different set which is of some interest in its own right. An H-map

r : ΩΣA→ B is called an H-retraction if there exists a map (not necessarily an H-map) s : B → ΩΣA

such that r ◦ s is homotopic to the identity map on B. Let HRet[ΩΣA,B] be the set of homotopy

classes of H-retractions. Observe that there is a map

τ : HRet[ΩΣA,B] −→ [A×B,B]

defined by sending r ∈ HRet[ΩΣA,B] (with its associated right homotopy inverse s) to the composite

A×B E×s−→ ΩΣA× ΩΣA
µ−→ ΩΣA

r−→ B.

Lemma 3.8. Let B be a retractile H-space with an associated triple (A, i,B). Then there is an injec-

tion HA(B) −→ HRet[ΩΣA,B] with the property that the composite HA(B) −→ HRet[ΩΣA,B]
τ−→

[A×B,B] send the multiplication m ∈ HA(B) to the map θ(m) defined in (4).

Proof. Let m ∈ HA(B). Using the homotopy associative H-structure m on B, Lemma 2.3 implies

that there is an extension

A
i //

E

��

B

ΩΣA

r(m)

<<zzzzzzzz

where r(m) is an H-map. By Lemma 2.5, there is a map s(m) : B −→ ΩΣA which is a right

homotopy inverse of r(m). Thus r(m) ∈ HRet[ΩΣA,B]. Therefore, we obtain a map σ : HA(B) −→

HRet[ΩΣA,B] given by σ(m) = r(m).

Further, observe that τ(r(m)) is the composite A×B E×s(m)−−−−→ ΩΣA×ΩΣA
µ−−−−→ ΩΣA

r(m)−−−−→ B,

which is precisely the definition of θ(m). Thus the composite HA(B)
σ−→ HRet[ΩΣA,B]

τ−→

[A × B,B] send the multiplication m ∈ HA(B) to the map θ(m). In particular, Proposition 3.5

implies that τ ◦ σ is an injection. Therefore σ is also an injection. �
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4. Examples

4.1. Multiplications on SU(3) and Sp(2). Mimura [M] determined the number of distinct mul-

tiplications on SU(3) and Sp(2) by calculating [SU(3) ∧ SU(3), SU(3)] and [Sp(2) ∧ Sp(2), Sp(2)].

Theorem 4.1 (Mimura). There are 215 · 39 · 5 · 7 distinct multiplication on SU(3), and 220 · 3 · 55 · 7

distinct multiplications on Sp(2). �

Theorem 4.1 is an integral statement; localized at a prime p, the number of distinct multiplications

is the p-component of the total number of integral multiplications. We give upper bounds on the

number of odd primary homotopy associative multiplications on SU(3) and Sp(2). In the case

of SU(3) the space corresponding to A is ΣCP 2 - the 5-skeleton of SU(3); and in the case of Sp(2)

the space corresponding to A is the 7-skeleton of Sp(2), which we will simply call A. Write |[A∧B,B]|

for the cardinality of the group [A ∧B,B].

Lemma 4.2. Localized away from 2, |[ΣCP 2 ∧ SU(3), SU(3)]| = 35 · 5 and |[A ∧ Sp(2), Sp(2)]| =

3 · 54 · 7.

Proof. First consider the SU(3) case. By [MT], localized away from 2 there are homotopy equiv-

alences SU(3) ' S3 × S5 and ΣCP 2 ' S3 ∨ S5. Using the fact that (S3 ∨ S5) ∧ (S3 × S5) '

S6 ∨ S8 ∨ S8 ∨ S10 ∨ S11 ∨ S13 and Toda’s [To] calculations of the odd primary homotopy groups of

spheres, we obtain

[ΣCP 2 ∧ SU(3), SU(3)] ∼= [(S3 ∨ S5) ∧ (S3 × S5), S3 × S5]

∼= π6(S3 × S5)⊕ 2 · π8(S3 × S5)⊕ π10(S3 × S5)⊕ π11(S3 × S5)⊕ π13(S3 × S5)

∼= Z/3Z⊕ 2 · Z/3Z⊕ (Z/3Z⊕ Z/5Z)⊕ 0⊕ Z/3Z.

Consequently, |[ΣCP 2 ∧ SU(3), SU(3)]| = 35 · 5.

Next, consider Sp(2). The space Sp(2) does not split as a product of spheres at the prime 3 - in

this case a close look at the calculation of [Sp(2) ∧ Sp(2), Sp(2)] in [M] shows that, localized at 3,

there are isomorphisms [A ∧ Sp(2), Sp(2)] ∼= [Sp(2) ∧ Sp(2), Sp(2)] ∼= Z/3Z. Localized away from 2

and 3, by [MT] there are homotopy equivalences Sp(2) ' S3 × S7 and A ' S3 ∨ S7. Using the fact

that (S3 ∨ S7) ∧ (S3 × S7) ' S6 ∨ S10 ∨ S10 ∨ S13 ∨ S14 ∨ S17 and Toda’s calculations, we obtain

[A ∧ Sp(2), Sp(2)] ∼= [(S3 ∨ S7) ∧ (S3 × S7), S3 × S7]

∼= π6(S3 × S7)⊕ 2 · π10(S3 × S7)⊕ π13(S3 × S7)⊕ π14(S3 × S7)⊕ π17(S3 × S7)

∼= 0⊕ 2 · Z/5Z⊕ 0⊕ (Z/5Z⊕ Z/7Z)⊕ Z/5Z.

Consequently, |[A ∧ Sp(2), Sp(2)]| = 3 · 54 · 7. �

Theorem 3.6 and Lemma 4.2 immediately imply the following.
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Proposition 4.3. Localized away from 2 there are at most 35 · 5 distinct homotopy associative

multiplications on SU(3) and 3 · 54 · 7 distinct homotopy associative multiplications on Sp(2). �

In particular, notice that when SU(3) is localized at 7 it has 7 distinct multiplications but

Lemmas 3.7 and 4.2 imply that there is a unique homotopy associative multiplication, which must

be the one induced by the standard multiplication on SU(3).

4.2. Unique homotopy associative multiplications. We begin with a family of examples. Let

B =
∏k
i=1 S

3, A =
∨k
i=1 S

3, and i : A −→ B be the inclusion of the wedge into the product. Then

(A, i,B) is retractile. Iterating the suspension splitting Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y ) shows

that A ∧B is homotopy equivalent to a wedge of spheres of the form S3j for j ∈ {2, · · · , k + 1}.

Lemma 4.4. Let p be an odd prime satisfying p ≡ −1 mod 3. Let k = (2p−1)/3. Then localized at p,

B =
∏k
i=1 S

3 has more than one multiplication but a unique homotopy associative multiplication.

Proof. First notice that p ≡ −1 mod 3 implies that 2p ≡ −2 ≡ 1 mod 3 so (2p− 1)/3 is an integer.

Also, S3 is a loop space, implying that B =
∏k
i=1 S

3 has a homotopy associative multiplication.

We have A ∧ B '
∨
I S

3j where 2 ≤ j ≤ k + 1. Thus A ∧ B is 5-connected and has dimension

3(k + 1) = 2p + 2. The dimension result implies that there are no sphere summands of A ∧ B in

dimension 2p. But in dimensions ≤ 2p+2, the only nontrivial homotopy homotopy group of πm(S3)

for 6 ≤ m ≤ 2p + 2 occurs when m = 2p. Thus [A ∧ B] ∼= 0. Therefore, by Corollary 3.7, B has a

unique homotopy associative multiplication.

On the other hand, observe that B∧B has dimension 6k. As k = (2p−1)/3 we have 6k = 4p−2.

By [To], there is an isomorphism π4p−2(S3) ∼= Z/pZ. As S3 ' ΩBS3, we obtain isomorphisms

[B ∧B,B] = [B ∧B,
k∏
i=1

ΩBS3] ∼= [B ∧B,Ω(

k∏
i=1

BS3)] ∼= [Σ(B ∧B),

k∏
i=1

BS3].

Since B is a product of spheres, Σ(B ∧ B) is homotopy equivalent to a wedge of spheres. The

dimension of Σ(B∧B) implies that one of these spheres occurs in dimension 4p−1. Thus [B∧B,B]

contains a summand of the form ⊕ki=1Z/pZ. Therefore B has more than one multiplication. �

Next, we give an example of a 5-local sphere bundle over a sphere which has more than one

multiplication but only one homotopy associative multiplication. This requires a general lemma.

Lemma 4.5. Let X be a finite, connected CW -complex with cells in dimensions m0 = 0 and

m1, . . . ,mk where mi > 0 for i > 0. Let Y be a connected space with the property that πn(Y ) ∼= 0

for every n ∈ {m0,m1, . . . ,mk}. Then [X,Y ] ∼= 0. �

Proof. For a positive integer t, let Xt be the t-skeleton of X. Note that Xm0
is the basepoint.

Relabelling if necessary, assume that m1 ≤ · · · ≤ mk. Since X has cells in the positive dimensions
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{m1, . . . ,mk}, for 1 ≤ i ≤ k there are homotopy cofibration sequences∨
Smi−1 fi−→ Xmi−1

−→ Xmi

qi−→
∨
Smi

for attaching maps fi and pinch maps qi.

Clearly the restriction of X
f−→ Y to Xm0 is null homotopic. Suppose inductively that the

restriction of f to Xmi−1 is null homotopic. Then from the homotopy cofibration Xmi−1 −→ Xmi

qi−→∨
Smi we see that the restriction of f to Xmi

factors through qi to a map ei :
∨
Smi −→ Y . But as

πmi
(Y ) = 0, the map ei is null homotopic. Therefore the restriction of f to Xmi

is null homotopic.

By induction, the restriction of f to Xmk
= X - that is, f itself - is null homotopic. �

Localize at p = 5. Let α1 be the generator of the stable stem π12(S5) ∼= Z/5Z. Define the space A

by the homotopy cofibration

S12 α1−→ S5 −→ A.

Since A has two cells and p = 5, by [CN], there is a retractile H-space B such that H∗(B) ∼=

Λ(H̃∗(A)), and there is a homotopy fibration

(5) S5 −→ B −→ S13.

Since A has 2-cells and p = 5, by [Th1] the H-space B has a multiplication which is both homotopy

associative and homotopy commutative.

Lemma 4.6. The H-space B has more than one distinct multiplication at 5 but precisely one of

these is homotopy associative.

Proof. We will calculate [A ∧ B,B] and [B ∧ B,B]. First, observe that A ∧ B has cells in dimen-

sions {10, 18, 23, 26, 31}, with 2 cells occurring in dimension 18 and one cell in each of the other

four dimensions. By [To], there are 5-local isomorphisms πn(S5) ∼= 0 and πn(S13) ∼= 0 for every

n ∈ {10, 18, 23, 26, 31}. Therefore, the homotopy fibration (5) implies that πn(B) ∼= 0 for every

n ∈ {10, 18, 23, 26, 31}. By Lemma 4.5, this implies that [A∧B,B] ∼= 0. Hence, by Corollary 3.7, B

has a unique homotopy associative multiplication.

Next, observe that the top cell of B∧B occurs in dimension 36 and is not a cell of A∧B. Consider

the homotopy cofibration sequence

S35 h−→ (B ∧B)31 −→ B ∧B q−→ S36 Σh−→ Σ(B ∧B)31

where (B∧B)31 is the 31-skeleton of B∧B, h attaches the top cell to B∧B, and q is the pinch map

to the top cell. Since B is retractile, ΣA retracts off ΣB, so as B only has one more cell than A,

there is a homotopy equivalence ΣB ' ΣA ∨ ΣS18. Iterating this implies that the top cell splits off

ΣB ∧B. Therefore Σh is null homotopic. The homotopy cofibration B ∧B −→ S35 Σh−→ Σ(B ∧B)31

induces an exact sequence [(Σ(B∧B)31, B]
(Σh)∗−→ [S35, B]

q∗−→ [B∧B,B]. Since Σh is null homotopic,

(Σh)∗ is the zero map, and so q∗ is an injection.



COUNTING HOMOTOPY ASSOCIATIVE MULTIPLICATIONS 15

On the other hand, by [To], there are 5-local isomorphisms π36(S5) ∼= Z/5Z and π36(ΩS13) ∼=

π37(S13) ∼= 0. So the homotopy fibration sequence ΩS13 −→ S5 i−→ B −→ S13 induces an exact

sequence π36(ΩS13) −→ π36(S5)
i∗−→ π36(B), which implies that i∗ is an injection. Therefore

π36(B) 6∼= 0. Hence [B ∧ B,B] 6∼= 0, implying that B has more than one distinct multiplication

at 5. �
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