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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Civil, Maritime and Environmental Engineering and Science

Doctor of Philosophy

MATHEMATICAL MODEL OF HIGH SPEED PLANING DYNAMICS AND

APPLICATION TO AIRCRAFT DITCHING

by Prin KANYOO

A nonlinear mathematical model capable of predicting loads and motions of high speed

planing craft in the longitudinal plane has been developed. The development of the

model is based on the mathematical model presented by Zarnick (1978). Following

the principle of 2D strip theory and wedge water entry problem, a high speed planing

hull is divided into a number of transverse sections. Sectional forces and motions are

evaluated, and then, by integrating along the ship length, total force and moment are

obtained which leads to corresponding instantaneous acceleration. By integration using

a time marching scheme, velocity and displacement are obtained. The influence of the

controlling parameters, such as number of sections and time step, on the accuracy and

stability of the simulation in calm water, regular and irregular waves is investigated.

The accuracy of the underlying mathematical model is investigated and the deficiencies

identified. The optimum model is finally validated against the original model of Zarnick

(1978) and the experiments of Fridsma (1969).

An extension of the model to be capable of simulating roll motion is proposed and im-

plemented. This extension may be useful when the prediction of high speed planing

motions in oblique seas is proposed. The initial validation process has been carried out

but subjected to the full validity of application.

Moreover, as the original approach of the mathematical model was used in prediction of

seaplane landing (Wagner, 1931), an additional aim and objective to the present PhD

project is to find a novel technique to predict the loads on fuselage of an aircraft emer-

gently landing (ditching) into the water. Experimental tests related to these simulations

are planned and carried out in order to use their results as validation references to the

modified mathematical model. The deliverable of the project is an analysis of optimiza-

tion of the mathematical model capable of predicting loads and motions of high speed

planing craft. As well as the implementation of capability of predicting impact loads

and initial post-impact motions of aircraft ditching into the water.

mailto:P.Kanyoo@soton.ac.uk
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ẇw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.1.3 Space Partial Derivative of Wave Vertical Orbital Velocity: ∂ww
∂x′ . 201

B.2 Evaluation of Section Submergence and Its time Derivative: h and ḣ . . . 202
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Chapter 1

Introduction

Since the Industrial Revolution, certain means of transportation have been developed

over the time. The oldest of these are those associated with marine transport, which has

been serving over the historical time. That could be because of its abundant source of

applicable energy, for instance, wind energy that of course, appears to be complicated to

apply in land and air transportation. Then, when modern and high potential source of

energy such as fossil fuel had been discovered, land and air transportations have gained

their significant influence in the contemporary world. This because they are capable of

fulfilling the notable disadvantage of sea transportation, which is time duration. Until

recently, land and air transport have been developing dramatically their speed, while

the majority of sea transport remains with the identical speed as it did a century ago.

The primary cause of this occurrence is that the land and air vehicles are moving in a

single phase fluid domain. Moreover, air can be considered as inviscid fluid, although the

required energy to move the vehicles is nonlinearly and directly proportional to speed,

but it is in a very low order that sometimes, it could be considered as quasi-linear.

The difference from the others, marine vehicle is moving in two phase fluid domains

involving with a free surface and its boundary issue. Here, the main problem is caused

by apart from the interface of both domains, the viscous characteristics together with

the density of water do not allow the vehicle to develop the speed that easily. In this

case, the required energy is again nonlinearly and directly proportional to the speed but

in extremely high order. In other words, it is out of interest for industries to develop

a vehicle to run a very high speed against the cost of applied energy. Nevertheless,

although the time in transportation can be saved by using land or air transportation,

sea transportation keeps occupying the majority part of the world transportation due

to its lower cost compared with the others.

However, the problems of high-speed phenomenon in marine vehicles can be avoided

by making them moving in only one domain. This means the intersection plane surface

area between both domains should be eliminated or at least reduced as much as possible.

1



2 Chapter 1 Introduction

There have been two different ways to achieve this idea. The first one is moving the

vehicles underwater. That is quite complicated comparing to the second way that is

moving them out of the water or reducing the wetted surface area. As moving the

vehicles under the water needs to account for a notable increment of fluid friction due

to the increase in wetted surface area. Lifting the vehicle out of the water appears to be

the most appropriate choice. The earliest solutions of this choice have been presented

in the following ways:

• Air cushion vehicle or hovercraft: It uses blowers to produce a large volume

of air below the hull that is slightly above atmospheric pressure. The pressure dif-

ference between the higher pressure air below the hull and lower pressure ambient

air above it produces lift, which causes the hull to float above the running surface.

Significant advantage of this craft is that it can travel easily over any reasonably

smooth surface. Disadvantages are that its mechanism is noisy and consume a lot

of fuel, implying inefficient carried weight to power ratio. Moreover, when consid-

ering manoeuvrability issue, it could slide sideways as easily as it slides forward,

which is not effective for precision manoeuvring.

• Hydrofoil: This craft is supported by underwater foils, not unlike the wings of

an aircraft. At high speeds these underwater surfaces develop lift and raise the

hull out of the water. It experiences much lower vertical accelerations in moderate

sea states making them more comfortable to ride. Moreover, comparing to the

others, it has the highest forward speed in practice. Nevertheless, it becomes

uncomfortable or even dangerous in heavy sea states due to the foils breaking

clear of the water and the hull impacting the waves. On the other hand, the need

for the hydrofoils to produce enough upward force to lift the ship out of the water

places practical constraints on the vessel’s size.

• Planing craft: This craft can act in different modes due to its forward speed. At

repose or low speed, it is in displacement mode being supported by the buoyancy.

While at high speed, due to the disturbed and altered direction of flow around the

hull, hydrodynamic lift takes place and takes over the hull support role. This can be

considered as the definition of planing mode following its characteristic of skimming

itself over the water. Although it presents some disadvantages over the others such

as lower maximum speed and manoeuvrability, simpler lifting mechanism lower

building cost still attract the attention in many fields of applications.

Applications of hovercraft and hydrofoil are limited in specialised fields, while the planing

craft shows a wider possibility of application.
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1.1 Background

High-Speed Planing Craft plays a very important role nowadays in many fields of appli-

cation, due to their high performance and flexible manoeuvrability and operability. The

typical applications of this kind of vessel can be found in; rescue vessels, pilot boats,

crew boats, leisure boats and some small coastal naval vessels. The main difference from

conventional vessels is that the predominant force supporting the hull is hydrodynamic

lift force rather than hydrostatic or buoyancy force.

The pressure acting on the hull of a planing craft travelling at high forward speed in

calm water is characterized by a small hydrostatic force and large hydrodynamic force

respectively. There is a relative velocity between the hull and water as a consequence

of its trim angle and high forward speed that generates hydrodynamic pressure propor-

tional to the square of this speed. Moreover, at a very high forward speed, most of the

hull is supported by the hydrodynamic pressure. In waves, the relative velocity gets an

additional contribution from the relative motions between the hull and waves. Conse-

quently, the resulting motions and accelerations in most wave conditions result in high

impact loads. Generally, a planing craft is proved to be very effective in calm water, due

to its outstanding high speed and small resistance. However, when it is navigating in

extreme sea conditions, violent motions and large vertical accelerations take place and

the hull is subjected to high impact loads. These occurrences can cause some structural

failures leading to catastrophic situations during the navigation. On the other hand, as

its main application involves fundamentally with Special Operations and human trans-

portation, it is stated in Ensign et al. (2000)’s report that such extreme behaviours in

waves could also lead to discomfort, injury and performance degradation of the crew,

that affects directly to the operability of these vessels.

Therefore, it is necessary to get an appropriate understanding of planing craft behaviours

in waves, in order to be capable of developing novel designs with the expected operability

and performance in rough seas. Moreover, this understanding will also be useful for the

operators to help with decision making.

Historically, several researchers carried out investigations related to planing craft. Orig-

inally, von Karman (1929) and Wagner (1931) developed a mathematical tool based on

potential flow theory to predict water-structure landing load of a seaplane. Their inves-

tigation deduced that the impact load can be presented by the form of rate of change

of fluid momentum and that the predominant parameter on the impact load is the fluid

added mass. The simple wedge water entry geometry can be replaced by an expanding

flat plate at the same rate of change of geometrical width. Martin (1976b) and Zar-

nick (1978) used this principal to develop a mathematical model approaching the load,

acceleration and motion prediction of high-speed planing craft due to their behaviour

similarity. The planing hull geometry used in simulations carried out by Martin and

Zarnick are based upon Fridsma (1969)’s series of experiments. Later, Keuning (1994),
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Figure 1.1: Comparison of different ship motions evaluations.

Akers (1999), Garme (2004b) and Deyzen (2008) implemented the model adding correc-

tion factors and additional components to make the model more efficient. Nevertheless,

none of those works explain in detail about the verification of the model approaching the

selection of numerical methodologies, including the appropriate use of the methodology

in term of controlling parameters.

1.2 Aims and Objectives

Traditionally, there are three different methods widely used in evaluation of planing craft

motions; experimental tests including both model and full scales, 2D strip method and

less common but on the increase is 3D CFD simulations. The comparison of advantages

and disadvantages of the three methodologies for evaluating load and motions are shown

in Figure 1.1. Model experiments appear to be capable of giving the most realistic

physical phenomenon, but due to the high cost of resource and time in setting up,

it is preferable to avoid except when essential. 3D CFD is also computationally very

expensive. The 2D strip theory although it appears to be the least accurate comparing

to the other two, but when considering time consumption in calculation, it is the most

useful for performing preliminary design simulations.

The principle aim of this present research is to develop and optimize a tool capable

evaluating planing craft behaviours, which include loads, motions and accelerations, in

calm water, regular and irregular waves. It aims to develop a numerical tool capable of

simulating the coupled heave and pitch motions, which are the most significant motions

for a planing craft. As well as the possibility to extend to more degrees of freedom, such
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as roll motions which is also another significant motion and influence operability. Above

all, it is of interest to find the most efficient methodology to use with conventional

tools such as personal computer. To fulfil the aim of the research, the modified 2D

strip method appears to be the most preferable for the early stage of design, due to its

simplicity and low computational overhead.

A mathematical model capable of predicting loads, motions and accelerations of a high-

speed planing craft has been developed and implemented following the pioneering work

of Zarnick (1978, 1979). This mathematical model was capable of predicting dynamic

behaviours of planing craft in head seas. It was limited to the simulations in only coupled

heave and pitch motions, however, these are the fundamental motions of a planing craft.

Some notable contributions to Zarnick’s original works were followed, extended and

implemented by Keuning (1994) and Akers (1999). The results of response motions and

accelerations were validated against the series of experimental test carried out by Fridsma

(1969, 1971) and showed a good overall agreement. Nevertheless, the detailed verification

and validation process of the resulting time histories and their convergence behaviours

has not been published, including the influence of relevant controlling parameters on

convergence when using these existing mathematical models.

Therefore, “Hypothesis of Accuracy of Time Histories” is introduced in order to verify

the accuracy and convergence of the resulting time histories evaluated by the present

mathematical model. Basically, the hypothesis consists of analysis of the fact that,

in a dynamical process, the accuracy of simulated time history (closest to the reality)

of an object is dependent of the accuracy of evaluation process in the corresponding

equation of motions. The most fundamental source of error in the process is related to

the force acting on the object. Then, the direct effect of the force is acceleration and the

corresponding velocity and displacement. Following the principle of 2D strip method,

the vessel’s hull is divided into a number of 2D transverse strips. At each instant (time

step), the force acting on each individual section is evaluated and by integrating along

the hull length, total force and moment and accelerations are obtained. Then, by letting

the time flows and integrating the acceleration over time, velocity and displacement are

obtained for each time step. Consequently, the relevant controlling parameters of the

convergence of time histories of motions and accelerations are the number of sections

defining the hull geometry, Ns and the time step size, ∆t.

The consideration for optimal simulation is that the accuracy of time histories (conver-

gence behaviour) should be presented whilst minimizing computational time and effort.

Analysis of the optimal pair of those parameters is carried out and leads back to the

selection of the optimal parameters. Moreover, apart from the analysis approaching the

original Fridsma (1969, 1971)’s constant deadrise planing hull models, an investigation

of the effect of those controlling parameters on simulations of variable deadrise hull and

scaled up model is also carried out. Then, the simulations in calm water regular and
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irregular head seas are performed and validated against the data of Fridsma (1969) and

Zarnick (1978).

1.3 Application to Transverse Motions

As a part of the research, transverse plane motion prediction capability is also devel-

oped, verified and validated as the first extension to simulating more degrees of freedom.

Due to its complication in flow characteristic, modification corresponding to this exten-

sion is mainly simplified based on the works of Sebastiani et al. (2008) and Ruscelli

(2009). The planing hull is supposed to fulfil also the assumption of slenderness, unlike

the longitudinal strips, in transverse point of view, it will be split in only port and

starboard side equivalent to the full symmetrical wedges. This simplification provides a

possibility of simulating several asymmetrical motions in transverse plane such as, fixed

heel navigation due to transverse instability and roll motion in lateral or oblique waves,

etc. The resulting data from this implementation is also validated against some existing

experimental data (Rosén and Garme, 2006).

1.4 Application to Aircraft Ditching

By considering the definition of planing event mentioned previously, seaplane landing,

planing boat travelling and aircraft ditching behave identically as they are skimming

over the water rather moving underneath. Due to their similar behaviour, a possible

application of the present mathematical model is to simulate and analyse the aircraft

ditching. As the survivability of an aircraft when landing on the water in an emergency

situation is a regulatory requirement and consideration for the aircraft manufacturers.

Another aim and objective of the present research is to find a robust reliable technique

to predict the loads on the fuselage of an air plane when ditching into the water.

Therefore, the present mathematical model is modified to fulfil this approach. In lit-

erature, there is a similar “Seaplane Landing Simulation” presented by Wagner (1931)

which also forms a core principle in the work related to planing craft dynamics. His re-

search led to a number of applications and implementations by many researchers when

referring to the simulations of loads and motions of high-speed planing craft, as due

to his principle, the impact load on the cross section of the craft can be evaluated by

applying potential theory based boundary value problems. This led to the evaluation of

the expression of sectional force on the geometry that later appears in the form of rate

of change of fluid momentum.
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The principal implementation to the original mathematical model of high-speed planing

is the development of the sectional added mass expression for semi-circular shape. Veri-

fication and cross-validation of the model are carried out using data provided by Stirling

Dynamics Ltd. (Bonanni et al., 2015; Vandewaeter et al., 2015). Once the mathematical

model is developed, verified and preliminarily cross-validated, a series of experimental

tests is carried out using the available facility (Southampton Solent University’s Towing

Tank. The results from the tests are finally used as the confirmation of validity of the

tool of simulation validity.

1.5 Novel Contributions

Regarding the aims and objectives mentioned in Section 1.2, the novel contributions

presented in this thesis are firstly, the detailed verification of the mathematical model.

The accuracy of the resulting motions and acceleration time histories is analysed and

discussed in terms of the relevant controlling parameters of number of sections, Ns and

time step size, ∆t, including the optimal usage in order to minimize computation time

and effort. As it can be seen in previous research, although limitations of their models

were mentioned in term of different parameters, there was no detailed recommendation

available for the optimal application. Furthermore, the data represented in previous

research was already treated in form of response amplitude operator or probability of

exceedance, the accuracy and fitting of time histories comparing to the physical reality

could not be guaranteed. This is important when considering that significantly different

time histories can give similar statistics.

Secondly, the extension of application to asymmetric forms and roll motion is evaluated.

There were available in literature the investigations of mathematical model of plan-

ing roll motion, however, most of them applied linear conventional strip theory. Thus,

the present research aims to evaluate a fully nonlinear mathematical model based on

modified 2D strip theory using only heave coefficient (following the wedge water entry

analogy) to predict also the roll motion. This model would transform the sectional roll

motion into equivalent vertical motion and give a reasonable accuracy of results. The

contributions approaching the verification, controlling parameter analysis and optimiza-

tion of the mathematical model are presented in Figures 1.2 - 1.3.

Finally, in connection to the aircraft ditching load prediction, as the original sectional

force evaluation planned to use in the research was applied to seaplane landing load

prediction, the actual mathematical model is also modified and implemented to fulfil

that capability using the simple expanding flat plate replacement approach to evaluate

the added mass contribution. It allows the ditching load prediction to be easily eval-

uated with a conventional desktop PC, without the necessity of conducting full-scale

destructive tests, as they were carried out previously during the war periods. The final
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Figure 1.2: Implementation of relevant works and novel contributions.

approach of this application is useful for aircraft structural design and analysis, including

some emergency landing simulations. Moreover, other possible applications when this

load prediction tool is validated are, i.e., impact load prediction of torpedo launching

from the air to the water, impact load of small UAV landing on the water, etc. As the

limitation of geometrical applicability is overcome by using the simple technique of the

original expanding flat plate.

Another point of view of a considerable novel contribution is the application of added

mass contribution. The whole work proved that the simple geometry approach pre-

sented by Wagner (1931) can be applied to various geometries. The expanding flat

plate replacement is not only valid for the original symmetrical wedge shape, but also

for the assumption of asymmetrical transverse plane motions approach, including the

semi-circular shape of aircraft.

1.6 Thesis Structure

The works done in the present research are development and optimization of a mathe-

matical model capable of predicting planing craft loads, motions, and accelerations in

waves, as well as the application to aircraft ditching. Chapter 2 gives a general overview

of previous research about the performance of high-speed planing craft and aircraft

ditching, Chapter 3 explains briefly the development and evaluation of the mathemati-

cal model commencing from the 2nd Law of Newton, and the simplification to two degrees

of freedom (coupled heave and pitch) for the purpose of verification and optimization

analysis. Also, simulations and validations in calm water and regular head waves are

presented in this chapter. Chapter 4 follows the same work-flow of Chapter 3 but in

irregular waves simulations. Chapter 5 gives a fundamental overview of the assumption

to extend the present mathematical model to be capable of including the prediction of

transverse plane motions with appropriate existing validation references.
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Figure 1.3: Novel contributions to Zarnick (1978).

Then, connecting with aircraft ditching, the modification of present mathematical model

to be capable of applying in ditching load prediction, the series of experimental tests and

the overall validation are presented in Chapter 6 and Chapter 7 respectively. Finally, in

Chapter 8, the conclusion of the research is discussed and further works are suggested.





Chapter 2

Literature Review and Relevant

Theories

The summary of relevant works is presented in this chapter, together with the theories

associated with high-speed planing dynamics and aircraft ditching.

2.1 General

Previously, there has been a number of research related to the performance of high-

speed planing craft. These can be classified into two groups; running attitude in calm

water and seakeeping behaviour in waves. The aim of the present research is to develop,

implement and verify a mathematical model capable of predicting high-speed planing

motions in six degrees of freedom. However, the steady characteristic in calm water is still

of importance as it is fundamental data for detailed investigation of this kind of vessels.

Due to the complexity of the flow around a planing hull, the analytical investigation was

complicated when deducing the efficiency, the earliest relevant investigations were based

on a series of model tests. Similar to the investigation of other vessels, experimental

methods have been considered the most reliable and widely used as the superior reference

data for the preliminary design purpose. An inconvenience of model experiments is the

high costs, thus, many researchers had commenced finding alternative techniques of

investigations. By implementing the development of potential flow theory together with

the high-performance computation, the flow characteristics of the planing craft have

then been simulated.

The primary difference between planing craft and conventional vessels is that the pre-

dominant force supporting the conventional or displacement vessels is hydrostatic force

or buoyancy. While in the case of planing craft, the buoyancy is replaced by hydro-

dynamic lift force due to the flow and pressure generated when the vessel is running

11
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at a high forward speed. However, the hydrostatic force still has significant influence

and cannot be totally neglected. Due to the high forward speed and trim angle, the

flow around and under the planing hull changes its momentum, and causes a lift force

according to the 2nd Law of Newton. In other words, there is a relative velocity be-

tween the hull and water that causes a hydrodynamic pressure which translates to the

hydrodynamic lift force acting on the hull surface. Then, for the case of behaviour in

waves, an additional contribution of ship motions is necessary to be accounted for in the

water-hull relative velocity, resulting in nonlinear characteristics.

Generally, there are three principal methods of evaluating ship motions; model exper-

iments, 2D Strip Method, and 3D CFD tool. The model experiments appear to give

the most realistic answers but at the highest cost. The implementation of strip theory

gave an excellent alternative technique for investigation of ship dynamics. Strip the-

ory is widely used in the evaluation of seakeeping characteristics of conventional vessels

based on the linearised boundary condition of the flow around the hull. In an identical

way for high-speed planing craft, strip method has been modified to the form of 2.5D

method accounting for the different flow phenomena. The most significant difference

is the assumption of linear characteristics, ship motions of planing craft appear to be

strongly nonlinear, and consequently, the same assumption of linearity is valid only un-

der the limitation of small disturbance motions. Thus, the equations of motions had

been modified but still on the basis of the 2nd Law of Newton. 2.5D method is a form

of slender body theory providing a simplification of 3D ship geometry into a number

of 2D cross sections. The pioneering work used as the primary basis for this project is

that of Zarnick (1978). Nevertheless, due to a certain simplifications of 2.5D method, it

lacks the capability of modelling the exact flow behaviour around the planing hull. 3D

CFD based on Navier-Stokes equations has been developed over the last few decades.

Providing the complexity of its fundamental principle, it is supposed to be the most

complete tool compared with the other two methods but still presents an inconvenience

in time consumption in calculation and the advanced computational requirement. The

last method allows the more complex flow characteristics, such as jet flow, spray root,

to be modelled with more accuracy.

2.2 Model Experiments and Empirical Formulations

Regarding the model experiments, Fridsma (1969, 1971) carried out an extensive series

of model tests with a series of constant deadrise angle models varying other dimensions.

The model configurations used during his experiments are shown in Table 2.1:

In his experiments, Fridsma (1969) systematically varied the deadrise angle: (β) of

the model, the length to beam ratio: (L/B), the speed to length ratio: (V/
√
L), the

running trim: (τ0), the load coefficient: (C∆) and the longitudinal position of the centre
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Table 2.1: Fridsma’s model configurations.

Model L L/B B β C4 LCG kyy V/
√
L V

(m) (m) (deg) (%L) (%L) (knot/ft2) (m/s)

A 1.15 5 0.23 20 0.608 59.0 25.1 4 3.99
B 1.15 5 0.23 20 0.608 62.0 25.5 6 5.99
C 1.15 5 0.23 20 0.608 61.5 25.3 2 1.99
D 1.15 5 0.23 20 0.608 67.5 26.5 2 1.99
E 1.15 5 0.23 20 0.608 65.5 26.2 4 3.99
F 1.15 5 0.23 20 0.912 58.0 20.4 4 3.99
G 1.15 5 0.23 20 0.912 58.0 20.4 6 5.99
H 1.15 5 0.23 10 0.608 62.0 25.6 2 1.99
I 1.15 5 0.23 10 0.608 59.5 25.0 4 3.99
J 1.15 5 0.23 10 0.608 68.0 26.2 6 5.99
K 1.15 5 0.23 30 0.608 61.0 24.7 4 3.99
L 1.15 5 0.23 30 0.608 62.5 24.9 2 1.99
M 1.15 5 0.23 30 0.608 60.5 24.8 6 5.99
N 1.15 5 0.23 20 0.608 64.5 24.8 4 3.99
O 1.15 5 0.23 20 0.912 60.0 20.0 4 3.99
P 1.15 5 0.23 20 0.631 52.5 23.7 4 3.99

of gravity: (LCG) in the regular head wave tests. The resulting information of influences

of those parameters were obtained and systematically analysed and finally presented in

the form of “design charts” in order to be a useful tool for designers. Above all, he found

in that planing craft possess a significant nonlinear behaviour when travelling in head

waves. However, linearity is found to be in general, a function of speed and wavelength

at low speed to length ratio. The results from Fridsma’s experiments, apart from the

“design charts” for designers, have been widely used by many researchers as validation

references in seakeeping characteristic of planing monohull investigations. Among them

were Martin (1976a,b) and Zarnick (1978, 1979). Many researchers, although mainly

using Fridsma’s results as the reference, also performed their own experiments in order

to match their particular studies.

Savitsky (1964) performed an extensive series of experiments and presented a series

of formulations based on the resulting data. Actually, the formulae are widely used

as preliminary calculation of running attitude in calm water for a planing craft design.

Then, in 1968, Savitsky (1968) performed an analysis of available data on the seakeeping

behaviours to define and classify hydrodynamic characteristics associated with various

speeds. He found that the different behaviours of planing hull at low speed (Fn∆ < 2) or

in semi-displacement regime are similar to the seakeeping of displacement hull at high

speed regime (Fn∆ > 2), in which, hydrodynamic force dominates.

Savitsky’s Formulae are expressed as follows:
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FLβ =
1

2
ρU2B2CLβ (2.1)

CLβ = CL0 − 0.0065βC0.6
L0 (2.2)

CL0 = τ1.1
deg

(
0.012λ0.5

w + 0.0055
λ2.5
w

F 2
nB

)
(2.3)

lp
λwB

= 0.75− 1

5.21
F 2
nB
λ2
w

+ 2.39
(2.4)

Where:

• CL0 is lift coefficient for zero deadrise angle (β = 0).

• CLβ is lift coefficient.

• FL0 is lift force for zero deadrise angle (β = 0).

• FLβ is lift force.

• λw = (Lk + Lc)/(2B) is mean wetted length to beam ratio.

• Lk is keel wetted length.

• Lc is chine wetted length.

• τdeg trim angle is degrees.

• τ is trim angle in radians.

• β is angle of deadrise in degrees.

• B is beam.

• FnB = U/
√
gB is Beam Froude number.

The reason of using beam as the reference dimension in Froude number is that the

wetted beam of a planing craft is mostly constant whereas the wetted length, such as

the keel wetted length is unknown before the resolution of equations of equilibrium for

vertical force and trim moment associated with a given forward speed is found. Besides,

the lift force obtained by Savitsky’s Formulae already includes the buoyancy component,

thus, for the further use in the system of equations of motions (used in Keuning (1994)’s

work), it should be noted that an inclusion of the other buoyancy component will lead

to the inaccurate results.

Then, Savitsky and Brown (1976) performed hydrodynamic studies of motions in waves

of several planing hulls and presented the results of several studies in conjunction with



Chapter 2 Literature Review and Relevant Theories 15

Table 2.2: Range of applicability of Savitsky and Brown (1976)’s Formulae.

Parameter Range

4/ (0.01 · L)3 100− 250

L/b 3− 5

τ o 3− 7

βo 10− 30

H1/3/b 0.2− 0.7

V/
√
L 2− 6

the work done by Fridsma (1971). This firstly summarized the earlier work done by

Savitsky (1964), then moved on to the consideration of effect of trim tabs, the effect

of warp, re-entrant free hull and pre-planing resistance. The final set of experiments

which Savitsky and Brown (1976) have detailed are the behaviours of a planing craft in

a seaway. The results of the investigation were used to develop a series of design charts

for prediction of the added resistance in waves. In other words, the power requirement

of the planing craft, impact load on hull structure at the bow and CG of the craft and

the amplitudes of heave and pitch motions. It is noticeable that for cases of calm water

and rough water, in determining the performance of different hull forms, it is necessary

to evaluate them at the identical dynamic trim (running trim), as well as the same load

and speed.

The results deduced that deadrise has a favourable effect on performance in waves, for

example, increasing the deadrise from 20 to 30 degrees reduced the added resistance by

20%. Motions are also attenuated by higher deadrise angle at high speed. It is on the

impact accelerations that the deadrise has a most significant effect, increasing deadrise

from 10 to 30 degrees halves the impact accelerations. Reducing the trim also has a

favourable effect on loads and motions, i.e., reducing dynamic trim from 6 to 4 degrees

causes 33% reduction of impact accelerations although resistance could significantly in-

crease. Increasing the load decreases the impact accelerations, the amplitude of motions

at high speed and normally reduces the added resistance. Increasing the length to beam

ratio raises the acceleration levels at all speeds and increases the motions at high speed.

At low speed, increasing the length to beam ratio increases the added resistance, and at

high speed, the added resistance is reduced.

The data was implemented into equations for predicting the added resistance in waves

and the impact CG and bow accelerations. These facilitate the performance prediction,

and are comparable in accuracy with the charts they originated from. As the equations

are the basis of empirical data, it is necessary to account for the range of applicability

and not to make extrapolation beyond the range. These empirical formulae are suitable

for computational use and are given in Table 2.2.

Savitsky and Brown (1976)’s formulae can be summarized in the following paragraph:
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Added Resistance at V/
√
L = 2

RAW
wB3

= 66 · 10−6 ·
(
H1/3

B
+ 0.5

)
· (L/B)3

C4
+ 0.0034 · (τ − 4) (2.5)

Note: No effect of deadrise: Precision ±20%

Added Resistance at V/
√
L = 4

RAW
4

=
0.3 ·H1/3/B

1 + 2 ·H1/3/B
·
(

1.76− τ

6
− 2 · tan3 β

)
(2.6)

Note: No effect of length to beam ratio: Precision ±20%

Added Resistance at V/
√
L = 6

RAW
wB3

=
0.158 ·H1/3/B

1 +
(
H1/3/B

)
· (−0.12 · β − 21 · C4 · (5.6− L/B) + 7.5 · (6− L/B))

(2.7)

Note: No effect of trim: Precision ±10%

Average Impact Acceleration at CG (g)

ηCG = 0.0104 ·
(
H1/3

B
− 0.084

)
· τ

4
·
(

5

3
− β

30

)
·
(
V√
L

)2

·
(
L/B

C4

)
(2.8)

Note: Precision ±20%

Average Impact Acceleration at Bow (g)

ηbow = ηCG

(
1 +

3.8 · (L/B − 2.25)

V/
√
L

)
(2.9)

Note: Precision ±20%

Where:

• RAW is added resistance in waves.
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• w is Weight density of water.

• H1/3 is significant wave height.

• ∆ is displacement mass.

Savitsky and Brown (1976) presented their results in conjunction with Fridsma (1969)’s

experiments, Fridsma’s work was divided into two volumes, a systematic study of rough

water performance of planing boat in regular waves and irregular waves (Fridsma, 1971).

The main conclusion of his earlier work was that added resistance, motion responses and

accelerations are generally a nonlinear function of wave height. Linear behaviours occur

at the extremes of wave height, i.e., contouring of waves at low speeds and planing at very

high speed. Furthermore, it was seen that the wavelength of the maximum resistance was

constantly shorter than the wavelength of the maximum response motions. The results

of model tests were collapsed into a simpler form by using a wavelength coefficient:

Cλ =
L

λ
·
(

C4

(L/B)2

) 1
3

(2.10)

Fridsma (1971)’s report has been summarized by the work of Savitsky and Brown (1976),

with design charts and preliminary equations for designer’s use.

Taunton et al. (2011a,b) carried out tests of a series of high-speed hard chine planing

hulls with variable deadrise angles in calm water and irregular seas. Their work provided

a new series of hard chine planing hull design data. Their tests were conducted in support

of design for performance of crew on board small high-speed craft.

Regarding the transverse stability of planing boat, Brown and Klosinski (1995) per-

formed experiments in order to determine the added inertia and damping of planing

boat in roll motion. Their study was carried out to support the U.S. Coast Guard’s

pursuit of R & D projects that would enable it to evaluate advanced marine vehicle and

advance technologies. The objective of this research was to obtain basic hydrodynamic

information about planing hulls by using captive model tests. The tests gave results

of time histories of free decay roll motions in calm water, obtained by varying speeds,

deadrise, trim and yaw angles. The results were used to determine added roll moment

of inertia and roll damping assuming the evaluation of linear roll equation of motion.

They deduced empirical formulae to predict the hydrodynamic roll moment of inertia

and roll damping as follows:

Iyy = 0.010237 · ρ ·B5 · (L/B) · (1− sinβ) (2.11)

Bφ = w ·B4
√
B/g · (1− sinβ) · (0.134 · sin |φ|+ 0.0290 · CV + 0.0199 · L/B) (2.12)
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Table 2.3: Range of applicability of Brown and Klosinski’s formulae.

Parameter Range

C4 0.4375

L/b 1− 5

τ o 0− 6

φo ±15

βo 10− 20

CV 1.5− 4.0

Where:

• Iyy is roll moment of inertia [slug − ft.sq].

• Bφ is roll damping coefficient [lb− ft/rps].

• φ is roll angle [o].

• CV is speed coefficient.

Note that these formulae are expressed in imperial units, with limitations presented in

Table 2.3.

Rosén and Garme (2006) carried out in CEHIPAR (Canal de Experiencia Hidrodinámica

de El Pardo), Madrid, experiments of a planing hull model in towed condition allowing

to heave, roll and pitch. The model was tested measuring pressure distribution on the

hull, heave, roll and pitch motions in different sea condition from calm water; regular;

and irregular head waves including oblique regular waves. The tests were performed at

three different speeds with the maximum speed of 4.5 m/s. They concluded that the

top speed of 4.5 m/s is not corresponding to the ideal planing conditions, still the three

different model speeds show significant differences in the pressure at the transom. The

variation of sea conditions fulfilled the purpose of well-defined situations of increased

level of complexity and severity. In the most severe sea state, the model occasionally

leaves the water indicating that the combination of speed and sea state constitutes the

operational limit of planing boat.

2.3 2D Strip Theory Approach

Regarding strip theory based method, it is on the basis of the assumption of slender-

ness. The fully 3D model characteristics are simplified to the summation of 2D strips.

That means a force acting on each cross section of the hull will be evaluated, and then

integrated to obtain total force. The use of strip theory should be under the assumption

that the wavelength must be large in comparison to the vessel length, and the wave
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Figure 2.1: Korvin-Kroukovski definition.

slope should be small. Strip theory is proved to be very powerful when the study of

seakeeping is necessary in both conventional displacement ships and high-speed plan-

ing craft. A typical strip theory of heave and pitch motions is presented here by the

approach of Korvin-Kroukovsky and Jacobs (1957). They first defined two coordinate

systems called earth-fixed: Oxyz and body-fixed: Gx′y′z′. As can be seen in Figure 2.1,

the cross section under consideration is located at x′ and can be expressed in earth-fixed

coordinate system as: x′ = x− xGt, and consequently, ẋ′ = −ẋG.

The relative vertical velocity of the cross section at the position x′ as well as the dis-

placement and acceleration are expressed in the following forms:

h = zG − x′θ − ζ displacement (2.13)

ḣ = żG − x′θ̇ + ẋGθ − ζ̇ velocity (2.14)

ḧ = z̈G − x′θ̈ + 2ẋGθ̈ − ζ̈ acceleration (2.15)

Where ζ is local wave elevation. Then, the sectional hydrodynamic force is defined by:

f = − d

dt

(
maḣ

)
− bdḣ− 2ρgywh (2.16)

Where:

• ma is sectional added mass.

• bd is sectional damping.

• yw is half water line beam of section.
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The first term on the right-hand side of Equation 2.16 is the result of slender body

theory, the second term is damping associated with the generation of wave surface and

the third is hydrostatic force due to the vertical displacement of the particular section.

In linear strip theory approximation, the time derivative of the first term can be written

as:

dma

dt
=

dma

dx′
dx′

dt
= −ẋG

dma

dx′
(2.17)

Consequently, Equation 2.16 can be rewritten as:

f = −maḧ−
(
bd − ẋG

dma

dx′

)
ḣ− 2ρgywh (2.18)

Following the 2nd law of Newton, the equations of heave and pitch motions with forward

speed ẋG in head waves is expressed as:

Mz̈ =

∫
L

(f1 + f2 + f3) dx′ heave (2.19)

Iyy θ̈ = −
∫
L

(f1 + f2 + f3)x′dx′ pitch (2.20)

In which:

f1 = −2ρgyw
(
zG − x′θ − ζ

)
(2.21)

f2 = −bd
(
żG − x′θ̇ + ẋGθ − ζ̇

)
(2.22)

f3 = − d

dt
ma

(
żG − x′θ̇ + ẋGθ − ζ̇

)
= −ma

(
z̈G − x′θ̈ + 2ẋGθ̈ − ζ̈

)
+ ẋG

dma

dx′

(
żG − x′θ̇ + ẋGθ − ζ̇

)
(2.23)

The wave elevation and its velocity and acceleration are:

ζ = ζae
−kT cos

(
kx′ + ωet

)
(2.24)

ζ̇ = −ζaωee−kT sin
(
kx′ + ωet

)
(2.25)

ζ̈ = −ζaω2
ee
−kT cos

(
kx′ + ωet

)
(2.26)
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Then, by integrating the sectional forces components f1, f2 and f3 along the ship length,

the equations of motions will be evaluated to:

A33z̈ +B33ż + C33z −A35θ̈ −B35θ̇ − C35θ = F3a cos(ωet+ ε) (2.27)

A53θ̈ +B53θ̇ + C53θ −A55z̈ −B55ż − C55z = F5a cos(ωet+ ε) (2.28)

Where F3a and F5a are heave force and pitch moment amplitude respectively. The

coefficient Aij , Bij and Cij are total hydrodynamic coefficients evaluated from previous

equations.

Equations 2.27 - 2.28 are the so-called “Ordinary Strip Theory Method” containing only

sectional values for added mass and damping and their time derivative with forward

speed effect. The results obtained from this method are generally good when small

motions are considered, due to the fact that the values of hydrodynamic coefficients are

constant. For high-speed planing craft, the nonlinear effects become predominant, and

a modification of ordinary strip theory is necessary to be developed. Among those who

carried out strip theory for planing hull, Zarnick (1978)’s work appears to be the most

pioneering at the beginning of development of that so-called 2.5D strip theory.

According to the point of view of fluid mechanics, 2D sectional hull geometry partially

penetrated in the water is a complex problem due to the free surface boundaries between

the hull and the water, as well as between water surface and the air, that is continuously

altered from the hull motions. The first simplification is the assumption of potential flow

which are inviscid, incompressible and irrotational. The complex 3D problem has been

reduced to 2D shape problem under the assumption of slender body theory previously

mentioned. Due to geometrical similarity, the sectional hull of high-speed planing craft

can be assumed to be a wedge shape geometry, see Figure 2.2, and the vessel moving

with forward speed is simulated as a wedge penetrating into the water. The pressure

distribution, as well as the total force, are necessary to be evaluated. The 2D wedge

penetrating into the water can be replaced by a flat lamina following the assumption

that the fluid accelerations are much larger than gravity (von Karman, 1929; Wagner,

1931, 1932). The flat lamina is expanding at the same rate as the sectional wedge

increasing in the undisturbed water. The most significant contribution can be found in

the investigation of seaplane landing of von Karman (1929) and Wagner (1931, 1932).

Starting from the potential function, ϕ, of vertical falling lamina:

ϕ = −V
√
c2 − x2, |x| < c(t) (2.29)

The pressure distribution derived from potential flow theory can be expressed as:
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Figure 2.2: Wedge penetrating into water and equivalent flat plate.

p− pa = −ρ∂ϕ
∂t

= ρV
c√

c2 − x2

dc

dt
+ ρ

dV

dt

√
c2 − x2 (2.30)

Where c is the edge of the lamina from the mid point. Then, deriving the 2D vertical

force acting on the impacting body gives:
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f3 =

∫ c

−c
pdx

= ρV c
dc

dt

∫ c

−c

dx√
c2 − x2

+ ρ
dV

dt

∫ c

−c

√
c2 − x2dx

= ρπV c
dc

dt
+ ρ

π

2
c2 dV

dt

= V
da33

dt
+ a33

dV

dt

=
d

dt
(a33V ) (2.31)

Wagner included a water pile-up correction term with the value of π/2 in order to account

for the water pile-up phenomenon when the wedge shape penetrates into the water.

Following the expression of sectional force in Equation 2.31, it can translate to vertical

force or heave force phenomena, in which by multiplying by the lever arm, the pitch

moment can be obtained. The term of 2D added mass is expressed as a33 = (π/2)ρc2.

This is so called the “high frequency added mass” derived from the free surface condition

φ = 0. Zarnick (1978) and later many researchers i.e. Akers (1999), Keuning (1994)

and Deyzen (2008) used this expression in their mathematical model. It is necessary

to apply an “added mass coefficient”, Cm, to correct the added mass term for different

simulations. The detail and examples of the use of Cm are explained along the thesis.

The sectional hydrodynamic force used by Zarnick (1978) is in the following form:

d

dt
(a33V ) = a33V̇ + ȧ33V − U

∂

∂x′
(a33V ) (2.32)

Payne (1992) presented an approximation of the added mass variation with chines im-

mersed and a conventional cross-flow drag hypothesis as an additional lift component

as well as in the computational models of both Zarnick (1978) and Keuning (1994). He

discovered that the lift increment due to the chines immersed added mass is the same

as the one due to the cross-flow drag, so that adding the two together results in chines

immersed dynamic force which is twice the real value. Payne (1981) also suggested that

the value of π/2 of the water pile-up correction factor is too high when comparing the

impact load with experiments. Later, in 1994 (Payne, 1994), he found that the results

originally found by Pierson and Leshnover (1950), in which they expressed the pile-up

correction factor as a function of deadrise angle, gave very good agreement with the

results of Zhao et al., 1996. The expression of pile-up correction factor in function of

deadrise angle is Cpu = (π/2)− β(1− (2/π)) whose maximum value is π/2.
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When the sectional force has been found, the next step to perform is integrating these

forces along the ship length. In the early period of investigation of planing hull mo-

tions, most researchers concentrated only on the coupled heave and pitch motions due

to the availability of hydrodynamic coefficients obtained from wedge penetrating into

the water analogy, in which the wedge falls vertically and is associated to the heave

motion. Martin (1976a) evaluated a linear mathematical model capable of simulating

heave and pitch motions instability in calm water called porpoising, then, in the same

year (Martin, 1976b), the same mathematical model was modified by adding wave ex-

citation force based on the model experiments of Fridsma (1969). The results showed

good agreement with the experiments. Martin (1976b) shows that nonlinear effects are

more severe at higher speeds, principally because of the reduction of the damping ratio

of the boat when increasing the speed, and the consequential increase in motions in the

vicinity of the resonant encounter frequency. It is concluded that the linear theory can

provide simple and fast means of determining the effect of various parameters such as

trim, deadrise, loading and speed, on the damping, natural frequency and linearised re-

sponses in waves. Nevertheless, the linear frequency domain model could not reproduce

accelerations accurately enough, thus the problem should be solved by nonlinear equa-

tions of motions. Martin (1976b) suggested time domain analysis which is presented

later by Zarnick (1978, 1979). The nonlinear mathematical model developed by him is

solved in the time domain. His model is based on 2D strip theory and the sectional

forces and moments are determined by the wedge penetrating into the water theory.

His simulations are based on Fridsma (1969)’s model configurations. A simplified model

base on Fridma’s experiments is used as input data to the computer programme and

then compared with the result from the model experiments. According to his results,

the comparison of computed pitch and heave motions and phase angles with the cor-

responding experimental data is notably significant. As well as the comparison of bow

and centre of gravity vertical accelerations is quite good. This pioneering work formed

the theoretical basis for the simulation model developed by Akers (1999) and above all,

the present research. After obtaining the total forces and moments by integrating the

sectional forces along the ship length, the equations of motions generally will translate

to the following form:

M(ẋ, x) · ẍ = F (ẋ, x) (2.33)

Where M(ẋ, x) is a matrix of components associated to the accelerations including ship

mass and added mass. x is a displacement vector in considered degrees of freedom, as

well as its time derivation to velocities and accelerations and F (ẋ, x) is a matrix of the

rest of force and moment components. Supposing that the initial values of x and ẋ turn

the problem to be a system of linear equations with ẍ as unknowns. Using Gaussian

elimination to solve the system, ẍ can be obtained. All of the process mentioned until
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now are the procedures within each time step, now knowing ẍ applying numerical inte-

gration, ẋ and x can be obtained, and used now as input data for the next time step.

The numerical integration could be basically implicit or explicit method but Zarnick

(1978) suggested Runge-Kutta-Merson method to solve, in order to get the precision of

results as high as possible. Iterating the process over time will gives time history of ship

motions. The precision of results depends also on the relevant controlling parameters

such as the number of sections, Ns and the size of time step, ∆t. The issue related to

the controlling parameters was not mentioned in details in the report of Zarnick (1978).

Appropriate number of section, Ns and size of time step, ∆t are important parame-

ters needed in order to obtain the optimal use of the computation, as varying these

parameters affects the time of calculation.

The linear and nonlinear forms of equations of motions corresponding to the modified

strip theory, presented by Martin (1976b) and Zarnick (1978) comparing to the ordinary

strip theory are shown as follows:

Linear Equations of Motions

A · ẍ(t) +B · ẋ(t) + C · x(t) = F (t) (2.34)

Note: Solved in frequency domain

Linearized Equations of Motions: Martin (1976a,b)

A(τ, λ) · ẍ(t) +B(τ, λ) · ẋ(t) + C(τ, λ) · x(t) = F (τ, λ, t) (2.35)

Note: Solved in frequency domain or time domain

Nonlinear Equations of Motions: Zarnick (1978, 1979), Keuning (1994), Ak-

ers (1999)

M
(
ẋ(t), x(t)

)
· ẍ(t) = F

(
ẋ(t), x(t)

)
ẍ(t) = M−1

(
ẋ(t), x(t)

)
· F
(
ẋ(t), x(t)

)
(2.36)

Note: Solved in time domain

Where A, B and C denote matrices of hydrodynamic coefficients.
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The linearized mathematical model of Martin (1976b) is based on the equations of

motions for dynamical stability. Knowing dynamic trim and sinkage parameters, τ

and λ, small perturbation motions are assumed, consequently, the equations of motions

can be solved in frequency domain, following the classical solution of 2nd order non -

homogeneous ordinary differential equation. While the mathematical model of Zarnick

(1978), following the 2nd Law of Newton, is in fully nonlinear form. The assumption of

conventional sinusoidal solution is no longer valid and needs to be solved in time domain.

Then, Zarnick (1979) presented the simulation of ship motions in irregular seas using the

modified and extended version of the mathematical model used in case of regular seas.

The irregular seas used in the simulation were created by the superposition of ten regular

wave components of different amplitudes and frequencies. The wave components were

selected from the energy distribution of a Pierson-Moskowitz Spectrum for a fully devel-

oped sea. The simulations were also based on Fridsma (1971)’s experiment and analysed

statistically following the same manner. The comparison of Zarnick (1979)’s simulations

with the experiments indicates that the mathematical model could predict ship motions

with reasonably quantitative accuracy in moderate operating conditions. In severe oper-

ating conditions, however, the amplitudes of the computed vertical accelerations, which

included impacts, are a half of the experimental value. Blake (2000) performed exper-

iments and computational simulations also based on Fridsma (1969, 1971) and used in

simulations, Bretschneider Spectrum instead of the Pierson-Moskowitz one, due to the

fact that the later one is of only one parameter and the accuracy of generated seas could

be less comparing to the multi-parameters spectrum.

Chiu and Fujino (1989) presented a mathematical model similar to Zarnick (1978)’s

model comparing the results solved by linear and nonlinear models. Their linear model

is based on the assumption that the hydrodynamics coefficients associated with calm

water simulation are the same as those used in head wave simulations.

Keuning (1994) implemented Zarnick (1978)’s model adding a semi-empirical tool for

estimating the calm water running attitude in order to determine correction terms to

the further unsteady procedure. He performed an in-depth investigation approaching

added mass behaviours and its time dependency. The model was finally implemented

into a software named “Fastship”. In the similar approach, Deyzen (2008), following

the basis of Zarnick (1978) and Keuning (1994), extended the model to three degrees

of freedom allowing the surge motion to take place. The simulations can be carried

out with either a constant forward speed or constant thrust. His model is also capable

of simulating calm water behaviours of another hull geometry different from Fridsma

(1969)’s configurations. He suggested the simulations in three degrees of freedom by

adding thrust force allowing the surge motion to be simulated comparing to the classical

towed condition (no surge motion).



Chapter 2 Literature Review and Relevant Theories 27

Garme and Rosén (2003), Garme (2004a, 2005) and Rosén and Garme (2006) studied the

pressure distribution on the hull of planing craft in calm water, regular head and oblique

waves and irregular waves. Also, Garme (2005) formulated a correction operating on

both the hydrostatic and hydrodynamic terms of the load distribution. He based his

correction on the assumption that the pressure is atmospheric at the dry transom stern.

A strictly 2D analysis of the lift distribution on the planing ship overestimates the lift

near to the transom. Further, it is assumed that the difference between the 2D lift

distribution and the actual pressure is largest aft and decreases as it goes forward. The

correction approach is to multiply the 2D force distribution by a reduction function that

presents a value of 0 at transom and approaches to 1 at forepart. The near transom

correction factor will be showed with more detail in Chapter 3. Garme (2005) validated

the reduction function on basis of the model test measurements of the near transom

pressure, and on published model data on running attitude. This correction improves

the simulation in both calm water and in waves for a wider range of forward speeds. His

mathematical model also allows the evaluation of hydrodynamic load distribution along

the ship length in different running attitudes which can be further useful to the study

of the structural strength of planing craft.

Faltinsen and Sun (2010, 2011) suggested that any of previously mentioned work account

for the fully nonlinear phenomena. They presented a mathematical model based on 2.5D

theory applying boundary element method (BEM) to solve 2D body-wave interaction

problems derived from the 3D problem. Notable numerical procedure of the application

of BEM in planing craft dynamics field was found in Zhao et al. (1996). A 2D domain

of fluid is considered to be infinitely extended in horizontal direction, limited by a

horizontal and waterproof bottom at the lower boundary, and limited by free surface

and hull surface at the upper boundary. The potential flow assumption is applied in

which the fluid is supposed to be incompressible, inviscid and irrotational. According to

the consideration of irrotational flow and continuity condition, the velocity vector can

be expressed in the form ∇2ϕ = 0. The boundary conditions are defined on the lower

bottom of the fluid domain, on the free surface and on the body, and the solution of the

problem will be:


∇2ϕ = 0 in the fluid domain

∂ϕ
∂n = V · n on the body

ϕ = 0 on the free surface

(2.37)

The velocity potential is found numerically by solving the integral equation obtained

from applying the 2nd identity of Green to the potential ϕ and a Green’s function G as

follows:
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2πϕ =

∫
S

(
∂ϕ

∂n
·G− ϕ · ∂G

∂n

)
dS (2.38)

Green’s 2nd identity can be solved numerically by dividing the surfaces previously defined

into straight elements. The numerical solution procedure solves the velocity potential ϕi

and its normal derivative ∂ϕi/∂ni on all boundary elements. ϕi and ∂ϕi/∂ni are used

to solve the pressure distribution and the total force on the body at each time step.

The principal advantage of using BEM is that it is often more accurate than the simplified

solutions. They compared the results with those from the simplified method and found

that the comparison gives reasonably good agreement with the model tests. Then they

extended their model to be capable of simulating more complex flow phenomena such

as jet and spray. The study of influence of gravity as well was performed in calm water

and was found that in comparison of results at high speed and moderate speed, the

gravity not only affects the free-surface profile around the hull, but also influences the

hydrodynamic force on the hull surface. In summary, a certain number of investigations

performed by Sun and Faltinsen (2006), Faltinsen and Sun (2007, 2010, 2011) has proved

itself to be capable of simulating in more detail than the simplified method but still with

limitation in longitudinal plane motions and the high time consumption.

Lewis et al. (2007) and Lewis et al. (2010) presented a novel technique applied to 2D

strip method by using 3D CFD with RANS solver to solve 2D water entry problem

instead of the classical potential based boundary value problem. A series of falling wedge

experimental tests was carried out in order to prove the hypothesis of the technique. The

results from 2D wedge water entry were used as a database when applying in 2D strip

method. A correction factor is necessary in order to comply the influence of forward

speed when integrating the total force along the hull length.

The nonlinear approach mentioned previously is almost limited to longitudinal vertical

plane motions especially the coupled heave and pitch in both calm water and in waves,

due to the fact that the simplification of sectional hydrodynamic force is dependent on

sectional heave added mass. In order to extend the investigation to transverse plane

motions, others added mass components are necessary to be evaluated. Unlike the

ordinary strip theory, due to the complexity of flow around planing hull, nonlinear

and unsteady hydrodynamic coefficients in other directions are complicated to define.

Sebastiani et al. (2008) and Ruscelli (2009) presented a mathematical model based on

Zarnick (1978)’s model with extension to be capable of predicting roll motion. Apart

from the strip sections along the ship length, they divided each section into port and

starboard sides. Each side is considered as a particular section and by applying heave

added mass a33, it is possible to evaluate roll motions sufficiently. A lateral section can

no longer considered as symmetric wedge but asymmetry will be considered instead. The
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pressure distribution along the 2D asymmetric falling wedge was presented by Toyama

(1993) based on Wagner (1931)’s work and have been extended also by Hua et al. (2000),

Seif et al. (2004) and Algaŕın and Tascón (2011).

In order to evaluate sectional lift force associated to each section side appropriately, the

following assumption was made by Ruscelli (2009). Considering the tilted section as

being composed of two independent symmetrical wedges: starboard side having dead-

rise equal to geometric deadrise “minus” the instantaneous roll angle, port side having

deadrise equal to geometric deadrise “plus” the instantaneous roll angle. Each symmet-

rical wedge contributes to one half of the total. It is assumed to enter the water with

a vertical velocity equal to the vertical velocity of the centre of pressure of the wedge

resulting from the combination of the roll velocity and the vertical velocity of the sec-

tion. Ruscelli (2009) validated his model with full scale ship trials which gave a good

agreement. Another possible way to study more degrees of freedom is applied linear

mathematical model. However, it still under limitation and assumption of small motion

perturbation.

Regarding the extension to transverse plane motion, it is of interest to carry out an

appropriate investigation not only in waves but as well in calm water. Apart from lon-

gitudinal plane instability in calm water or porpoising, the roll instability could become

a pronounced factor for both human operability and ship strength itself. The roll in-

stability is that so-called “chine walking”. Xu et al. (2008) used a vortex distribution

method to analyse water entry of a heeled 2D section with flow separation from hard

chines. The deadrise angle is assumed small, and boundary conditions are transferred

to a horizontal line. The possibility of transverse flow separation from the keel is incor-

porated. This method does not include the hydrostatic pressure, rudders, propulsion,

and possible effects of cavitation and ventilation. Ikeda and Katayama (2000) presented

the measurement GZ of a planing craft on a straight line course in calm water as a

function of heel angle φ. They found that GZ curve depends significantly on the trim

angle at high speed which can translate to that in the case of unsteady motion in wave,

roll-restoring moment will be a function of pitch. Toxopeus et al. (1997) presented a

time domain computer simulation program to predict the dynamic stability and ma-

noeuvrability of planing craft in still water for six degrees of freedom. The formulation

used in the program were based on experimental data and additional coefficients taken

from literature. The added mass coefficients in six directions were determined based on

modified ordinary potential flow theory.

2.4 3D CFD Solvers

Recently, 3D CFD has become another alternative choice for investigations of ship mo-

tions due to its more realistic solutions comparing to 2D assumption. Generally, in 3D
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Figure 2.3: Power boat model jumping in oblique waves at 9 m/s (Azcueta
et al., 2003).

CFD method, the full Navier-Stokes equation is solved for the flow in a fluid domain.

Azcueta (2003) and Azcueta et al. (2003) used a commercial software based on RANSE

(Reynolds Averaged Navier-Stokes Equation) named COMET to simulate a high-speed

planing vessel both the running attitude in calm water and the motions in waves. The

comparison with the results from Savitsky (1968)’s formulae is generally acceptable.

Su et al. (2012) applied RANSE to solve the running attitude and hydrodynamic per-

formance of the planing vessel at a high speed. The results demonstrated that such

an approach predicts those parameters accurately as compared to available experiment

data. The difference between calculated and experimental results was small. Akers

(1999) reviewed 3D Panel Method, as mentioned before, although 3D CFD appears to

be the most realistic simulations, he found a number of difficulties with using panel

method to predict the flow around planing hulls. First, the free surface location is a

function of a solution of the problem, which means iterative solutions are required to

estimate the free surface location as a function of fluid velocity potential as a function

of the free surface location. Secondly, the geometry of the problem is a function of the

solution to the problem, the location of the panels and their resulting normal vectors is

a function of the fluid velocity potential which is a function of the geometry, implying

again the iterative method. The third problem is that velocity potentials cannot be used

directly to model viscous boundary layers to pressure from spray jets. Empirical meth-

ods are typically used to create effective geometries that take into account boundary

layer, and to model spray pressures. Azcueta et al. (2003) reviewed results from cal-

culations performed with a commercial CFD code solving RANSE in both calm water

and in waves cases. The authors concluded that the steady state solution for the regular

waves cases was achieved after around 33 hours and planing in irregular waves was out

of scope. Comparing to the steady state motions in regular waves solutions obtained

with the simplification of 2D approach, which the results were achieved after only about

8 minutes, if the results give sufficient good agreement with the experimental results,

the 3D CFD can be considered impractical from the point of view of an ordinary design.
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Figure 2.4: Numerical mesh around hull (Azcueta et al., 2003).

Regarding the modern techniques in CFD application, over the past decades, a state of

art of CFD code called “Numerical Fluid Analysis: NFA” has been intensively devel-

oped. It is a turnkey tool of CFD allowing a possibility to investigate the complexity

of multiphase flow as well as to model breaking waves around a ship, including both

plunging and spilling breaking waves. As stated in Dommermuth et al. (2004), Dom-

mermuth et al. (2006) and Dommermuth et al. (2007), NFA solver uses a combination

of Cartesian-grid formulation with immerse body and volume-of-fluid (VOF) method.

The governing equations are formulated on a Cartesian grid thereby eliminating compli-

cations associated with body-fitted grid. The sole geometric input into NFA is a surface

panelization of the ship hull. No additional gridding beyond what is already used in

potential flow methods and hydrostatics calculations is required. Fu et al. (2013) made

a comparison of NFA ability to predict pressure distribution and flow characteristics

of a free falling wedge to the corresponding model experiments. Application of NFA

to a deep-V monohull planing hull comparing with POWRSEA and model experiments

were presented by Fu et al. (2011). Although the more complex flow phenomena can

be modelled, the disadvantage is identical to the other CFD modelling, which is the

requirement of performing in supercomputers.

2.5 Aircraft Ditching

The original analysis carried out by von Karman (1929) and Wagner (1931) was involved

with load prediction of seaplane landing. Those methodologies were successfully and

widely referred as the basis of water entry problem. As the geometry employed in

that analysis was wedge shape, possibility to apply in different geometry such as the

semi-circular shape of the real fuselage is proposed.

The capability of an aircraft to survive an emergency landing into the water is mandatory

in the early stage of design. This undesired situation could be extremely dangerous

due to the loads and their effects at and after the moment of impact. This capability
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Figure 2.5: Pressure hull for C∆ = 0.608 L/B = 4 and β = 200 speed raio =
2, 3, 4, 5, 6 (from left to right) (Fu et al., 2013).

should be included in the flight manual to guide the pilot when facing this event. The

important parameters to be considered can be the trim angle and landing speed. They

could lead to different effects in impact loads and motions after impact. Therefore,

related investigations have been carried out along the history of aviation.

Historically, due to the difficulty in achieving a correct scaling of all of the physical

parameters, the relevant experiments found in the literature are carried out at full scale

by aircraft manufacturers. This leads to a complication in resource limitation of the

present research. Model scale experiments will be carefully planned.

Nevertheless, there are some notable investigations related to model scale ditching ex-

periment. The first one is that of Smith et al. (1952). They made reviews of ditching

experimental techniques taken place during both world wars by various institutions.

The tests carried out during that periods can be classified into two main techniques.

The first one is guided towing, and the other is free launching with similar three main

parameters, which are touchdown speed, angle of descent at touchdown and attitude at

touchdown. The advantage of guided towing technique is that the impact load acting

on the fuselage can be measured. However, as the model is towed, it is not allowed to

move freely after impact and cannot give the response trajectory. While the free launch-

ing technique can fulfil this but there is no way to measure forces on the hull without

reference points. Later, towards the end of the wars, an investigation was started into

pressure loads likely to be encountered in a fuselage bottom during an impact. In other

words, how the pressure is distributed along the fuselage. This measurement of pressure

distribution can be achieved by free launching technique and as well as the time histories

of motions after impact.
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Figure 2.6: Three-quarter bottom view of the model of fineness ratio 6 in basic
configuration (McBride and Fisher, 1953).

In the same period, McBride and Fisher (1953) carried out an experimental investigation

on the effect of rear fuselage shape on ditching behaviour with model scale tests and then

extrapolated the results to the full scale. The basic model fuselage was a streamline body

of revolution with the maximum width at 50% of the length and fineness ratio of 6 and

9. By sweeping up the centreline, the longitudinal curvature of the bottom is increased,

and by sweeping down, it decreases. The technique they used was a combination of

guided towing and free launching. The model was accelerated firstly in guided rail to

predefined launching speeds. At the end of the rail, the model dropped into the water

allowing it to move freely after the impact. Time histories of speed, attitude and height

of CG above water were recorded and compared. Note that there was no measurement

of load or pressure distribution available in these tests.

The most recent and relevant experimental activity found in the literature is that of

SMAE-FP7 project at CNR-INSEAN led by Iafrati (Siemann et al. (2012), Iafrati and

Calcagni (2013) and Iafrati et al. (2014)). The project consists of an in-depth investi-

gation of water entry of an object with a high horizontal velocity in order to achieve a

better comprehension and more reliable simulation tools for the aircraft ditching phase.

The first part of the study focused on the ditching of a flat plate. Due to the scaling

problem mentioned previously, a facility capable of carrying out this such experiments

was built and installed at the end of towing tank 1 of CNR-INSEAN. The tests were

performed on aluminium plate 0.50 m wide and 1.00 m length. Similar experiments

had been done by Smiley (1951) but this campaign was planned for higher horizontal

and vertical velocities of full scale (from 30 to 50 m/s and 1.5 m/s respectively), and

more detailed measurement involving pressure, accelerations, strain and loads. Then,
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Figure 2.7: Guided ditching experimental test facility at INSEAN (Siemann
et al., 2012).

Siemann et al. (2012) in the same project performed numerical and experimental sim-

ulations using rigid sub-scale aircraft CN235 and A321. The assumption of Froude

similarity scaling was used to scale down the fuselages and assessed in both simulations.

Alternatively, with the development and capability of computational calculation, nu-

merical simulations have turned to be widely used in the real world and are capable of

eliminating the complication of full scale and model experiments. The most interesting

computational methodology developed lastly by many researchers is CFD simulations.

In the last decade, many authors have improved and tested the CFD models for aircraft

ditching analysis based on both classical RANS models (Streckwall et al., 2007) and

more innovative Smooth Particle Hydrodynamic (SPH) model (Climent et al., 2006).

The comparison between the inclusion and exclusion of sectional forces at the tail loca-

tion was presented. Another notable work of CFD investigation approaching to aircraft

ditching problem is that of Streckwall et al. (2007). They follow the tests of McBride and

Fisher (1953) using the identical configurations for simulations and make a comparison

of results showing fair to good agreement.

Regarding the actual work, a possible methodology is derived from high-speed planing

craft dynamic investigations, as its behaviours seem to be similar to the aircraft ditch-

ing problem after the moment of impact. The methodology is the combination of strip

theory and wedge water impact theory presented by Martin (1976b) and Zarnick (1978).

The fundamental principle of this methodology is dividing the fuselage into sections and

evaluating sectional load individually by mean of the rate of change of fluid momen-

tum. The most notable advantage of this method is small computational time with an

acceptable accuracy of results.
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Figure 2.8: CFD (VOF) model used to simulate airframe loads for steady con-
ditions (Bonanni et al., 2015).

Following the motivation and the aim of the research mentioned in Chapter 1 together

with the reviews presented in this chapter, the methodology chosen to use as the main

tool of investigation is 2D strip theory method considering its advantages and disadvan-

tages over the others. Details of investigations approaching the aim of the research are

presented further in Chapter 3.





Chapter 3

Verification and Validation of

Mathematical Model of Calm

Water and Regular Wave

Simulations

Complete verification and validation of numerical models of natural systems are im-

possible. This is because natural systems are never closed and because model results

are always non-unique. Models can be confirmed by the demonstration of agreement

between observation and prediction, but confirmation is inherently partial. Complete

confirmation is logically precluded by the fallacy of affirming the consequences and by

incomplete access to natural phenomena. Models can only be evaluated in relative terms,

and their predictive value is always open to question. The primary value of the model

is heuristic.

Definition of Verification: According to American Institute of Aeronautics and As-

tronautics, Committee on Standard on Computational Fluid Dynamics definition AIAA

(1998), Verification is a process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution to the

model.

Verification is now commonly divided into two types:

• Code Verification: Verification activities directed toward:

– Finding and removing mistakes in the source code.

– Finding and removing errors in numerical algorithms.

– Improving software using software quality assurance practices.

37



38
Chapter 3 Verification and Validation of Mathematical Model of Calm Water and

Regular Wave Simulations

• Solution Verification: Verification activities directed toward:

– Assuring the accuracy of input data for the problem of interest.

– Estimating the numerical solution errors.

– Assuring the accuracy of output data for the problem of interest.

Definition of Validation: Validation is the process of determining the degree to which

a model is an accurate representation of the real world from the perspective of the

intended uses of the model.

In summary, Verification provides evidence that the computational model is solved cor-

rectly and accurately. While Validation provides evidence that the mathematical model

accurately relates to experimental measurements.

In this chapter, the system of equations of motions will be developed on the basis of

principal of strip theory following Zarnick (1978). The system is developed initially to

be capable of predicting only in two degrees of freedom in longitudinal plane motions

(heave and pitch motions). This implies that the planing model is in towed condition

with constant forward speed (not allowed to surge). The system is developed from

evaluation of sectional forces to total force and moment. The final deliverable of the

chapter will be the system of equations of motions in matrix form together with the

verification and validation of the model.

3.1 Coordinate Systems

Classically, the coordinate system used in strip theory consists of three components

shown in Figure 3.1.

• Earth-Fixed Coordinate System: Oxyz : The origin is fixed in a certain point

at non-disturbed water level. The positive x, y and z directions point toward

to the direction of travel, toward to starboard side and downward to the water

respectively.

• Ship-Fixed Coordinate System: Sxsyszs : This coordinate system is travelling

with the ship with the origin fixed to the calm water level. xs axis is pointing

positively to ship travel direction, while ys and zs are pointing toward starboard

and downward vertically to the water respectively.

• Body-Fixed Coordinate System: Gx′y′z′ : The origin of this system is located at

the CG of the ship. x′ axis is parallel to the keel and points toward to the bow as

positive direction, while y′ and z′ point toward to starboard side and downward

perpendicularly to the keel respectively.
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Figure 3.1: Coordinate systems.

• xG, yG, zG, φ, θ and ψ are ship’s displacements (position) in the earth-fixed

coordinate system.

• ẋG, ẏG, żG, φ̇, θ̇ and ψ̇ are ship’s velocities in the earth-fixed coordinate system.

• ẍG, ÿG, z̈G, φ̈, θ̈ and ψ̈ are ship’s accelerations in the earth-fixed coordinate system.

.

As the first simplification of the present project is simulations in towed condition, the

surge motion does not engage, Sxsyszs can be omitted simplifying the equations of

motions to involve in only the remaining two coordinate systems.

3.2 System of Equations of Motions

The system of equations of motions is derived from the 2nd Law of Newton and by

reducing to two degrees of freedom (heave and pitch), it can be expressed in the following

form: (See Figure 3.2).

Mz̈G = −(Fh + Fcfd) cos θ − Fb +D sin θ +W (3.1)

Iyy θ̈ = Mh +Mcfd +Mb −DxD (3.2)

Where z̈G and θ̈ are accelerations corresponding to heave and pitch motions. Fh, Fcfd,

Mh and Mcfd are hydrodynamic and cross-flow drag forces and moments respectively. D

is skin friction or drag force. Fb and Mb are hydrostatic or buoyancy force and moment

respectively, and finally, W is the weight of the craft.

Following the strip method, the total hydromechanics and hydrostatic forces in the

system of equations of motions are derived into sectional forces in the following forms:



40
Chapter 3 Verification and Validation of Mathematical Model of Calm Water and

Regular Wave Simulations

Figure 3.2: Free body diagram of forces, velocities and accelerations.

Fh =

∫
L
Ctrfhdx′ (3.3)

Mh =

∫
L
Ctrfhx

′dx′ (3.4)

Fcfd =

∫
L
Ctrfcfddx

′ (3.5)

Mcfd =

∫
L
Ctrfcfdx

′dx′ (3.6)

Fb =

∫
L
Ctrfbdx

′ (3.7)

Mb =

∫
L
Ctrfbx

′dx′ (3.8)

Due to flow separation phenomenon at the transom, a correction factor called “Near

Transom Correction Factor: Ctr” presented by Garme (2005) has been applied to the

equations of motions in all of hydrodynamic and hydrostatic force terms. The aim of

this additional factor is to correct the pressure distribution in transom zone where the

pressure reduces to atmospheric. This factor is expressed as:

Ctr = tanh

[
2.5

0.34 ·Bm · Cv
·
(
x′ − x′tr

)]
(3.9)

In which Bm is full breadth at main section. Cv is breadth Froude Number and x′tr is

body-fixed coordinate of the transom.

Following the principle of Wagner (1931), sectional hydrodynamic forces are determined

according to the theory of a wedge shape section penetrating into the water. The 2D pen-

etrating wedge is replaced by a flat lamina by the assumption that the fluid accelerations

are much larger than gravity. The flat lamina is expanding with the identical constant
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rate at which the intersection width between the wedge and the water is increasing in

the undisturbed water surface.

By solving boundary values problems, the sectional hydrodynamic force can be defined

as “Rate of Change of Fluid Momentum” and written in the following form:

fh =
D

Dt
(maV ) = ṁaV +maV̇ − U

∂

∂x′
(maV ) (3.10)

With:

U = ẋG cos θ − (żG − ww) sin θ (3.11)

U = ẋG sin θ − (żG − ww) cos θ (3.12)

V̇ = ẍG sin θ + (z̈G − ẇw) cos θ + θ̇ [ẋG cos θ − (żG − ww) sin θ] θ̈x′ (3.13)

Where ma is sectional added mass, U and V are velocities parallel and perpendicular

to the keel respectively. V̇ is time derivative of V , ww and ẇw are wave vertical orbital

velocity and acceleration respectively.

Wagner (1931) solved a boundary value problem of an equivalent expanding flat plate

and deduced expressions of sectional added mass and its time derivative as follows:

ma = Cm
π

2
ρb2 (3.14)

ṁa = Cmπρbb
2 (3.15)

Where Cm is the sectional added mass coefficient, which is a function of sectional geom-

etry. Payne (1994) suggested the dependency of deadrise angle of sectional added mass

coefficient as:

Cm =

(
1− β

2π

)2

(3.16)

The half beam b is related to the section submergence h by b = h/ tanβ. As mentioned

in the previous section, the water pile-up phenomenon influences significantly to the

alteration of the half beam, the expression of this factor found by Payne (1994) is shown

as follows:
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Cpu =
π

2
− β

(
1− 2

π

)
(3.17)

And then, the corrected half beam including pile-up phenomena becomes b = Cpuh/ tanβ.

Thus, the expression of sectional added mass and its time derivative are expressed as

functions of section submergence as follows:

ma = Cm ·
π

2
· ρ ·

(
Cpuh

tanβ

)2

(3.18)

ṁa = Cm · π · ρ · h ·
(
Cpu

tanβ

)2 dh

dt
(3.19)

This makes the sectional added mass and its time derivative being functions of β and h.

Both can be expressed as functions of x′ in body-fixed coordinate as:

β = β(x′) (3.20)

h = h(x′)

= z′k +

(
zG − x′ sin θ

cos θ

)
− r

cos θ
(3.21)

ḣ = ḣ(x′)

=
dh(x′)

dt

=


(
żG − x′ cos θθ̇

)
+ (zG − x′ sin θ) sin θθ̇

cos2 θ

−( ṙ cos θ + r sin θθ̇

cos2 θ

)
(3.22)

Where z′k is the coordinate of the keel in ship-fixed coordinate system, r(x′) and ṙ(x′)

are wave elevation and its time derivative at each time step respectively.

The expression of wave elevation and its time derivative, wave vertical orbital velocity

and acceleration are functions of time and space. As the present calculation procedure

is in each time step, the functions are reduced to be only space dependent in earth-fixed

coordinate system x as follows:
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r = r0 cos (kx− ωt) (3.23)

ṙ = −r0 (kẋ+ ω) sin (kx+ ωt) (3.24)

ww = r0ω sin (kx+ ωt) (3.25)

ẇw = r0ω (kẋ+ ω) cos (kx+ ωt) (3.26)

Then, it can be elaborated into functions of space dependent in body-fixed coordinate

system (x′):

r(x′) = r0 cos
[
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
+ ωt

]
(3.27)

ṙ(x′) =
d

dt
r(x′) (3.28)

ww(x′) = −r0ω sin
[
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
+ ωt

]
(3.29)

ẇw(x′) =
d

dt
ww(x′) (3.30)

Substituting Equations 3.27 - 3.30 into Equations 3.18 - 3.19, the sectional added mass,

ma and its time derivative, ṁa are functions of only ship length coordinate at each

instance (stopped time) as the rest of variables in Equations 3.20 - 3.22 are fixed, and

subsequently updated at the next time step.

The additional lift term due to the cross-flow drag on the surface of a wedge penetrating

into the water is expressed as:

fcfd = CD,C cosβρbV 2 (3.31)

Or in term of submergence as:

fcfd = CD,C cosβρ

(
Cpuh

tanβ

)
V 2 (3.32)

Where CD,C is sectional cross-flow drag coefficient with the value of 1.33 suggested by

Keuning (1994).

Sectional buoyancy is expressed as:
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fb = abfρgA (3.33)

With abf as sectional buoyancy coefficient. Its value is fixed at 0.5 as the simulations

are always in towed condition with high Froude Number.

Finally, the drag force or frictional resistance is determined by:

D =
1

2
ρCFSwU

2 (3.34)

The frictional resistance is strongly dependent on three fully nonlinear parameters, U , Sw

and CF . Wetted surface area is obtained by integrating sectional wetted curve along the

ship length. Frictional coefficient is approximated by using ITTC 1957 correlation line.

Note that the drag force has small influence in the equations of motions, as the system is

reduced to two degrees of freedom implying towed condition. The horizontal component

of drag does not affect to the response motions leaving only vertical component to do

that role.

After evaluating the system of equations of motions by substituting the terms previously

mentioned, it can be expressed in the following matrix forms:

M · ẍ =
∑

F (3.35)

Thus:

ẍ = M−1 ·
∑

F (3.36)

Where:

ẍ =

(
z̈G

θ̈

)
(3.37)

As well as M and
∑
F are matrices of mass and total forces minus terms associated to

the motion accelerations.
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For the further reference in this thesis, the system of equations of motions is fully

developed in Appendix A with coefficient assignments to be referred in further contents.

The desired results of the present project are time histories of ship’s displacements, ve-

locities and accelerations. The system of equations of motions derived in the previous

section gives firstly, the ship’s accelerations for a given time step. This can lead to the

velocities and consequently the displacements by time marching integration of equa-

tions of motions according to the dynamic principle. Generally, an equation of motions

in a dynamical process appears to be “Linear 2nd Order Non-Homogeneous Ordinary

Differential Equations” with time as principal variable. This can be solved simply by

analytical solutions which is that so-called “Exact Solutions”. Nevertheless, the present

mathematical model is instead the fully nonlinear one; the exact solutions are mostly

impossible to deal with. The only way to solve this kind of ODE is by using numeri-

cal analysis. However, the numerical analysis can only give an approximation of exact

solutions always with unavoidable errors. Therefore, it is essential to select the most

suitable numerical methods, in order to minimize these errors.

The explanation about the choices of numerical integration methods is presented. Other

numerical methods such as numerical differentiation used in each particular term in

the equations of motions are explained in detail in Appendix A. All of the numerical

methods are verified in order to be appropriately selected. Once the model is verified, it

is validated with some existing experimental data which will be explained in the further

sections.

3.3 Verification of the Mathematical Model

Due to its fundamental behaviours, the present mathematical model is considered as

a dynamic process. Verification for such a process consists of analysing the relevant

controlling parameters influenced on performance of the mathematical model, leading

also to the adequate selection of numerical methods. To fulfil this aim, “Hypothesis of

Accuracy of Time Histories” is proposed.

3.3.1 Hypothesis of Accuracy of Time Histories

Supposing that, when a mathematical model has been created to simulate a physical

phenomenon, an ideal condition can be explained by a corresponding mathematical

expression and by adding some environmental factors, the reality can be simulated with

accuracy. The first process of the dynamic phenomenon is to evaluate the total force

acting on an object and consequently, the acceleration caused by that force is found.

The following process is to evaluate the corresponding velocity and displacement knowing

the acceleration by integration over time. In all dynamic physical phenomena, the force
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Figure 3.3: Dynamic process in the present mathematical model.

acting on the object at each instant is state-space dependent. This implies that if the

velocity and displacement at each instant are not adequately evaluated, the force and

acceleration corresponding to the next will be inaccurate. Similar to the process of

evaluating force and acceleration, if they are not accurately defined, the effect will be

an inaccurate velocity and displacement. The time history resulting from an inaccurate

mathematical model will produce an inaccurate time history and will not converge if the

parameters of accuracy are not appropriately applied.

The “Hypothesis of Accuracy of Time Histories” is defined as that, when in-

creasing the resolution of controlling parameters influenced in the dynamical process,

resulting time histories should converge to a single asymptote value. As the exact solu-

tion is not available, the results obtained by using maximum resolution parameters are

taken as the “highest fidelity” or “superior data” corresponding to that asymptote.

The dynamic process corresponding to the present mathematical model is explained in

Figure 3.3. The controlling parameter influenced in force and acceleration evaluation is

the resolution of hull sections or Number of Sections, Ns. Then, the other influenced

in velocity and displacement evaluation in time flowing step is Time Step Size, ∆t.

3.3.2 Pressure Distribution Evaluation

The present mathematical model is an implementation to the original Zarnick (1978)’s

work that allows the pressure distribution to be represented by mathematical model

rather than experimental results (see Figure 3.4). Once receiving the data of accelera-

tions, velocities and displacements at each instant as input data, evaluation of sectional

forces along the hull length is carried out. In other words, it is the representation of

particular sectional force along the length.

As it can be seen in Figures 3.5 - 3.6, the pressure distribution is accounted only in

locations where particular sections are under the water surface. The integral evaluation

along the hull length appears not to be constantly evaluable considering the physical
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Figure 3.4: Pressure distribution along the ship length.

Figure 3.5: Flow - hull characteristic zones (longitudinal).
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Figure 3.6: Flow-hull characteristic (transverse).

characteristic of particular sectional flow. Following Martin (1976a), Zarnick (1978),

and Akers (1999), the flow characteristic can be divided into three zones:

• Zone A: Dry keel.

• Zone B: Wetted keel but dry chine.

• Zone C: Wetted chine.

The largest magnitude of each component takes place in zone B due to the strong rate of

change of fluid momentum. In calm water case, the last term of sectional hydrodynamic

force expression (Equation 3.10) plays a very important role as the other terms are of

small magnitude due to its steady state situation. Moreover, by the influence of Ctr,

all of the force components die out to zero at the transom as the consequence of flow

separation.
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3.3.3 Methodologies of Convergence Analysis and Optimization Con-

sideration

In order to analyse the convergence of resulting time histories, root mean square errors,

RMSE, of a pair of data between each actual and the highest fidelity data are evaluated.

This result should show the points of corresponding value of the controlling parameters

where the time histories begin to converge, as their RMSE should be as small as possible.

Firstly, the heave and pitch responses are normalized by wave height, H and 2πH/λ

respectively, while CG and bow accelerations are normalized by the gravity. Then,

every time history corresponding to different pairs of Ns and ∆t are compared to the

highest fidelity data, in order to calculate RMSE. Then, by following the definition of

Hypothesis of Accuracy of Time Histories, when increasing or decreasing both Ns and

∆t, RMSE should decrease and converge to an asymptote implying the accuracy of time

histories.

Apart from the consideration of small RMSE, computation time is also considered in

order to determine the optimal use of the model. As the advantage of the present

methodology (Strip Theory + Wedge Water Entry) is the economic time consumption

in calculation, Pareto Efficiency Analysis will be used in further contents of this thesis

when considering computational time, Tc together with RMSE of time histories to find

the optimal controlling parameters. The objective functions of the actual consideration

are minimizing computational time and minimizing RMSE comparing to the highest

fidelity data. The pairs of objective functions in the Pareto Front of optimal time

consumption and accuracy will represent and reflect back to the pairs of controlling

parameters, Ns and ∆t.

3.3.4 Time Integration Numerical Solvers Verification

The simulations are set to perform using corresponding static stability conditions as

initial conditions. The planing models are moving with a constant forward speed (towed

condition). This condition does not exist in reality due to the fact that when an ob-

ject is starting to move, a corresponding acceleration is applied to bring the object to

achieve that desired velocity. If the object suddenly commences to move from the repose

condition to a velocity, a large acceleration is applied and the problem is therefore of

an impulsive start. This causes an extreme response motions but later it can restore to

set itself to the equilibrium. Once all parameters at the present time step are obtained

(stopped time process), in order to continue the simulation to the next time step, the

acceleration of present time step needs to be integrated to evaluate velocity and dis-

placement. The equations of motions are classified as 2nd order non-homogeneous ODE.

This kind of equations can be solved numerically by several methods. The choices of

numerical method such as Euler, Predictor-corrector and several kinds of Runge-Kutta
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methods are analysed in order to compare with the numerical method used by Zarnick

(1978) and deduce the optimal one.

3.3.4.1 Fixed Step Solver and Variable-Step Solver

A dynamical system is simulated by computing its states at successive time steps over

a specified time span, using information provided by the model. The size of this time

interval is called the step size. The process of computing the successive states of a

system from its model is known as solving the model. No single method of solving

a model suffices for all systems. Accordingly, a set of programs, known as solvers, is

provided that each embody a particular approach to solving a model. Solvers are broadly

classified using these criteria:

• The type of step size used in the computation:

– Fixed-step solvers solve the model at a single step size from the beginning to

the end of simulation. The step size can be specified or let the solver choose

the step size. Generally, decreasing the step size increase the accuracy of the

results and increases the time required to simulate the system.

– Variable-step solvers vary the step size during the simulation, they change the

step size to maintain accuracy as the state of a model changes. Computing

the step size adds to the computational overhead at each step. However, it

can reduce the total number of steps, and hence the simulation time required

to maintain a specified level of accuracy for models with piecewise continuous

or rapidly changing states.

• The nature of states in the model:

– Continuous solvers use numerical integration to compute continuous states of

a model at the current time step based in the states at previous time steps

and the state derivatives. Continuous solvers rely on individual blocks to

compute the values of the discrete states of the model at each time step.

– Discrete solvers are primarily for solving purely discrete models. They com-

pute only the next simulation time step for a model. When they perform this

computation, they rely on each block in the model to update its individual

discrete state. They do not compute continuous states.

Fundamentally, the use of variable step solver is necessary as the convergence of simu-

lations can be proved by it. Originally, Zarnick (1978) used variable step Runge-Kutta-

Merson solver to evaluate time histories of response motions and accelerations. The

maximum initial time step size he used was 0.1 s and halved it constantly until the

tolerance was small (around 1%) and converged. In order to prove the convergence of
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Table 3.1: Convergence criteria of variable steps solver.

∆ti (s) ε

0.100 > 10%

0.050 5% - 10%

0.025 2% - 5%

0.020 < 1%

0.010 < 1%

the present mathematical model, a series of simulations are carried out. A particular

hull configuration and sea condition is evaluated varying number of section Ns, initial

time step size ∆ti and maximum tolerance ε. The results of simulations are summarized

in Table 3.1.

It can be seen that when ∆ti < 0.01 s, the tolerance is smaller than 1% in any step,

in other words, the simulation converges with ∆ti without iterating to the smaller ∆t

within that corresponding step. This leads to the deduction that when using ∆t < 0.01 s,

Runge-Kutta family solver gives converged results and are equivalent to fixed step solver.

The detail of accuracy of this solver is explained in the following section.

In summary, the variable step solver allows an analysis of convergence within the actual

time history. The fixed step solver leads to the next level of convergence analysis that

is a convergence between different time histories of the same sea condition but varying

controlling parameters.

3.3.4.2 Comparison and Verification of Time Integration Methods

Several numerical time marching integration are compared in order to find the most

appropriate as well corresponding ∆t. These methods are:

• Adam’s predictor-corrector method: PCA.

• Euler’s predictor-corrector method: PCE.

• Runge-Kutta method: RK.

• Runge-Kutta-Merson method: RKM.

• Runge-Kutta-Fehlberg method: RKF.

The detailed algorithm are explained in Appendix B. The optimal ones should be that of

the least time consumption and accurately convergence. The hull chosen to be simulated

is of β = 20o. It is towed freely to heave and pitch with constant forward speed of

V/
√
L = 6.0. The simulations are carried out by five different numerical integration
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methods and five different ∆t; 0.01 s, 0.002 s, 0.001 s, 0.0005 s and 0.0002 s. As the

exact analytical solution for this kind of equations of motions does not exist, the criteria

of convergence is supposed to be that, by decreasing time step size, time history results

should converge to an asymptote.

3.3.4.3 Influence of Time Step Size: ∆t

Figures 3.7 - 3.8 represent samples of time histories of normalized response motions

and impact accelerations of different time step sizes and integration methods. The

normalization consists of dividing the response motions by the wave height. While in

the same manner, the accelerations are normalized by the gravity. The simulations have

been carried out again for a planing model of β = 20o and V/
√
L = 6.0. Actually,

the verification is focusing on the influence of ∆t, as Ns is supposed to be appropriate

enough to give the accurate total force.

First of all, time histories of results from three different Runge-Kutta methods and two

predictor-corrector methods are analysed statistically and presented in Figure 3.10. As it

can be seen, the standard deviation of heave maxima calculating by Runge-Kutta family

methods are small, although it is larger when using ∆t = 0.01 s, the rest of ∆t have

similar standard deviation and also the other statistics. While the standard deviation of

motions obtained by predictor-corrector methods are significantly larger than the Runge-

Kutta ones. This could imply less stability when using predictor-corrector method with

larger ∆t. The Runge-Kutta methods give the convergence when ∆t < 0.002 s is used.

In summary, when varying controlling parameters, the results get closer to the values

when using the highest resolution (smallest ∆t).

Then the time histories of results are compared by mean of RMSE analysis. The reference

values for RMSE are deduced from statistical analysis to be those when using the highest

resolution of controlling parameters, as it can be seen from a sample of heave maxima

analysis in Figure 3.10. The error metrics of the normalized heave are represented in

Figure 3.9.

Once the optimum numerical integration is chosen to be Runge-Kutta methods, compu-

tational times in simulation varying both controlling parameters (Ns and ∆t) are shown

in Table 3.2 using a personal computer (1.7GHz Intel Core i7, 8GB 1600MHz DDR3

RAM). The data is represented in the amount of times of the least duration or computa-

tional time ratio, Tcs = Tc/Tcmin . The most influential parameter in computational time

is ∆t. It can be seen that for any ∆t, the largest Ns consumes less computational time

than the smallest Ns for the next smaller ∆t. Note that the computational language

used in the present research is MATLAB (Versions 2012 - 2016), using other languages

could also affect to computational times depending on the mechanism of the languages.
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Figure 3.7: Time histories of accelerations and motions using different solvers
with ∆t = 0.01 s.

Figure 3.8: Time histories of accelerations and motions using PCA solvers with
different ∆t.

Table 3.2: Computational times of Runge-Kutta integration methods varying
Ns and ∆t.

Ns / 4t(s) 0.01 0.002 0.001 0.0005 0.0002

40 Tcs = 1.00 4.64 9.20 19.10 47.97
80 1.04 4.82 9.55 20.01 49.53
120 1.07 5.00 9.96 20.52 51.33
160 1.10 5.17 10.28 21.14 52.94
200 1.12 5.30 10.97 21.85 54.54
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Figure 3.9: Error metrics representation of normalized heave motion comparing
different integration methods.

Figure 3.10: Statistical representation of normalized heave motion comparing
different integration methods.

3.3.5 Limitations and Optimization of Mathematical Model in Time

History Evaluations

The case of moderate deadrise hull has been used to verify the effectiveness of time

marching integration. Nevertheless, though the optimal ∆t is known, it cannot guar-

antee the accuracy of time history if the force is not evaluated accurately. Influence of

controlling parameter involved in a certain time step which is Ns is analysed focusing on

sectional added mass and its derivative terms, as it is the most predominant component

of the overall hydrodynamic forces. Note that the terms ma, ṁa associated and ∂ma/∂x
′
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associated are represented in form of the integral coefficients CA, CE and CF defined in

Appendix A.

3.3.5.1 Influence of Number of Sections: Ns on Sectional Added Mass and

Its Associated Terms

The distribution of sectional added mass and its associated terms along the ship length

(of β = 10o, 20o and 30o) evaluated by different Ns are presented in Figure 3.11. It

shows that the distribution curves using small Ns (continuous curves) do not fit the

to other using larger Ns, especially the case of β = 10o. Also it can be seen that the

distribution of ṁa is zero when ma is constant. This implies that the sudden change

of ṁa from zero to a high value causes a sharply discontinuous function. The function

of the distribution is represented numerically by a discrete function. The main cause

of variation of this function (varying Ns) is that if the discrete points corresponding

to a certain Ns do not fit closely to the sharp points of the distribution, the discrete

representation will not be accurately defined. Consequently, when being multiplied by

the component of relative velocity perpendicular to the keel, V , the effect of magnitude

of this product is magnified. Due to the dependency of wave vertical orbital velocity,

ww, in any instant that a particular section hits the position corresponding to high ww,

the order of magnitude of CE will be extremely high compared with CF . Obviously

if the distribution functions are not evaluated appropriately, the integral or the area

under the distribution (CA, CE and CF ) will not be obtained accurately. Considering

the principle of strip theory, each particular section is considered as a wedge penetrating

into calm water with different local relative velocity to the water level. In case of short

wavelength and large wave amplitude (large wave slope), if Ns is not sufficiently large,

the distribution of any terms along the ship length will be inaccurate. While in the

case of small wave slope, this occurrence does not happen due to the smoothness of

relative impact phenomenon. Regarding the influence of deadrise angle, β, the cases of

moderate and large β suffer small effect of variation ofNs, due to the fact that the vertical

projection distance from the keel to the chine is sufficiently far. This could avoid the

sudden and frequent flow separation that causes the sharp discontinuous distribution and

consequently the associated derivative. While in the case of small β, the discontinuous

distribution is unavoidable and requires larger Ns in order to achieve the better fit of

the distribution.

3.3.5.2 Influence of Number of Sections: Ns and Time Step Size: ∆t in Full

Time History Evaluations

The analysis of influence of Ns in stopped time has been done previously. In order to

prove the hypothesis of accuracy of time histories, the full length of time histories of

the results will be explained in term of Ns and ∆t. The planing hull models of constant
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Figure 3.11: Variation of sectional added mass and its associated terms with
different Ns along the ship length.
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Figure 3.12: Error metrics of time histories and Pareto front line of heave motion
of planing hull model β = 20o, λ/L = 4.0, H/B = 0.1.

Figure 3.13: Comparison of RMSEzG of different β and H/B at λ/L = 4.0
with Ns = 200.

10, 20 and 30 degrees deadrise angles are simulated by the present mathematical model

in regular waves varying wavelength between λ/L = 1.0 and λ/L = 6.0 and wave

amplitudes between H/B = 0.1 and H/B = 0.3 in order to verify limitations and

accuracy of the model. The results of response motions and accelerations are analysed

in the same manner used in time marching integration analysis. Samples of statistical

analysis and the comparison of error metrics are shown in Figure 3.12.

Similar to the verification of time integration methods, the reference data for RMSE
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metrics are when using highest resolution controlling parameters. It can be deduced

that for β = 20o and β = 30o hulls, the response motions and accelerations can be

predicted with good accuracy using any Ns with ∆t < 0.002 s in the whole range of

wavelength and wave amplitudes. Although some larger errors happen in the zone of

natural frequency, in which RMSE of the responses is significantly high when using any

Ns with ∆t = 0.01 s comparing to the other using smaller ∆t. In other words, Ns has a

small influence in the convergence when ∆t < 0.002 s, although some notable differences

of RMSE can be observed between the cases of Ns = 40 and Ns = 80. On the other

hand, as mentioned in Section 3.3.4.3, when considering computational time issue, using

∆t = 0.01 s with larger Ns gives similar order accuracy but slightly increases calculation

time.

While in the case of β = 10o, in high frequency waves and large wave amplitudes, the

response motions are irregular with constant frequency (equal to frequency of encounter)

and do not fit one to each other when varying Ns. This implies the inaccuracy of force

prediction and consequently, an un-identical (un-fit) time history. Nevertheless, time

histories when using larger Ns and smaller ∆t are closer to each other and imply that

the case of β = 10o, higher resolution in integration along the ship length and over the

time is necessary in order to achieve accurately the total force acting on the hull. To

represent this fact, Figure 3.13 shows the comparison of RMSEzG using ∆t = 0.01 s and

∆t = 0.002 s in different β and H/B. It can be seen that when using ∆t < 0.002 s, time

histories convergence appears to fit better although it is not quantitatively the same as

in the cases of β = 20o and β = 30o. Due to the fact that when using large ∆t, the peaks

of accelerations would not be detected, consequently, velocities and motions would not

be precisely integrated.

In some circumstance, this effect is small, as the peak acceleration duration is small,

the motions can be also considered as a slight fluctuation. Moreover, when simulating

in the zone of natural frequency, this case cannot be completed using low-resolution

integrations. With small Ns, the total force evaluated appears to be of exaggerated

order and with large ∆t; the acceleration lasts too long and resulting inappropriate

velocity and displacement.

Nevertheless, note that the discrete variation of ∆t shifts significantly between the first

and the second point (∆t = 0.01 s to ∆t = 0.002 s). As the overall convergence appears

appropriately at the second point (∆t = 0.002 s), it is of interest and recommended

to further investigate the influence of ∆t in convergence between those points, and

consequently, a more economic computational time could be achieved.
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3.3.5.3 Optimal Parameters for Time History Simulations

In order to deduce the optimal parameters for the simulations by the present mathemat-

ical model, it is essential to consider the accuracy (RMSE) of the calculation together

with the computational time. Tables 3.3 - 3.8 represent the accuracy by mean of RMSE,

alongside with the computational time ratio, Tcs . The LHS of each particular cell of

the tables shows Tcs as shown in Table 3.2 and the RHS shows the magnitude order of

RMSE. The optimal parameters are analysed by mean of Pareto Efficiency. Sample of

Pareto Line representation is presented graphically together with RMSE in Figure 3.12.

Two objective functions are applied. The first one is minimizing RMSE. As in order to

fulfil the hypothesis of accuracy of time histories, RMSE of time histories need to be

minimized. The other is minimizing computational time:

RMSEmin = f(Ns,∆t) (3.38)

Tcmin = g(Ns,∆t) (3.39)

The points on the front’s line show the optimal pair of RMSE and Tcs that leads to the

pair of Ns and ∆t as shown in Tables 3.3 - 3.8 respectively. In cases of β = 20o and

β = 30o, the optimal parameters can be obtained at the point where Tcs is small and

decreasing ∆t does not increase significantly the accuracy (decreasing RMSE). While in

cases of β = 10o, the acceptable accuracy (where the convergence occurs) is seen at the

points where Tcs is considerably high.

In summary, the overall optimal selection of controlling parameters considering the same

order of accuracy (10−4 of RMSE) can be deduced as follows:

• For β = 10o:

– Ns > 200 and ∆t < 0.0005 s when H/B = 0.1.

– Ns > 120 and ∆t < 0.0002 s when H/B = 0.2.

– Ns > 120 and ∆t < 0.0002 s when H/B = 0.3.

• For β = 20o, Ns > 80 and ∆t < 0.002 s in all of sea conditions.

• For β = 30o, Ns > 80 and ∆t < 0.002 s in all of sea conditions.

However, some particular considerations could be made when accuracy issue is of higher

importance than computational time.
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Table 3.3: RMSE VS Tcs of planing hull model β = 20o, λ/L = 4.0, H/B = 0.1.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.005442 1.00 0.002721 4.64 0.002734 9.20 0.002709 19.10 0.002690 47.55
80 0.002352 1.04 0.000349 4.82 0.000283 9.55 0.000103 20.01 0.000101 49.53

120 0.002081 1.07 0.000286 5.00 0.000141 9.96 0.000133 20.52 0.000062 51.33
160 0.001261 1.10 0.000218 5.17 0.000151 10.28 0.000096 21.14 0.000041 52.94
200 0.001514 1.12 0.000352 5.30 0.000197 10.97 0.000068 21.85 0.000000 54.54

Table 3.4: RMSE VS Tcs of planing hull model β = 20o, λ/L = 4.0, H/B = 0.3.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.015650 1.00 0.001110 4.64 0.000767 9.20 0.000466 19.10 0.000395 47.55
80 0.015617 1.04 0.000770 4.82 0.000333 9.55 0.000294 20.01 0.000214 49.53

120 0.014897 1.07 0.000516 5.00 0.000351 9.96 0.000172 20.52 0.000131 51.33
160 0.014671 1.10 0.000604 5.17 0.000299 10.28 0.000151 21.14 0.000073 52.94
200 0.016741 1.12 0.000391 5.30 0.000249 10.97 0.000147 21.85 0.000000 54.54

Table 3.5: RMSE VS Tcs of planing hull model β = 30o, λ/L = 4.0, H/B = 0.1.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.001294 1.00 0.000341 4.64 0.000287 9.20 0.000274 19.10 0.000263 47.55
80 0.000641 1.04 0.000163 4.82 0.000092 9.55 0.000068 20.01 0.000057 49.53

120 0.000942 1.07 0.000104 5.00 0.000061 9.96 0.000040 20.52 0.000020 51.33
160 0.000462 1.10 0.000113 5.17 0.000066 10.28 0.000035 21.14 0.000012 52.94
200 0.000444 1.12 0.000101 5.30 0.000053 10.97 0.000030 21.85 0.000000 54.54

Table 3.6: RMSE VS Tcs of planing hull model β = 30o, λ/L = 4.0, H/B = 0.3.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.003965 1.00 0.000573 4.64 0.000516 9.20 0.000510 19.10 0.000471 47.55
80 0.004004 1.04 0.000364 4.82 0.000236 9.55 0.000118 20.01 0.000073 49.53

120 0.003910 1.07 0.000296 5.00 0.000194 9.96 0.000114 20.52 0.000063 51.33
160 0.003791 1.10 0.000267 5.17 0.000127 10.28 0.000062 21.14 0.000055 52.94
200 0.003779 1.12 0.000266 5.30 0.000167 10.97 0.000091 21.85 0.000000 54.54

Table 3.7: RMSE VS Tcs of planing hull model β = 10o, λ/L = 4.0, H/B = 0.1.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.174615 1.00 0.010175 4.64 0.012185 9.20 0.010637 19.10 0.011180 47.55
80 0.138059 1.04 0.004790 4.82 0.002970 9.55 0.002167 20.01 0.002354 49.53

120 0.216803 1.07 0.003222 5.00 0.001630 9.96 0.001166 20.52 0.000711 51.33
160 0.135081 1.10 0.002700 5.17 0.001443 10.28 0.000756 21.14 0.000297 52.94
200 0.190055 1.12 0.002682 5.30 0.001038 10.97 0.000451 21.85 0.000000 54.54

Table 3.8: RMSE VS Tcs of planing hull model β = 10o, λ/L = 4.0, H/B = 0.3.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.004235 4.64 0.002654 9.20 0.001719 19.10 0.001588 47.55
80 0.003737 4.82 0.001798 9.55 0.000790 20.01 0.000333 49.53

120 0.003153 5.00 0.000991 9.96 0.000540 20.52 0.000344 51.33
160 0.003311 5.17 0.001095 10.28 0.000511 21.14 0.000222 52.94
200 0.003215 5.30 0.000902 10.97 0.000363 21.85 0.000000 54.54

3.3.5.4 Effects on Variable Deadrise Angles Hull

Practically, the constant β hull is not widely applicable and leads to poor characteristics

when navigating in calm water. Moreover, for planing application in waves, variable β

hull appears to be more realistic and give better performance. Comparing to the plan-

ing hull models based on Fridsma (1969)’s experiments that are of constant β with the

prismatic body occupies more than 80% of the length overall, the number of sections,

Ns, is assumed to be the predominant controlling parameter, as the hull cross sections
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of variable β vary along the length and consequently cause non uniformly constant sec-

tional added mass distribution. Inadequate resolution of the hull could cause inaccurate

integration results and consequently inaccurate convergence of time histories.

Table 3.9: Model configuration of variable β hull (Rosén and Garme, 2006).

Dimension Outlined Measured Comment

Loa [m] 1.050 1.110 Length overall
Lwl [m] 0.950 Length waterline, idle
Bwl [m] 0.250 0.250 Beam waterline, idle
Tlcf [m] 0.055 Draft, idle
β [o] 22.000 22.000 Deadrise
τ [o] 1.500 1.500 Trim, idle

∆ [kg] 6.500 6.500 Displacement
LCG [m] 0.360 0.360 Longitudinal CG from transom
V CG [m] 0.092 0.092 Vertical CG from keel
rx [m] 0.082 0.087 Roll radius of gyration
ry [m] 0.270 0.270 Pitch radius of gyration
rz [m] 0.270 0.270 Yaw radius of gyration

Therefore, it is of interest to investigate the effect of variable β hull form when varying

controlling parameters similarly to the cases of constant β hulls. A variable β planing

hull based on a series of experimental test carried out by Rosén and Garme (2006) is

chosen to use in this analysis. The fundamental characteristics of the model are shown

in Table 3.9. Wave conditions used are also similar to those used in constant β cases

with the range of waves length from λ/L = 2.0 to λ/L = 6.0 and wave height H/B = 0.1

to H/B = 0.3. A sample of an identical error metrics analysis of accuracy by RMSE is

presented together with the corresponding Pareto lines in Figures 3.14 - 3.15.

Fundamentally, the corresponding computational times are identical to the cases of the

constant β hull, as the computational code is only modified to use predefined hull data

of variable β. The original code is already created to handle with the predefined data.

The convergence of time histories (small RMSE) of most waves conditions appear when

using ∆t < 0.002 s and Ns disengages from being predominant parameters. Note that

the minimum β of this model is approximately 20o, which gives the similar simulation

behaviours as the case of constant moderate deadrise hull (β = 20o).

In summary, it can be concluded that variable β has no effect on accuracy and con-

vergence when simulating with the present mathematical model, providing the same

accuracy behaviour as the equivalent constant β with the identical minimum β. The

most important consideration for this kind of hull is that of the minimum value of β.
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Figure 3.14: Error metrics of time histories and Pareto front line of heave motion
of planing hull model with variable β.

Figure 3.15: Comparison of RMSEzG of variable β hull at λ/L = 4.0.
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Figure 3.16: Error metrics of time histories and Pareto front line of heave motion
of planing hull model β = 20o, λ/L = 4.0 and H/B = 0.1 with 10 times scaled-
up.

3.3.5.5 Scale Effects

In order to conclude the full-range availability of the present mathematical model, it is

also of interest to verify its efficiency when applying with other hull dimensions. Three-

dimensional scale-up hull simulations are carried out with scale factor, scale = 5 and

scale = 10. All range of constant deadrise angles (β = 10o, β = 20o and β = 30o) are

scaled-up together with all waves characteristics (both H/B and λ/L). Forward speed is

scaled-up by Froude scaling (ẋGship =
√
scale·ẋGmodel) and the model weight by the cube

law (∆ship = scale3 ·∆model). A sample of a similar error metrics analysis of accuracy

by RMSE is presented together with the corresponding Pareto Lines in Figure 3.16. The

pair of controlling parameters (Ns and ∆t) varies identically to the cases of scale = 1

that would make comparison and analysis more devoted.

It can be seen also in Figures 3.16 - 3.17 that comparing to the cases of scale = 1

model, the scaled model simulations have a very similar convergence behaviour. When

using ∆t < 0.002 s, RMSE of time histories converges to an asymptote in better order.

Including the case of β = 10o, RMSE is smaller comparing to the identical β with

scale = 1, as well as its better convergence behaviours. Moreover, it is found that

increasing scale decreases slightly but notably order of RMSE.

These behaviours are supposed to be the effect of mass scaling. It is shown in Fig-

ure 3.18 that the orders of CG accelerations of the three scales are mostly identical.

The remaining relevant parameter is obviously the mass of the different model scales

that causes a direct impact on force and moment at each instant. On the other hand,
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Figure 3.17: Comparison of RMSEzG of β = 20o planing hull at λ/L = 4.0
varying H/B and scales.

Figure 3.18: Comparison of CG’s accelerations at λ/L = 4.0 with different β
and scales.
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as the present mathematical model is governed by potential theory, the lack of viscous

component could also cause this slight effect on RMSE behaviours.

This could lead to the conclusion that, in the range of scale = 1 to scale = 10, the scale

has no significant impact in the convergence behaviour of the present mathematical

model. Nevertheless, it is still subjected to investigate the effect of some larger or

smaller scale out of the range mentioned previously, in order to confirm the full validity

of the range of applicability of the present mathematical model in different scales.

3.4 Validation

Following the experiments of Fridsma (1969) and the numerical simulations of Zarnick

(1978), once verifying and choosing the optimum parameters influenced in numerical

calculation, the present mathematical model is used to simulate different cases of the

performance of high speed planing boat in both calm water and regular waves.

Table 3.10: Model Configurations for Regular Seas Validation.

CONFIGURATIONS

∇ = 0.0074m3,LOA = 1.15m,V CG = 0.06m,B = 0.23m

Model V/
√
L βo LCG (m from transom) kyy (m)

A 4.0 20 0.44 0.29235
B 6.0 20 0.44 0.29235
J 6.0 10 0.37 0.3013
M 6.0 30 0.45 0.2852

3.4.1 Calm Water Simulations

Planing hull models with three different configurations defined in Table 3.10 (β = 10o:J,

20o:B and 30o:M) are simulated. The results of performance in calm water that are

dynamic trim, dynamic sinkage and resistance are represented in function of forward

speed (speed to length ratio, V/
√
L) in Figure 3.19 comparing to those data calculated

using Savitsky (1964)’s Formulae and Fridsma (1969)’s experiments. The range of these

ratios is of high speed (V/
√
L = 4.0 to V/

√
L = 6.0), as the present mathematical model

does not include wave resistance component that is predominant part for the low speed

range. In most cases, the model is capable of predicting good agreement results. The

case of small β delivers sufficiently good real physical phenomena, such as porpoising

at high speed. Porpoising can be detected by the present mathematical model with the

model J at V/
√
L within a range of LCG similar to Fridsma (1969). Further detailed

investigations and validations of porpoising simulation are recommended, as it can be

also useful for the designer comparing to the existing design charts.
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Figure 3.19: Comparison of running attitude in calm water showing sinkage,
trim and resistance.
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3.4.2 Regular Waves Simulations

Simulations of heave and pitch motions and CG and bow accelerations have been carried

out for comparison with the experimental results of Fridsma (1969). Fridsma tested a

series of constant β models of various lengths in regular seas to define effects of deadrise,

trim, loading, speed, length to beam ratio and wave proportions on the added resistance,

heave and pitch motions and accelerations at the bow and CG. The configurations of

the model are identical to that used by Zarnick (1978) and is shown in Table 3.10.

Most of cases have been carried out at V/
√
L = 4.0 and V/

√
L = 6.0, however, no

comparison has been made at V/
√
L = 2.0, as at this speed, the model operates in the

displacement mode for which the present mathematical model is not valid, due to the

lack of appropriate component within the model.

Simulation of each case was run in range of 500 s of time history which is sufficiently

long to assume that its convergence behaviour should be clarified within this range. The

simulations were carried out using Ns = 80, ∆t = 0.002 s for configurations A, B and

M, and Ns = 200, ∆t = 0.0005 s for configuration J as per suggested in Section 3.3.5.3.

Figures 3.20 - 3.23 show comparisons of the results evaluated by the present model, Zar-

nick’s model and the experimental results of Fridsma. The response data are collected

from the stabilized time histories taking the mean values of peak to peak (wave height)

of the signal in the stable interval, as they are close to sinusoidal. Heave responses are

normalized by wave height, H and pitch responses are normalized by 2πH/λ. Acceler-

ations of response are collected from their peak values and normalized by the gravity.

The response data are represented as a function of wavelength to ship length ratio λ/L

varying from 1.0 to 6.0. The graphic representation of the resulting motions forms the

so-called Response Amplitude Operator, RAO. This RAO represents motion behaviours

in three different ranges in term of frequencies of encounter (Journée and Massie, 2001):

• The low-frequency region, with motions dominated by restoring force associated

terms. The model tends to follow the wave as the frequency decrease (large wave-

length). The RAO tends to 1.0 and the phase lag tends to 0.0.

• The natural frequency region, with motions dominated by damping associated

terms. A high resonance can be expected in case of small damping component. A

phase shift of ±π could occur around the natural frequency.

• The high-frequency region, with motions dominated by mass associated terms.

The waves are losing their influence on the behaviour of the hull.

It can be seen in cases of β = 20o and β = 30o that the computational results from the

present model give very good agreement compared with Fridsma (1969)’s experiments
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Figure 3.20: Response motions and accelerations of planing hull model β = 20o,
V/
√
L = 4.0, H/B = 0.1.

and Zarnick (1978)’s simulations. Except in natural frequency region, the present math-

ematical model slightly over predicts the resonant motions. This could be because of

the assumption of only geometry dependent of added mass coefficient Cm (Payne, 1992),

that in reality it is also frequency dependent. This leads to further in-depth investigation

of Cm in term of frequency of encounter. The case of β = 10o gives good agreement

results in high frequency region, although at the very high frequency (wavelength equal

to ship length), the boat skips over waves (as occurred in Fridsma’s experiments). This

leads to unidentifiable frequency of encounter, as the frequency of encounter of waves

and frequency of response motions are different. Moreover, in natural frequency and

low frequency region, the response motions form irregular signal but identical to the

frequency of encounter. The data treatment uses the statistic mean to represent signal
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Figure 3.21: Response motions and accelerations of planing hull model β = 20o,
V/
√
L = 6.0, H/B = 0.1.

wave height of the response motions during the time histories when the motions are al-

ready stabilized. The trend of RAO in this case shows fairly good agreement comparing

to the experiments but still of larger magnitude in natural frequency region and it is

subjected to be analysed in more details on added mass influence.

Regarding the accelerations, the data treatment uses the mean of acceleration peaks

when they are stabilized instead of highest peak used by Zarnick (1978). The results

of β = 20o and V/
√
L = 4.0 are of very good agreement in both trend and order of

magnitude for all frequency region. When increasing forward speed to V/
√
L = 6.0, the

magnitudes of both CG and bow accelerations are slightly over predicted from natural

to low frequency region. As well as in the case of β = 10o, the trend of both CG and

bow accelerations are similar to Fridsma’s experiments and Zarnick’s simulations. The
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Figure 3.22: Response motions and accelerations of planing hull model β = 10o,
V/
√
L = 6.0, H/B = 0.1.

order of magnitude of bow acceleration is closer to the reference while CG acceleration

is larger in natural to low frequency region. Finally, the case of β = 30o gives very good

agreement of CG acceleration and slightly different in order of magnitude but similar

trend of bow acceleration.

In summary, the verification and validation processes for calm water and regular waves

cases are discussed successfully in this chapter. The present mathematical model will

be used as the basis of investigation throughout the further chapters.
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Figure 3.23: Response motions and accelerations of planing hull model β = 30o,
V/
√
L = 6.0, H/B = 0.1.





Chapter 4

Verification and Validation of

Simulations in Irregular Waves

Due to the limitations of the present mathematical model mentioned in Chapter 3, the

simulations in case of short wavelength and large wave amplitude need to be carefully

investigated. This implies that when performing simulations of motions in irregular

waves, similar in-depth investigation is necessary as the short wavelength component in

irregular sea will be found inevitably. Nevertheless, before carrying out the simulations,

appropriate irregular waves need to be generated and verified.

4.1 Irregular Waves Generations

In the early stage of simulations, following the work of Blake (2000), the irregular waves

are generated using standard wave energy spectra.

4.1.1 Fourier Series

The generation or decomposition of irregular waves can be carried out by the principle

of superposition. This leads to the application of a Fourier series due to the fact that the

irregular waves are the sum of a certain number of regular waves with various amplitudes

and frequencies.

4.1.2 Wave Energy Spectrum

The amount of energy stored in an irregular sea system is considered as a fundamental

concept of its analysis. Once a unit area of the sea surface of certain number of com-

ponents is taken, the proportion of energy corresponding to that area can be defined

73
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in a range of frequencies. The wave energy spectrum is then defined so that the area

bound by the frequency range ω and ω + dω is proportional to the total energy of all

the components within that range of frequency. The integration of the energy spectrum

from ω = 0 to ω = ∞ will provide a total proportional to the energy contained in that

unit area.

A =

∫ ∞
0

Sr(ω)dω (4.1)

In this manner, the relative importance of component sine waves that make up an

irregular sea can be quantified. The wave energy spectrum therefore provides frequencies

required for the Fourier series and the corresponding amplitudes from the wave energy

spectral ordinate.

The statistical quantities such as variance and standard deviation of the irregular sea

elevation can be obtained from the wave energy spectrum. The variance is described as

being equal to the area enclosed by the wave energy spectrum, and as such is the 0th

moment of area under the spectrum which can be expressed as:

m0 =

∫ ∞
0

Sr(ω)dω (4.2)

Cartwright and Longuet-Higgins (1956) show that the significant wave height H1/3 can

be expressed as a 4 times the standard deviation for a Rayleighian distribution of wave

amplitude:

H1/3 = 4
√
m0 (4.3)

In more general terms, the nth moment of the wave energy spectrum about ω = 0 can

be expressed as:

mn =

∫ ∞
0

ωnSr(ω)dω (4.4)

4.1.3 Choices of Wave Spectra

By a suitable selection of spectrum Sr, a specific sea state can be created from which the

distribution of maxima and minima (Xmax andXmin) should follow a random probability
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density distribution fit. It is truly representative of the sea surface. Depending upon

the spectral width parameter ε, and the non-dimensional maxima and minima of the

statistics associated with, the probability distributions are known to be represented by

the limits of a Gaussian (ε = 1) or Rayleigh (ε = 0) distribution. Various spectra have

been developed, each with their own characteristics and a brief outline of some are given

on the paragraphs below, for example, Pierson and Moskowitz (1964), Bretschneider

(1952), Bretschneider (1957) and JONSWAP (Hasselmann et al., 1973).

Pierson-Moskowitz Spectrum: Pierson and Moskowitz (1964) selected certain

spectral measures based upon a large amount of oceanographic records and then grouped

those spectra into a family of five wind speeds. From this spectral family, an idealized

sea spectrum representing fully developed seas was formed with no frequency elements

associated with swell generated from far-off sources.

This method loses its applicability in ship design since it is based on a single parameter

of wind strength and fully developed seas created by very high winds are known to be

rare (Lewis, 1988), as duration and fetch are insufficient for spectral stability.

Bretscheider Spectrum: The Bretschneider spectrum (Bretschneider (1952) and

Bretschneider (1957)) is based on two parameters which allow significant wave period

and wave height to be assigned separately. These two parameters can be directly related

to the extensive data available on observed wave heights and periods.

The Bretschneider spectral form is assumed to adequately represent any seaway but in

reality, multi-modal spectra are commonly found. Also, swell from distant storms is

found in measured data, the components of which are limited in high frequency since

those components take longer to arrive at the observation point. The Bretschneider spec-

trum however has very well defined high-frequency limits so that there is a significant

contribution to the total energy within the system supplied by high frequency compo-

nents. This could lead to ship high-frequency responses greater than that which would

physically occur (St Denis, 1980). If the deviations in form between the Bretschneider

and the measured spectra are collectively small, then, the Bretschneider spectrum can

lead to a good measure of ship performance.

Ochi 6-Parameters Spectrum: In an attempt to improve the Bretschneider spec-

trum in its basic form, Ochi and Hubble (1976) introduced a shape parameter λ which

when it is equal to 1.0, it produces the Bretschneider form. The uni-modal spectrum thus

had three parameters based upon frequency, wave height and λ. Adding this spectrum to

another which covered higher frequency components led to a 6-parameters multi-modal

spectrum which could have much better agreement with the real sea spectra depending

on the assignment of values to the parameters.
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JONSWAP: The limited fetch conditions found in areas such as the North Sea led

to the need for a better representation of sea states currently offered by other spectra.

The Joint North Sea Wave Project was set up to provide extensive oceanographic mea-

surements in the attempt to meet this need. The subsequent spectral fit found that the

sort of spectrum created is simply of a Bretschneider form.

ITTC Spectrum: The 15th International Towing Tank Conference recommend the

use of a form of the Bretschneider spectrum for average rather than fully-developed

seas since this allowed for a more realistic representation of the sea surface when more

specifically appropriate spectral forms are unknown.

4.1.4 Representation of the Seaway

The seaway in general can be represented by an infinite sum of sine waves with random

phase but acceptable results can be obtained with a limited number which Lloyds (1998)

recommends a maximum of 50. In this study, principally following Zarnick (1979), the

irregular seaway is represented by the discrete sum of ten harmonic waves with random

phase varying from 0 to 2π radians. It can be expressed on the earth-fixed coordinate

system as follows:

r =
10∑
i=1

r0i cos
[
ki
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
+ ωit+ εi

]
(4.5)

Where:

• r0i : Components of wave amplitude.

• ki: Component of wave number.

• ωi: Corresponding frequency of each component.

• εi: Corresponding random phase.

For the purpose of this study, the simplest representation of a random seaway is used.

Use is made of, by following Zarnick (1979), the energy distribution in a Pierson-

Moskowitz Spectrum for a fully developed sea. The Pierson-Moskowitz formulation

for a continuous spectrum can be written as:

Sr =
A · g2

ω5
· exp

(
−B
ω4

)
(4.6)
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Where:

• A = 8.1 · 10−3

• g = 9.81m/s2

• B = 4 ·A · g2/H2
1/3

The constant B is also related to the peak frequency ωp of the spectrum by:

B =
5

4
· ω4

p (4.7)

Which can be confirmed in the point that the differentiation of the spectrum expression

is equal to zero. Normalizing the frequencies by the peak frequency leads to a non-

dimensional spectrum Sr which is related to the dimensional spectrum by:

Sr(Ω) =
5

Ω5
exp

(
− 5

4Ω4

)
(4.8)

Where Ω = ω/ωp, and:

∫ ∞
0

Sr(Ω)dΩ = 1 (4.9)

The discrete frequencies representing the spectrum varied from Ω = 0.8 to Ω = 2.6 in

nearly equal increment 4Ω = 0.2. A slight random perturbation is given to each fre-

quency to avoid precise integer multiple frequencies, thereby increasing the fundamental

repetition period of the computed time history. Each discrete amplitude is adjusted

so that its energy corresponds to that contained in a bandwidth 4Ω centred about its

frequency in the continuous spectrum:

r0i =
H2

1/3

8
·
∫ Ωi+4Ω/2

Ωi−4Ω/2
Sr(Ω)dΩ (4.10)

The bandwidth are equally spaced between frequencies except for the first and last

frequencies which lump all of the remaining energy at the beginning and end of the

spectrum. Table 4.1 presents a list of the amplitude for each non-dimensional frequency

in terms of significant wave height.
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Table 4.1: Wave representing discrete spectrum.

r0/H 1
3

Ω

0.1364 0.795
0.1861 1.000
0.1657 1.183
0.1302 1.403
0.0999 1.602
0.0771 1.795
0.0604 2.004
0.0482 2.194
0.0390 2.392
0.0626 2.612

Table 4.2: Planing hull model configurations for irregular waves simulations.

Run Symbol β (degree) LCG (%L) Kyy (% L) V/
√
L H1/3/B

1 M 20 64.0 24.8 6 0.222
2 M 20 64.0 24.8 6 0.444
3 M 20 64.0 24.8 6 0.666
4 O 20 66.8 25.0 4 0.666
5 C 10 68.0 25.0 6 0.444
6 G 30 62.1 25.0 6 0.444

4.2 Model Simulations

The mathematical model used in simulations of cases of coupled heave and pitch motions

in regular seas is modified to be capable of simulating the cases of irregular seas. These

simulations follow the configurations and conditions of Zarnick (1979) that will be used

as validation reference. Table 4.2 presents the characteristic of the model craft for those

conditions selected for the comparison. Numerical methods used in differentiation and

integration terms are assumed to be already verified from Chapter 3. Nevertheless, due

to the limitations mentioned before, for the simulations in irregular seas, it appears to

be that, at any instance, the short wavelength and large wave amplitude will be found

unavoidably and time histories of results will not fit one to the others when varying the

number of model sections. Therefore, time history simulations using different Ns and

different ∆t are simulated and compared in order to perform the necessary verification.

Procedure of analysis of response data will be explained in the following sections:

4.2.1 Generated Irregular Waves Analysis

Zarnick (1979) performed model simulations in three different sea conditions. Each con-

dition is characterized by significant wave height H1/3 represented in non-dimensional
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form normalized by model’s breadth. These sea conditions are H1/3 = {0.2, 0.4, 0.6}.
Each case of significant wave height H1/3 is generated firstly in a long range of time

history. Each generation of irregular sea by a certain input significant wave height gives

different time history due to the random phases. The significant wave height of gener-

ated wave is evaluated in a certain number of runs and compared to the input significant

wave height until the most appropriate range of time history is found. Once the most

appropriate time history is found, it will be analysed statistically in a small interval of

time in order to find the shortest time range to be used in model simulation. Neverthe-

less, the number of response cycles should be sufficient to be used in statistical analysis

of response motions which is recommend to be 100 cycles (Zarnick, 1979). The irregular

seas corresponding to each condition have been evaluated firstly for 1, 200 s. Then they

have been analysed statistically in various segments of the time history. 100 cycles of

wave crests are found in approximately 70 s of time history, moreover, statistic of this

shorter range is close to that of the whole time history. This implies the validity of this

range of time history of the generated waves. Note that the Pierson-Moskowitz spectrum

is of one parameter, it would be preferable to perform the generation of irregular seas

with multiple parameters in order to generate more realistic irregular seas.

4.2.2 Response Data Analysis

The output of the present mathematical model is the time histories of heave and pitch

motions and bow and CG acceleration. Time histories of response motions and acceler-

ations evaluated using variations of controlling parameters (Ns and ∆t) are compared.

In order to facilitate the comparison, the analysis procedures in this chapter have been

carried out following Fridsma (1971) and Zarnick (1979). The amplitudes, maxima and

minima of the heave and pitch motions about the mean are assumed to be described as

the so-called “Cartwright and Longuet-Higgins Distribution” (Cartwright and Longuet-

Higgins, 1956) which is expressed as:

p(y) =
1√
2π

(
ε · e

(
− 1

2
y2

ε2

)
+
(√

1− ε2
)
· y · e(

1
2
y2) ·

∫ y(
√

1−ε2)/ε

−∞
e(−

1
2
x2)dx

)
(4.11)

Where y is maxima or minima normalized by the standard deviation:

yi =
Xi√
m0

(4.12)

And the parameter ε:
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ε =

√
1− (1− 2r)2 (4.13)

r is proportion of negative maxima to total maxima or positive minima to total minima.

To fit the data to this distribution, the maxima and minima relative to the mean value

are first determined from the time histories of the response motions. The mean value is

defined as halfway between the average maxima and average minima value. The maxima

or minima data (Xi) are sorted in ascending order and grouped into fifteen bins and

plotted in histogram. At the same time, the proportion r of negative maxima to total

maxima or positive minima to total minima is determined. The cumulative frequency

and corresponding probability that a maxima or minima is less than or equal to the

interval value is computed. From the probability and r values, the theoretical value of

the normalized amplitude y is calculated. A plot of Xi versus corresponding yi values

is compared with a line drawn through X = y = 0, and the point, X = X, y = y, which

is indicative of the fit of the theoretical distribution function of the data. The values of

X and y are the observed average value of the first moment and the theoretical average

value (normalized) respectively.

The acceleration data was assumed to follow the simple exponential distribution:

p(η) =
1

η
exp

(
−η
η

)
(4.14)

For this distribution, the probability, P of the acceleration peak η being less than a

given value is:

P (η) = 1− exp

(
−η
η

)
(4.15)

Where η is average peak acceleration.

Only the negative peak acceleration (impact spikes as well as wave induced) were anal-

ysed. The data was sorted and grouped into a fifteen bins histogram similar to the

motion data analysis and the probability was plotted with respect to η on inverted

semi-log paper. For a good fit, the data should follow a straight line through the point

(P = 0.368, η = η) and the origin.
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Figure 4.1: Error metric of time histories and Pareto front line of heave motion
of planing hull model β = 20o, V/

√
L = 6.0, H1/3/B = 0.2.

4.3 Verification of the Mathematical Model

The limitations of the present mathematical model discussed in Chapter 3 have direct

impacts when it is used to simulate motions in irregular seas. It works well when the

wavelength is equal to the model length at the smallest value. However, due to the fact

that generated irregular seas are a superposition of a number of sinusoidal waves varying

the amplitudes and frequencies, the wavelength of the component corresponding to the

largest frequency (smallest wavelength), defined by the actual wave energy spectra used,

is around 0.3·Loa. That value of wavelength could cause inaccurate variation of sectional

added mass ma and its associated terms when varying the number of sections, Ns. The

optimal number of sections, Ns and time step sizes, ∆t are then analysed in the same

manner as in regular wave simulations.

4.3.1 Influence of Number of Section Ns and Time Step Size ∆t in

Different Deadrise Angle and Sea Conditions

Similar to the regular wave simulations, three different β planing models (10o, 20o and

30o) are simulated in three different sea conditions (H1/3 = {0.2, 0.4, 0.6}). Time histo-

ries of all of the cases are normalized in the same manner as in cases of regular waves.

Sample of error metrics of time histories is presented graphically in Figure 4.1.

The RMSE together with the computational time ratio, Tcs are also represented in

Tables 4.3 - 4.10 by highlighting the points on Pareto front line. The comparison gives

a similar deduction as in cases of regular waves simulations. Time histories of moderate
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Figure 4.2: Comparison of RMSEzG of different β and H1/3/B at λ/L = 4.0.

and large β hulls converge when ∆t < 0.002 s in most sea conditions. Figure 4.2 shows

the comparison of RMSEzG using ∆t = 0.01 s and ∆t = 0.002 s in different β and

H1/3/B. However, smaller ∆t can be considered efficient if variation of accuracy is

acceptable as it can be seen from Pareto front line. The case of small deadrise angle

needs more dedicated selection of controlling parameters. Its resulting time histories do

not converge and are numerically unstable when using ∆t = 0.01 s. This is also proved

by analysing with variable steps solver and the convergence does not happen even after a

considerable number of iterations. The optimal ∆t appears to be 0.002 s for simulations

in small and moderate significant wave height conditions. Although using smaller ∆t

may give better accuracy, consideration of computational time as mentioned previously

should be accounted for. The extreme seas (large significant wave height) simulations

give significantly large fluctuation of time histories when varying controlling parameters.

The best convergence appears after ∆t < 0.0001 s implying very large computational

time.

When considering the same order of RMSE, the overall optimal selection of controlling

parameters can be summarised as follows:

• For β = 10o:

– Ns > 200 and ∆t < 0.0002 s when H1/3/B = 0.2.

– Ns > 200 and ∆t < 0.0002 s when H1/3/B = 0.4.

– Ns > 200 and ∆t < 0.0001 s when H1/3/B = 0.6.

• For β = 20o, Ns > 200 and ∆t < 0.002 s in all of sea conditions.

• For β = 30o, Ns > 200 and ∆t < 0.002 s in all of sea conditions.
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Note that the order of RMSE considered in the cases of irregular waves is larger than

the cases or regular waves, as the fluctuation of time histories is higher.

Table 4.3: RMSE VS Tcs of planing hull model β = 20o,H1/3/B = 0.2,V/
√
L =

4.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.003701 1.00 0.002010 4.16 0.001892 7.87 0.001882 15.31 0.001885 41.59
80 0.002691 1.57 0.000735 6.53 0.000729 13.96 0.000694 24.51 0.000692 67.71

120 0.002622 2.07 0.000439 8.96 0.000424 17.31 0.000415 33.58 0.000415 93.86
160 0.002501 2.58 0.000356 11.24 0.000306 21.72 0.000289 43.75 0.000290 119.50
200 0.002456 3.09 0.000137 13.74 0.000076 26.49 0.000053 52.82 0.000000 144.52

Table 4.4: RMSE VS Tcs of planing hull model β = 20o,H1/3/B = 0.6,V/
√
L =

4.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.048773 1.00 0.004307 4.16 0.002166 7.87 0.002519 15.31 0.002537 41.59
80 0.018006 1.57 0.002454 6.53 0.001318 13.96 0.000898 24.51 0.000801 67.71

120 0.014653 2.07 0.001797 8.96 0.000871 17.31 0.000629 33.58 0.000528 93.86
160 0.017665 2.58 0.001234 11.24 0.000676 21.72 0.000473 43.75 0.000369 119.50
200 0.023900 3.09 0.001437 13.74 0.000900 26.49 0.000318 52.82 0.000000 144.52

Table 4.5: RMSE VS Tcs of planing hull model β = 20o,H1/3/B = 0.2,V/
√
L =

6.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.007595 1.00 0.001747 4.16 0.001552 7.87 0.001475 15.31 0.001457 41.59
80 0.006908 1.57 0.000869 6.53 0.000563 13.96 0.000506 24.51 0.000475 67.71

120 0.007154 2.07 0.000578 8.96 0.000341 17.31 0.000288 33.58 0.000222 93.86
160 0.006959 2.58 0.000542 11.24 0.000233 21.72 0.000201 43.75 0.000156 119.50
200 0.006665 3.09 0.000393 13.74 0.000218 26.49 0.000119 52.82 0.000000 144.52

Table 4.6: RMSE VS Tcs of planing hull model β = 20o,H1/3/B = 0.6,V/
√
L =

6.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.067816 1.00 0.060571 4.16 0.048412 7.87 0.046461 15.31 0.045675 41.59
80 0.063187 1.57 0.024330 6.53 0.020257 13.96 0.009294 24.51 0.006399 67.71

120 0.080141 2.07 0.018139 8.96 0.018085 17.31 0.006287 33.58 0.005084 93.86
160 0.077935 2.58 0.015616 11.24 0.008751 21.72 0.034330 43.75 0.002951 119.50
200 0.053288 3.09 0.021263 13.74 0.007595 26.49 0.002467 52.82 0.000000 144.52

Table 4.7: RMSE VS Tcs of planing hull model β = 30o,H1/3/B = 0.2,V/
√
L =

6.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.002364 1.00 0.000663 4.16 0.000627 7.87 0.000596 15.31 0.000587 41.59
80 0.002273 1.57 0.000258 6.53 0.000231 13.96 0.000198 24.51 0.000190 67.71

120 0.002124 2.07 0.000183 8.96 0.000141 17.31 0.000112 33.58 0.000103 93.86
160 0.002078 2.58 0.000172 11.24 0.000101 21.72 0.000082 43.75 0.000070 119.50
200 0.002107 3.09 0.000140 13.74 0.000064 26.49 0.000038 52.82 0.000000 144.52

4.3.2 Validation of Irregular Waves Simulations

The model configuration of the simulations to be validated is shown in Table 4.2. They

were carried out using the pair of controlling parameters as per suggested in Section 4.3.1.

Table 4.11 presents comparisons of statistics of the results using the present mathemat-

ical model to those of Zarnick (1979) and Fridsma (1971), the results are also presented

graphically in Figures 4.3 - 4.4. The tabulated values for the heave and pitch are those
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Table 4.8: RMSE VS Tcs of planing hull model β = 30o,H1/3/B = 0.6,V/
√
L =

6.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 0.015196 1.00 0.004779 4.16 0.004366 7.87 0.003866 15.31 0.003827 41.59
80 0.007250 1.57 0.003864 6.53 0.001444 13.96 0.001309 24.51 0.001226 67.71

120 0.014946 2.07 0.001218 8.96 0.001455 17.31 0.000843 33.58 0.000513 93.86
160 0.006631 2.58 0.001046 11.24 0.000513 21.72 0.000550 43.75 0.000263 119.50
200 0.005757 3.09 0.001219 13.74 0.000822 26.49 0.000417 52.82 0.000000 144.52

Table 4.9: RMSE VS Tcs of planing hull model β = 10o,H1/3/B = 0.2,V/
√
L =

6.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 - - 0.013173 4.16 0.010415 7.87 0.011455 15.31 0.009524 41.59
80 - - 0.008311 6.53 0.003644 13.96 0.002855 24.51 0.002802 67.71

120 - - 0.005667 8.96 0.002449 17.31 0.001481 33.58 0.001350 93.86
160 - - 0.004913 11.24 0.002942 21.72 0.001457 43.75 0.001649 119.50
200 - - 0.016916 13.74 0.005643 26.49 0.001187 52.82 0.000000 144.52

Table 4.10: RMSE VS Tcs of planing hull model β = 10o,H1/3/B = 0.6,V/
√
L =

6.0.

∆t(s) 0.01 0.002 0.001 0.0005 0.0002
Ns RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs RMSE Tcs
40 - - - - - - - - - -
80 - - 0.2484638 6.53 0.2493804 13.96 0.3048835 24.51 0.3090574 67.71

120 - - - - - - - - - -
160 - - 0.2563004 11.24 0.2769489 21.72 0.3236768 43.75 0.3113237 119.50
200 - - 0.2558897 13.74 0.292542 26.49 0.2909403 52.82 0 144.52

with a 50% and 90% probability of not being exceeded. The response motions are nor-

malized in the same manner as in the cases of regular waves. It can be seen that the case

of moderate β model in all speed range the present mathematical model gives very good

agreement results comparing to the references. In some cases, such as heave maxima

and minima and pitch maxima and minima of Run 2 are closer to Frisma’s experiments

than Zarnick’s simulations. Run 6 gives fairly good agreement except the heave minima.

Although it is different from the experiments, it is still closed to Zarnick’s simulations.

As well as the accelerations, all cases give very good agreement except Run 6 but still

closed to Zarnick’s simulations. Run 5 is the most extreme case, as it is of small β hull,

the impact effect is extremely high. Moreover, from the verification of convergence, the

fluctuation of time histories is still of high level, although a very small ∆t is used.

Nevertheless, using a ten-component wave model could cause a difficulty of catching an

appropriate statistical process, due to the risk of a short return period. It is recom-

mended for further investigation to use a more realistic and complete wave model.

Once the present mathematical has been verified its optimal use and validated in ir-

regular waves, it can be concluded that the simulations in longitudinal plane motions

can be carried out effectively. It is of interest to extend the model to another degree

of freedom on the basis of the actual strip principal. The first extension is roll motion

which is detailed in Chapter 5.
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Table 4.11: Statistic Comparison of Irregular Waves Simulations.

Run Methods Pitch (Degrees) Heave
Maxima Minima Maxima Minima Acceleration (Gs)

θ50 θ90 θ50 θ90 zG50
/2B zG90

/2B zG50
/2B zG90

/2B b̈ z̈G
1 Present 2.12 4.00 1.62 3.20 0.11 0.21 0.07 0.15 3.47 0.95

Zarnick 0.69 1.67 0.82 1.75 0.03 0.06 0.03 0.09 1.74 0.47
Fridsma 0.90 2.13 0.88 1.78 0.03 0.07 0.04 0.08 2.10 0.68

2 Present 2.56 5.90 2.08 4.49 0.16 0.36 0.10 0.24 4.53 1.51
Zarnick 1.83 3.93 1.72 3.85 0.08 0.21 0.10 0.22 2.90 0.82
Fridsma 2.25 5.51 2.20 4.34 0.14 0.27 0.15 0.39 5.33 1.77

3 Present 3.51 8.18 2.88 6.68 0.25 0.55 0.19 0.42 5.59 2.32
Zarnick 2.47 5.53 2.38 5.45 0.21 0.41 0.17 0.39 3.29 1.06
Fridsma

4 Present 4.34 8.85 3.37 7.21 0.20 0.47 0.16 0.37 4.98 1.43
Zarnick 3.14 6.71 2.45 6.27 0.14 0.37 0.18 0.39 3.02 0.78
Fridsma 3.92 8.18 3.86 7.47 0.20 0.45 0.20 0.40 5.50 1.68

5 Present 3.67 7.37 2.56 5.47 0.19 0.39 0.13 0.28 6.86 2.24
Zarnick 1.60 3.66 1.75 3.63 0.09 0.21 0.11 0.26 2.05 0.69
Fridsma 1.76 3.98 1.76 3.91 0.12 0.23 0.12 0.26 3.05 1.00

6 Present 2.49 5.08 2.00 4.19 0.15 0.34 0.11 0.23 3.12 1.15
Zarnick 2.15 4.72 2.13 4.70 0.11 0.25 0.12 0.25 3.40 1.15
Fridsma 2.39 5.78 2.36 4.87 0.13 0.26 0.14 0.42 7.20 2.40
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Figure 4.3: Statistic of response motions of different β hulls with H1/3/B = 0.4,

V/
√
L = 6.0.
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Figure 4.4: Statistic of response motions of β = 20o hulls varying H1/3/B.





Chapter 5

Extension to Transverse

Asymmetric Motions

The mathematical developed in Chapter 3 is capable of simulating only the longitudinal

plane motions. The water entry principle used is valid only for symmetrical geometries.

This leads to the restriction of application to be capable of predicting in only coupled

heave and pitch motions in upright planing dynamics. Practically, although a planing

craft is likely to experience more significantly heave and pitch motions when sailing

in calm water and waves, some situations such as empty side tanks could occur and

cause asymmetric conditions even in calm water. Above all, when travelling in 3D

irregular waves or oblique waves, asymmetric excitation forces are unavoidable causing

roll motion. Therefore, it is of interest to perform investigations approaching these

asymmetric situations.

A number of researchers have been working on this approach. Algaŕın and Tascón

(2011) and Algaŕın et al. (2011) investigated pressure distribution of an asymmetric

wedge falling into the water implementing the original work of Ikeda and Katayama

(2000). The pressure distribution and total force evaluated by their methodologies are

included in linear equations of motions fulfilling the external force and moment compo-

nents. Hydrodynamic coefficients are necessary to be included in this kind of system

of equations. Ruscelli (2009) and Sebastiani et al. (2008) modified the original Zar-

nick (1978)’s model eliminating the necessity of predefined hydrodynamic coefficients.

Moreover, this simplification allows the mathematical model to be evaluated using only

sectional added mass due to the heave motion, assumed to be valid in this coupled situ-

ation. Nevertheless, Ruscelli still considered the conventional roll damping components

including in his model.

The present work is developed following the assumption of Rucselli, simplifying some

aspects to fulfil its aims to reduce computational efforts. Validation are performed with

the existing experimental data in various situations of asymmetric planing conditions.

89
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Due to the roll motion, considered as the rotation of the boat around the body fixed x′

axis, the symmetry of section disappears. The loss of symmetry influences the calculation

of hydrodynamic forces and moments. The original Zarnick’s model was limited to

vertical motions, and it was dedicated to symmetrical wedge shape water entry problem.

When the roll motion is coupled, such a hypothesis is no longer applicable. Therefore,

the extension to asymmetrical wedge shape is attempted in order to evaluate the total

asymmetric hydrodynamic forces and moments of the hull.

Following this approach, each section of the hull is divided into 2 sides characterized by:

• Different equivalent deadrise angles defined as the sum of the effective deadrise

angle β corresponding to a certain section and the roll angle φ.

• Different values of the relative vertical velocities, properly calculated as a function

of the effective submerged geometry of the model.

The total sectional force is considered as the sum of forces corresponding to port and

starboard equivalent side acting on the corresponding part of the section and calculated

separately section by section. The momentum theory (implemented by means of Strip

Theory) is applied again for two different part of each section as described in the following

expression:

fhydP =
1

2

(
D

Dt
(maP · VP )

)
(5.1)

fhydS =
1

2

(
D

Dt
(maS · VS)

)
(5.2)

Where:

• fhydi : Hydrodynamic force associated to the ith port or starboard side of the hull.

• D
Dt : Substantial derivative.

• mai : Sectional added mass associated to the ith port or starboard side of the hull.

• Vi: Relative velocities of section parallel to keel associated to the ith port or

starboard side of the hull.

Then, the total hydrodynamic force can be obtained as the sum of the integration along

the ship length of each particular side:



Chapter 5 Extension to Transverse Asymmetric Motions 91

Fhyd =
∑
i=P,S

∫
L
fhydidx

′ (5.3)

As well as the roll moment:

Mhydx′ =
∑
i=P,S

∫
L
fhydiy

′
idx
′ (5.4)

The term yi represents the roll arm of the hydrodynamic forces acting in the port and

starboard side of the section. It is defined as the centre of sectional pressure distribution

following Wagner’s theory, which consequently, is x′ dependent.

Besides the hydrodynamic forces related to the added mass, the damping forces (ne-

glected for the vertical plane motions) are considered due to their unavoidable influence

in roll motion. However, as a first approach of the present work, damping components

are initially excluded from the model, in order to observe the effects of this exclusion,

simplifying the development of the mathematical model.

The nonlinear roll hydrostatic restoring forces will also be investigated. They can be

calculated considering the effective wave profile on each section and evaluating section

by section, the sectional area and its geometrical centre in order to evaluate the total

hydrostatic buoyancy and its application point.

As a final consideration, it can be observed that the asymmetry is related to the following

main aspects:

• Asymmetric Submerged Volume Geometry: Submerged volume and wet surface

are no longer symmetrical, affecting hydrostatics and in general the points of ap-

plication of forces.

• Asymmetric Action of Fluid on Hull: The hull in oblique sea undergoes different

actions of fluid on its port and starboard side, due to different absolute wave

velocities and relative ship motions relevant to roll. This aspect influences the

relative vertical velocity and so the hydrodynamic forces related to the added

mass.

• Asymmetric of the Sectional Water Impact: Due to roll, the section which impacts

against water is not symmetrical. Port and starboard side are considered separately

with their “Effective Equivalent Deadrise Angle”, which is the resultant of the local

geometrical deadrise and the roll angle in order to evaluate the added mass term.
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Figure 5.1: Transversal plane coordinate systems.

The theoretical and numerical models of the methodology dealing with the coupled

heave, roll and pitch motions are presented in the following sections

5.1 Definition of Coordinate Systems

The coordinate systems are defined with the same principal as in the cases of coupled

heave and pitch motions as follows:

• Earth-Fixed Coordinate System: (Oxyz) The origin is fixed in a certain point

at non-disturbed water level. The positive x , y and z directions point toward to

the direction of the travel, toward to starboard side and downward to the water

respectively.

• Body-Fixed Coordinate System: (Gx’y’z’) The origin of this system is lo-

cated at the CG of the ship. x axis is parallel to the keel and points toward to

the fore as positive direction while y′ and z′ point toward to starboard side and

downward to the perpendicular to the keel respectively.

The coordinate systems in the transversal plane are shown in Figure 5.1:

Heave motion is so defined as the vertical distance of centre of gravity of the hull with

respect to the calm water free surface. Pitch motion is defined as baseline inclination

with respect to calm water level as well as roll motion is defined as the y′ axis inclination.

The roll angle φ and pitch angle θ are positive with the hull upward and heeled toward
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port side respectively due to the right hand rule. The centre of pitch motion is de facto

the centre of gravity while the centre of roll is also assumed to be as well the centre of

gravity. In the reality, although the centre of roll varies dynamically, the experimental

data used as validation reference were carried out by towing the model at its centre of

gravity and allowed the model to pitch and roll only around that point.

5.2 Definition of Wave Characteristics

According to Figure 5.2, regular cylindrical waves are described in the earth-fixed coor-

dinate system Oxyz by mean of:

x = x′ cosµ− y′ sinµ (5.5)

y = x′ sinµ+ y′ cosµ (5.6)

Where µ is heading angle varying from 0o to 359o in which µ = 0o is defined as head

waves. Following the clockwise direction, µ = 90o and µ = 180o are lateral starboard

waves and following waves respectively. Also in this case, with the aim to avoid sudden

discontinuities in initial time of simulation(above all for heavy sea conditions), nominal

wave amplitude is multiplied by a ramp functions which is 0 at the initial time marching

and goes to 1 after an appropriate time interval.

Then, the wave expression to be used in this case is a modification of the wave expression

defined in detail in Appendix A:

rP = r0 cos
[
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
cosµ+ ky′P sinµ+ ωt

]
(5.7)

rS = r0 cos
[
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
cosµ+ ky′S sinµ+ ωt

]
(5.8)

In general, wave elevation is a function of both longitudinal and transverse distance from

the centre of gravity of the hull (x′ and y′ respectively). At a particular section, wave

elevation corresponding to the equivalent port and starboard sides are approximated as

those evaluated by assigning y′P or y′S to be equal to a half of the half breadth from

the longitudinal plane. As the smallest wavelength used in simulation is equal to the

model length, the variation of wave elevation is very small along the section and can be

considered constant.

The expression of time derivative of wave elevation, wave vertical orbital velocity and

its time derivative are consequently expressed as:
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Figure 5.2: Oblique wave definition.

ṙP =
dr

dt
(5.9)

ṙS =
dr

dt
(5.10)

wwP = −r0ω sin
[
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
cosµ+ ky′P sinµ+ ωt

]
(5.11)

wwS = −r0ω sin
[
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
cosµ+ ky′S sinµ+ ωt

]
(5.12)

ẇwP =
dww
dt

(5.13)

ẇwS =
dww
dt

(5.14)

5.3 Equations of Motions of Coupled Heave, Roll and Pitch

Motions

Planing hull motion laws are derived from the usual laws of dynamics. External forces

considered are weight force, hydrostatic force, shaft thrust, wave force, and hydrody-

namic forces. In the present model, following the same analogy as in the heave and pitch

model, thrust force and drag force in the horizontal direction will be neglected due to



Chapter 5 Extension to Transverse Asymmetric Motions 95

the definition of towed condition. The resulting system of global equations of motions

are expressed as follows:

M · z̈G = −(Fhyd + Fcfd) · cos θ − Fb +D · sin θ +W (5.15)

Ixx · φ̈ = Mhydx′ +Mcfdx′ +Mb′x +Dyd +Bφ (5.16)

Iyy · θ̈ = Mhydy′ +Mcfdy′ +Mb′y −D · xd (5.17)

Where the difference between the new equations of motions and the coupled heave and

pitch motions are:

• Mi′x : ith moment contribution to roll.

• Mi′y : i
th moment contribution to pitch.

• Bφ: Total roll damping.

The above-mentioned forces are computed as a variation with respect to time around

the undisturbed steady equilibrium position at a specified speed.

Theoretical base for hydrodynamic force is again the “Momentum Theory”, stating that

hydrodynamic force exerted by a fluid on the hull is equal and opposite to the variation

of fluid momentum associated to the hull itself.

In the first appearance of the methodology, the momentum Theory is implemented

by means of strip theory, considering the 3D hull as it is made of a conjunction of a

number of 2D strip sections, and evaluating the total 3D forces as the summation of

sectional forces acting separately on each particular section without interactions. This

such principle, introduced by Korvin-Kroukovsky and Jacobs (1957) was fundamentally

capable of evaluating only with vertical plane motions. Then, after contributions of

various researchers, it was extended and implemented by Salvesen et al. (1970). The

fundamental hypothesis is that the normal vector of each section has the longitudinal

component nx much lower than the other two components ny and nz as described:

nx << ny

nx << nz

The total sectional hydrodynamic force is considered as the sum of the equivalent port

and starboard forces acting on the corresponding side of the section. The evaluation is

performed separately section by section through the momentum theory as described in
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Equations 5.1 - 5.2. The evaluation of each term in the system of equations of motions

uses the same analogy as in the case of coupled heave and pitch motions. The expressions

corresponding to each term are explained as follows:

5.3.1 Hydrodynamic Lift Force

The hydrodynamic lift force is evaluated separately in two equivalent port and starboard

side sections, and by following the principal of momentum theory, the formulation of

rate of change of fluid momentum is expressed as:

fhP,S =
1

2

(
D

Dt

(
maP,SVP,S

))
=

1

2

(
maP,S V̇P,S + ṁaP,SVP,S − U

∂

∂x

(
maP,SVP,S

))
(5.18)

Note that all of the sectional forces need to be halved in order to comply the assumption

of equivalent wedge water entry, as the overall sectional forces are the sum of both

equivalent sides.

The formulation for the sectional added mass adopted in the present mathematical is

described in the following form:

maP = Cmρ
π

2

(
CpuhP

tan (β − φ)

)2

(5.19)

maS = Cmρ
π

2

(
CpuhS

tan (β + φ)

)2

(5.20)

The expressions of time derivative of sectional added mass appear to be more complicated

due to the appearance of roll angle and its dynamic properties which are time dependent

:

ṁaP = Cmρπ

(
hPCpu

tan(β − φ)

)
d

dt

(
hPCpu

tan(β − φ)

)
(5.21)

ṁaS = Cmρπ

(
hSCpu

tan(β + φ)

)
d

dt

(
hSCpu

tan(β + φ)

)
(5.22)

The time derivative in the last part of the expression of time derivative of sectional

added mass can be developed as follows:
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Figure 5.3: Asymmetric geometrical equivalent I.

Figure 5.4: Asymmetric geometrical equivalent II.

d

dt

(
hPCpu

tan(β − φ)

)
=

(
ḣPCpu + hP Ċpu

)
tan(β − φ) + hPCpu

[(
tan2(β − φ)

)
φ̇
]

tan2(β − φ)
(5.23)

d

dt

(
hSCpu

tan(β + φ)

)
=

(
ḣPCpu + hP Ċpu

)
tan(β + φ)− hPCpu

[(
tan2(β + φ)

)
φ̇
]

tan2(β + φ)
(5.24)

Figures 5.3 - 5.4 show that the effective deadrise angle corresponding to port and star-

board side are (β−φ) and (β+φ) respectively. The pile-up correction factor Cpu in this

case is assumed to be that corresponding to the side of larger effective desdrise angle:
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Cpu =
π

2
− (β + |φ|)

(
1− 2

π

)
(5.25)

And its time derivative:

Ċpu =

(
2

π
− 1

)
· φ̇ (5.26)

The section submergence is now necessary to account for the different effective deadrise

angle:

hP = z′k cosφ+

(
zG − x′ sin θ

cos θ

)
− rP

cos θ
(5.27)

hS = z′k cosφ+

(
zG − x′ sin θ

cos θ

)
− rS

cos θ
(5.28)

Consequently, their time derivatives are expressed as:

ḣP = − sinφφ̇+

(
( ˙zG − x′ cos θθ̇) + (zG − x′ sin θ) sin θθ̇

cos2 θ

)
−

(
ṙP cos θ + rP sin θθ̇

cos2 θ

)
(5.29)

ḣS = − sinφφ̇+

(
( ˙zG − x′ cos θθ̇) + (zG − x′ sin θ) sin θθ̇

cos2 θ

)
−

(
ṙS cos θ + rS sin θθ̇

cos2 θ

)
(5.30)

The relative sectional velocities parallel or normal to the keel are defined based on the

similar analogy of the case of coupled heave and pitch motions taken into account the

effect of roll motion in especially the normal velocity V . Each equivalent port and

starboard side section with corresponding effective deadrise angle is actually affected by

roll velocity φ̇ and are expressed as follows:



Chapter 5 Extension to Transverse Asymmetric Motions 99

U = ẋG · cos θ − (żG − ww) sin θ (5.31)

VP = ẋG · sin θ + (żG − wwS ) cos θ − θ̇ · x′ − φ̇ · y′P (5.32)

VS = ẋG · sin θ + (żG − wwP ) cos θ − θ̇ · x′ − φ̇ · y′S (5.33)

V̇P = ẍG · sin θ + (z̈G − ẇwP ) cos θ + θ̇(ẋG cos θ − (żG − wwP ) sin θ)− θ̈ · x′ − φ̈y′P
(5.34)

V̇S = ẍG · sin θ + (z̈G − ẇwS ) cos θ + θ̇(ẋG cos θ − (żG − wwS ) sin θ)− θ̈ · x′ − φ̈y′S
(5.35)

The roll lever arms y′P and y′S are defined in the case hydrodynamic lift force as centre

of pressure corresponding to each equivalent side section following the theory of wedge

shape water entry of Wagner (1931).

y′P =

π
(β−φ)

(
1−

√
1− y′20P

)
+ 1

2 ln
(
1− y′20P

)
+ 1

2y
′2
0P

π
(β−φ) arcsin y′0P + 1

2 ln

(
1−y′0P
1+y′0P

)
+ y′0P

(5.36)

y′S =

π
(β+φ)

(
1−

√
1− y′20S

)
+ 1

2 ln
(
1− y′20S

)
+ 1

2y
′2
0S

π
(β+φ) arcsin y′0S + 1

2 ln

(
1−y′0S
1+y′0S

)
+ y′0S

(5.37)

Where y′0P,S are the abscissa where pressure distribution is equal to zero and expressed

as:

y′0P =

√√√√√1−


√
π2 − 4 (β − φ)2 − π

2 (β − φ)

2

(5.38)

y′0S =

√√√√√1−


√
π2 − 4 (β + φ)2 − π

2 (β + φ)

2

(5.39)

This definition of roll lever arms is valid only for hydrodynamic forces, the roll arm for

hydrostatic force is explained subsequently.

5.3.2 Cross-Flow Drag:

The expression of sectional cross-flow drag adopted to equivalent port and starboard

sides are expressed as:
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fcfdP =
1

2
CD,c cos (β − φ) ρ

(
CpuhP

tan (β − φ)

)
V 2
P (5.40)

fcfdS =
1

2
CD,c cos (β + φ) ρ

(
CpuhS

tan (β + φ)

)
V 2
S (5.41)

5.3.3 Buoyancy:

As it can be seen in Figure 5.5, physical submerged geometry of a particular section

with instantaneous heel angle is a composition of various sub-geometry. Generally it

can be divided into two equivalent port and starboard sides, nevertheless, in this case,

the geometry can be evaluated only in half section form. The geometry of sections can

be grouped into two main ranges of flow characteristic. In the dry chine range, the

submerged geometry is a simple triangle while in the wetted chine range, it is composed

of a triangle and a trapezoid. The expressions are as follows:

If 0 < hP,S < a

AP = h2
P cot (β − φ) (5.42)

AS = h2
S cot (β + φ) (5.43)

If hP,S > a

AP =
1

2
a2
P cot (β − φ) +

1

2
(hP − aP ) [2aP cot (β − φ) + (hP − aP ) tanφ] (5.44)

AS =
1

2
a2
S cot (β + φ) +

1

2
(hS − aS) [2aS cot (β + φ)− (hS − aS) tanφ] (5.45)

Where:

• b = B/2: The half beam.

• a = b tanβ

• aS = b sin(β + φ)/ cosβ

• aP = b sin(β − φ)/ cosβ

The roll moment of buoyancy is evaluated with a different lever arm defined previously

for hydrostatic force which is the centre of pressure acting on each section. In this
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Figure 5.5: Asymmetric geometrical of buoyancy.

case, the centre of application of buoyancy force corresponding to each equivalent port

and starboard side sections is defined as the centre of mass of the submerged geometry

respect to the centre of roll motion (in this case the VCG). In case of a simple triangle,

it can be assumed as 1/3 of the triangle base. The expression of centre of geometry of

a trapezoid can be found in literature as y′ =
(
a2 + ab+ b2

)
/3 (a+ b)

5.3.4 Total Forces and Moments

Once obtaining the sectional forces corresponding to each equivalent port and starboard

side, by integrating along the ship length, the total forces and moments of each side are

obtained. Finally, by summing both sides, the total forces and moments acting on the

hull are obtained. They are explained in the following expressions:
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Fh =
∑
i=P,S

∫
L
fhidx

′ =
∑
i=P,S

1

2

∫
L
mai V̇i + ṁaiVi − U

∂

∂x′
(maiVi) dx′ (5.46)

Fcfd =
∑
i=P,S

∫
L
fcfdidx

′ =
∑
i=P,S

1

2

∫
L
CD,C cosβρbiV

2
i dx′ (5.47)

Fb =
∑
i=P,S

∫
L
fbidx

′ =
∑
i=P,S

1

2

∫
L
abfρgAidx

′ (5.48)

Mhy′ =
∑
i=P,S

∫
L
fhix

′dx′ =
∑
i=P,S

1

2

[∫
L
mai V̇i + ṁaiVi − U

∂

∂x′
(maiVi)

]
x′dx′ (5.49)

Mcfdy′ =
∑
i=P,S

∫
L
fcfdix

′dx′ =
∑
i=P,S

1

2

∫
L
CD,C cosβρbiV

2
i x
′dx′ (5.50)

Mby′ =
∑
i=P,S

∫
L
fbix

′dx′ =
∑
i=P,S

1

2

∫
L
abfρgAix

′dx′ (5.51)

Mhx′ =
∑
i=P,S

∫
L
fhiy

′
idx
′ =

∑
i=P,S

1

2

[∫
L
mai V̇i + ṁaiVi − U

∂

∂x′
(maiVi)

]
y′idx

′ (5.52)

Mcfdx′ =
∑
i=P,S

∫
L
fcfdiy

′
idx
′ =

∑
i=P,S

1

2

∫
L
CD,C cosβρbiV

2
i y
′
idx
′ (5.53)

Mbx′ =
∑
i=P,S

∫
L
fbiy

′
idx
′ =

∑
i=P,S

1

2

∫
L
abfρgAiy

′
idx
′ (5.54)

Substituting and developing all terms of the expression of the total forces and moments

in the global equations of motions, and following the same methodology as in the case of

coupled heave and pitch motions, and taken into account the influence of Near Transom

Correction Factor, Ctr, the system can be elaborated into the following form using the

coefficient assignment defined in Appendix A:

Mz̈G = −
(
CA cos θẋGθ̇ + CA cos θz̈G − CA sin θżGθ̇ − CB cos θ + CC sin θθ̇ − CD1θ̈ − CD2φ̈

+ CE − CF + CG cos θ + CH1θ̇ + CH2φ̇− Fcfd
)

cos θ − Fb +D sin θ +W

(5.55)

Ixxφ̈ = CD2 cos θẋGθ̇ + CD2 cos θz̈G − CD2 sin θżGθ̇ − CS cos θ + CT sin θθ̇ − CN2θ̈ − CU φ̈

+ CO2 − CV + CW cos θ + CX1θ̇ + CX2φ̇+Mcfd +Mb −Dyd
(5.56)
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Iyy θ̈ = CD1 cos θẋGθ̇ + CD1 cos θz̈G − CD1 sin θżGθ̇ − CK cos θ + CM sin θθ̇ − CN1θ̈ − CN2φ̈

+ CO1 − CP + CQ cos θ + CR1θ̇ + CR2φ̇+Mcfd +Mb −Dxd
(5.57)

Moving the terms associated to accelerations to the left had side and reorder the system:

(
M + CA cos2 θ

)
z̈G − CD2 cos θφ̈− CD1 cos θθ̈ = −

(
CA cos θẋGθ̇ − CA sin θżGθ̇ − CB cos θ

+ CC sin θθ̇ + CE − CF + CG cos θ + CH1θ̇

+ CH2φ̇− Fcfd
)

cos θ − Fb +D sin θ +W

(5.58)

−CD2 cos θz̈G + (Ixx + CU ) φ̈+ CN2θ̈ = CD2 cos θẋGθ̇ − CD2 sin θżGθ̇ − CS cos θ

+ CT sin θθ̇ + CO2 − CV + CW cos θ + CX1θ̇

+ CX2φ̇+Mcfd +Mb −Dyd
(5.59)

−CD1 cos θz̈G + CN2φ̈+ (Iyy + CN1) θ̈ = CD1 cos θẋGθ̇ − CD1 sin θżGθ̇ − CK cos θ

+ CM sin θθ̇ + CO1 − CP + CQ cos θ + CR1θ̇

+ CR2φ̇+Mcfd +Mb −Dxd
(5.60)

Then turn the system into the matrix form:

A · ẍ = B (5.61)

Where:
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A =

M + CA cos2 θ −CD2 cos θ −CD1 cos θ

−CD2 cos θ Ixx + CU CN2

−CD1 cos θ CN2 Iyy + CN1

 (5.62)

ẍ =

z̈Gφ̈
θ̈

 (5.63)

B =

F
′
z +D sin θ +W

F ′φ −Dyd
F ′θ −Dxd

 (5.64)

The system is solved in a similar manner to the case of coupled heave and pitch motions.

5.4 Simulations and Validations

Once the mathematical model has been modified, it is essential to verify its performance.

As the modification is involved only in separate evaluation of sectional load in each cor-

responding equivalent lateral loads, verification of the influence of controlling parameters

is assumed to be done and identical to the process done in Chapter 3. The remaining

verification is to identify if it is capable of roll motions. A set of initial simulations has

been carried out applying to a planing craft travelling in oblique seas. Sample time his-

tories of heave, roll and pitch motions simulated in 15o and 30o oblique seas are shown in

Figure 5.6. It can be seen that the present mathematical model gives reasonable results,

as increasing angle of wave direction, amplitude of roll responses increase.

5.4.1 Fixed Heel Angle Simulations

When a planing craft is sailing with an empty lateral tank, the craft is facing un-

avoidably heel situation. It is obviously essential to assess the craft’s performance in

such kind of situation. The modified mathematical model applied to asymmetric sec-

tional wedge shape load evaluations is used to simulate fixed heel angles situations. The

simulations follow the experimental tests carried out by Li (2014). The model config-

uration is identical to Fridsma’s model configuration B. The test has been carried out

in three different heel angles, upright condition, 5o and 10o heels (φ = {0o, 5o, 10o}).
Regarding the sea conditions, wavelength to ship length ratio varies from λ/L = 1.5 to

λ/L = 4.0 with only H/B = 0.1. The resulting data is treated in the identical manner as

in cases done in Chapter 3, and represented in form of RAO. The results of experimen-

tal tests and numerical simulations are compared in Figure 5.7. It can be seen that the

present mathematical model gives the results with the same trend as the experimental
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Figure 5.6: Sample of time histories of response motions in λ/L = 2.0.

tests but slightly over-predicts the magnitudes of both heave and pitch responses. The

difference of the resulting magnitudes between the tests and the simulations appears to

be constantly uniform. This could imply an existence of a missing component in the

equations of motions. An inclusion of a constant factor would fit the response motions

of the simulations to the tests. Note that the lack of roll damping components does not

affect these cases. As the model is not allowed to roll freely, the damping component

is evidently not the predominant term in case of only coupled heave and pitch motions.

Note that the present mathematical model simplifies geometrical characteristics of the

asymmetrical wedge by only the superposition of two equivalent symmetrical ones. As

per suggested by Ruscelli (2009), the lateral equivalent sectional load predicted by mo-

mentum theory should be analysed and compared with existing asymmetric wedge falling

vertically into the water in order to achieve the appropriate factor. Nevertheless, this

simplification seems to be acceptable once the appropriate factor is verified.

5.4.2 Coupled Heave, Roll and Pitch Motions Simulations

It is difficult to find validation reference of planing roll motion in literature. The most

related to the plan of the present work is that of Ruscelli (2009) and Rosén and Garme

(2006). Rosén and Garme performed a series of experiments of planing hull model

with variable deadrise angles. The model was towed at its CG and allowed to heave,

roll and pitch with a range of forward speed in regular head and oblique waves. The

results are represented in the classical form of response amplitude operator, RAO. The

present mathematical model in extension to roll motion is assumed to be already verified

due to the original of this modification is that of the case of coupled heave and pitch
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Figure 5.7: Comparison of response motions of fixed heel simulations.
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which is already verified in Chapter 3. Actually, the mathematical model is simplified

to simulate only in coupled heave, roll and pitch motion and planned to extend further

to the remaining degrees of freedom. The damping components although have been

neglected in heave and pitch motions, it is difficult to confirm the validity using the

same hypothesis in roll motion. The damping components are still subjected to be

developed and will be incorporated as a recommended implementation for the future

work.

Table 5.1: Model configuration used by Rosén and Garme (2006).

Dimension Outlined Measured Comment

Loa[m] 1.050 1.110 Length overall
Lwl[m] 0.950 Length waterline, idle
Bwl[m] 0.250 0.250 Beam waterline, idle
Tlcf [m] 0.055 Draft, idle
β[degree] 22.000 22.000 Deadrise
τ [degree] 1.500 1.500 Trim, idle
4[kg] 6.500 6.500 Displacement
LCG[m] 0.3600 0.360 Logitudinal CG from transom
V CG[m] 0.092 0.092 Vertical CG from keel
rx[m] 0.082 0.087 Roll radius of gyration
ry[m] 0.270 0.270 Pitch radius of gyration
rz[m] 0.270 0.270 Yaw radius of gyration

The model configuration used in the initial simulation following the experiments of Rosén

and Garme is shown in Table 5.1. The response motions and accelerations are treated

and compared in the form of RAO and shown in Figures 5.8 - 5.11.

For all of the response motions, the present mathematical model gives extreme val-

ues at λ/L = 3.0, in any direction of waves and especially for the lowest wave height

(H/B = 0.1). This is the effect of the natural frequency area of RAO that the damping

associated term is predominant. The absence of damping component in the equations

of motions leads to these extreme motions compared with the resulting response of ex-

perimental tests. For heave and pitch motions, when the frequencies of encounter are

higher than that natural frequency area, the present mathematical model is capable

of predicting the response motions closer to the experimental tests. When considering

the response roll motion, the present mathematical model gives generally slight under

predicted results, but still closer to the experiments after that natural frequency area.

The largest difference occurs at the lowest wave height, and decreases nonlinearly when

increasing the wave height. This could confirm the nonlinear behaviour of the response

roll motion with the wave height property of the environments. The overall bow accel-

erations are of good agreement between the prediction and the experiments. Except the

natural frequency area but the order of difference is not significantly notable.

The overall capability of this modification to asymmetrical motion simulations seems to

be effective when simulating in higher frequencies of encounter over the natural frequency
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area. In other words, due to the lack of damping component in the equations of motions,

the simulations in that damping predominant zone cannot be adequately carried out.

The present mathematical model needs further implementation and inclusion of this

appropriate component, in order to comply with the application to any wave conditions.

With the implementation presented in this chapter, the mathematical model can be con-

sidered as a useful tool and partially effective for simulating asymmetric plane motions.

It can also be used as a base model for further extensions to the remaining degrees of

freedom.
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Figure 5.8: Comparison of response heave motions.
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Figure 5.9: Comparison of response pitch motions.
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Figure 5.10: Comparison of response roll motions.
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Figure 5.11: Comparison of bow accelerations.



Chapter 6

Application to Aircraft Ditching:

Development and Verification of

Mathematical Model

As mentioned previously in Chapter 2, another possible useful application of the present

mathematical model is aircraft ditching. The original application of the theory was

applied to seaplane landing load prediction, the application to aircraft ditching load

prediction has been chosen as an interesting application to investigate.

It is of interest to find a robust and reliable technique to predict the loads on the fuselage

of an air plane ditching into the water. There is a similar simulation in literature that

is the famous seaplane landing load analysis performed by Wagner (1931). His research

led to a number of applications and implementations by many researchers in order to

simulate loads and motions of high-speed planing craft, as due to his principal, the

impact load on the cross section of the craft can be calculated by a falling 2D wedge.

Loads on 2D wedge shape geometry can be evaluated applying potential theory and

boundary value problems. This led to the evaluation of expression of sectional force on

the geometry which appears in the form of rate of change of fluid momentum.

Regarding the methodologies of investigating high-speed planing dynamics presented in

Chapters 1 - 2. The 2D strip theory method has been chosen to apply in this project due

to its very low computational effort in simulations. Moreover, it has been proven to be

efficient to predict both impact loads on hull and response motions. For further literature

review on the typical evaluation methods for high-speed planing craft, see Kanyoo et al.

(2015). The 2D ordinary strip theory simplifies the 3D problems by dividing the ship

hull into sections, and by using the potential flow principal, sectional pressure acting on

each section can be evaluated.

113
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The fundamental system of equations of motions is identical to that developed in Chap-

ter 3. Initially, simulations of a hard chine hull form free falling into water have been

carried out. The aim of the simulations was to verify the suitability of the mathematical

model developed by Kanyoo et al. (2015) and determine whether it could be valid for

this new application. The mathematical model has been developed based on the pio-

neering work of Zarnick (1978) and later modified, implemented, verified and optimized

by Kanyoo et al. (2015) to be valid for the simulation of high speed planing hard chine

travelling in both calm water and in waves.

The results from the initial simulations done by Kanyoo et al. (2014) appear to be

reasonable from the perspective of pressure distributions along the hull at instants of

impact. The first five instants (five time steps during the impact) can sufficiently repre-

sent the highest impact load on the hull. The optimal parameters in simulation (number

of strip sections, N and time step sizes, ∆t) have been used. It is of interest as well to

compare the results evaluated by the optimal parameter with those of higher resolution

and this is subject to carry out in the further stage of the work. Furthermore, in order

to guarantee its validity, it is necessary to perform as well an appropriate validation

process.

The subsequent stage of the investigation is to modify the present mathematical model

to be capable of simulating hull forms that are more representative of an aircraft fuselage

(semi-circular shape). This modification needs more in-depth analysis of sectional added

mass of semi-circular shape. In order to achieve this approach, a hypothesis of sectional

added mass expression for semi-circle is proposed. It consists of determining whether

the sectional added mass coefficient derived by Lewis transformation is equivalent to

that derived by Payne (1994), sectional added mass expression of semi-circular section

could be replaced by an expanding flat lamina as well as in the case of wedge shape sec-

tion, and the use of sectional added mass coefficient derived from Lewis transformation

could be valid for the case of semi-circular shape. More details of the modification and

implementation of the mathematical model to be capable of predicting sectional load on

semi-circular shape will be explained in the further section.

In summary, the aim and objectives of this chapter are to find a novel technique based

upon the mathematical model of high-speed planing dynamics to predict aircraft ditching

loads and motions. Note that once the mathematical model is adequately implemented,

apart from the principal application to predict the impact load in ditching event, this

modified tool could be also applicable for other load prediction situation such as, the

loads of a Unmanned Air Vehicle (UAV) landing on to the water, impact load of torpedo

launching into the water, etc. It is then cross-validated with other two techniques

provided by Stirling Dynamics Ltd. (Bonanni et al., 2015; Vandewaeter et al., 2015) in

order to confirm the initial validity. One of these techniques, the high fidelity CFD tool

is used as the main references.
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6.1 Application to Aircraft Fuselage Form

Following the principle of strip theory used in the mathematical model developed pre-

viously, the sectional hydrodynamic load is evaluated from the rate of change of fluid

momentum. The fundamental parameter of this principle is the added mass of the fluid

when it is interacting with an object. Sectional added mass expression for wedge shape

geometry has been successfully applied to high-speed planing craft. A modification of

the original model is necessary in order to be able to apply to a semi-circular shape.

6.1.1 Sectional Added Mass Coefficient

The accurate solutions of the system of equations of motions are very much dependent on

the accurate evaluation of the hydrodynamic coefficients. The hydrodynamic coefficients

themselves require the evaluation of the added mass terms.

Wagner (1932) derived a mathematical theory for describing the time history of the

impact pressure at the surface of a body during vertical water entry. This theory,

which was introduced by von Karman (1929) as the flat plate theory was based on the

impact of a flat plate with varying width on a horizontal flat water surface. The width as

function of time determined the geometry of the object’s surface. The fluid was assumed

irrotational and incompressible, thus, viscous effects could be neglected.

According to Wagner (1932), a 2D wedge shape section falling into the water can be

replaced by a flat plate lamina expanding in the water surface with an identical rate

of change of its geometrical beam. This problem is solved by the principle of poten-

tial flow theory and boundary value problem and results in the expression of sectional

added mass as represented in Chapter 3 (Equations 3.14 - 3.15). The sectional added

mass coefficient Cm is geometry dependent and varies differently in various geometrical

parameters. There are several expressions of sectional added mass coefficients for wedge

shape geometry available in literature. Originally, Zarnick (1978) used constant value

for Cm. He assumed it to be equal to 1. Keuning (1994) showed that Zarnick’s method

is only applicable to very high forward speed, because of the constant values he used for

hydrodynamic coefficient.

Some expressions of sectional added mass coefficient are presented as follows:

Sectional Added Mass Coefficient Suggested by Payne (1994):

Cm =

(
1− β

2π

)2

(6.1)



116
Chapter 6 Application to Aircraft Ditching: Development and Verification of

Mathematical Model

Sectional Added Mass Coefficient Suggested by Vorus (1996):

Cm =
π2

4
·
(

1− β

90
· 0.4 · (1−KAR)

)
(6.2)

Where KAR is an added mass correction factor. Using KAR = 0.1 is equivalent to

using added mass coefficient of Wagner, while KAR = 0.0 roughly matches the added

mass coefficient curve of Vorus.

Sectional Added Mass Suggested by Faltinsen (2000):

ma =
ρb2

tanβ
·

 π

sinβ
·

Γ
(

1.5− β
π

)
Γ2
(

1− β
π

)
Γ
(

0.5 + β
π

) − 1

 (6.3)

Where b is half beam and Γ is the gamma function.

Sectional Added Mass Evaluated using Lewis Conformal Mapping: Lewis

Conformal Mapping is widely used to evaluate hydrodynamic coefficients for ship mo-

tions investigation. It consists of transforming a ship’s section shape into a semi-circular

shape and applying potential theory to assess corresponding pressure, and leads to the

achievement of sectional added mass quantity. According to Blake (2000), the sectional

added mass coefficient expression derived from Lewis Conformal Mapping is:

Cm =
ma

πρB2/8
=
| (1 + a1)2 + 3a2

3|
(1 + a1 + a3)2 (6.4)

Equation 6.4 describes the added mass coefficient from a two parameter conformal map-

ping, valid for the infinite frequency of encounter. Payne (1994) simplifies this expression

for a wedge form into a dependency upon the deadrise angle (see Equation 6.1).

Note that Payne’s approximation is based on potential flow theory results of Wagner’s

equivalent flat plate. Due to this flat plate approach, it is supposed to be valid only in

the case of small deadrise angles.

6.1.2 Sectional Added Mass of Semi-Circular Shape

Following the literature review of Ghadimi et al. (2012), they state that a limited number

of investigations approaching the water entry problem of semi-circular shapes have been

carried out. According to Sun and Faltinsen (2006), a 2D problem in the cross plane
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can be considered if the variation along the length of the cylinder is discounted. Some

researchers attempted to implement Wagner solution as his model is not capable of

describing the in-depth details of the impact process. Nevertheless, this classical model

is still significant due its simplicity. Significant implementations and corrections were

made by Armand and Cointe (1987), Howison et al. (1991), Oliver (2002), Logvinovich

(1969) and Korobkin (2004). They are capable of predicting the loads on a body as

it enters the water with higher accuracy compared with the original model of Wagner.

Zhao et al. (1996) solved the boundary value problem (BEM) and numerically obtained

the distribution of vertical velocity on the free surface to evaluate the shape of the free

surface and the splash-up height for the next time instant. Due to the existence of

flow singularity at the intersection points, the nonlinear Bernoulli equation evaluates

negative pressures close to these points. Zhao et al. (1996) suggested integration of the

hydrodynamic pressure distribution only over the wetted surface where the pressure is

positive. With the same approach, analytical results were also obtained by Mei et al.

(1999) for the water entry of a wedge shape, circular cylinder and ship sections of Lewis

form. This is for the problems with known conformal mapping of Schartz-Christoffel that

maps the flow domain into a half-plane. The boundary value problems of the generalized

Wagner solution are much simpler than those within the original formulation making the

approach significantly more practical. Vorus (1996) developed another analytical model

of water entry problems. He neglected the geometrical nonlinearity of the problem but

still considered that of the boundary conditions. Then, positions of the intersection

points can be evaluated using this condition at the point of intersection where the

hydrodynamic pressure is zero. The results obtained by Xu (1998) based on Vorus’

model were of good agreement with the experimental data.

Accounting for the semi-circular shape, the impact pressure of this shape on entry into

the water varies significantly. As considering the analogy of wedge shape, the deadrise

angle changes as the submergence increases. This also could be the effects of many phe-

nomenons, such as, air cavity, flow separation and breaking waves. In order to find the

accurate solution of the problem with fully nonlinear free surface conditions, numerical

methods will be used. Greenhow (1988) studied the water entry of a rigid circular cylin-

der using a BEM based on Cauchy’s theorem. Nevertheless, the calculations needed

to be refined, and the flow separation model needed to be accounted for. Zhu et al.

(2006) also investigated the water entry of a rigid circular cylinder using a constrained

interpolation profile (CIP) method. It gave a good prediction of the time history of the

body motion due to the infinite rate of change of wetted surface. Sun and Faltinsen

(2006) developed a 2D boundary element code to simulate the water flow and pressure

distribution during the water impact of the horizontal circular cylinder. They satisfied

the exact free surface boundary conditions. The non-viscous flow separation on the

curved surface of the cylinder was simulated by merging a local analytical solution with

the numerical method.
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Figure 6.1: Hypothesis of transformation of semi-circular shape.

The present work is planned to follow the expression of wedge water entry of Wagner

(1931) but finding the most appropriate added mass coefficient corresponding to the

actual semi-circular shape rather than that of a wedge shape. A hypothesis is proposed,

verified and validated with the details explained in the following sections.

6.1.2.1 Hypothesis

It can be seen previously that the expression of sectional added mass presented by

Wagner (1931) is valid for a wedge shape section. It is of interest to verify and determine

whether it is valid for the case of sectional hull of the airplane, which is a semi-circle.

By using a two parameter conformal mapping of Lewis, wedge shape geometry can be

transformed to a semi-circle of unit radius. The proposed hypothesis is that if the

sectional added mass coefficient derived by Lewis transformation is equivalent to that

derived by Payne, sectional added mass expression of semi-circular section could be

replaced by an expanding flat lamina as well as in the case of wedge shape section and

the use of sectional added mass coefficient derived from Lewis transformation could be

valid for the case of semi-circular shape, see Figure 6.1.

6.1.2.2 Verification of Sectional Added Mass Coefficient

In order to verify the validity of sectional added mass expression used in the case of wedge

shape, two different sectional added mass coefficients will be normalized and verified.
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Figure 6.2: Comparison of variation sectional added mass coefficients between
wedge shape and semi - circular shape in term of deadrise angle.

Figure 6.3: Comparison of sectional added mass evaluated by Lewis and Payne’s
methodologies.

One can be seen as a transformation from a wedge shape to a unit radius semi-circle

and the other as a transformation of wedge shape to a lamina flat plate.

Sectional added mass coefficients evaluated by Lewis mapping (wedge shape to semi-

circle) and that evaluated by Payne (wedge shape to flat lamina) are compared in Fig-

ure 6.2. It is also of interest to represent a comparison of the sectional added mass

evaluated by those two different added mass coefficients, see Figure 6.3.
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Figure 6.4: Geometry definition of 2D semi-circular shape.

Figure 6.5: Geometry definition of 2D semi-circular shape after flow separation.

It can be seen in Figures 6.2 - 6.3 that the sectional added mass and its coefficient

are similar using Lewis mapping and Payne expression in the range of β ≤ 40o. This

can confirm a statement mentioned in the previous section that Payne’s sectional added

mass coefficient approximation is only valid for range of small β. Once β is larger, the

sectional added mass coefficients evaluated by those different methods start to diverge.

This could lead to the deduction that sectional added mass coefficient evaluated by

Lewis transformation could be more suitable than that by Payne when simulating semi-

circular shape. As its effective β varies in function of section submergence and reaches

the value of 90 degree when its chine is fully submerged. As well as the other suggestions

of sectional added mass coefficient are subjected to the limitation of β up to around 50

degrees. The Cm evaluated by Lewis transformation has a curve form in function of β.

It starts to be close to the unit when β approaches zero, and reaches a minimum value

around 0.75 at around 70 degree. It starts to increase again but very slightly from 70 to

90 degree. At the same time, the Cm expressed by the other methods has quasi-linear

form and keeps decreasing with increasing β until reaching a very small value of around

0.5 at 90 degree. This could leads to an under-prediction of sectional added mass and

consequently, the sectional force, as well as the acceleration.
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Figure 6.6: Equivalent deadrise angle in term of submergence to half beam ratio.

6.1.2.3 Expression of Sectional Added Mass of Semi-Circular Shape

As it can be seen previously in this thesis, the sectional added mass of semi-circular

shape may be approximated accurately by Wagner’s expression when using appropriate

expression of sectional added mass coefficient. It is deduced in the previous section that

the expression of Cm derived from Lewis transformation seems to be the most suitable.

Nevertheless, this still needs to be validated.

The corresponding expression for evaluation of sectional added mass of semi-circular

shape following the principle of expanding flat laminar is developed as follows:

The general expression of 2D section arbitrary shape is:

ma = Cm
π

2
ρb2 (6.5)

Where b is the half beam, b = R sinβ. Due to physical geometry of circular shape of the

fuselage shown in Figure 6.4, the half beam is expressed as:

b =

√
R2 − (R− hCpu)2 =

√
2RhCpu − h2C2

pu (6.6)

Where R is radius of the fuselage, h is section submergence and Cpu is pile-up correction

factor.
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In the case of a circular shape, there is no apparent deadrise angle as in the case of wedge

shape section. It varies in term of section submergence and expressed as an equivalent

deadrise angle. This angle is defined as the angle between calm water line and tangential

line at the intersection point of the section and the water, as can be seen in Figure 6.4:

β = cos−1

(
R− hCpu

R

)
(6.7)

Nevertheless, pile-up correction factor is deadrise dependent:

Cpu =
π

2
− β

(
1− 2

π

)
(6.8)

Substituting Equation 6.7 into Equation 6.8 resulting in:

β = cos−1

(
R− h

(
π
2 − β

(
1− 2

π

))
R

)
(6.9)

This can be evaluated numerically by iteration method for each particular section sub-

mergence.

Time rate of change of sectional added mass is the time derivative of sectional added

mass expression:

dma

dt
= ṁa

= Cm
π

2
ρ
[
2R
(
ḣCpu + hĊpu

)
−
(

2hḣC2
pu + 2h2CpuĊpu

)]
+ Ċm

π

2
ρ
[
2RhCpu − h2C2

pu

]
(6.10)

Unlike the case of wedge shape section, here Cpu and Cm are functions of β. They vary

along the time marching, as equivalent deadrise angle is section submergence dependent.

The time derivatives corresponding to those parameters are:

Ċpu = β̇

(
2

π
− 1

)
(6.11)
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As it can be seen in Figure 6.6, the sectional added mass coefficient Cm is expressed as

a polynomial function by interpolating in term of β as follows:

Cm = p1β
6 + p2β

5 + p3β
4 + p4β

3 + p5β
2 + p6β + p7 (6.12)

Where p1 - p7 are polynomial coefficients. Thus, its time derivative is expressed as:

Ċm = β̇
(
6p1β

5 + 5p2β
4 + 4p3β

3 + 3p4β
2 + 2p5β + p6

)
(6.13)

And:

β̇ =
ḣ
[
π
2 − β

(
1− 2

π

)]
R

√
1−

[
R−h[π2−β(1− 2

π )]
r

]2

− h
(
π
2 − 1

) (6.14)

Finally, by substituting Equations 6.6 - 6.14 into the expression of sectional hydrody-

namic force, the final expression can be obtained:

fh =
D

Dt
(maV ) = ṁaV +maV̇ − U

∂

∂x′
(maV ) (6.15)

For the initial simulation in validation process, a semi-circular section shape will be

penetrating into the water with constant vertical velocity, Equation 6.15 can be reduced

to:

fh = ṁaV (6.16)

The expressions developed above are applicable only in the range of section submergence

not larger than the radius of the fuselage. Similar to the case of wedge section shape,

once the section submergence reaches the value of the radius, the half beam increment

also reaches its maximum value identical to the radius. Beyond this point, due to the

physical geometry of the circular shape, the half beam will be decreasing when section

submergence is increasing. The equivalent deadrise angle at maximum half beam is the

right angle, and due to the decrement of half beam since that point, flow separation
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Figure 6.7: Normalized sectional forces of different geometries in term of sub-
mergence to half beam ratio.

phenomenon occurs at high vertical speed and this implies the need to evaluate another

applicable expression of sectional added mass.

As it can be seen in Figure 6.5, due to flow separation, the equivalent deadrise angle

beyond that point remains constantly at 90 degrees. The pile-up correction factor is 1

at that point and remains 1 until the section is fully submerged. Similar to the case

of wedge shape section, after flow separation point, the sectional added mass remains

constant and leads to the annulment of its time derivative expression.

Figure 6.7 shows comparison of normalized sectional force f/1
2ρrV

2 of different sectional

geometries as a function of normalized section submergence h/b. Sectional force corre-

sponding to the circular shape is compared to those of the wedge shape of 10, 20 and

30 degree deadrise angles. Initially, at the moment of impact, the sectional force acting

on circular shape is of large magnitude due to the relative small equivalent deadrise

angle (approximately zero). When increasing submergence, it decreases convexly as the

equivalent deadrise angle increases logarithmically with submergence, see Figure 6.6.

Generally, the magnitudes of sectional force on circular shape are above those of wedge

shape at the range of 0.00 - 0.10 normalized submergence and turn to be of smaller

magnitude under those of wedge shape when the submergence keeps growing. While the

forces acting on the wedge shape increase linearly, as the deadrise angles are constant.

Typically, the wedge shape geometry of small deadrise angle (10 degree) experiences

larger impact force comparing to those of larger β. Although at the moment of impact,

the impact force is of smaller magnitude comparing to that of circular shape, it ends up

being of significantly larger magnitude. While those corresponding to 20 and 30 degree

deadrise run around that of circular shape. The critical equivalent deadrise angle of
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circular shape where the impact forces turn to be of smaller magnitude than that of the

wedge shape are approximately 15, 30 and 45 degree comparing to the wedge shape of

10, 20 and 30 degree respectively.

6.1.2.4 Validation of the Expression

The 2D circular cylinder used in this validation has a radius of 5.5 m. It is dropped

with a constant vertical velocity of 10 m/s. The numerical results, together with the

published experimental and analytical results are shown in Figure 6.8. The impact force

and the submergence of the cylinder are normalized in order to get a non-dimensional

representation.

In Figure 6.8, the normalized impact force called the slamming coefficient is represented

in term of the non-dimensional submergence. As shown in this figure, theoretical model

of von Karman (1929) indicates an initial slamming coefficient Cf0 = π, whereas that

of Wagner (1931) and Fabula (1957) is Cf0 = 2π. The coefficients Cf0 obtained by

the experiments exhibit a considerable degree of scatter. Based on experimental data,

Campbell and Weynberg (1980) proposed an empirical formulation for the slamming

coefficient as shown in Figure 6.8. The numerical results evaluated by Arai and Mat-

sunaga (1989) are closed to those of Von Karman in the range of h/b > 0.2, while in

the region of h/b < 0.2, the numerical results of Arai have sharper gradient and tend

to Campbell’s empirical curve. The present mathematical model shows good agreement

with the numerical results of Arai, with small difference in the region of small values of

sectional penetration. This could lead to the deduction of the validity of the model to

the problem of semi-circular shape falling into the water.

Note that the limitation of using strip theory is that of the thin body condition. Once

the sectional hydrodynamic force is obtained, the total loads on the fuselage at freeze

time step will also be obtained.

6.1.3 Other Force Components

6.1.3.1 Expression of Sectional Cross-Flow Drag

The cross-flow drag is an additional lift presented in case of planing hard chine form

when the chine is completely submerged. This statement is deduced from the fact that

in the case of planing craft sailing in calm water, once the chine is fully submerged,

there should not be any hydrodynamic force due to the fact that there is no rate of

change of sectional added mass since the chine is under water. In practice, there is

some component of the hydrodynamic force, and it is deduced to be that of cross-flow

drag. The physical meaning of the cross-flow drag is simply that of drag force of the
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Figure 6.8: Comparison of sectional added mass coefficient of different method-
ologies in term of submergence to half beam ratio.

flow around a particular section in normal direction to the keel, which is different from

the frictional drag force. The expression of sectional cross-flow drag of a wedge shape

section widely used by many researchers is as follows:

fcfd = CD,C cosβρbV 2 (6.17)

Remember that the expression of b and β used are as defined in Equation 6.6 and

Equation 6.9 respectively.

As mentioned above, this expression is valid for the wedge shape section but it is sub-

jected to be verified in the case of semi-circular shape section. Nevertheless, at the

present stage of the work, it is supposed to be valid, as the magnitude of sectional cross

flow drag is notably small comparing to that of the hydrodynamic force.

6.1.3.2 Expression of Sectional Buoyancy

The buoyancy force needs to be evaluated very carefully due to the form of aircraft

fuselage and flow separation phenomenon. Generally, the buoyancy is evaluated by

taking the product of water density and the submerge volume of the object. In the

case of aircraft fuselage, due to its semi-circular shape cross section, the flow separation

location is assumed to take place at the maximum submerged breath, which is the

maximum radius of the fuselage. Beyond the point of flow separation, the area of

submerged section is no longer only the arc of a portion of the semi-circle but a complete
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semi-circle plus the upper cross section of water above the fuselage, as it can be seen in

Figure 6.5. The section submerged area can be expressed in two different conditions:

Before flow separation:

Asub =
R2

2
[2β − sin 2β] (6.18)

After flow separation:

Asub =
πR2

2
+ 2R(h−R) (6.19)

6.1.3.3 Global Equations of Motions

Initially, the simulations were planned to be carried out in towed condition, in other

words, the model will be moving with constant forward speed without horizontal accel-

eration, and consequently, no surge motion is accounted for in these cases. The system

of global equations of motions can be reduced to only two equations with two unknowns.

Following the 2nd law of Newton, the system is represented as expressed in Equations

3.1 - 3.2, as well as the matrix form in Equations 3.35 - 3.37.

6.2 Numerical Experiments

Following the aim and the objective of the present work, Stirling Dynamics Limited; SDL

and University of Southampton; UoS (led by the Author) develop numerical models and

evaluate the load prediction together using different methodologies in order to carry

out the later cross-validation. The mathematical model developed by UoS has been

mentioned previously. Description of the other methods developed by SDL and the high

fidelity CFD setting are explained in Appendix C.

A series of numerical experiments has been carried out in order to perform a cross-

validation using high fidelity CFD results as the superior data. At the present stage of

the work, all of the test cases are carried out for steady state simulations. The model is

forced to move with constant velocities or accelerations. This implies the validity of the

results to be effective only at the instant of impact and the infinitesimal interval after

impact. The full natural motions after impact are subjected to be investigated once the

validation of current study is satisfied. Note that the work contained in this thesis will

be further refereed as “UoS’s model”. The configurations of a series of simulations are

presented in the following section:
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6.2.1 Test Configurations

A series of cases have been simulated by UoS’s model, SDL’s model and CFD tools. Two

geometries have been used, an “infinite” cylinder and a fuselage geometry described in

Appendix C. Different test configurations are presented in Tables 6.1 - 6.4.

A typical landing descent rate of an Airbus A320 is in the range of 0.9 m/s, and the

landing speed of 130 − 140 knots. The vertical impact speeds for the drop tests docu-

mented in Tables 6.1 - 6.4 are therefore well above the limits to be expected in a ditching

event. The horizontal velocity of the steady hydrodynamic load test is within the limits

to be expected in a ditching event.

Table 6.1: Steady cases.

θ ẋG żG z̈G h@t = 0 tmax timp@h = 0
(o) (m/s) (m/s) (m/s2) (m) (s) (s)

0 10 0 0 0 N/A N/A
5 10 0 0 0 N/A N/A
10 10 0 0 0 N/A N/A
0 50 0 0 0 N/A N/A
5 50 0 0 0 N/A N/A
10 50 0 0 0 N/A N/A

Table 6.2: Constant speed drop test cases.

θ ẋG żG z̈G h@t = 0 tmax timp@h = 0
(o) (m/s) (m/s) (m/s2) (m) (s) (s)

0 0 2 0 2 3 1
5 0 2 0 2 3 1
10 0 2 0 2 3 1
0 0 2.83 0 2 2 0.71
5 0 2.83 0 2 2 0.71
10 0 2.83 0 2 2 0.71
0 0 4 0 2 2 0.5
5 0 4 0 2 2 0.5
10 0 4 0 2 2 0.5

Table 6.3: Accelerated drop test cases.

θ ẋG żG z̈G h@t = 0 tmax timp@h = 0
(o) (m/s) (m/s) (m/s2) (m) (s) (s)

0 0 2.83 2 2 3 1.41
5 0 2.83 2 2 3 1.41
10 0 2.83 2 2 3 1.41
0 0 4 4 2 2 1
5 0 4 4 2 2 1
10 0 4 4 2 2 1
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Table 6.4: Accelerated drop test + forward speed cases.

θ ẋG żG z̈G h@t = 0 tmax timp@h = 0
(o) (m/s) (m/s) (m/s2) (m) (s) (s)

10 50 4 2 4 3 2

6.2.2 Results, Discussion and Cross Validation

The simulations described previously have been carried out, the results, discussion and

cross-validation are explained as follows:

6.2.2.1 Cylinder Drop Simulations

The first series of simulations was carried out in a simple cylindrical geometry. The

aim of these simulations is to validate the hydrodynamic loads model developed by SDL

and UoS. As detailed in Appendix C, SDL’s model and UoS’s model consist basically of

similar principle that the predominant component of the impact loads is hydrodynamic

component due to the added mass. Figure 6.9 shows time histories of the cylinder falling

vertically with constant speed into the water. At the instant of impact both SDL and

Uos’s models experience the maximum impulse load and decrease drastically in a very

small instant after. Once the cylinder submergence reaches the maximum beam (half

submerged), UoS’s model shows constant load as the added mass remains constant and

due to Equation 6.15, the load is also constant. While SDL’s model and CFD show

different loads trend after that situation as they included the other components within

the model. Nevertheless, all of them show the same trend since the instant of impact

with an acceptable difference of magnitude. This could imply the validity of the sectional

added mass model used in these numerical models.

6.2.2.2 Constant Horizontal Speed Towed Conditions

The fuselage model is towed with a number constant forward speeds and trim angles

and with CG at the water level. This series of tests could show the validity of horizontal

load component predicted by vertical added mass expression (UoS’s model). Figures

6.10 - 6.11 present the resulting loads acting on nine sections along the fuselage with the

first section at the nose and the ninth section at the tail. Note that the force component

shown here are parallel and perpendicular to the centreline, thus in any simulation, UoS’s

model cannot give the horizontal component, especially when θ = 0o. As its principal

requires the sectional velocity vertical component V perpendicular to the centreline to

evaluate the sectional load and always gives the result only perpendicular to the fuselage.

Both models show good agreement compared with CFD results. The maximum load

appears at the stagnation point, in other words, the point of intersection between the
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fuselage and the water line. Negative loads or suctions appear at the tail part. Due

to the fact that using the principle of rate of change of fluid momentum, the sectional

added mass at the tail part decreasingly varies proportional to the sectional geometry,

the resulting load is negative when evaluating with Equation 6.15.

6.2.2.3 Constant Vertical Speed Drop Simulations

This series repeats the simulations done in the first series by replacing the cylinder with

a fuselage geometry, dropping the model vertically with different vertical speed and

different trim angles. Figures 6.12 - 6.13 present the resulting loads at the moment that

the CG coincides with the water line. The overall results show good agreement between

the three methodologies. Nevertheless, the UoS’s model under-predicts the impact load

when θ = 0o, due to its ineffectiveness when the horizontal component of speed and load

cannot be evaluated appropriately.

6.2.2.4 Accelerated Vertical Speed with Zero Forward Speed Simulations

As well as the previous series, this series is carried out without the forward speed but

constantly accelerated and dropped vertically into the water. It can be seen in Figures

6.14 - 6.15 that the overall results also show good agreement as in the previous test

series except the cases of θ = 0o that the UoS’s model gives under-predicted results.

This could imply the obvious limitation of the UoS’s model that is ineffective when

simulating θ = 0o. Moreover, although it is not obviously significant, when simulating

with higher drop speed, the total load evaluated by the UoS’s model has a different

peak load location close to the nose section while the other methodologies present the

peak close to the tail part. This could be due to the fact that the predominant load in

the UoS’s model is the hydrodynamic force and the inclusion of hydrostatic force is not

sufficiently appropriated.

On the other hand, when considering the classical planing theory, the increment of lift

force beyond the immersed chine is explained by cross-flow drag phenomenon. In this

model, this phenomenon is simplified using the original expression applied in the planing

craft investigation. It might not be suitable for semi-circular geometry and also ditching

situation. More in-depth analysis approaching this phenomenon is recommended, in

order to be able to model it more appropriately.

6.2.2.5 Constant Horizontal Speed with Vertical Acceleration Simulations

The final simulations series is carried out with the aim of simulating as much as possible

the real ditching conditions. With this approach, the fuselage is moving with both verti-

cal and horizontal speeds. The vertical speed is accelerated with a constant acceleration,
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and the horizontal velocity remains constant and allowed to pitch freely implying the

towed condition. The effect of 2D motions has direct impact in pressure distribution

evaluated by UoS’s model.

It can be seen in Figure 6.16 that the shape of sectional forces appears to be obviously

different comparing to the other two methodologies. The preliminary assumption of this

behaviour is supposed to be the effect of inappropriate “Flow separation model”. This

does not affect the horizontal steady and vertical drop test cases. The original UoS’s

model defined that flow separation phenomenon occurred after the maximum beam of

the fuselage is under water. This simplification follows the original model applied in high-

speed planing hull dynamics that the flow separation occurs after the chines are under

water. Nevertheless, it is not valid when applied to aircraft fuselage due to the reduction

of geometry at the tail part, unlike the planing hull whose aft sections are prismatic. The

reduction of geometry affects directly the direction of pressure distribution, generating

negative pressure or suction according to the last term of Equation 6.15. In case that

the definition of original model is followed, the flow separation is defined in the manner

that the water is attached to the fuselage until the maximum sectional beam locations as

it is shown in Figure 6.16. Thus, the negative pressures are magnified. In other words,

only vertical flow separation has been defined in the original model.

When the fuselage is moving with horizontal motion, flow separation projected in hor-

izontal direction must be accounted for. Due to the reduction of geometry at the tail

part, when the object is travelling forward with very high speed, the water is no longer

attached to the object along its length. The locations of flow separation are difficult to

determine, the first assumption is made by simply modelling different flow separation’s

locations, as can be seen in Figure 6.17. The variation of locations defines the wetted

surface area at the tail starting from the original model and decreases slightly until the

flow is supposed to separate beyond the point the prismatic body ends.

The comparison is made again and shown in Figure 6.18. It can be seen that the pressure

distribution has a better fit at the tail part when flow separation location is supposed

to be of level 4. This can prove the simplified assumption of these such locations and

leads to more in-depth investigation when simulating the motions after impact. As it is

dynamical process, inappropriate evaluation of loads leads to inaccurate motions.

The cross validation presented in this chapter can confirm the initial validity of the

implementation of 2D strip based model to the capability of simulating aircraft ditching

under some limitations mentioned previously. In order to strengthen its validity, a series

of model experiments was planned and carried out with details presented in Chapter 7.
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Figure 6.9: Time histories of sectional force of 2D cylinder drop tests.
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Figure 6.10: 9 sectional forces of constant horizontal speed ẋG = 10 m/s.
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Figure 6.11: 9 sectional forces of constant horizontal speed ẋG = 50 m/s.
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Figure 6.12: 9 sectional forces of constant drop test of vertical speed żG = 2m/s.
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Figure 6.13: 9 sectional forces of constant drop test of vertical speed żG = 4m/s.
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Figure 6.14: 9 sectional forces of accelerated drop test with vertical acceleration
z̈G = 2 m/s2.
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Figure 6.15: 9 sectional forces of accelerated drop test with vertical acceleration
z̈G = 4 m/s2.
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Figure 6.16: 9 sectional forces of constant horizontal speed with vertical accel-
eration z̈G = 2 m/s2.

Figure 6.17: 9 sectional forces of constant horizontal speed with vertical accel-
eration z̈G = 2 m/s2 varying flow separation locations.
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Figure 6.18: Simplified assumption of different locations of flow separation.



Chapter 7

Application to Aircraft Ditching:

Ditching Experiments

A series of experiments are described which have been designed and conducted to validate

the numerical ditching model described in Chapter 6.

7.1 Background

Traditionally, model experiments have been the most reliable validation reference for

any kind of physical simulations. Aircraft ditching is difficult to reproduce exactly.

Moreover, the relevant parameters of ditching to investigate, i.e., impact load, pressure

distribution, motions and accelerations are complicated when attempting to carry them

out together. Two popular techniques of ditching investigation (Smith et al., 1952)

consist of different capabilities and limitations. The guided towing technique allows

the measurement of the impact load, as a reference ground is necessary in order to

take the value of this parameter. However, motions and accelerations are not recreated

accurately. While the free launching technique is capable of recreating realistic motions

and accelerations but without any means of measuring the impact loads.

Another essential consideration is that previous ditching experiments have been complex

and expensive. Therefore, the present work aims to find a simple way to carry out a series

of ditching experiments taking into account the availability of resources. Following the

scope of the actual goal, the impact load is the first parameter to investigate; a similar

guided towing technique seems to be the first alternative to follow. As it also allows the

instant accelerations and motions after impact to be captured. As well as it is sufficient

to use as reference data for the simulations done in Chapter 6, with the limitation of

evaluating the relevant parameters in a short interval after the moment of impact.

141
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In summary, the aim and objectives of planning this experimental campaign are, firstly,

to be used as validation data for the results from the mathematical model and conse-

quently, to implement and improve the model capability with the inclusion of appropriate

correction factor.

7.2 Experimental Planning and Procedure

The load on the fuselage can be measured either by integrating a number of discrete

pressure measurements or by measuring the total force acting on the fuselage. The

measurement of pressure requires a number of small area pressure transducers. The

measurement of total force acting on the fuselage is simpler and less expensive to achieve

using a loadcell. Also, an accelerometer is planned to include in order to evaluate the

acceleration of the model at the moment of impact.

7.2.1 Facility

Due to limitations of resources and facilities, it is difficult to build and install similar

equipment as it was done in previous experiments. Some adaptation for available facili-

ties is necessary. The Southampton Solent University Towing Tank is selected to use in

the present work due to the actual circumstance and availability. It is equipped with a

motorized carriage capable of achieving the maximum speed of 4.2 m/s. The dimensions

of the tank are:

• Length: 60.00 m

• Beam: 3.70 m

• Depth: 1.85 m

An important consideration is the maximum speed of the carriage used to accelerate

the model. The first approach will be finding corresponding model dimension using

Froude Scaling. Following the full-scale data in Table 7.1, the maximum landing speed

is 70 m/s, scaling the model down to the maximum speed of the carriage gives the

results shown in Table 7.2:

7.2.2 Preliminary Simulations

Due to the similarity of the model used in Chapter 6, the fundamental length and weight

of the full-scale fuselage are approximated and extracted from the commercial aircraft

Bombardier G7000 as follows:



Chapter 7 Application to Aircraft Ditching: Ditching Experiments 143

Table 7.1: Froude scaling of controlling parameters of free falling technique (1).

L (m) D (m) U (m/s) V (m/s)

Full scale 24 2.4 30 40 50 60 70 6

Model scale 0.88 0.09 5.74 7.66 9.57 11.49 13.4 1.15
1.2 0.12 6.71 8.94 11.18 13.42 15.65 1.34
1.5 0.15 7.5 10 12.5 15 17.5 1.5
1.8 0.18 8.22 10.95 13.69 16.43 19.17 1.64
2 0.2 8.66 11.55 14.43 17.32 20.21 1.73

2.64 0.26 9.95 13.27 16.58 19.9 23.22 1.99

• Length: 24.00 m

• Basic Operating Weight: 25, 764 kg

• Maximum Ramp Weight: 48, 308 kg

• Maximum Take off Weight: 48, 194 kg

• Maximum Zero Fuel Weight: 28, 350 kg

• Maximum Fuel Weight: 21, 523 kg

Table 7.2: Froude scaling of controlling parameters of free falling technique (2).

L D U V zG0 Fmax
(m) (m) (m/s) (m/s) (m) (N)

Full scale 24 2.4 30 40 50 60 70 6 3

Model scale 0.08 0.01 1.73 2.31 2.89 3.46 4.04 0.35 0.01 0.04
0.18 0.02 2.57 3.43 4.28 5.14 5.99 0.51 0.02 0.38
0.26 0.03 3.15 4.2 5.24 6.29 7.34 0.63 0.03 1.27
0.35 0.04 3.63 4.84 6.06 7.27 8.48 0.73 0.04 3.02
0.44 0.04 4.06 5.42 6.77 8.12 9.48 0.81 0.06 6.01
0.53 0.05 4.45 5.93 7.42 8.9 10.38 0.89 0.07 10.36
0.62 0.06 4.81 6.41 8.01 9.61 11.21 0.96 0.08 16.46
0.7 0.07 5.14 6.85 8.56 10.28 11.99 1.03 0.09 24.69
0.79 0.08 5.45 7.27 9.08 10.9 12.72 1.09 0.10 35.05
0.88 0.09 5.74 7.66 9.57 11.49 13.4 1.15 0.11 47.32
1.06 0.11 6.29 8.39 10.49 12.59 14.68 1.26 0.13 81.74
1.23 0.12 6.8 9.06 11.33 13.59 15.86 1.36 0.15 130.94
1.41 0.14 7.27 9.69 12.11 14.53 16.95 1.45 0.18 195.08
1.58 0.16 7.71 10.28 12.85 15.41 17.98 1.54 0.20 279.58
1.76 0.18 8.12 10.83 13.54 16.25 18.96 1.62 0.22 385.24

The dimensions of the model are scaled down using breadth Froude number, FnB , while

the corresponding masses are scaled down using constant volumetric density. The actual

FnB for this landing speed is 14.43. As it can be seen in Table 7.2, the limited speed

corresponding to the full-scale maximum speed (70 m/s) leads to scaled down model of

0.08 m length with approximately 0.02 kg of mass. This size of model will not allow
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Figure 7.1: Impact force in term of model length.

any kind of instrumental equipment to be installed, as it is too small. Then, when

considering the minimum full-scale landing speed (30 m/s), the corresponding model

scale dimension is of 0.44 m length, which is still too small.

A possible solution for the actual circumstance is proposed to be the assumption that

the impact forces are uniformly and directly proportional to the model dimensions. If

the impact forces corresponding the low landing speed range (low FnB ) are also of the

same behaviours, the high-speed range (high FnB ) should give proportionally the same

results. The proof of this assumption for the actual high FnB (14.43) is evaluated by

the mathematical model varying the model lengths (with corresponding landing speed),

and plotting a curve of impact force as shown in Figures 7.1 - 7.2.

As mentioned previously, considering the actual Froude number, the corresponding

model size is too small, and it is decided to use 1.58 m length model instead, in or-

der to facilitate the installation of measuring equipment. Hence, the Froude number,

FnB , reduces to 3.30 at the maximum speed of the carriage. Although the reduced

Froude number is significantly small comparing to the original Froude number, it will be

analysed in order to fulfil the assumption mentioned above. Note that at this stage of

the work, parameter of interest is only the global impact force, the motions after impact

are neglected implying a simplification of the tests to be fixed in pitch but free to heave.

Moreover, considering the mass of the model and applying Froude scaling to the full

scale weight results that the range of model’s mass is 9 kg - 16 kg corresponding to the

basic operating weight and maximum weight of the full scale aircraft respectively.

The plot of impact forces in terms of low landing speed is shown in Figure 7.3.
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Figure 7.2: Impact force in term of landing speed.

Figure 7.3: Impact force in term of low landing speed in different masses.

Obviously, the impact forces appear to be uniformly proportional to the landing speed.

Nevertheless, although it seems to be linear, the landing speeds are at the low range,

and this cannot be fully confirmed unless the higher speed can be evaluated.

The influence of model’s mass is another issue necessary to account for. As several

parts will be installed in the model, the effect of the mass on impact forces is analysed

numerically by the mathematical model. It is presented in Figure 7.4 and also shown

the uniform proportion when increasing the masses.
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Figure 7.4: Impact force in term of model’s mass.

Figure 7.5: Impact force in term of low landing speed extrapolating to 10 m/s.

It is believed that when increasing the landing speed to that corresponding to the full-

scale speed, the resulting total impact loads would be uniformly proportional to the

landing speed extrapolating in the identical trend. A preliminary series of this extrap-

olation is carried out by the present mathematical model and presented in Figure 7.5.

Note that the resulting impact forces shown in Figure 7.5 are larger than those in Figures

7.1 - 7.4 because the initial height above water before impact has been raised in order

to match the actual dimensions of the facility.
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Figure 7.6: Full launching equipment.

7.2.3 Fuselage Model

The geometry of the fuselage used in this work is based the commercial jet Bombardier

G7000, identical to that used in numerical simulations in Chapter 6. It is scaled down

to 1.50 m length fulfilling the decision of model’s dimension previously estimated. The

core of the model is made of medium density foam dividing into three main parts; tail,

cylindrical and nose part. In order to get the tail form as smooth as possible, it is split

again into 5 sections to achieve a conical form. The cylindrical part is split into two

part as the machine used to cut the foam has a limited length. The nose part is split

into six sections although it is not necessary, as this part does not seem to be affected

by the geometry-water interactions. All of the parts are joined together by epoxy resin

and then coated by carbon fibre fabric. This fabric allows the core to be strengthened

in order to survive the ditching impact.

7.2.4 Equipment

The use of launching equipment or the launching rig needs to meet the conditions of the

facility and the preliminary simulations. The horizontal landing speed can be achieved

by the towing speed of the tank’s carriage. While the vertical motions will be restricted

by a guided rail component. The whole equipment is shown schematically in Figure 7.6.

Details of its components are presented in Appendix D.

7.2.5 Instrumentation

The parameters of interest as mention previously are the total impact force and impact

acceleration. To fulfil this aim, three sensors are available covering the requirement of

the further data processing. The installation is represented schematically in Figure 7.7.



148 Chapter 7 Application to Aircraft Ditching: Ditching Experiments

Figure 7.7: Schematic of instruments installation.

The system consists of the following instruments:

• NOVATECH F332 2 Axis Loadcell: The instrument is capable of acquiring

bi-directional forces in two perpendicular axes. It is calibrated to the range of

±300 N and ±700 N in horizontal and vertical direction respectively.

• PCB PIEZOTRONICS 353B31 Single Axis Accelerometer: It operates in

a range of ±100g providing reading in gravity scale.

• Linear String Potentiometer PT5A: It provides measurement of linear dis-

placement with a range of 0−6 m. The resolution is claimed to be virtually infinite

with a capability of calibration into any convenient unit of measurement.

• National Instruments CompactDAQ Controllers cDAQ-913x: It features

a multi-core processor for intense multiple processing tasks simultaneously. It

operates with MS Windows 7 providing possibility of easily using LabVIEW to

control and acquire the data from the other instruments.

Details of each instrument are explained in Appendix D.
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7.2.6 Launching Technique

Regarding the launching technique, once the rig is installed in the aluminium frame of

the carriage, the model was raised such that the CG was 0.42 m above the water. Once

the carriage is up to speed, the model was released using a quick release mechanism. The

model was released towards the end of the run in order to minimise the forces exerted

on the model if it became fully submerged.

7.2.7 Uncertainty Analysis of the Instruments

Prior to commence the main experimental tests, a series of bench tests of the rig without

the model are carried out, in order to analyse the experimental uncertainties associated

to the instruments. The results can be used as an additional consideration when vali-

dating the mathematical model.

The tests consist of launching the sliding post (B) together with the loadcell case (C)

into a foam damper (see Appendix D). The only relevant controlling parameter in these

tests is the height above the floor. Each launch run is repeated until the data reading is

considered stable. The time histories of all of those three instruments are recorded and

analysed. Samples of the reading from the instruments are shown in Figure 7.8.

The uncertainty of the instruments is analysed quantitatively by taking the mean values

of each instance in time histories. Standard deviation (STD) and mean absolute error

(MAE) are then taken to represent the actual fluctuations considering the mean value

as the reference. For instance, as it can be seen in Figure 7.8, in a set of the reading of

displacement Sij (i indicates an independent run and j indicates each particular instance

in time history) at each particular instance j, the mean value of different runs i is taken

as S̄j = 1
N

∑N
i=1 Sij , where N is the number of launching runs.

The standard deviation of i runs are then evaluated as σSi−
√

1
n

∑n
j=1

(
Sij − S̄j

)2
, where

n is the number of the reading data in each particular run. This can identify the level of

fluctuation from the expected value (mean) of data read from the instrument. Similarly,

the mean absolute error is evaluated as εSi = 1
n

∑n
j=1 |Sij − S̄j |. The uncertainty of the

instruments is quantitatively represented in Table 7.3.

Each instrument committed a small magnitude of error of its reading. Considering the

order of magnitude of the error between these instruments, the linear pot and the loadcell

show good reliability. While the accelerometer presents the maximum percentage of

error comparing to its corresponding range. In order to confirm the accuracy of the

accelerometer’s reading, use of the second order time derivative of the displacement

reading taken from the linear pot is used and compared with the reading from the

accelerometer.
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Figure 7.8: Samples of time series of repeating free falling runs.
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Table 7.3: Standard deviations and mean absolute errors of the instruments.

Instruments Run Standard Deviation Mean Absolute Error

Linear Pot 1 0.0393897 (m) 0.0015516 (m)
2 0.0393897 (m) 0.0015516 (m)
3 0.0393897 (m) 0.0015516 (m)
4 0.0393897 (m) 0.0015516 (m)
5 0.0094813 (m) 0.0000899 (m)
6 0.0211978 (m) 0.0004493 (m)
7 0.0109706 (m) 0.0001204 (m)
8 0.0134497 (m) 0.0001809 (m)

Average 0.0265823 (m) 0.0008808 (m)

Accelerometer 1 0.3060892 (g) 0.0936906 (g)
2 0.3060892 (g) 0.0936906 (g)
3 0.3060892 (g) 0.0936906 (g)
4 0.3060892 (g) 0.0936906 (g)
5 0.2702256 (g) 0.0730219 (g)
6 0.2514512 (g) 0.0632277 (g)
7 0.2699678 (g) 0.0728826 (g)
8 0.3193071 (g) 0.1019570 (g)

Average 0.2919135 (g) 0.0857314 (g)

Loadcell 1 1.0788852 (N) 1.1639933 (N)
2 1.0788852 (N) 1.1639933 (N)
3 1.0788852 (N) 1.1639933 (N)
4 1.0788852 (N) 1.1639933 (N)
5 0.9061310 (N) 0.8210734 (N)
6 0.7448199 (N) 0.5547567 (N)
7 0.9635120 (N) 0.9283554 (N)
8 1.1523163 (N) 1.3278329 (N)

Average 1.0102900 (N) 1.0359989 (N)

7.2.8 Experimental Run Log

The experimental tests have been planned to carry out as many as possible in order to

cover the variation of the expected results when varying controlling parameters. The

controlling parameters considered in these tests are horizontal landing speed; U and

trim angles; θ. The trim angles vary from 6o to 10o. Each trim angle is run varying

the landing speeds starting from 0 m/s speed fall and then moving the carriage from

1 m/s to the maximum allowance of 4 m/s. The run log together with the observation

are presented in Table 7.4:

At the beginning of the tests, run002 to run004 are performed in order to observe the

limitation of the rig security system. As well as to observe the splash flow behaviour when

the model in completely floated in the water. As stated by the supplier, the loadcell is not

fully waterproof, a certain quantity of water could damage the appropriate functionality

of the sensor.
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Table 7.4: Experimental test run log.

Run file name U (m/s) θoset h0 (m) Remarks

1 run001 0 4 0.425 free falling
2 run002 1.01 4 0.425 towed
3 run003 1.97 4 0.425 towed
4 run004 3 4 0.425 towed
5 run005 3.71 4 0.425 launching test
6 run006 3.82 10 0.425 launching test
7 run007 0 10 0.425 free falling
8 run008 3 10 0.425 launching test
9 run009 0 10 0.425 free falling
10 run010 0 10 0.42 free falling
11 run011 3.88 10 0.42 launching test
12 run012 3 10 0.42 launching test
13 run013 1.97 10 0.42 launching test
14 run014 1.97 10 0.42 launching test
15 run015 1 10 0.42 launching test
16 run016 0 8 0.42 free falling
17 run017 3.88 8 0.42 launching test
18 run018 2.99 8 0.42 launching test
19 run019 1.97 8 0.42 launching test
20 run020 1 8 0.42 launching test
21 run021 0 6 0.42 free falling
22 run022 3.89 6 0.42 launching test
23 run023 3 6 0.42 launching test
24 run024 1.97 6 0.42 launching test
25 run025 1 6 0.42 launching test
26 run026 0 7 0.41 free falling
27 run027 3.94 7 0.41 launching test
28 run028 3 7 0.41 launching test
29 run029 1.97 7 0.41 launching test
30 run030 1 7 0.41 launching test
31 run031 0 9 0.41 free falling
32 run032 3.94 9 0.41 launching test
33 run033 3 9 0.41 launching test
34 run034 1.97 9 0.41 launching test
35 run035 1 9 0.41 launching test
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The reading from run005 - run009 are discarded, as the loadcell stopped working because

it got wet from spray. Then, starting from run010, the whole instrumental system

resumes the appropriate working order and gives the raw data in expected form of

results.

7.3 Signal Processing

The raw data contains a large amount of noise. These noisy signals are the results of

disturbance caused by the vibration of the carriage as well as the operating frequency

of its traction motor. As the sampling rate of the data acquisition is 10, 240 Hz, it

cannot be interpreted to any representation without increasing some intervals to see

those noisy spikes. By doing so, it leads to a careful consideration of selecting further

appropriate filtering techniques. Moreover, the disturbance manners are fully random.

It cannot be deduced with a simple assumption of a single frequency noise. Each run

will be particularly analysed in order to achieve the adequate filter.

7.3.1 Vertical Displacement

The vertical displacement is acquired by the linear string potentiometer. According to

the result of uncertainty analysis, it can be deduced that the accuracy of this instrument

is good. Although most of the raw data suffers a slight disturbance during the carriage

run, those noisy signals have the identical manner of spikes as shown in Figure 7.9.

The spikes point into only the downward direction, use of conventional filters or moving

average techniques would result in inaccurate smooth data. The expected smooth data

can be deduced to the upper envelope curve of the noisy signal.

Thus, Envelope Function Technique is used to smooth the reading from linear pot. As

per its definition, smooth curves containing the noisy signal are generated in both upper

and lower parts. It is shown in Figure 7.9 that the upper envelope is selected to be the

smooth signal of time history of the vertical displacement.

The smooth time history of displacement allows the derivation to velocity and acceler-

ation to be achieved. After converting to work in SI units, the first order derivative of

the displacement gives time history of velocity as well as the acceleration after applying

the derivative to velocity (2nd order derivation of displacement). The acceleration ob-

tained from the derivative of displacement can be then used to confirm the accuracy of

accelerometer. As the uncertainty analysis shows the reliability of the linear pot, using

an infinitesimal time step (10, 240 Hz) of the data acquisition instrument, the deduction

of accuracy of the acceleration derived from the displacement can be supposed.
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Figure 7.9: Sample of a displacement data with envelope curve zooming into
the interval of impact.

Figure 7.10: Definition of first impact location.

Moreover, following the geometry definition of the fuselage model. The smooth dis-

placement time history allows the “instant of first impact” to be defined as shown in

Figure 7.10.

The instant of impact is defined as an instant when the fuselage is firstly in contact with

the water. In other words, it is the point where hi = 0. Time histories of hi can be

obtained by the following relation:

hi(t) = zG(t)− l · sin θ (7.1)

Where l is the distance from CG to the location where the tail part begins.

Another instant of impact of interest is that so-called “instant of maximum impact load”.

It is defined as the point where the acceleration peak is maximum during the small

interval of impact. A sample of time histories of displacement, velocity and acceleration

together with the indication of both instants of impact is shown in Figure 7.11:
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Figure 7.11: Sample of smooth displacement and velocity and acceleration
derivation.
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The time shifts between the instant of initial impact and maximum impact are shown in

Table 7.5. The positive value represents the time lead of the maximum instant respected

to the initial instant while the negative value represents the time lag.

Table 7.5: Time shift between instant of initial impact and maximum impact.

θo U Initial Impact Maximum Impact Time Shift
(m/s) (s) (s) (s)

6 1 34.89824219 34.96992188 -0.071679687
2 24.46191406 24.48173828 -0.019824219
3 20.19130859 20.19296875 -0.001660156
4 18.0734375 18.10234375 -0.02890625

7 1 34.43115234 34.56699219 -0.135839844
2 23.04521484 23.08046875 -0.035253906
3 18.91298828 18.9515625 -0.038574219
4 17.46308594 17.56699219 -0.10390625

8 1 34.66220703 34.79892578 -0.13671875
2 23.65136719 23.77695313 -0.125585937
3 19.88076172 19.89296875 -0.012207031
4 20.87158203 20.88095703 -0.009375

9 1 35.47919922 35.5984375 -0.119238281
2 24.28916016 24.33994141 -0.05078125
3 22.47373047 22.56894531 -0.095214844
4 15.62236328 15.72597656 -0.103613281

10 1 35.19042969 35.20673828 -0.016308594
2 22.89990234 22.90048828 -0.000585937
3 19.70302734 19.71992188 -0.016894531
4 16.87587891 16.88994141 -0.0140625

7.3.2 Vertical Acceleration

The raw signals achieved from the accelerometer also suffer disturbances of random

amplitude. The difference from linear pot signals is that these signals are disturbed in

both upward and downward directions.

Choosing the optimal filter is typically an interactive trial and error process. The good-

ness of a filter is best based on visual inspection of the results. Unlike previous cases,

“Butterworth Low Pass Filter” is chosen to smooth the acceleration signals. The rele-

vant controlling parameters in this operation are the order of filter, Nf and the cut-off

frequency, fc. In order to select the most adequate fc, “Fast Fourier Analysis” is per-

formed prior to smooth the signal. A sample of FFT together with the smooth signal is

shown in Figure 7.12.

The resulting smooth signals of the accelerations obtained by using different fc chosen

from FFT are compared with the derivative accelerations from the displacements. The

filtered signal with different fc are also shown in Figure 7.12. The decision of fc is
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Figure 7.12: Sample of FFT analysis and smooth acceleration signals.



158 Chapter 7 Application to Aircraft Ditching: Ditching Experiments

taken on the basis of those values that are capable of giving the closest peak values to

those of derivative accelerations. Once the optimal fc are used, Both sets of signals give

very good agreement time histories with a small time shift of the instant of maximum

impact. The maximum impact accelerations from both sources together with the instant

of maximum impact and the time shifts are shown in Table 7.6.

Table 7.6: Maximum impact accelerations and time shift between reading and
derivative data.

θo U Maximum Maximum % error to the Time Shift
(m/s) derived z̈G (g) smoothz̈G (g) derive value (s)

6 1 0.6975 0.7388 5.921146953 0.101953125
2 1.0280 1.0360 0.778210117 0.013964844
3 1.0390 1.0420 0.288739172 0.041992188
4 0.9151 0.9151 0.000000000 0.000488281

7 1 0.6789 0.6694 1.399322433 0.175000000
2 0.8761 0.8031 8.332382148 0.061523438
3 1.0670 1.0590 0.749765698 0.05859375
4 0.7090 0.7213 1.734837800 0.138085937

8 1 0.7226 0.7171 0.761140327 0.158984375
2 0.6915 0.7118 2.935647144 0.151953125
3 0.8053 0.8151 1.216937787 0.028027344
4 0.9214 0.9165 0.531799436 0.019042969

9 1 0.8463 0.8608 1.713340423 0.131445313
2 0.8930 0.8783 1.646136618 0.058984375
3 0.7587 0.8407 10.80796099 0.100000000
4 0.7617 0.7267 4.594984902 0.108007813

10 1 1.0560 1.0680 1.136363636 -0.019042969
2 0.7885 0.8376 6.227013316 0.003515625
3 1.0410 1.0400 0.096061479 0.022949219
4 1.1870 1.1940 0.589721988 0.011914063

The order of magnitude of the time shift is less than 0.15 s. Comparing to the overall

interval of the impact that lasts 0.3 s, it can be considered small, leading to the good

agreement between both sources of acceleration data.

7.3.3 Vertical Impact Force

Unlike the vertical acceleration, there are no analytical or other reference sources to

compare with the vertical and horizontal impact forces read from the loadcell. Selection

of cut-off frequencies is carried out by visual approximation. A sample of FFT analysis

and smooth signals filtered by different fc is shown in Figure 7.13, together with the

accelerations from both sources.

The location of impact force in time history can be assumed to be the identical instance

as the impact acceleration. Although apparently there are several peaks that are larger

than the deduced peak of impact in time history, the most important point of interest
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Figure 7.13: Sample of FFT analysis and smooth impact force signals.

in the present work is only the instant of impact and the other peaks might be ne-

glected. For further in-depth consideration, time history of impact force obtained from

the experiment will be compared with those from numerical simulations in the validation

process.
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Figure 7.14: Free body diagram of the experimental rig system.

7.4 Validation

Following the aim of the actual experimental activities, the mathematical model devel-

oped in Chapter 6 will be validated using the results of the tests as validation reference.

7.4.1 Hydrodynamic Impact Force Extraction

Unlike the preliminary simulations, the actual situation of the experiments does not

comply the real ditching event. When launching the model with the rig, there is fric-

tion between the rail and the carriages, including the opposite force generated by the

restoring system of the linear pot. All of these additional forces cannot be neglected as

their magnitude is significant, resulting in smaller vertical acceleration comparing to the

gravity. While the real ditching event commits only the gravitational acceleration when

approaching to land into the water.

Relying on the fact of additional forces mentioned earlier, the signal reading from the

loadcell does not directly represent the hydrodynamic impact force. The free body

diagram of the system is shown in Figure 7.14.

The hydrodynamic impact force can be obtained by using the following relations:
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Figure 7.15: Sample of time histories of ditching event with variation of landing
speed.

mg − T − Ff = ma (7.2)

Mg + T − Fh = Ma (7.3)

Where m and M are respectively the mass of sliding post (B) and the model’s mass.

T is the reading from loadcell. Fh and Ff are hydrodynamic impact force and the sum

of frictions (linear pot restoring plus the friction between the rail and the carriages)

respectively and finally a is the acceleration of the whole system. A sample of time

history of the impact force is shown in Figure 7.15.

The variation of the impact forces in cases of committing the ideal gravitational accel-

eration is shown in Figures 7.16 - 7.17.

Note that, although the ideal preliminary numerical simulations (with gravitational ac-

celeration) show that the impact force is directly proportional to the landing speed,

in other words, increasing landing speed increases the impact force, the experimental

results do not show the same manner. The maximum landing speed gives a drop in

magnitude of the impact force. This occurrence is considered due to the fact that, as

mentioned previously about the launching technique, the launching trigger activates at

a very close instant when the carriage drastically decelerates to stop before reaching the

end of the tank. This leads to a consideration that the landing speed caught in this

interval is smaller than the desired speed due to the deceleration of the carriage.
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Figure 7.16: Sample of time histories of impact force resulting from simulations
with ideal gravitational acceleration.

Figure 7.17: Variation of impact forces in term of landing speed from simulations
with ideal gravitational acceleration.
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Figure 7.18: Sample of experiment’s simulations.

7.4.2 Simulations for Experimental Tests

As mentioned earlier, in order to carry out the accurate validation, a series of simula-

tions by the mathematical model is set based on the dynamic conditions obtained from

the experimental tests. Time histories of displacement, velocity and acceleration corre-

sponding to each particular case are set as predefined motion conditions to run within

the interval of impact. As it can be seen in Figure 7.18, due to the inappropriate event of

early launching mentioned previously, most of the maximum speed landing cases present

a slight drop of impact forces as happened in the experiments.

Moreover, flow separation location assumed in Chapter 6 is included in the mathematical

model, allowing the appropriate selection of the best suitable time histories between

both. Nevertheless, flow separation location is still only an assumption, the selection

of its level is on the basis of that, at the lowest speed, the flow is fully attached to the

fuselage, and begins to separate when increasing the landing speed.

7.4.3 Comparison

The first notification to account for when comparing and validating these activities

is that, the variation of magnitude of the impact forces is very slight. As the range

of landing speeds is not wide enough to produce that notable variation. Each value

differs from one to each other only in order of less than 5 N , as it can be seen also

in the preliminary numerical simulations. When also considering the uncertainty of

instruments, it results in a difficult issue to expect exactly the identical behaviours as

it occurs in the simulations. Therefore, the scope of the actual validation is defined as
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Figure 7.19: Sample of time histories resulting from both methodologies of a
fixed trim varying landing speed .

Figure 7.20: Impact forces in term of landing speed of experiments vs simula-
tions.

the confirmation of solely the mathematical model excluding those of the real ditching

event.

Figure 7.19 shows a sample of the resulting time history from both methodologies. The

maximum impact forces are compared in Table 7.7.

Some observations can be seen from Figures 7.15 - 7.16 as follows;
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Table 7.7: Data comparison of simulations vs experiments.

θo U Fzmax(Exp.) Fzmax(Sim.) Relative Error MAPE
(m/s) (N) (N) (%)

6 1 79.78 77.6045 0.027268742
2 101.6 99.8739 0.016989158
3 105.3 109.9966 0.044601979
4 99.94 106.0898 0.061534668 3.759863702

7 1 82.15 73.74535 0.102308593
2 104.6 98.85137 0.054958199
3 107.1 107.4602 0.003363251
4 87.77 85.05788 0.030900344 4.788259665

8 1 73.77 68.16977 0.075914768
2 73.2 71.62452 0.021522921
3 85.72 85.83265 0.001314145
4 84.74 101.637 0.199397816 7.453741267

9 1 83.93 85.19099 0.015024314
2 96.93 102.8546 0.061122546
3 86.57 90.8259 0.049161392
4 89.33 88.09321 0.01384522 3.4788368

10 1 80.69 81.80091 0.013767654
2 79.36 75.72427 0.04581319
3 81.59 83.12531 0.018817394
4 84.4 103.3662 0.22471745 7.57789219

• The impact force corresponding to the maximum landing speed of each fixed trim

slightly drops from the previous one.

• Variation of the impact forces in term of trim angle presents an uncertain trend,

complying the prediction only when running with 3 m/s of landing speed.

These unexpected trend of variation are the effect of uncertain accelerations due to the

external friction of the system committed in each launching run, including the accu-

mulated deviation from the original calibration of the system. Moreover, the obvious

cause of the slight drop of impact force at maximum speed is due to the difficulty of

achieving launching instant precision when running at that speed, as mentioned in Sec-

tion 7.4.1. However, in most cases, although the variation of impact forces in term of

landing speeds does not show the same trend as predicted in Figures 7.16 - 7.17, both

methodologies show fairly good agreement with a small unavoidable uncertainty due

to that slight variation of their magnitude. The errors and the deviation between the

resulting data from both methodologies are clearly under the uncertainty of instruments

analysed previously. Table 7.7 shows the errors committed between both by mean of

mean absolute percentage error.

The assumption to be further fulfilled is that, running at higher speed range would show

a more obvious variation of impact forces. The variation of impact forces is directly
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proportional to the variation of accelerations. It can be deduced that, actually, the

range of this validity is confirmed only under the low landing speed. Providing that

the present mathematical model is capable of predicting accurately the impact force at

this range, it is believed that extrapolating the full scale or increasing the landing speed

would give the expected behaviours.

The validation process of the present mathematical model has been carried out suc-

cessfully under limitations mentioned throughout the chapter. It can be deduced to be

capable of assessing ditching impact loads effectively. To fulfil the survivability of the

aircraft after impact, further implementations of the model and more complex corre-

sponding experiments are recommended.



Chapter 8

Conclusion and Further Work

The aims and objectives of the present research involve fundamentally in the devel-

opment of a mathematical model with the capability of simulating high-speed planing

dynamics. The works done so far during the project have fulfilled that requirement,

investigating the application of the model to include transverse motions and simulating

aircraft ditching.

The project aims to develop, implement and optimize a mathematical model following

the principle of potential flow based strip theory originally developed by Zarnick (1978,

1979). Several researchers have implemented Zarnick’s model by adding and modifying

some coefficient in order to react to more realistic physical phenomena. Nevertheless,

none of these related works mentioned in detail how to optimally use this kind of model.

The fundamental contributions of the project are verification and optimization of the

mathematical model of high-speed planing dynamics, providing the understanding of

influence of the relevant controlling parameters, including the extension application to

transverse asymmetrical plane motions and aircraft ditching load prediction.

The whole contributions mentioned above lead to the deduction of application of the

simplified sectional added mass expression of an expanding flat plate. It has been used

as the fundamental contribution to various applications along the whole process of the

project. Moreover, it has been proven to be widely applicable in different geometries,

implying the simplification of use with sufficient accuracy. Details of the contributions

are explained further along with their application.

8.1 Conclusion

The overview of work process, their results and conclusions of the whole project is

summarized as follows.
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• Development of the Mathematical Model:

– The system of equations of motions has been developed from the 2nd law of

Newton using the wedge water entry principle to evaluate sectional forces.

The system is initially developed to be capable of evaluating the longitudinal

plane motions. Consequently, the added mass coefficient used here is only

heave added mass.

– The implementation of the model is based on Zarnick (1978)’s mathematical

model. However, some notable modification has been done on the term of

partial differential of sectional added mass along the ship length, ∂ma/∂x
′.

Due to the different flow characteristic zone along the ship length, sectional

added mass distribution, ma is a sharp discontinuous function implying the

discontinuity of its partial differential. Zarnick avoided the discontinuity of

this term by using integration by part substitution, however, this technique

eliminates the possibility of showing the pressure distribution along the ship

length. It has been modified here using the continuous integration method.

– It has been found that by varying (increasing) number of strip sections, Ns,

the term ∂ma/∂x
′, did not fluctuate that sharply, but the largest fluctuation

in term of Ns is instead the time derivative term, ṁa. This term varies sharply

in discontinuous points and is of large magnitude. Furthermore, when being

multiplied by relative velocity perpendicular to the keel, V , the product is of

extremely magnitude and leads to significant different values in terms of Ns.

• Verification of the Mathematical Model:

– The verification process consists of the analysis of accuracy of time histories.

The proposed “Hypothesis of Accuracy of Time Histories” stated that when

varying (increasing or decreasing) the relevant controlling parameters, time

histories should converge to a uniform form that is considered as the most

accurate resulting series. Moreover, the real time histories of these simula-

tions do not exist in reality. The “accuracy” of time histories is then defined

as the RMSE of different time series evaluated by using different controlling

parameters(number of sections, Ns and time step sizes, ∆t), comparing to

those using the highest resolution. Smaller RMSE implies a higher accuracy

of the series. In other words, the time series get converged when their corre-

sponding RMSE get smaller comparing to the superior data (when simulating

with the finest pair of controlling parameter in this case). The first step of

verification is performed by analysing the influence of Ns and ∆t separately.

– At a stopped time step, the controlling parameter of the resulting forces and

accelerations is Ns. This parameter influences directly to the terms associated

to ma, especially ṁa. The peak value of ṁa distribution along the ship

length cannot be accurately picked if the resolution of Ns is not high enough.
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Then, when the simulation time is released, the controlling parameter in this

dynamical process is ∆t.

– Various time marching numerical solvers have been analysed varying ∆t. The

optimal solvers considering the computational time and the accuracy are those

from Runge-Kutta family methods confirming the original assumption of Zar-

nick (1978). Also, when considering the point of view of time marching step,

the solvers can be classified into two categories. The convergence verification

varying ∆t mentioned previously is evaluated using that so called “Fixed-Step

Solver”. This means ∆t is always constant during the whole time history.

While the original time marching solver used by Zarnick (1978) is “Variable-

Steps Solver”. In comparison with the fixed-step solver, it is found that when

using the initial ∆t < 0.01 s, there is no iteration performed under 1% of error

stopping criteria. The use of fixed-step solver is then deduced due to the less

complication in calculation routine providing better convergence behaviour.

– The mathematical model is then verified in a series of time history simula-

tions varying together both Ns and ∆t. For both regular and irregular wave

simulations, once the optimal parameters for accuracy are defined, it is neces-

sary to consider as well the optimal computational time. The pairs of RMSE

together with computational time ratio, Tcs corresponding to each pair of

Ns and ∆t are analysed by mean of Pareto Efficiency. This consideration is

essential due to the fact that in some cases of simulations, varying controlling

parameters results in altering small fluctuation of accuracy but magnifying

computational time or vice versa.

– The cases of moderate and large deadrise angles (β = 20o and β = 30o)

can be simulated properly with the model using small Ns and large ∆t and

give accurately the resulting time histories. Moreover, it is applicable for

almost the whole range of wave frequencies and amplitudes, implying also

the short computational times. Although using ∆t < 0.002 s is preferable for

better accuracy, the consideration of whether it is worth or not magnifying

computational times to gain non-significant difference of accuracy needs to

be accounted for.

– In case of small deadrise angle hull form (β = 10o), more dedicated selection

of the relevant controlling parameters is necessary to account for, due to

the sensitivity of distribution of ma and its derivations. Above all, when it

is travelling in the waves with small frequency and large amplitude (large

wave slope), increasing Ns and decreasing ∆t are inevitable, leading to the

consequence of longer computational time. Nevertheless, once ∆t applied is

smaller than approximately 0.002 s, Ns disengages its influence in convergence

of time histories, due to the fact that the peak values of accelerations can be

achieved appropriately and leads to the accurate motions for the next time

step.
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– In order to comply with the whole range of applicability, some more as-

pects of planing hull geometry are considered and analysed. Practically, the

modern planing craft have evolved their geometry, resulting in non-constant

dearise angle hull form. The verification of optimal parameters also has been

done simulating a variable deadrise planing hull. The overall convergence

behaviours do not differ from the cases of constant deadrise, as long as the

minimum, or the main body deadrise is identical to the range of that constant

deadrise.

– Scale effects also have been investigated. Two scaled up models of those con-

stant deadrise hulls have been simulated in the scaled up wave conditions.

The resolution of controlling parameters is set in the identical manner of

variation, in order to deduce the dimensional effect of those parameters. The

overall convergence shows the same behaviours as the original models, includ-

ing the better behaviours of the case of small deadrise angle that converges

better at ∆t < 0.002 s. this could lead to the validity of the mathematical

model to a rich variety of scale and geometry.

• Validation of the Mathematical Model:

– The present mathematical model is validated against Fridsma (1969, 1971)’s

experiments and Zarnick (1978, 1979)’s simulations for performances in reg-

ular and irregular waves.

– The attitude in calm water simulated by the present model gives a good agree-

ment to the references except at low speed, due to the fact that there is no

inclusion of wave resistance component in the model, which is a predominant

component in that speed range.

• Extension to Transverse Asymmetrical Motions:

– The first extension to the present mathematical model is the capability of

simulating transverse plane motions. The model implementation follows the

basis of Ruscelli (2009)’s work providing more sources of validation. The

first source is a series of fixed heel planing hull experiments carried out by Li

(2014). The other is an extensive series of experiments performed by Rosén

and Garme (2006).

– The comparison to the first source shows a fairly good agreement in term of

the trend of parameters, although the magnitude presents uniformly constant

differences. This leads to the deduction of a lack of an additional factor terms

in the equations of motions that can be proposed as an implemented future

work.

– The comparison to the second source shows an overall good agreement, except

the responses in the zone of resonant frequency that the simulations present



Chapter 8 Conclusion and Further Work 171

a larger magnitude. This happens due to the lack of appropriate damping

component in the equations of motions, as it is predominant in this frequency

area.

• Application to Aircraft Ditching:

– In conjugation with the aircraft ditching, this application is proposed con-

sidering the fact that the original research approaching planing dynamics

was seaplane landing load prediction done by von Karman (1929) and Wag-

ner (1931). In this application, the present mathematical model is basically

modified to gain the capability of evaluating pressure acting on semi-circular

shape rather than the original wedge shape.

– The sectional added mass term in the equations of motions is modified fol-

lowing the assumption of an expanding flat plate as in the case of a wedge

shape. The most challenging part of this implementation is finding an ap-

propriate expression of sectional added mass coefficient. This approach has

been fulfilled by the classic Lewis Conformal Mapping, that by merging with

the expression of sectional added mass, the expression in form of deadrise

dependent has been found.

– Unlike the wedge shape geometry, the semi-circular shape experiences a uni-

form change of deadrise angle as increasing the submergence, leading to the

consideration of modification of the other deadrise dependent terms in the

equations of motions.

– The first approach verification that is the confirmation of validity of sectional

added mass expression shows good agreement results compared with the pre-

vious references. Consequently, by combining with the other modification of

components, the adequate equations of motions for semi-circular shape object

is set.

– The cross-validation is carried out compared with other two techniques pro-

vided by Stirling Dynamics Ltd. (Bonanni et al., 2015; Vandewaeter et al.,

2015). A series of ditching simulations in different conditions is performed,

covering the overall possibility of occurrences in reality. The three method-

ologies present fairly good agreement with results under the following consid-

erations:

∗ The motions of aircraft prior and after impact are under the steady state

with constant velocities in both vertical and horizontal directions.

∗ The aircraft is always under towed condition implying the constant hor-

izontal landing speed after impact.

– As the real ditching event does not behave under the conditions mentioned

above, the validity of those methodologies can be confirmed under limitation

of the instant of impact and a short interval post impact. The impact loads
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and the initial post impact motions are believed to be valid when evaluating

with those methodologies.

– To enable the complete applicability, the mathematical model has also imple-

mented the capability of unsteady state simulations with a simple assumption

of available deceleration components. Unlike the real ditching events, the sim-

ulation keeps a significant higher horizontal velocity at the end of identical

time interval, while in the real ditching event, the post impact horizontal

deceleration is extremely high that stops the aircraft in very short distance

once the hull has hit the water.

– Fundamental cause of this occurrence is the lack of an appropriate model of

horizontal added mass. The original mathematical model ignores this compo-

nent, as when the planing craft is operating, the wetted surface area is small

enough to not involving with the water added mass in the horizontal direc-

tion. On the other hand, as the body of the fuselage is no longer propelled

once being in contact with the water, it commits a larger sinkage, leading

to the increment of wetted surface area, and consequently, the horizontal

added mass component cannot be neglected. Modelling the horizontal added

mass within the strip theory is complicated, some simplification should be

suggested as a further possible implementation of the present project.

– Another significant phenomenon observed from the simulations is that, the

pressure distribution at the tail sections is in the opposite direction of that

in the cylindrical sections. In other words, the tail part suffers suction loads

when being in contact with the water. This phenomenon can be explained

mathematically by the last term of the sectional force expression (Equa-

tion 3.10). Due to its space derivative property, when a geometry form di-

minishes its size, it becomes predominant and causes the negative value for

the whole expression. Moreover, this term has a pronounced effect leading

to a very high negative magnitude in which initially, the results significantly

differ from the those achieved from CFD simulations.

– However, a fact from this occurrence is discovered, the aircraft fuselage has

no transom stern, horizontal flow direction does not separate obviously as it

happens around the transom of planing hull. The location of horizontal flow

separation around the tail part of the fuselage is difficult to define, although

the vertical flow can be simply supposed to separate beyond the maximum

beam when the circular form reaches the half submergence. Therefore, a

set of assumptions of flow separation locations is proposed varying from no

horizontal separation gradually to the maximum separation at the beginning

point of the tail. A certain level of flow separation enables the results to get

a better fit to the results from other two methodologies. Nevertheless, the

flow separation locations present speed dependent property, more in-depth

analysis in this phenomenon is proposed as a further implement work to the
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present project, which could also fulfil the capability when developing into

the fully unsteady state simulations.

• Ditching Experiment and Validation:

– A series of experimental tests has been carried out, in order to strengthen

the validity of simulation tools. It was planned initially to be capable of

covering the validity of the whole range of landing speeds recommended by

the relevant authorities, however, due to the limitation of available resources

and facilities, it was only able to perform solely in the low range of landing

speeds.

– Several challenges have been presented during the experimental planning.

First of all, regarding the previous works, the ditching tests were done with

the full-scale geometry or at least large model scaling. This required a gi-

gantic system and facilities and consequently, a large amount of resource and

budget. Another fact is that, it has been complicated to carry out the whole

range of desired results, i.e., motions, accelerations of the impact and pressure

distribution altogether. As by employing the hanging and free fall ditching

technique, only motions and accelerations can be achieved but pressure dis-

tributions. In the opposite way, using guided launching technique allows the

pressure distribution and the impact force to be read, but as it is towed, the

real motion behaviours are restricted.

– Regarding the technique used in the experimental tests, as the validity of

numerical technique is still limited to present only impact force, accelerations

and motions in a small interval post impact, a guided launching technique

is chosen. It allows impact forces to be achieved and compared with those

obtained from the numerical simulations. The assumption of comparison is

based upon the belief that, providing that the comparison in low-speed range

gives good agreement results, the numerical should be valid to simulate also

in the higher speed range.

– Prior to the experimental events, the expected behaviours have been simu-

lated through the numerical simulations. The results can be interpreted into

a trend line of impact force in term of landing speed. This trend line then

also is capable of giving an approximation of expected result stated earlier

for the high-speed range.

– The motions during each run are recorded and used again as input data to

re-simulate the real experimental behaviours using the numerical technique.

By doing so, the overall result comparisons show good agreement leading to

the deduction of the full validity of the numerical technique and a partial one

when considering the higher speed range.
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8.2 Future Work

The principal targets of the project have been successfully reached, overcoming the huge

amount of task to carry out under the limited time. All of the works presented have

been developed to certain conditions that are widely opened for various possible further

implementations such as:

• Regarding the transverse motion prediction, the mathematical model still has a

missing correction factor to be included, in order to be capable of predicting more

accurately calm water behaviour when navigating with transverse instability situ-

ation. On the other hand, in lateral and oblique wave simulations, although the

capability of the model in high frequency area is effective, damping component as

predominant term in natural frequency area needs to be included in order to fulfil

the whole range of applicability. Analysis approaching the damping component of

planing roll motion is strongly recommended, commencing from possibility of using

conventional roll damping until achieving the most appropriate for this particular

case.

• Regarding the aircraft ditching prediction, its validity is under the limitation of

applicability only the short interval during impact, due to the lack of an appro-

priate horizontal acceleration component to modelled accurately the full motions

after impact. Analysis approaching horizontal added mass of the fuselage under

water is proposed as first priority in order to modelled correctly its behaviour once

in contact with the water. On the other hand, it is also necessary to investigate

appropriate flow separation models in order to be able to simulate more accurately

the pressure distribution of the tail part of fuselage. As its influence reflects back

directly to the fuselage damage due to post impact loads and motion behaviours.

• Regarding the ditching experiments, once the facility of higher landing speed is

available, the numerical tool validity can be completely strengthened using the

results covered any range of landing speeds.



Appendix A

Detailed Development of

Equations of Motions

Detailed of the fully developed equations of motions of the longitudinal plane motions,

as well as the extension to the transverse plane motions are explained here.

A.1 System of Equations of Motions

The system of equations of motions is derived from the 2nd Law of Newton and after

reducing to two degrees of freedom (heave and pitch) implying the towed condition with

constant forward speed (ẍG = 0 and ẋG = constant), it is expressed in the following

form:

M · z̈G(t) =
∑

Fz(¨̄xG(t), ˙̄xG(t), x̄G(t), t)

Iyy · θ̈(t) =
∑

My(¨̄xG(t), ˙̄xG(t), x̄G(t), t)
(A.1)

Where:

• M : is ship’s mass in kg

• Iyy : is ship’s moment of inertia around axis y′

• z̈G : is ship’s acceleration in z direction

•
∑
Fz : is sum of forces in z direction

•
∑
My : is sum of moments around y′ direction
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• ¨̄x = (ẍG, z̈G, θ̈) : Acceleration vector

• ˙̄x = (ẋG, żG, θ̇) : Velocity vector

• x̄ = (xG, zG, θ) : Displacement vector

• t : time

This is a system of two fully nonlinear equations which is a function of accelerations,

velocities, displacement and time. The right hand side of the equations are the sum of

forces and moments acting on the ship’s hull, it consist of the following components:

∑
Fz = −(Fhyd + Fcfd) · cos θ − Fb +D · sin θ +W∑
My = Mhyd +Mcfd +Mb −D · xd

(A.2)

Substituting Equation A.2 into Equation A.1 we have:

M · z̈G = −(Fhyd + Fcfd) · cos θ − Fb +D · sin θ +W

Iyy · θ̈ = Mhyd +Mcfd +Mb −D · xd
(A.3)

Where each component is the integration along the ship length of individual sectional

forces:

• Fhyd =
∫
L fhyddx

′: Hydrodynamic Lift Force

• Fcfd =
∫
L fcfddx

′: Cross Flow Drag

• Fb =
∫
L fbdx

′: Buoyancy Force

• D: Drag Force

• W : Ship Weight

• Mhyd =
∫
L fhydx

′dx′ : Hydrodynamic Lift Moment

• Mcfd =
∫
L fcfdx

′dx′ : Cross Flow Drag Moment

• Mb =
∫
L fbx

′dx′ : Buoyancy Moment

• xd: Drag Arm
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A.2 Sectional Forces

The forces acting on an individual section along the ship length are explained as follows:

A.2.1 Sectional Hydrodynamic Lift Forces

The sectional hydrodynamic lift forces are associated to the rate of change of fluid mo-

mentum. They are determined according to the theory of a calm water penetrating

wedge of Wagner (1931). The 2D penetrating wedge is replace by a flat lamina by the

assumption that the fluid accelerations are much larger than gravitational acceleration.

According to Wagner (1931), the force associated to the rate of change of fluid momen-

tum of the oncoming fluid in terms of the added mass of the particular cross section

is:

fhyd =
D

Dt
(ma · V )

= ma · V̇ + ṁa · V − U ·
∂

∂x′
(ma · V ) (A.4)

From Equation A.4, U is velocity of the ship parallel to keel normal to V . Both ve-

locity components U and V can be expressed in terms of earth-fixed coordinate system

components as follows:

U = U(x′)

= ẋG · cos θ − (żG − ww(x′)) sin θ

V = V (x′)

= ẋG · sin θ + (żG − ww(x′)) cos θ − θ̇ · x′

V̇ = V̇ (x′)

= ẍG · sin θ + (z̈G − ẇw(x′)) cos θ + θ̇(ẋG cos θ − (żG − ww(x′)) sin θ)− θ̈ · x′

(A.5)

Where ww(x′) and ẇw(x′) are wave orbital vertical velocity and acceleration respectively,

which is functions of only ship length coordinate in each time step.

According to Wagner (1931), the added mass for a penetrating wedge can be approxi-

mated by the high frequency solution. Note that in the case, the added mass used in

this mathematical model is only heave added mass which can be elaborated to obtain

other motion’s coefficients.
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ma = Cm ·
π

2
· ρ · b2 (A.6)

Where:

• ma is sectional added mass.

• Cm is sectional added mass coefficient.

• ρ is water density.

• b is half beam of individual section.

And consequently, time derivative of the added mass is expressed as:

ṁa =
∂ma

∂t
= Cm · π · ρ · b ·

db

dt
(A.7)

The half beam b is related to the section submergence h by b = h/ tanβ. As mentioned

previously, the water pile-up phenomenon influences significantly to the alteration of

half beam, the expression of this factor found by Payne (1981) is shown as follows:

Cpu =
π

2
− β

(
1− 2

π

)
(A.8)

And then the corrected half beam including pile-up phenomena becomes b = Cpuh/ tanβ.

Thus, the expression of sectional added mass and its time derivative can be expressed

as a function of section submergence as follows:

ma = Cm ·
π

2
· ρ ·

(
Cpuh

tanβ

)2

ṁa = Cm · π · ρ · h ·
(
Cpu

tanβ

)2 dh

dt

(A.9)

This implies that the sectional added mass and its time derivative are functions of

deadrise angle, β, and section submergence, h. Both can be expressed as a function of

body-fixed coordinate:
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β = β(x′)

h = h(x′)

= z′k +

(
zG − x′ sin θ

cos θ

)
− r

cos θ

ḣ = ḣ(x′)

=
dh(x′)

dt
=

(
( ˙zG − x′ cos θθ̇) + (zG − x′ sin θ) sin θθ̇

cos2 θ

)
−

(
ṙ cos θ + r sin θθ̇

cos2 θ

)
(A.10)

Where:

• z′k: Coordinate of keel in ship-fixed coordinate system.

• r(x′) and ṙ(x′): Wave elevation and its time derivative at Each Time Step .

The expression of wave elevation, its time derivative, wave orbital vertical velocity and

acceleration are functions of time and space. As the present calculation is in each time

step, the functions are reduced to be only space dependent in earth-fixed coordinate

System (x) as follows:

r = r0 cos (kx+ ωt)

ṙ = −r0 sin (kx+ ωt)
d

dt
(kx+ ωt)

= −r0 sin (kx+ ωt) (kẋ+ ω)

ww = r0ω sin (kx+ ωt)

ẇw = r0ω cos (kx+ ωt) (kẋ+ ω)

(A.11)

Then, converting to be functions of space in body-fixed coordinate system (x′):

r(x′) = r0 cos
(
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
+ ωt

)
ṙ(x′) =

d

dt
r(x′)

ww(x′) = −r0ω sin
(
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
+ ωt

)
ẇw(x′) =

d

dt
ww(x′)

(A.12)

Substituting Equation A.12 and Equation A.10 into Equation A.9, the sectional added

mass ma and its time derivative ṁa will be a function of only body-fixed coordinate x′
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at each time step as the rest of variables in Equation A.10 are fixed and updated later

when the time is released to progress.

ma(x
′) = Cm ·

π

2
· ρ ·

(
Cpu(x′)h(x′)

tanβ(x′)

)2

ṁa(x
′) = Cm · π · ρ · h(x′) ·

(
Cpu(x′)

tanβ(x′)

)2 dh(x′)

dt

(A.13)

Finally, by substituting Equation A.13 and Equation A.5 into Equation A.4 the expres-

sion of sectional hydrodynamic lift force in function of x′ is obtained:

fhyd(x
′) =

D

Dt

(
ma(x

′) · V (x′)
)

= ma(x
′) · V̇ (x′) + ṁa(x

′) · V (x′)− U(x′) · ∂
∂x′

(
ma(x

′) · V (x′)
)

(A.14)

A.2.2 Sectional Cross Flow Drag Force and Moment

The additional lift term due the cross-flow drag on the surface of a water penetrating

wedge is expressed as:

fcfd = CD,c · cosβ · ρ · b · V 2 (A.15)

It is as well a function of x′ by substituting Equation A.5 and Equation A.10 into A.15:

fcfd(x
′) = CD,c · cosβ(x′) · ρ ·

(
Cpu(x′)h(x′)

tanβ(x′)

)
· V (x′)2 (A.16)

Where CD,c is the cross flow drag coefficient which Zarnick (1978) used the value of 1.0

while Keuning (1994) used 1.33.

A.2.3 Sectional Buoyancy Force

In this case, the buoyancy force on a segment is assumed to act perpendicularly to the

keel and equal to the equivalent static buoyancy of section multiplied by a correction

factor abf :
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fb = abf · ρ · g ·Asub(x′) (A.17)

Where Asub(x
′) is section submerged area. It is considered as the 2D sectional area

under still water level. This implies that the case where the chine is already wet or fully

submerged, the total submerged area is still accounted in order to meet the requirement

of use of buoyancy correction factor abf . In other words, abf is already established

to correct the flow separation phenomenon, therefore, the submerged area needs to be

expressed as it is without flow separation.

A.3 Total Forces and Moments

A.3.1 Total Hydrodynamic Forces and Moments

The total hydromechanic forces and moments are the integration along the ship length

of sectional forces. Due to the presence of flow separation at transom, a correction

factor called “Near Transom Correction Factor: Ctr” presented by Garme (2005)

is applied, in order to correct the pressure distribution at transom zone in which the

pressure is reduced to atmospheric. The expression of near transom correction factor is

written as:

Ctr = tanh

(
2.5

0.34 ·Bm · Cv
·
(
x′ − x′tr

))
(A.18)

Where:

• Bm: Full breadth of the main section.

• Cv = Vs√
g·Bm

: Froude number over breadth.

• x′tr: Body-fixed coordinate of transom stern.

The total forces and moments are evaluated as follows:
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Fhyd =

∫
L
Ctr · fhyddx′

Mhyd =

∫
L
Ctr · fhydx′dx′

Fcfd =

∫
L
Ctr · fcfddx′

Mcfd =

∫
L
Ctr · fcfdx′dx′

Fb =

∫
L
Ctr · fbdx′

Mb =

∫
L
Ctr · fbx′dx′

(A.19)

A.3.2 Drag Force and Moment

Drag force or frictional resistance is determined by:

D =
1

2
· ρ · U2 · Sw · CF (A.20)

Where:

• ρ: Water density.

• U : Velocity component parallel to keel.

• Sw =
∫
L sw(x′)dx′: Wetted surface area.

• sw(x′): Sectional wetted curve.

• CF : Drag coefficient.

The frictional resistance is strongly dependent of three fully nonlinear parameters, U ,

Sw and CF . Wetted surface area is obtained by integrating sectional wetted curve along

the ship length, taking into account the three different zone of flow phenomena and

water pile-up.

The friction coefficient is determined using the ITTC formula:

CF =
0.075

(logRn − 2)2
(A.21)
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And finally, the Reynolds number is:

Rn =
U · Lk
ν

(A.22)

Where ν is kinematic viscosity of fluid domain and Lk is keel wetted length. The keel

wetted length can be determined as a function of section submergence h whereas in a

particular section, h ≥ 0 means the keel at this local is wet. Otherwise, if h < 0, the

keel is dry.

A.4 The Global System and Matrix Form

Substituting Equation A.19 and Equation A.20 into Equation A.3 resulting in:

M · z̈G = −
(∫

L
Ctr · fhyddx′ +

∫
L
Ctr · fcfddx′

)
· cos θ −

∫
L
Ctr · fbdx′ +D · sin θ +W

Iyy · θ̈ =

∫
L
Ctr · fhydx′dx′ +

∫
L
Ctr · fcfdx′dx′ +

∫
L
Ctr · fbx′dx′ −D · xd

(A.23)

Then, the system can be elaborated into the following form:
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Heave Equation:

Mz̈G = −
(
ẍG sin θ

∫
L
Ctrmadx

′

+ ẋG cos θθ̇

∫
L
Ctrmadx

′

+ z̈G cos θ

∫
L
Ctrmadx

′

− żG sin θθ̇

∫
L
Ctrmadx

′

− cos θ

∫
L
Ctrmaẇwdx′

+ sin θθ̇

∫
L
Ctrmawwdx′

− θ̈
∫
L
Ctrmax

′dx′

+

∫
L
Ctrṁa · V dx′

−
∫
L
CtrUV

∂ma

∂x′
dx′

+ cos θ

∫
L
CtrUma

∂ww
∂x′

dx′

+ θ̇

∫
L
CtrUmadx

′

+

∫
L
Ctr · CD,c · cosβ · ρ · b · V 2dx′

)
cos θ

−
∫
L
Ctr · abfρgAsubdx′

+D sin θ

+W

(A.24)
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Pitch Equation:

Iyy θ̈ = ẍG sin θ

∫
L
Ctrmax

′dx′

+ ẋG cos θθ̇

∫
L
Ctrmax

′dx′

+ z̈G cos θ

∫
L
Ctrmax

′dx′

− żG sin θθ̇

∫
L
Ctrmax

′dx′

− cos θ

∫
L
Ctrmaẇwx

′dx′

+ sin θθ̇

∫
L
Ctrmawwx

′dx′

− θ̈
∫
L
Ctrmax

′2dx′

+

∫
L
Ctrṁa · V x′dx′

−
∫
L
CtrUV

∂ma

∂x′
x′dx′

+ cos θ

∫
L
CtrUma

∂ww
∂x′

x′dx′

+ θ̇

∫
L
CtrUmax

′dx′

+

∫
L
Ctr · CD,c · cosβ · ρ · b · V 2x′dx′

−
∫
L
Ctr · abfρgAsubdx′

−Dxd

(A.25)

The integral terms in Equation A.24 and Equation A.25 will be assigned to the following

coefficients:



186 Appendix A Detailed Development of Equations of Motions

CA =

∫
L
Ctrmadx

′ CB =

∫
L
Ctrmaẇwdx′

CC =

∫
L
Ctrmawwdx′ CD =

∫
L
Ctrmax

′dx′

CE =

∫
L
CtrṁaV dx′ CF =

∫
L
CtrUV

∂ma

∂x′
dx′

CG =

∫
L
CtrUma

∂ww
∂x′

dx′ CH =

∫
L
CtrUmadx

′

CK =

∫
L
Ctrmaẇwx

′dx′ CM =

∫
L
Ctrmawwx

′dx′

CN =

∫
L
Ctrmax

′2dx′ CO =

∫
L
Ctrṁa · V x′dx′

CP =

∫
L
CtrUV

∂ma

∂x′
x′dx′ CQ =

∫
L
CtrUma

∂ww
∂x′

x′dx′

CR =

∫
L
CtrUmax

′dx′

By eliminating the terms associated to ẍG = 0 and using the coefficients defined above,

Equation A.24 and Equation A.25 can be rewritten into the following form:

Mz̈G = −
(
CA cos θẋGθ̇ + CA cos θz̈G − CA sin θżGθ̇ − CB cos θ + CC sin θθ̇ − CDθ̈

(A.26)

+ CE − CF + CG cos θ + CH θ̇ − Fcfd
)

cos θ − Fb +D sin θ +W (A.27)

Iyy θ̈ = CD cos θẋGθ̇ + CD cos θz̈G − CD sin θżGθ̇ − CK cos θ + CM sin θθ̇ − CN θ̈
(A.28)

+ CO − CP + CQ cos θ + CRθ̇ +Mcfd +Mb −Dxd (A.29)

Then, the terms associated to the accelerations are moved to the left hand side of the

system:

Mz̈G + CA cos2 θz̈G − CD cos θθ̈ = −
(
CA cos θẋGθ̇ − CA sin θżGθ̇ − CB cos θ + CC sin θθ̇

+ CE − CF + CG cos θ + CH θ̇ − Fcfd
)

cos θ − Fb +D sin θ +W

Iyy θ̈ − CD cos θz̈G + CN θ̈ = CD cos θẋGθ̇ − CD sin θżGθ̇ − CK cos θ + CM sin θθ̇

+ CO − CP + CQ cos θ + CRθ̇ +Mcfd +Mb −Dxd
(A.30)

The equations A.30 can be re-ordered to the following matrix form:
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A · ẍ = B (A.31)

Where:

A =

(
M + CA cos2 θ −CD cos θ

−CD cos θ Iyy + CN

)
(A.32)

ẍ =

(
z̈G

θ̈

)
(A.33)

B =

(
F ′z +D sin θ +W

F ′θ −Dxd

)
(A.34)

In which F ′z and F ′θ are the total hydromechanic forces and moments minus the terms

associated to the motion accelerations.

To solve the system, it will be re-arranged in the following form:

ẍ = A−1 ·B (A.35)

Now the accelerations corresponding to each time step are obtained. The next step is

to evaluate the time marching procedure to get the time history of displacements and

velocities.

A.5 Modification to Application in Asymmetric Condi-

tions

The present mathematical model is modified here to be capable of dealing with asym-

metric water entry problem. Each component is developed as follows:

A.5.1 Hydrodynamic Lift Force:

The Hydrodynamic lift force will be evaluated separately in two equivalent port and

starboard side sections and following the fundamental the formulation of rate of change

of fluid momentum:
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fhP,S =
1

2

(
D

Dt

(
maP,SVP,S

))
=

1

2

(
maP,S V̇P,S + ṁaP,SVP,S − U

∂

∂x

(
maP,SVP,S

))
(A.36)

The expression for the sectional added mass adopted in the present formulation is de-

scribed in the following form:

maP = Cmρ
π

2

(
CpuhP

tan (β − φ)

)2

(A.37)

maS = Cmρ
π

2

(
CpuhS

tan (β + φ)

)2

(A.38)

The expression of time derivative of sectional added mass appears to be more complicated

due to the appearance of roll angle and its dynamic properties which are time dependent

:

ṁaP = Cmρπ

(
hPCpu

tan(β − φ)

)
d

dt

(
hPCpu

tan(β − φ)

)
(A.39)

ṁaS = Cmρπ

(
hSCpu

tan(β + φ)

)
d

dt

(
hSCpu

tan(β + φ)

)
(A.40)

The time derivative in the last part of the expression of time derivative of sectional

added mass can be developed as follows:

d

dt

(
hPCpu

tan(β − φ)

)
=

(
ḣPCpu + hP Ċpu

)
tan(β − φ) + hPCpu

[(
tan2(β − φ)

)
φ̇
]

tan2(β − φ)
(A.41)

d

dt

(
hSCpu

tan(β + φ)

)
=

(
ḣPCpu + hP Ċpu

)
tan(β + φ)− hPCpu

[(
tan2(β + φ)

)
φ̇
]

tan2(β + φ)
(A.42)

Figures A.1 - A.2 show that the effective deadrise angle corresponding to port and

starboard side are (β−φ) and (β+φ) respectively. The pile-up correction factor Cpu in

this case will be assumed to be that corresponding to the side of larger effective desdrise

angle:

Cpu =
π

2
− (β + |φ|)

(
1− 2

π

)
(A.43)
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Figure A.1: Asymmetric Geometrical Equivalent I

Figure A.2: Asymmetric Geometrical Equivalent II

And its time derivative:

Ċpu =

(
2

π
− 1

)
· φ̇ (A.44)

The section submergence as well needs to account for the different effective deadrise

angle:

hP = z′k cosφ+

(
zG − x′ sin θ

cos θ

)
− rP

cos θ
(A.45)

hS = z′k cosφ+

(
zG − x′ sin θ

cos θ

)
− rS

cos θ
(A.46)

Consequently, their time derivatives are expressed as:
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ḣP = − sinφφ̇+

(
( ˙zG − x′ cos θθ̇) + (zG − x′ sin θ) sin θθ̇

cos2 θ

)
−

(
ṙP cos θ + rP sin θθ̇

cos2 θ

)
(A.47)

ḣS = − sinφφ̇+

(
( ˙zG − x′ cos θθ̇) + (zG − x′ sin θ) sin θθ̇

cos2 θ

)
−

(
ṙS cos θ + rS sin θθ̇

cos2 θ

)
(A.48)

The relative sectional velocities parallel or normal to the keel are defined based on the

similar analogy of the case of coupled heave and pitch motions taken into account the

effect of roll motion in especially the normal velocity V . Each equivalent port and

starboard side sections with corresponding effective deadrise angle is actually affected

by roll velocity φ̇ and are expressed as follows:

U = ẋG · cos θ − (żG − ww) sin θ (A.49)

VP = ẋG · sin θ + (żG − wwS ) cos θ − θ̇ · x′ − φ̇ · y′P (A.50)

VS = ẋG · sin θ + (żG − wwP ) cos θ − θ̇ · x′ − φ̇ · y′S (A.51)

V̇P = ẍG · sin θ + (z̈G − ẇwP ) cos θ + θ̇(ẋG cos θ − (żG − wwP ) sin θ)− θ̈ · x′ − φ̈y′P
(A.52)

V̇S = ẍG · sin θ + (z̈G − ẇwS ) cos θ + θ̇(ẋG cos θ − (żG − wwS ) sin θ)− θ̈ · x′ − φ̈y′S
(A.53)

The roll lever arms y′P and y′S are defined in the case hydrodynamic lift force as centre

of pressure corresponding to each equivalent side section following the theory of wedge

shape water entry of Wagner (1931).

y′P =

π
(β−φ)

(
1−

√
1− y′20P

)
+ 1

2 ln
(
1− y′20P

)
+ 1

2y
′2
0P

π
(β−φ) arcsin y′0P + 1

2 ln

(
1−y′0P
1+y′0P

)
+ y′0P

(A.54)

y′S =

π
(β+φ)

(
1−

√
1− y′20S

)
+ 1

2 ln
(
1− y′20S

)
+ 1

2y
′2
0S

π
(β+φ) arcsin y′0S + 1

2 ln

(
1−y′0S
1+y′0S

)
+ y′0S

(A.55)

Where y′0P,S are the abscissa where the pressure distribution is equal to zero and ex-

pressed as:
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y′0P =

√√√√√1−


√
π2 − 4 (β − φ)2 − π

2 (β − φ)

2

(A.56)

y′0S =

√√√√√1−


√
π2 − 4 (β + φ)2 − π

2 (β + φ)

2

(A.57)

This definition of roll arms is valid only in hydrodynamic forces, the roll arm of hydro-

static force will be explained in the further section.

A.5.2 Cross-Flow Drag:

The expression of sectional cross flow drag adopted to equivalent port and starboard

side are expressed as:

fcfdP =
1

2
CD,c cos (β − φ) ρ

(
CpuhP

tan (β − φ)

)
V 2
P (A.58)

fcfdS =
1

2
CD,c cos (β + φ) ρ

(
CpuhS

tan (β + φ)

)
V 2
S (A.59)

A.5.3 Buoyancy:

As it can be seen in Figure A.3, physical submerged geometry of a particular section

with instantaneous heel angle is a composition of various sub-geometry. Generally it

can be divided into two equivalent port and starboard sides, nevertheless, in this case,

the geometry can be evaluated only in half section form. The geometry of sections can

be grouped into two main ranges of flow characteristic. In the dry chine range, the

submerged geometry is a simple triangle while in the wetted chine range, it is composed

of a triangle and a trapezoid. The expressions are as follows:

AP = h2
P cot (β − φ)

AS = h2
S cot (β + φ)

}
if 0 < hP,S < a (A.60)
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Figure A.3: Asymmetric Geometrical of Buoyancy

AP =
1

2
a2
P cot (β − φ) +

1

2
(hP − aP ) [2aP cot (β − φ) + (hP − aP ) tanφ]

AS =
1

2
a2
S cot (β + φ) +

1

2
(hS − aS) [2aS cot (β + φ)− (hS − aS) tanφ]

 if hP,S ≥ a

(A.61)

The roll moment of buoyancy is evaluated with different arm defined previously for

hydrostatic forces which is the centre of pressure acting on each section. In this cases,

the centre of application of buoyancy force corresponding to each equivalent port and

starboard side sections is defined as the centre of mass of the submerged geometry

respect to the centre of roll motion (actually is the CG). In case of a simple triangle, it

can be assumed as 1/3 of the triangle base. The expression of centre of geometry of a

trapezoid can be found in literature as y′ =
(
a2 + ab+ b2

)
/3 (a+ b)

A.5.4 Total Forces and Moments:

After obtaining sectional forces corresponding to each equivalent port and starboard

side, by integrating along the ship length, the total forces and moments of each side are

obtained. Finally, by summing both side, the total forces and moments acting on the

hull are obtained. They are explained in the following expressions:
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Fh =
∑
i=P,S

∫
L
fhidx

′ =
∑
i=P,S

1

2

∫
L
mai V̇i + ṁaiVi − U

∂

∂x′
(maiVi) dx′ (A.62)

Fcfd =
∑
i=P,S

∫
L
fcfdidx

′ =
∑
i=P,S

1

2

∫
L
CD,C cosβρbiV

2
i dx′ (A.63)

Fb =
∑
i=P,S

∫
L
fbidx

′ =
∑
i=P,S

1

2

∫
L
abfρgAidx

′ (A.64)

Mhy′ =
∑
i=P,S

∫
L
fhix

′dx′ =
∑
i=P,S

1

2

[∫
L
mai V̇i + ṁaiVi − U

∂

∂x′
(maiVi)

]
x′dx′ (A.65)

Mcfdy′ =
∑
i=P,S

∫
L
fcfdix

′dx′ =
∑
i=P,S

1

2

∫
L
CD,C cosβρbiV

2
i x
′dx′ (A.66)

Mby′ =
∑
i=P,S

∫
L
fbix

′dx′ =
∑
i=P,S

1

2

∫
L
abfρgAix

′dx′ (A.67)

Mhx′ =
∑
i=P,S

∫
L
fhiy

′
idx
′ =

∑
i=P,S

1

2

[∫
L
mai V̇i + ṁaiVi − U

∂

∂x′
(maiVi)

]
y′idx

′ (A.68)

Mcfdx′ =
∑
i=P,S

∫
L
fcfdiy

′
idx
′ =

∑
i=P,S

1

2

∫
L
CD,C cosβρbiV

2
i y
′
idx
′ (A.69)

Mbx′ =
∑
i=P,S

∫
L
fbiy

′
idx
′ =

∑
i=P,S

1

2

∫
L
abfρgAiy

′
idx
′ (A.70)

Substituting and developing all terms of the expression of the total forces and moments

in the global equations of motions and following the same methodology as in the case of

coupled heave and pitch motions and taken into account the influence of Near Transom

Correction Facetor Ctr, the system can be translated to the matrix form with the pre-

defined coefficients:
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Heave Equation:

Mz̈G = −
(
ẍG sin θ

∑
i=P,S

1

2

∫
L
Ctrmaidx

′

+ ẋG cos θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaidx

′

+ z̈G cos θ
∑
i=P,S

1

2

∫
L
Ctrmaidx

′

− żG sin θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaidx

′

− cos θ
∑
i=P,S

1

2

∫
L
Ctrmaiẇwidx

′

+ sin θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaiwwidx

′

− θ̈
∑
i=P,S

1

2

∫
L
Ctrmaix

′dx′

− φ̈
∑
i=P,S

1

2

∫
L
Ctrmaiy

′
idx
′

+
∑
i=P,S

1

2

∫
L
CtrṁaiVidx

′

−
∑
i=P,S

1

2

∫
L
CtrUiVi

∂mai

∂x′
dx′

+ cos θ
∑
i=P,S

1

2

∫
L
CtrUimai

∂wwi
∂x′

dx′

+ θ̇
∑
i=P,S

1

2

∫
L
CtrUimaidx

′

+ φ̇
∑
i=P,S

1

2

∫
L
CtrUimai

∂y′i
∂x′

dx′

+
∑
i=P,S

1

2

∫
L
CtrCD,c cosβρbiV

2
i dx′

)
cos θ

−
∑
i=P,S

1

2

∫
L
CtrabfρgAsubidx

′

+D sin θ

+W

(A.71)
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Roll Equation:

Ixxφ̈ = ẍG sin θ
∑
i=P,S

1

2

∫
L
Ctrmaiy

′
idx
′

+ ẋG cos θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaiy

′
idx
′

+ z̈G cos θ
∑
i=P,S

1

2

∫
L
Ctrmaiy

′
idx
′

− żG sin θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaiy

′
idx
′

− cos θ
∑
i=P,S

1

2

∫
L
Ctrmaiẇwiy

′
idx
′

+ sin θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaiwwiy

′
idx
′

− θ̈
∑
i=P,S

1

2

∫
L
Ctrmaix

′y′idx
′

− φ̈
∑
i=P,S

1

2

∫
L
Ctrmaiy

′2
i dx′

+
∑
i=P,S

1

2

∫
L
CtrṁaiViy

′
idx
′

−
∑
i=P,S

1

2

∫
L
CtrUiVi

∂mai

∂x′
y′idx

′

+ cos θ
∑
i=P,S

1

2

∫
L
CtrUimai

∂wwi
∂x′

y′idx
′

+ θ̇
∑
i=P,S

1

2

∫
L
CtrUimaiy

′
idx
′

+ φ̇
∑
i=P,S

1

2

∫
L
CtrUimai

∂y′i
∂x′

y′idx
′

+
∑
i=P,S

1

2

∫
L
CtrCD,c cosβρbiV

2
i y
′
idx
′

+
∑
i=P,S

1

2

∫
L
CtrabfρgAsubiy

′
idx
′

(A.72)
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Pitch Equation:

Iyy θ̈ = ẍG sin θ
∑
i=P,S

1

2

∫
L
Ctrmaix

′dx′

+ ẋG cos θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaix

′dx′

+ z̈G cos θ
∑
i=P,S

1

2

∫
L
Ctrmaix

′dx′

− żG sin θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaix

′dx′

− cos θ
∑
i=P,S

1

2

∫
L
Ctrmaiẇwix

′dx′

+ sin θθ̇
∑
i=P,S

1

2

∫
L
Ctrmaiwwix

′dx′

− θ̈
∑
i=P,S

1

2

∫
L
Ctrmaix

′2dx′

− φ̈
∑
i=P,S

1

2

∫
L
Ctrmaix

′y′idx
′

+
∑
i=P,S

1

2

∫
L
CtrṁaiVix

′dx′

−
∑
i=P,S

1

2

∫
L
CtrUiVi

∂mai

∂x′
x′dx′

+ cos θ
∑
i=P,S

1

2

∫
L
CtrUimai

∂wwi
∂x′

x′dx′

+ θ̇
∑
i=P,S

1

2

∫
L
CtrUimaix

′dx′

+ φ̇
∑
i=P,S

1

2

∫
L
CtrUimai

∂y′i
∂x′

x′dx′

+
∑
i=P,S

1

2

∫
L
CtrCD,c cosβρbiV

2
i x
′dx′

+
∑
i=P,S

1

2

∫
L
CtrabfρgAsubix

′dx′

(A.73)

Similar to the case of coupled heave and pitch motions, the integral terms will be assigned

to the following coefficients:
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CA =
∑
i=P,S

1

2

∫
L
Ctrmaidx

′ CB =
∑
i=P,S

1

2

∫
L
Ctrmaiẇwidx

′

CC =
∑
i=P,S

1

2

∫
L
Ctrmaiwwidx

′ CD1 =
∑
i=P,S

1

2

∫
L
Ctrmaix

′dx′

CD2 =
∑
i=P,S

1

2

∫
L
Ctrmaiy

′
idx
′ CE =

∑
i=P,S

1

2

∫
L
CtrṁaiVidx

′

CF =
∑
i=P,S

1

2

∫
L
CtrUiVi

∂mai

∂x′
dx′ CG =

∑
i=P,S

1

2

∫
L
CtrUimai

∂wwi
∂x′

dx′

CH1 =
∑
i=P,S

1

2

∫
L
CtrUimaidx

′ CH2 =
∑
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CtrṁaiVix

′dx′ CO2 =
∑
i=P,S

1

2

∫
L
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Appendix B

Detailed Evaluation of Terms in

Equations of Motions and

Choices of Numerical Methods

The components of the terms in the system of equations of motions are evaluated in

details in this section. The evaluation is performed in an instantaneous time step (frozen

time) with the following input and output variables:

• Input Variables:

– Time: t

– Displacements: x = (xG, zG, θ)

– Velocities: ẋ =
(
ẋG, żG, θ̇

)
• Output Variables:

– Accelerations: ẍ =
(

0, z̈G, θ̈
)

The input variables are known from the integration from the previous time step to

the actual time step or in case of the first time step, they are initial conditions. The

accelerations are the desired output at each time step in order to evaluate velocities and

displacement respectively in the next time step.

B.1 Evaluation of Wave Functions

The wave related functions are expressed follows:
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Figure B.1: Wave elevation and its time derivative.

B.1.1 Wave Elevation and Its Time Derivative: r and ṙ

The wave elevation and its time derivative are the most fundamental parameters that

form a part of the other terms and parameters. The regular head wave elevation and its

time derivative are expressed as follows:

r = r0 cos (kx+ ωt)

ṙ = −r0 (kẋ+ ω) sin (kx+ ωt)
(B.1)

Generally, the wave elevation is a function of time and space, but due to the use in

case of frozen time step, it turns into a function of only space. The space of interest is

only the intersection between the sea and the ship hull. Therefore, Equation B.1 can be

expressed as a function in body-fixed coordinate as follow:

r(x′) = r0 cos
(
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
+ ωt

)
ṙ(x′) =

d

dt
r(x′)

(B.2)

As the displacements (xG, zG, θ) and velocities (ẋG, żG, θ̇) in earth-fixed coordinate are

pre-determined and fixed at each time step, those functions are only space dependent

(f(x′)).
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Figure B.2: Wave orbital vertical velocity and its time derivative.

B.1.2 Wave Vertical Orbital Velocity and Its Time Derivative: ww and

ẇw

Following the same principle as the wave elevation, the expression of wave vertical orbital

velocity and its time derivative are:

ww(x′) = −r0ω sin
(
k
(
xG + x′ cos θ −

(
zG − x′ sin θ

)
tan θ

)
+ ωt

)
ẇw(x′) =

d

dt
ww(x′)

(B.3)

Which are as well only space dependent.

B.1.3 Space Partial Derivative of Wave Vertical Orbital Velocity: ∂ww
∂x′

According to A.30, the coefficients CG and CQ consist of a partial derivative with re-

spect to x′ of the component ww. This component can be evaluate both analytically or

numerically.

The analytical partial derivative is expressed as:

∂ww
∂x′

= −r0k cos
(
k
(
xG + x′ cos θ − tan θ

(
zG − x′ sin θ

))
+ ωt

)
(cos θ + sin θ tan θ)

(B.4)
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Several numerical differentiation methods are available. The most appropriate method

should be one that gives the closest solution to the analytical solution. Choices of

numerical differentiation methods are as follows:

• A Simple Symmetric Method:

– Expression: f ′(x′) = f(x′+h)−f(x′−h)
2h

– Error: O(h2)

• A Four Points Method (forth-order approximation):

– Expression: f ′(x′) = f(x′−2h)−8f(x′−h)+8f(x′+h)−f(x′+2h)
12h

– Error: O(h4)

• Richardson’s Extrapolation (sixth-order approximation):

– Expression:

f ′(x′) =
16

(
f(x′−2h)−8f(x′−h)+8f(x′+h)−f(x′+2h)

12h

)
−
(
f(x′−4h)−8f(x′−2h)+8f(x′+2h)−f(x′+4h)

24h

)
15

– Error: O(h6)

The Fridsma (1969)’s prismatic hull model of 20o deadrise angle is chosen to perform a

numerical verification by varying number of hull sections as the controlling parameter.

According to the results comparison, the four points numerical differentiation gives the

closet solution to the analytical ones. This can lead to the conclusion that this method

is the most appropriate numerical method. In case of regular wave, the analytical

expression of space derivative is simple to obtain and use, nevertheless, if the case of

irregular wave is presented, use of numerical differentiation is indeed necessary, as the

analytical expression is mostly impossible to evaluate.

B.2 Evaluation of Section Submergence and Its time Deriva-

tive: h and ḣ

Section submergence is another fundamental parameter after the wave expressions. It

depends on the actual displacement (position) related to the water level. The section

submergence and its time derivative at each time step varies along the ship length, and

are continuous functions and expressed as:

h = z′k +

(
zG − x′ sin θ

cos θ

)
− r

cos θ

ḣ =
dh

dt
=

(
( ˙zG − x′ cos θθ̇) + (zG − x′ sin θ) sin θθ̇

cos2 θ

)
−

(
ṙ cos θ + r sin θθ̇

cos2 θ

) (B.5)
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Figure B.3: Partial derivative of wave vertical orbital velocity along the ship
length.
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Figure B.4: Section submergence and its time derivative.

The section submergence and its time derivative form a part of other common parameters

which are half breadth dependent (b = h/ tanβ) in the coefficients CA to CR defined

in the Appendix A, i.e., sectional added mass ma, sectional cross-flow drag fcfd and

sectional buoyancy fb.

According to Figure B.4, the section submergence is evaluated continuously along the

ship length, its value is positive when a particular sectional keel is wetted while it is

negative when it is out of water.
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Figure B.5: Flow-hull characteristic zones (longitudinal).

B.3 Evaluation of Sectional Added Mass and Its Time

Derivative

The expression of sectional added mass and its time derivative for a wedge shape of high

frequency solution are:

ma = Cm ·
π

2
· ρ ·

(
Cpuh

tanβ

)2

ṁa = Cm · π · ρ · h ·
(
Cpu

tanβ

)2 dh

dt

(B.6)

Which are functions of body-fixed coordinate at each time step. The integral evaluation

along the ship length to obtain the total added mass appears not to be constantly

evaluable considering the physical characteristic of each particular sectional flow along

the ship length. There are several conditions of the use of Cpu due to different flow-hull

characteristics. As can be seen in the Figures B.5 and B.6: the ship is divided into three

zones along the ship length:

• Zone A is the zone of dry keel. The integral from the point where the keel intersects

with the still water line to bow peak of the ship is equal to zero, as the ship sections
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Figure B.6: Flow-hull characteristic zones (transverse).

are out off the water. Consequently, the value of section submergence accounting

with the effect of the pile-up correction factor, h · Cpu , is negative, h · Cpu < 0.

• Zone B is the zone of wetted keel but dry chine. This zone accounts the sections

from the intersection point of chines and water line to the limitation of zone A.

The first section at the first wetted keel point begins to penetrate into the water

taking into account the influence of the Cpu factor. The section is considered to

be wetted up to the water pile-up. The sectional added mass accounted with Cpu

changes it value along the ship length as well as its time derivative. Nevertheless,

at a certain point before the wetted chines point, the water pile-up reaches the

chines and makes them stand the flow phenomena like in wetted chines zone (Zone

C). In this case, the value of h · Cpu vary between zero and vertical distance from

keel to chine a, in which a = b · tanβ where 0 < h · Cpu < a.

• Zone C is the zone of wetted chine. The sectional added mass does not change its

value along the ship length (in case of prismatic hull with constant deadrise angle)

neither its time derivative, in other words, the sectional added mass reaches its

maximum value when the water level reaches the chine. In this zone, the value of

h ·Cpu is greater than a, h ·Cpu > a. Thus, the value of ma remains its maximum

value at the chine position, ma = Cmπ/2ρb
2
max and consequently ṁa = 0.
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According to the zoning criteria mentioned previously, the expression of sectional added

mass is obviously discontinuous functions:

ma =


Cm · π2 · ρ ·

(
a

tanβ

)2
if h · Cpu > a

Cm · π2 · ρ ·
(
Cpuh
tanβ

)2
if 0 < h · Cpu < a

0 if h · Cpu < 0

(B.7)

As well as its time derivative:

ṁa =


0 if h · Cpu > a

Cm · π · ρ · h ·
(
Cpu
tanβ

)2
dh
dt if 0 < h · Cpu < a

0 if h · Cpu < 0

(B.8)

B.3.1 Availability of Sectional Added Mass Coefficients Cm

2D added heave mass coefficient for a wedge water entry is an essential part for a

prismatic planing boat.

Added mass coefficient suggested by Faltinsen (2000): According to Faltinsen

(2000) it can be considered as deadrise (β) dependent and varies between 0.6 to 1.0 as

follows:

ma = ρd2K (B.9)

=
ρd2

tanβ

(
π

sinβ

Γ (1.5− β/π)

Γ2 (1− β/π) Γ (0.5 + β/π)
− 1

)
(B.10)

Added mass coefficient used by Zarnick (1978): Zarnick used the maximum

value (identical to the suggestion of Wagner):

Cm = 1

Added mass coefficient suggested by Payne (1994): Payne suggested the de-

pendency of deadrise angle of added mass coefficient as:
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Figure B.7: Sectional added mass and its time Derivative.

Cm =

(
1− β

2π

)2

Added mass coefficient suggested by Vorus (1996): Vorus suggested in the

similar manner that the added mass coefficient is deadrise angle dependent expressed

by:

Cm =
π2

4

(
1− β

90
· 0.4 · (1−KAR)

)

Where KAR is an added mass correction factor. Using KAR = 1.0 is equivalent to

using the added mass coefficient of Wagner, while using KAR = 0.0 roughly matches

the added mass coefficient curve of Vorus.

B.4 Evaluation of Space Partial Derivative of Sectional

Added Mass: ∂ma

∂x′

Due to the discontinuous property along the ship length of ma, the points of discon-

tinuous are not differentiable. Therefore, their partial derivatives respect to x′ need to

be re-considered in evaluation. If the partial derivative is performed continuously along

the ship length, it will violate the mathematical property at the discontinuous points.

Consequently, the expression of partial derivative needs to be discontinuous as well.
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Zarnick (1978) avoided this problem by using the property of the integration by parts

and substitute in the coefficients CF and CP by:

∫
L
ma

∂UV

∂x′
dx′ = −

∫
L
UV

∂ma

∂x′
dx′ + UVma|bowstern (B.11)

So

CF =

∫
L
UV

∂ma

∂x′
dx′ = −UVma|stern −

∫
L
ma

∂UV

∂x′
dx′ (B.12)

CP =

∫
L
UV

∂ma

∂x′
x′dx′ = −UVmax

′|stern −
∫
L
ma

∂UV

∂x′
x′dx′ (B.13)

However, by using this technique, the representation of pressure distribution along the

ship length will not be possible to perform, due to the first term in the right hand side

of the substitution by integration by parts.

According to the expression of ma, the discontinuous points are those boundary points

between the three zones along the ship length defined in the previous section. In case of

prismatic hull, it is expressed as:

∂ma

∂x′
=


0 if h · Cpu > a

∂ma
∂x′ if 0 < h · Cpu < a

0 if h · Cpu < 0

(B.14)

The term ∂ma
∂x′ can be evaluated both analytically and numerically. As in the case of

∂ww
∂x′ , the analytical expression is easy to apply if the ship profile is given principally in

function of x′. Otherwise, more mathematical treatment is necessary. While numerical

expression is more global to perform taking into account the error corresponding to each

method.

The distribution of ∂ma
∂x′ along the ship length by different methods of evaluation are

represented in Figure B.8:

Nevertheless, the continuous partial derivative is also perform in order to compare with

the discontinuous case. If the results are not significantly different, the continuous one

might be the better choice for the numerical model, as it is simpler to perform and

evaluate.
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Figure B.8: Partial derivative of sectional added mass along the ship length.

B.5 Evaluation of Sectional Cross-Flow Drag

The expression of sectional cross-flow drag is:

fcfd = CD,c · cosβ · ρ · b · V 2 (B.15)

Which is half breadth b dependent as well as the sectional added mass. By substitut-

ing the relation between the half breadth,b and the section submergence, h, it allows

Equation B.15 to be evaluated in function of ship length.

fcfd =


CD,c · cosβ · ρ · a · cotβ · V 2 if h · Cpu > a

CD,c · cosβ · ρ · h · Cpu · cotβ · V 2 if 0 < h · Cpu < a

0 if h · Cpu < 0

(B.16)

Which is a discontinuous function as ma. Nevertheless, although this parameter is

discontinuous, it does not need any special treatment as the partial derivative along the

ship length is not presented.

B.5.1 Evaluation of Sectional Buoyancy

The sectional buoyancy depends directly on the submerge area of a particular section.

Along the ship length, each particular section is a function of section submergence
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Figure B.9: Sectional cross-flow drag.

h. It depends again on different three zones defined previously as in case of sectional

added mass ma. Nevertheless, due to the small influence, the section submergence to be

applied in the case of section submerged area does not account the presence of Cpu and

is expressed as:

Asub =


a · (2 · h− a) · cotβ if h · Cpu > a

h2 · cotβ if 0 < h · Cpu < a

0 if h · Cpu < 0

(B.17)

Then it will be used in:

fb = abf · ρ · g ·Asub (B.18)

As well as the case of sectional cross-flow drag, the sectional buoyancy has no dealt with

the partial derivative along the ship length, the discontinuous property along the ship

length does not cause special consideration for the calculation.

B.6 Evaluation of Drag

The drag component is different from the previous forces component. It is not funda-

mentally calculated as sectional component. The drag force is approximate directly in

the global form. Nevertheless, due to the fact that it is wetted surface dependent, the
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Figure B.10: Sectional buoyancy

wetted surface is evaluated as the integration of particular sectional wetted curves along

the ship length. The expression of sectional wetted curves is:

sw =


2 · a · cscβ if h · Cpu > a

2 · h · Cpu · cscβ if 0 < h · Cpu < a

0 if h · Cpu < 0

(B.19)

Which is a discontinuous function in the same condition as ma. Normally, the drag

force has a direction opposite to the forward speed and parallel to keel. Its horizontal

component is neglected due to the presence of towed condition. The vertical component

is taken into account although it is small. The expression of the drag force is:

D =
1

2
· ρ · U2 · Sw · CF (B.20)

B.7 Evaluation of Coefficients CA to CR and Total Forces

and Moments

The total forces and moments are obtained integrating those sectional functions along

the ship length in term of x′. The integration was evaluated in term of the coefficients

defined in the Appendix A and then composes to form the global equations of motions

of instantaneous time step. The integration can be performed both analytically and nu-

merically. The analytical cases could give the exact solution but due to the complication
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of mathematical property of some parameters, the analytical expression will no longer

valid for arbitrary cases but only the prismatic case. The numerical evaluation could

give more appropriate solutions by accounting for the errors committed corresponding

to different methods. There are several numerical integration methods available such as:

• Trapezoidal Integration:

– Expression: I = h
2

(
f(x′0) + f(x′n) + 2

n−1∑
i=1

f(x′i)

)
– Error: O(h3)

• Simpson’s Integration:

– Expression: I = h
3

f(x′0) + f(x′n) + 4
n−1∑
i=1,3,5

f(x′i) + 2
n−2∑
i=2,4,6

f(x′i)


– Errors: O(h4)

The comparison of analytical and numerical solutions is shown in Table B.1, which

can be seen that the Simpson’s Integration gives the closest solution to the analytical

solution.

After performing the total forces and moments evaluation and substituting into Equa-

tion A.30 the system converts into a system of two 1storder linear equations with two

unknowns. This can be easily solved by Guassian elimination matrix and finally, the

desired output which is the accelerations of the present time step is found.

B.8 Time Marching Integration Methods

Choices of time marching integration methods are explained in details in this section.

B.8.1 Basic Algorithms of Equations of Motions

Consider a single object with mass m moving in one dimension. With its time-dependent

position denoted x(t), the differential equation governing its dynamics is:

ẍ =
1

m
F [x(t), ẋ(t), t] (B.21)

Where F is the total force acting on the object, and ẋ and ẍ are the first and second

time derivatives of x. It has been indicated that the force may depend on x, ẋ and t.
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Table B.1: Comparison of integration methods along the ship length.

Coefficients Simpson Trapezoidal Analytical

CA 11.53801262 11.53312835 11.5427949
CB -12.92408755 -12.89000995 -12.94564161
CC 0.567961145 0.56720465 0.567991875
CD -2.105567827 -2.106710485 -2.10581859
CE 53.73086514 53.44297983 52.0561311
CF -84.39223648 -84.41618899 -90.13331325
CG -10.56500424 -10.53715701 -10.58262188
CH 68.88491511 68.85569907 68.91344447
CK -1.456265447 -1.469394439 -1.456927748
CM -0.188101539 -0.187881134 -0.188085681
CN 0.752334375 0.75367225 0.752229585
CO 10.81124117 10.79685258 10.73272458
CP -7.560243931 -7.588972089 -7.28325424
CQ -1.19148573 -1.20221381 -1.192026565
CR -12.57989966 -12.58669176 -12.58139374
Fh 140.468402 140.1982752 144.5386581
Mh 18.63471784 18.65144429 18.27933231
Fb 22.37731006 22.38869691 22.32098327
Mb -6.49510415 -6.506566624 -6.491825361
Fcfd 34.91151905 34.90156658 34.86348142
Mcfd -3.318506691 -3.328063492 -3.342781137

These dependencies typically come from a position dependent static potential, a velocity

dependent damping (friction), and a time-dependent driving force, but there are other

natural possibilities as well, e.g., a position dependent friction.

To study the system numerically, it is convenient to rewrite the 2nd order differential

equation above as two coupled 1st order equations. Giving the velocity its standard

symbol v(t), ones can be written:

ẋ(t) = v(t) (B.22)

v̇(t) =
1

m
F [x(t), v(t), t] (B.23)

To integrate this set of equations, the time axis is discretize as t = t0, t1, ..., tn with a

constant time step tn+1 − tn = 4t. The initial values x0 = x(t0) and v0 = v(t0) are

used to start the integration process. In this case those initial values are static stability

conditions.
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B.8.2 Euler Algorithm

The simplest way to advance the time from tn and tn+1 is to use the 1st order approxi-

mation:

vn+1 = vn +4t · an (B.24)

xn+1 = xn +4t · vn (B.25)

Where an = F (xn, vn, tn)/m is the acceleration. Clearly, the error made in each time step

of this algorithm is O
(
4t2

)
. The method, which is called “Euler’s Forward Method” is in

general not very useful in practice. For example, in system with no damping or driving

force, the energy should be conversed. However, with the Euler method, the energy

typically diverges with time, whereas in most higher-order methods the energy errors

are bounded. This method is later modified by several researchers and consequently, the

accuracy has increased.

B.8.3 Modified Euler Method or Simple Predictor-Corrector Method

The predictor-corrector method consists in two steps of integration. In the first step,

one method is used to predict a solution and then uses other method to correct the

first method and iterate the correction until the desired convergence is found. The most

simple one uses Euler method in predictor step and use the modified Euler method in

corrector step:

vpn+1 = vn +4t · an Prediction (B.26)

vcn+1 = vn +
1

2
· 4t ·

[
an + a

(
vpn+1, tn+1

)]
Correction (B.27)

vpn+1 = vcn+1 if vpn+1 − v
c
n+1 > |ε| (B.28)

vn+1 = vcn+1 if vpn+1 − v
c
n+1 < |ε| (B.29)

As well as the integration of v to obtain x:

xpn+1 = xn +4t · vn Prediction (B.30)

xcn+1 = xn +
1

2
· 4t ·

[
vn + vpn+1

]
Correction (B.31)

xpn+1 = xcn+1 if xpn+1 − x
c
n+1 > |ε| (B.32)

xn+1 = xcn+1 if xpn+1 − x
c
n+1 < |ε| (B.33)
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The correction step keeps repeating until the convergence of the last prediction with the

actual correction is of desired value. This method is simple and yield modest accuracy

but if the extreme accuracy is required, a more sophisticated method should selected.

B.8.4 Runge-Kutta Method

The Runge-Kutta (RK) method can be considered as the most classic of all high-order

schemes. There is a whole range of methods of this type in different orders, but the

RK name is most commonly associated with the 4th order variant (discretization error

O
(
4t5

)
). In case of equations of motions, Runge-Kutta method can be expressed as:

vn+1 = vn +
1

6
· (k1 + 2k2 + 2k3 + k4) (B.34)

xn+1 = xn +
1

6
· (l1 + 2l2 + 2l3 + l4) (B.35)

k1 = 4t · a (xn, vn, tn) (B.36)

l1 = 4t · vn (B.37)

k2 = 4t · a
(
xn +

1

2
l1, vn +

1

2
k1, tn+ 1

2

)
(B.38)

l2 = 4t
(
vn +

1

2
k1

)
(B.39)

k3 = 4t · a
(
xn +

1

2
l2, vn +

1

2
k2, tn+ 1

2

)
(B.40)

l3 = 4t ·
(
vn +

1

2
k2

)
(B.41)

k4 = 4t · a (xn + l3, vn + k3, tn+1) (B.42)

l4 = 4t · (vn + k3) (B.43)

The Runge-Kutta method appears to be the most appropriate method of assessing time

marching integration due to its property of capable of self-starting, in the other word,

this method can start the calculation with the input data of the actual time step. Unlike

the predictor-corrector method and multi-step method which need information of various

previous time steps. Although the formulation is quite complex, time consumption in

calculation is acceptable. The actual Runge-Kutta method is of 4th order, it has been

modified by several researchers to some higher orders.

B.8.5 Runge-Kutta-Merson Method

This method is a modification by Merson of the Runge-Kutta method and it is of 5th

order with corresponding error of O
(
4t6

)
. The expression of this method is as follows:
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vn+1 = vn +
1

6
· (k1 + 4k4 + k5) (B.44)

xn+1 = xn +
1

6
· (l1 + 4l4 + l5) (B.45)

k1 = 4t · a (xn, vn, tn) (B.46)

l1 = 4t · vn (B.47)

k2 = 4t · a
(
xn +

1

3
l1, vn +

1

3
k1, tn+ 1

3

)
(B.48)

l2 = 4t
(
vn +

1

3
k1

)
(B.49)

k3 = 4t · a
(
xn +

1

6
l1 +

1

6
l2, vn +

1

6
k1 +

1

6
k2, tn+ 1

3

)
(B.50)

l3 = 4t ·
(
vn +

1

6
k1 +

1

6
k2

)
(B.51)

k4 = 4t · a
(
xn +

1

8
l1 +

3

8
l3, vn +

1

8
k1 +

3

8
k3, tn+ 1

2

)
(B.52)

l4 = 4t ·
(
vn +

1

8
k1 +

3

8
k3

)
(B.53)

k5 = 4t · a
(
xn +

1

2
l1 −

3

2
l3 + 2l4, vn +

1

2
k1 −

3

2
k3 + 2k4, tn+1

)
(B.54)

l5 = 4t ·
(
vn +

1

2
k1 −

3

2
k3 + 2k4

)
(B.55)

This modification has been widely used by Zarnick (1978), Keuning (1994) and Akers

(1999) as it is more accurate than the ordinary Runge-Kutta with a slight alteration in

formulation which results in insignificant different time consumption.

B.8.6 Runge-Kutta-Fehlberg

The method is a modification of Runge-Kutta of the 6th order with corresponding error

of O
(
4t7

)
.
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v
iv
n+1 = vn +

(
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5

)
(B.56)

v
v
n+1 = vn +

(
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6

)
(B.57)

x
iv
n+1 = xn +

(
25

216
l1 +

1408

2565
l3 +

2197

4104
l4 −

1

5
l5

)
(B.58)

x
v
n+1 = xn +

(
16

135
l1 +

6656

12825
l3 +

28561

56430
l4 −

9

50
l5 +

2

55
l6

)
(B.59)

k1 = 4t · a (xn, vn, tn) (B.60)

l1 = 4t · vn (B.61)

k2 = 4t · a
(
xn +

1

4
l1, vn +

1

4
k1, tn+1

4

)
(B.62)

l2 = 4t
(
vn +

1

4
k1

)
(B.63)

k3 = 4t · a
(
xn +

3

32
l1 +

9

32
l2, vn +

3

32
k1 +

9

32
k2, tn+3

8

)
(B.64)

l3 = 4t ·
(
vn +

3

32
k1 +

9

32
k2

)
(B.65)

k4 = 4t · a
(
xn +

1932

2197
l1 −

7200

2197
l2 +

7296

2197
l3, vn +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3, tn+12

13

)
(B.66)

l4 = 4t ·
(
vn +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3

)
(B.67)

k5 = 4t · a
(
xn +

439

216
l1 − 8l2 +

3680

513
l3 −

845

4104
l4, vn +

439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4, tn+1

)
(B.68)

l5 = 4t ·
(
vn +

439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)
(B.69)

k6 = 4t · a
(
xn −

8

27
l1 + 2l2 −

3544

2565
l3 +

1859

4104
l4 −

11

40
l5, vn −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5, tn+1

2

)
(B.70)

l6 = 4t ·
(
vn −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)
(B.71)





Appendix C

Aircraft Ditching Load Prediction

Tools Provided by Stirling

Dynamics Ltd.

Following the aim and the objective of the collaborative work sponsored by NATEP,

SDL and UoS developed numerical model and evaluated the load prediction together

using different methodologies in order to carry out cross-validation. The mathematical

model developed by UoS has been already mentioned in Chapter 6. Description of the

other method developed by SDL and the high fidelity CFD setting are explained in the

following section.

C.1 SDL Ditching Loads Calculation Methodology

The methodology developed by SDL for calculating ditching loads is based in a linear

combination of three types of loads:

• Added Mass Loads: Due to the vertical component of the aircraft velocity and

acceleration.

• Steady Hydrodynamic Loads: Due to the forward component of the aircraft ve-

locity.

• Hydrostatic Loads: Due to the submerged volume.

The following sections detail the calculation of each of the three types of loads. The

SDL methodology has also been implemented within the dynamic response simulation

tool SD-GLOSS.
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Figure C.1: Added mass term evaluated by formulation of Korobkin (2004).

C.1.1 Added Mass Loads

The added mass represents the mass of the fluid that is moved as a reaction to the motion

of the aircraft body. The water impact loads represent the loads acting on the body due

to the inertia of the added mass, and is therefore obtained by evaluating the intrinsic

variation of the added mass momentum, independent of the presence of any flow. This

section details the calculation of the added mass term. The derivation directly follows

from the expressions presented by Korobkin (2004) for circular two-dimensional sections

moving in the proximity of the water surface.

The added mass of a 2D circular section moving vertically over a water surface can be

calculated as a function of the section depth. The following nomenclature is adopted:

• R is the radius of the cylinder.

• α is the angle defined in Figure C.1.

• K = 1− α/π.

• h = R (1− cosα).

The added mass per unit length is expressed as (Korobkin, 2004):

λ33 = ρR2

(
π sin2 α

6k2

(
1 + 2k2

)
− α+

1

2
sin 2α

)
(C.1)

For a vertical motion, the reaction of force Fz can be expressed as a function of the time

derivative of the vertical velocity w as:
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Fz = λ33
∂w

∂t
(C.2)

For the case where the body is on the surface, the coefficient λ33 is also dependent on

time t, through the variable α (and k) and therefore, the chain rule is applied:

Fz =
∂ (λ33 (λ(t))w)

∂t
(C.3)

The reaction force Fz can be rewritten as:

Fz =
∂λ33

∂α
· ∂α
∂h
· ∂h
∂t
· w + λ33

∂w

∂t
(C.4)

Where ∂h/∂t = w, therefore, this expression can be further simplified as:

Fz =
∂λ33

∂α
· ∂α
∂h
· w2 + λ33

∂w

∂t
(C.5)

From this expression, Fz can be seen as a function of both the vertical velocity w and

the vertical acceleration ∂w/∂t.

C.1.2 Steady Hydrodynamic Loads (Doublet Lattice Method)

The steady hydrodynamic loads acting on the airframe during the ditching phase are

calculated by solving the inviscid incompressible flow around the airframe by a Doublet

Lattice Method DLM technique (Bonanni et al., 2015). This approach accounts for an

estimation of the water surface deformation during ditching Figure C.2. The doublets

are distributed on a grid that approximates the water surface deformed by the aircraft

motion. The surface is created by calculating the submerged portion of the aircraft

and then interpolating the depths of each submerged triangle by a cubic surface spline

defined on a selected portion of the water plane Figure C.2.

The actual DLM problem is then solved on a surface that comprises the interpolating

surface and its mirrored copy with respect to the undisturbed water plane. This last step

is needed to enforce symmetry to the potential flow generated by the doublets. Once the

flow is made symmetric with respect to the water plane, the induced velocities at each

point on the water plane are parallel to the undisturbed water plane itself (reflecting
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Figure C.2: Hydrodynamic loads are calculated from the pressure distribution
of the Doublet Lattice Method (Bonanni et al., 2015).

therefore the steady horizontal motion of the aircraft through the water). This approach

is deemed more accurate for the pressure distribution on the submerged part of the

aircraft (where the interpolating spline well approximates the aircraft geometry) and

less in the wake region where no information is available on the actual shape of the

water wake.

C.1.3 Hydrostatic Loads

The calculation of the hydrostatic loads is based on hydrostatic pressure integration over

a discretized representation of the submerged portion of the airframe. The integration

only accounts for the elements of the discretized surface whose midpoints are submerged

below the water line, and whose external normal have a component pointing downwards

with respect to the normal of the undisturbed water surface (this last condition identifies

the elements that are assumed “dry” during ditching).

C.1.4 SD-GLOSS Simulation Tool

As mentioned, the SDL methodology has been implemented within the Stirling Propri-

etary Software SD-GLOSS for dynamic ditching simulations. SD-GLOSS is a software

tool for calculating the dynamic response of flexible aircraft structures and subsequent

airframe loads due to landing, ground, manoeuvre and wheels-up landing. This section

details the SD-GLOSS calculation methodology, relevant to the inclusion of the ditching

simulation capability.
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Figure C.3: SD - GLOSS methodology summary.

SD - GLOSS obtains the dynamic response of the aircraft during a manoeuvre by apply-

ing the general equations of unsteady motion for the rigid body response and the method

of normal modes for the elastic motions. The modelling approach used in SD-GLOSS

is illustrated in Figure C.3, and superimposes both global deformation of the structure

(along the main fuselage axis) and local deformation of the fuselage cross-sections from

the defined crush elements on the rigid body motion. The ditching loads act on this set

of crush elements which are defined along the belly line of the fuselage. It is proposed

that the computation of the impact forces and hydrostatic forces be computed at each

time step and the hydrodynamic forces obtained from a set of force coefficients that are

a function of aircraft state and derived from the DLM model. This method using force

coefficients will then enable investigative studies and parametric analysis.

Thus the analytical framework developed for the calculation of the dynamic response of

the aircraft during ditching is based on the following assumptions:

• Fully flexible aircraft with flexibility described by normal mode methods (stick

model).

• 6-DOF rigid body response with the rigid body response carrying the flexibility

description.

• Airframe outer shape carrying crush points that deform linearly and non-linearly

as a function of the applied force.
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• Aerodynamic forces as a function of incidence and elevator angle.

• Symmetric initial balance equating gravitational and aerodynamic forces/moments

established with the closest airframe crush point set just above the water surface.

• Current implementation is limited to a smooth water surface and a symmetric

aircraft response.

C.2 CFD Model

A computational Fluid Dynamics tool has been used to validate the developed loads

prediction methodologies described in the previous sections.

C.2.1 Aircraft Fuselage Geometry

The fuselage model used for the present analysis has been designed to be a simplified

but representative shape of a typical civil aircraft. It features:

• A circular cross-section of constant diameter.

• Steam lined nose section.

• Tapered tail section.

The full geometry is created by sweeping the circular cross section along the top and

bottom curve. The top and bottom curve are not analytically defined and are represented

in Figure C.4.

The surface of the fuselage is then discretized by triangular elements. The discretization

features 25 cross sections in the main stream direction and 15 vertices for each circular

section. Main fuselage dimensions are:

• Lx = 23.33 m.

• Ly = Lz = 2.20 m.

C.2.2 CFD Physical Model

The computational Fluid Dynamic (CFD) model used for simulating the flow around

the submerged part of the ditching aircraft is based on a URANS k−ε turbulence model.

The software used is the commercial package CD - Adapco StarCCM+. The two - phase

flow (air + water) is modelled by an Eulerian Volume of Fluid (VOF) model.
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Figure C.4: A fuselage shape has been used for validation of the loads calculation
methodologies.

C.2.3 Computational Mesh

The CFD computational mesh features an unstructured Cartesian topology (trimmed

mesh) and is designed with the aim of accurately calculating the loads acting on the

airframe, with no specific requirement for maintaining a high fidelity in the downstream

wake. This implies using a refinement region around the airframe and along the water

surface. A refined water surface region is needed to keep a sharp separation between

water and air phases. For all the cases where both a horizontal and a vertical component

of the velocity are considered, a moving mesh is employed. The overall set-up can be

summarized as follows:

• The moving mesh is attached to the airframe and moves with respect to the earth

axes.

• The motion of the mesh can be set to follow a prescribed trajectory or be the

result of the loads acting on the airframe (in the latter case a Dynamic Fluid Body

Interaction (DFBI) problem is solved).

• The undisturbed water phase occupies a time invariant in earth axes.

The above definition of the CFD problem allows using one computational mesh without

recurring to overset meshes (meshes with relative motion with respect to each other).

This approach avoids the inaccuracies introduced by the interpolation of the CFD solu-

tion at the boundary of the overset meshes.

An example of the CFD mesh is depicted in Figure C.5. It must be noted that the mesh

is designed to be aligned with the main flow direction at all times (with exception for

the DFBI cases where the pitch angle if the fuselage varies in time as a result of the

airframe motion).
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Figure C.5: Example of the Unstructed Cartesian CFD mesh employed for loads
calculation.



Appendix D

Ditching Experimental

Equipment and Instrumentation

The use of launching equipment or the launching rig needs to meet the conditions of the

facility and the preliminary simulations. The horizontal landing speed can be achieved

by the towing speed of the tank’s carriage. While the vertical motions will be restricted

by a guided rail form component. The whole equipment is shown schematically in

Figure D.1. It consists of the following components:

Main Rig: Component A: It is made of aluminium alloy in order to lighten the

weight as much as possible to match the strength of the aluminium frame of the carriage

and its dimension. A steel rail is fixed at middle part laying down along the length

of the rig. Two hanging fangs are installed in the back part of the hose. All of the

parts are pre-calculated with FEM simulations following the maximum load predefined

by numerical simulations in both horizontal and vertical directions.

Figure D.1: Full launching equipment.
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Sliding Post: Component B: This component is also made of aluminium alloyed

and attached at the back part by two steel carriages provided by the same supplier as

the steel rail in the rig. The carriages allow the post to slide smoothly along the rail and

restrict the displacement of the post to be guided solely in the rail direction. Note the no

matter how smooth could it slide, it experiences a significant amount of friction between

the carriages and the rail. This leads the inclusion of this lost when considering the

real vertical acceleration of the ditching event, as it does commit the pure gravitational

acceleration as expected.

Loadcell Case: Component C: The case consists of two separate parts, the upper

and the lower. The upper part has two bolt channels to attach to the sliding post

allowing the yaw alignment to be adjustable. Two screws are tightened to the upper

face of the loadcell, while the other two are attached with the lower also through the

screws. Both parts are not physically in contact, allowing a small clearance to avoid the

interruption of loadcell deflection, but is still useful as a physical emergency stop.

Trim Fitting: Component D: The upper part is attached to the loadcell case

through four screws while the lower to the model also by four screws. The small lateral

holes in both sides allow the adjustment of trim angle from 1o to 10o covering the landing

attitudes planned as a controlling parameter.

D.0.1 Sensors and Instruments

The parameters of interest as mention previously in the experimental planning are the

total impact force and impact acceleration. To fulfil this aim, three sensors are available

covering the requirement of the further data processing.

NOVATECH F332 2 Axis Loadcell: Provided by Novatech Instruments. It is

customized and calibrated respectively in vertical and horizontal directions to ±700 N

and ±300 N as pre-calculated when designing the rig.

PCB PIEZOTRONICS 353B31 Single Axis Accelerometer: It is characteris-

tically dynamic accelerometer calibrated to give the reading in gs unit. Attaching to a

static object will give 0 reading while the free falling gives 1 g.

Linear String Potentiometer PT5A: The instrument consists of a roll of a string

with restoring mechanism. The restoring needs to be accounted for as a component of

friction of the rig, when analysing the exact hydrodynamic force. It is calibrated to give

the reading in millimetre.
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Figure D.2: Main rig.

National Instruments CompactDAQ Controllers cDAQ-913x: The logger

comprises of several slots for various data acquisition socket. It contains its own oper-

ating system and acts as a computer. The access to the logger is done through a laptop

using a remote computer application. The logger receives the signal data from the other

instruments controlling the sample rate to be 10, 240 Hz. This high frequency of sample

rate does not allow the real-time graphic representation to be shown. The logger records

the data of these three instruments in a spread sheet which can be further exported to

filter and analyse in a mathematical modelling tool.
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Figure D.3: Sliding post.

Figure D.4: Loadcell case.
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Figure D.5: Pitch fitting.

Figure D.6: NOVATECH F332 2 Axis Loadcell.
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Figure D.7: Accelerometer.

Figure D.8: Linear String Potentiometer PT5A.
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Figure D.9: National Instruments CompactDAQ Controllers cDAQ-913x.

Figure D.10: Overview of the rig installed on the carriage (1).
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Figure D.11: Overview of the rig installed on the carriage (2).

Figure D.12: Overview of the rig installed on the carriage (3).
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