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Abstract

In this paper we analyse the long-term costs and benefits of bailout strate-
gies in models of networked banking systems. Unlike much of the current
literature on financial contagion that focuses on systemic risk at one point
in time, we consider adaptive banks that adjust risk taking in response to
internal system dynamics and regulatory intervention, allowing us to analyse
the potentially crucial moral hazard aspect associated with frequent bailouts.
We demonstrate that whereas bailout generally serves as an effective tool to
limit the size of bankruptcy cascades in the short term, inappropriate in-
tervention strategies can encourage risk-taking and thus be inefficient and
detrimental to long term system stability. We analyse points of long-term
optimal bailout and discuss their dependence on the structure of the banking
network. In the second part of the paper, we demonstrate that bailout effi-
ciency can be improved by taking into account information about the topol-
ogy of and risk allocation on the banking network, and demonstrate that
finely tuned intervention strategies aimed at bailing out banks in configu-
rations with some degree of anti-correlated risk have superior performance.
These results demonstrate that a suitable intervention policy may be a useful
tool for driving the banking system towards a more robust structure.
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1. Introduction

The global financial crisis of 2007-08 and the potential collapse of ma-

jor banking institutions around the world left governments facing a major

dilemma; should they offer financial assistance to distressed banks in the

form of a bailout, or leave them to go bankrupt and face the systemic con-

sequences for the rest of the economy. Reluctantly, many institutions were

offered assistance (Rose and Wieladek, 2012; Ait-Sahalia et al., 2012), in-

cluding Northern Rock, Royal Bank of Scotland and Lloyds Banking Group

in the UK, with some politicians suggesting that such intervention should

never be allowed to happen again (Birchler, 2014).

Although the recent example saw their use on an unprecedented scale,

bailouts have been a feature of crises dating back to the 1800s (Nosal and

Ordonez, 2013) and understanding their effective use is a problem that is

well established in the literature. The main argument against bailing out

banks is the creation of moral hazard, with empirical studies (Dam and

Koetter, 2012) demonstrating that banks will take more risk if they know

they will be supported in the event of difficulty (Holmstrom and Tirole, 1998).

However, a bailout can offer protection against widespread contagion, such

as the panic that swept through the financial markets in the wake of Lehman

Brothers’ insolvency. This situation has traditionally been viewed as a trade-

off between the regulators’ preference for minimising either moral hazard
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or contagion (Goodhart and Huang, 1999) and there is an extensive game-

theoretic literature analysing the optimal regulatory policy (Dell’Ariccia and

Ratnovski, 2012), the timing of regulatory decisions (Uhlig, 2010; Bianchi,

2012) and whether the reduction in systemic risk may outweigh the moral

hazard effect (Cordella and Yeyati, 2003).

However, these models lack a detailed analysis of the true systemic risk

within the interbank market, as they fail to capture network structure, het-

erogeneity and the fact that some banks might be Too-Big-To-Fail (Morrison,

2011; Stern and Feldman, 2004) due to the potentially catastrophic financial

contagion their bankruptcy would cause (Baker and McArthur, 2009). The

need for a better understanding of systemic risk (Zigrand, 2014) has led to a

dramatic rise in papers analysing contagion using percolation dynamics (Nier

et al., 2008; Gai and Kapadia, 2010), demonstrating that the financial system

is robust-yet-fragile (Haldane, 2009), with network connectivity acting as ei-

ther a means of risk diversification or a means of contagion depending on the

size of the shock applied to it (Tedeschi et al., 2012; Battiston et al., 2012b).

Recent models have introduced endogenously-formed dynamic interbank net-

works and multiple contagion channels (Bluhm et al., 2013; Georg, 2013; Al-

dasoro et al., 2015), which allow the market dynamics of a bankruptcy to be

studied both ex ante and ex post. However, while these models can be used

to calculate a systemic risk value for each bank(Battiston et al., 2012a), they

are not suitable for analysing the effect of resolution policy as they assume

banks’ risk appetites to be fixed rather than adaptive, meaning that no moral
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hazard effect be captured in the system.

The novel aspect of the model we present is that banks within our system

are adaptive, adjusting their strategy according to the success of their peers

(Bala and Goyal, 1998; Gale and Kariv, 2003; Jiang et al., 2014). Account-

ing for this adaptability is a crucial aspect that has been missing from the

contagion literature (Upper, 2011; Aymanns and Georg, 2014) and allows us

to investigate the endogenous accumulation of risk (Farhi and Tirole, 2011)

when banks increase their leverage (Kuzubas et al., 2014), and homogenise

their asset portfolios (Allen et al., 2012) and risk management (Haldane,

2009). Banks have been shown to load up on risky assets as the system

moves into danger (Dańıelsson and Zigrand, 2008) and correlate their as-

sets even though portfolio theory would suggest diversification (Beale et al.,

2011).

The key to measuring the effectiveness of an intervention strategy by the

regulator is a long term cost-benefit analysis (Diamond and Rajan, 2002).

Our model features two dynamic processes operating at different time-scales,

with slow strategy updating coupled with fast contagion dynamics in a sim-

ilar manner to Battiston (2012b). This set-up allows us to model the long

term dynamics of the system and the feedback between a regulator’s bailout

behaviour, systemic risk and economic performance. There are very few

existing models that allow the long term effects of bailout policy to be in-

vestigated in a quantitative manner (Birchler, 2014; DeYoung and Reidhill,

2013; Klimek et al., 2015) and, to our knowledge, ours is the first to assess the

4



effects of moral hazard and adaptive risk on bailout policy using a network

contagion model.

Our approach allows us to analyse two key questions from the moral haz-

ard and bailout literature. Firstly, we investigate the concept of “construc-

tive ambiguity” (Freixas, 1999), where the bailout response of the regulator is

purely probabilistic. Secondly, we investigate preferential or “tiered” bailout

strategies (Gong and Jones, 2013), where the intervention is dependent on ei-

ther the size of the distressed bank (Rose and Wieladek, 2012) or the risk level

of its immediate neighbours. Both approaches are assessed across different

network configurations, using a utility function that incorporates bank div-

idends, bankruptcy costs and bailout costs (Beale et al., 2011). This allows

the overall social cost of different intervention strategies to be compared.

2. Materials and Methods

2.1. Bank strategy

We model a set of N banks, each characterised by a strategy 0 ≤ xi ≤ 1

which determines the bank’s intention to take on risk. Bank profit depends

on this strategy, i.e. we set πi = f(xi). We assume that risk-taking will

generally result in larger (short term) profits, hence f(·) is assumed to be

a monotonically increasing function of its argument. For simplicity we set

f(x) = x. However, risk-taking is also associated with a higher degree of

fragility, and thus we assume that a bank’s likelihood of becoming bankrupt

or suffering from asset write-downs is also an increasing function g(xi) of its
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risk-taking strategy xi. For the purposes of this abstract model we assume

that g(x) = x.

2.2. Bank network

Banks are connected via an undirected network of asset co-investments

(or business relationships). A bank i with ki network neighbours is assumed

to have size ki, i.e. the larger a bank the more asset classes it is invested in.

In this sense we assume that banks’ asset portfolios are maximally diversified

(Battiston et al., 2012b).

Interdependency networks between banks are constructed as follows. Firstly,

we consider a “regionalised” banking system, corresponding to networks

given by 2D spatial grids with periodic boundary conditions and Moore

neighbourhoods (one could interpret these as sets of regional assets, such

that banks preferentially invest into assets in their geographical neighbour-

hoods). In order to consider globalisation, we build (regular) small-worlds

from these networks by rewiring a fraction ρ of all links. In these two sce-

narios, a world consisting of equally sized banks is modelled. Secondly, in

order to account for heterogeneity in bank sizes and asset portfolios, we con-

sider networks with power-law degree distributions, built either according to

the preferential attachment model (Albert and Barabási, 2002) or using the

configuration model to construct general random graphs with a power law

degree distribution characterised by exponent ν. In these models we restrict

connectivity to the same number of links as for the lattice and small-world
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networks and enforce a minimum degree of one to ensure there is always

one giant connected component, which comprises at least 95% of all nodes.

In the case of heterogeneous networks, bank sizes are also assumed to be

distributed according to a power law with exponent ν.

2.3. Systemic shocks

Two causes for insolvency are considered: (i) External fluctuations: We

assume that with a small likelihood p0 an event will occur that puts a bank

into distress, and that the bank will become insolvent with probability xi di-

rectly influenced by its risk-taking strategy. An insolvent bank is bankrupt at

this point if it is not bailed out; (ii) Contagion of adverse effects: Once a bank

becomes bankrupt due to an external fluctuation in (i), there is a small prob-

ability µ = 0.01 that the bankruptcy process is disorderly and reduces the

price of its assets, causing contagion via the network of asset co-investments

(Furfine, 2003). If this is the case, banks that are network neighbours of the

insolvent bank will suffer a shock. With probability max(η/ki, 1), this shock

will now cause insolvency in bank i (i.e. we assume that larger banks with

more diversified asset portfolios are more resilient to shocks than smaller

banks), putting this new bank’s respective network neighbours in distress

and potentially causing a cascade of further insolvencies. After bankruptcy,

a bank reverts to strategy x = 0 and resumes its former place in the banking

network. In the case of a shock that does not cause insolvency, which occurs

with probability 1 − max(η/ki, 1), the shock results in an asset write-down
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and a bank will adjust its risk-taking strategy to adapt to the loss, i.e. we set

xi → xi(1−η/k) (again, assuming that smaller banks react with more drastic

adjustments than larger banks which are more diversified). The parameter

η models the relative likelihood that shocks will result in asset write-down

or insolvency, with η = maxiki corresponding to a scenario in which dis-

tress always causes insolvency, and η = 0 modelling a scenario in which all

distress may at most cause asset write-downs (and corresponding strategy

adjustments). Assuming < k >= 8 for our simulations, we used η = 4, with

larger values giving similar results and smaller values not allowing cascades

to percolate.

2.4. Bailout

We also model the effects of (government) bailouts. Once a bank is dis-

tressed, it will be bailed out with probability q, thus preventing a bankruptcy.

The bank resumes normal trading using its previous risk-taking strategy and

distress does not spread to its business partners. In the UK, the size of

the bank relative to the entire banking system has a strong correlation with

the probability of a bailout (Rose and Wieladek, 2012). As a refinement

of this described mixed strategy bailout, two further bailout strategies are

considered: (i) size-based bailout, and (ii) neighbour-dependent bailout. In

the first case, banks with size (or degree) larger than a threshold k will be

bailed out when distressed, whereas smaller banks will not be. In the case

of neighbour-dependent bailout, a bank i will be bailed out with likelihood
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qi = c0 + c1k
−θ
i

∑
j aijxj where c0, c1, and θ are parameters characterising

this bailout strategy and aij is the adjacency matrix of the network. When

investigating strategy (ii), we search the parameter space spanned by c0, c1

and θ to find optimal interventions.

2.5. Evolution of risk

To investigate the dynamics of the evolution of risk-taking, we consider

two processes:

• Risk-taking strategy adaptation: At each time step a randomly chosen

bank, say bank i, adapts its risk-taking strategy by comparing its profits

to a randomly selected other bank of similar size, e.g. bank j, allowing

for choices of reference banks with ±30% size relative to the bank i that

is updating its strategy (Bala and Goyal, 1998; Gale and Kariv, 2003;

Jiang et al., 2014). If j achieved a higher profit, bank i will adapt to

bank j’s strategy xj by adjusting its risk-taking strategy in proportion

to the difference to j, i.e. xi → xi+σ(xj−xi). To allow for the evolution

of novel strategies, bank i’s strategy will also mutate by a small amount

each turn. This is modelled by adding a small random number drawn

from the uniform distribution over [−pmut, pmut] (Note that strategies

are always restricted to the interval [0, 1].) In our simulations we use

pmut = 0.0005 and σ = 0.01.

• Contagion of distress: With a (small) probability p0, a randomly chosen

bank, say bank i, is said to be in distress. With probability xi bank
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i goes bankrupt, and, as described above, with a small probability µ

distress may spread to the bank’s network neighbours who might, in

turn, go bankrupt, and so on. We assume that this process occurs

at a timescale much faster than the evolution of strategies, resolving

bankruptcies instantaneously. After a bankruptcy a bank returns to

trading with strategy x = 0.

The dynamics of the evolution of risk are thus marked by two processes

(i) adaptation of bank’s strategies towards risk-taking in such a way that

riskier strategies are favoured (and would eventually dominate the population

without the second process), and (ii) the occasional occurrence of (initially

externally caused) distress that may translate into cascades of bankrupt-

cies or asset write-downs that can potentially spread through the banking

system. Lower risk-taking strategies are more likely to escape cascades of

bankruptcies (and asset write-downs), hence a balance between low and high

risk-taking evolves in the population.

2.6. Measuring social cost

In each time period, costs and benefits are determined as follows. If bank i

goes bankrupt, the cumulative cost of bankruptcy Cb is incremented by a cost

proportional to bank i’s balance sheet, which we define as xiki. The balance

sheet is proportional to both the network degree and risk level of bank i.

Similarly, a bailout will increment the cumulative cost of intervention Cv by

a cost in proportion to the distressed bank’s balance sheet. If bank i suffers
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an asset write-down through contagion, the cumulative asset write-down Ca

is incremented by xi, representing the fact that i loses 1/ki of its balance

sheet. On the benefits side, higher risk-taking leads to larger returns for

shareholders. Therefore the cumulative benefit B is incremented by
∑

i xiki

each time period, where i runs over the set of all banks. Averaging costs and

benefits over simulated time (after a transient has elapsed), a total social

cost function can be determined via

U(Ψ) = −Cb(Ψ)− Ca(Ψ)− αCv(Ψ) + βB(Ψ), (1)

with parameters α and β determining the relative costs of bankruptcy, bailout

and shareholder dividends from banks. For the purposes of this abstract

model, we set α = 10 under the assumption that bailout is far more costly

than bankruptcy, and we set β = 0.01 assuming a relatively small risk related

return per unit of time for banks. Note that the social cost function depends

on Ψ, which is the choice of intervention strategy.

3. Results and Discussion

3.1. Self-organised criticality

Previous work has likened financial networks to a self-organised critical

(SOC) system (Hurd, 2015) and we have built on those ideas in the devel-

opment of our stylised model. In the absence of shocks, banks adapt their

strategies to those of economically more successful competitors, leading to
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an accumulation of risk on a slow time-scale and making individual banks

vulnerable to failure. The potential for cascades of bankruptcies reduces the

rewards of risky strategies; hence risk-taking balances out and is marked

by cycles of larger and smaller risk appetite of banks that correspond to

fluctuations around some intermediate level of risk.

Fig. 1 illustrates these SOC-like dynamics. It shows the existence of

periods of calm, marked by the accumulation of risk, which are interrupted

by cascading shocks of various sizes. Cascades of failures are mostly small

and localised to only very few banks, but can occasionally reach system-wide

proportions, cf. panel (C) of Fig. 1 which gives the distribution of the sizes of

simulated bankruptcy cascades. Similar to models of the long-term dynamics

of forest fires, the model exhibits power law distributed cascades and SOC-

like behaviour in the limit of extremely rare external shocks (Drossel and

Schwabl, 1992; Pruessner and Jensen, 2002). In the case of more frequent

shocks the distribution is bimodal, with peaks for very small cascades and

rare very large cascades.

3.2. Utilising constructive ambiguity

More importantly, the model allows us to investigate the system’s long-

term response to interventions by a regulator. Fig. 2 shows the dependence

of average risk-taking on a regulator’s “constructively ambiguous” bailout

strategy, where q represents the probability of intervention. In agreement

with empirical evidence (Dam and Koetter, 2012), we find that larger prob-
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Figure 1. Evolution of risk and bankruptcies. Results shown on (A) a lattice and (B) a small-world
network, with (C) corresponding distributions of bankruptcy cascades. Systems are of size 1.44×106 nodes
with an average degree 〈k〉 = 8, a probability of exogenous shocks p0 = 10−4 and a rewiring probability
for the small-world network ρ = 0.05.

abilities of bailout will enhance a bank’s average appetite for risk. However,

this enhanced risk-taking potentially makes the system more fragile, which

may cause relatively more failures than in a scenario without regulatory in-

tervention. As a consequence, the long-term repercussions of bailout may

actually be detrimental to overall system function. Fig. 3 illustrates this be-

haviour by comparing the average number of banks affected by cascades (i.e.

the number of bankrupt banks and bailed-out banks) to the bailout strategy

in both the short and long term for prototypical classes of asset correlation

network. In the short term, before banks have had the chance to adapt their
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strategies, the response to bailout is positive; large numbers of bailed-out

banks reduce the size of bankruptcy cascades, resulting in a monotonic de-

cline of nbailout + nbankrupt with the bailout probability q. At some critical

point a percolation threshold qperc is reached, such that for q > qperc, system-

wide cascades can be prevented. This contrasts with the long-term response

to enhancing bailout likelihood, which is not monotonic. Crucially, increas-

ing the intervention probability from zero results in a more vulnerable system

prone to typically larger cascades of failures. This trend is only reversed at

some point shortly before the percolation threshold is reached. Similarly to

the short-term scenario, increasing q above qperc suppresses system-wide fail-

ure, but enhances risk-taking and leads to a large number of bailouts that

may be socially inefficient. Hence, typically a bailout probability 0 < q < 1

exists such that the overall additional profit available through increased bank

risk is optimally balanced against the cost of failures and bailouts.
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Figure 2. Bank risk and utility. Average (A) risk and (B) system utility achieved per turn for 104

banks, coupled by either a lattice, small world or scale free network with average degree 〈k〉 = 8. Results
have been averaged over at least 10 network realisations, for each of which the dynamics have been run
for 105 sweeps. The arrows indicate the optimal (qopt) and minimum economically sensible (qs) bailout
probabilities for a lattice.

To address this question of optimal bailout, we investigated extremal
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Figure 3. Influence of bailout. Comparison in the short (non-adaptive banks, solid circles) and long
term (adaptive banks, open circles) quantified by plots of the value of assets bailed out and lost in
bankruptcies vs. the bailout probability q. Simulations run for (A) lattices, (B) small-world and (C)
scale-free networks.

points of a social cost-benefit function. Bank dividends are offset against

bankruptcy and bailout costs, with dividend size increasing monotonically

with bank risk (see Materials and Methods). Typical cost-benefit functions

for various types of asset correlation network are illustrated in Fig. 2(B). In

agreement with the above arguments we find that these functions are initially

declining, reflecting bank’s enhanced risk-taking in response to sub-critical

probabilities of bailout. As the cascade limiting effect of larger degrees of

intervention can exceed enhanced long-term risk-taking, this trend is reversed

at some point and one typically finds a minimum economically sensible bailout

probability qs at which the utility value achieved is the same as that for a

system with no intervention. Increasing the likelihood for bailout further,

there exists some probability qopt > qperc for which utility is optimised, but

even though a localised spread of failures is increasingly suppressed, the costs

of bailout typically become excessive beyond this point and utility begins to

decline. For the three prototypical types of asset correlation networks, we

find qopt = 0.63±0.01, qopt = 0.67±0.01, and qopt = 0.75±0.01 for lattices, 2-

dimensional small-worlds, and scale-free networks of average degree 〈k〉 = 8
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respectively. The exact location of these points depends on the choice of

weights in the cost-benefit function, but the maxima are typically very flat

and results are robust over a wide range of cost parameters.

3.3. Dependence on network structure

We have also investigated the dependence of optimal bailout strategy

on the structure of the asset correlation network. In a first experiment,

we compare worlds of regionally localised asset investments to increasingly

globalised worlds building asset correlation networks using a variant of Watts

and Strogatz’s small-world model (1998). As expected, one finds that the

dynamics of insolvency cascades on increasingly globalised worlds are more

difficult to control (see panels of Fig. 4). With no bailout, average utility

declines with the shortcut density (a proxy measure of globalisation in the

small-world model). In a similar vein, the minimum economically sensible

bailout probability qs and optimal bailout probability qopt both increase, but

utilities at the point of optimal intervention decrease. We also calculate the

bailout probability qmin for which system utility is minimised to demonstrate

how poorly the system can perform without carefully controlled intervention.

In a second experiment, we investigate the effects of system heterogeneity

by constructing asset correlation networks with power-law degree distribu-

tions. The exponent of the power law, ν, can be tuned to achieve the level

of heterogeneity required in the network. Results are summarised in Fig-

ure 5 in which the dependence of utility, minimum economically sensible
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bailout probability and optimal bailout probability on ν are shown. We find

that utilities, both with and without optimal intervention, decline as hetero-

geneity is decreased. Whereas the dependence of non-intervention utility on

system structure is fairly strong, utilities at the maximum of the cost ben-

efit function are broadly independent of ν. As a result, there is a threshold

level of system heterogeneity at which intervention becomes sensible. Within

our stylised framework, we find that for systems more heterogeneous than

ν ≈ 1.9, a mixed bailout strategy is not economically viable. For ν > 1.9, as

systems become less heterogeneous, the bailout probability at the point of

optimal intervention increases slightly with ν.

3.4. Preferential Intervention

So far, we have considered mixed bailout strategies that do not make use

of information regarding the size or position of banks in the network. What
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about a “tiered” or preferential intervention strategy for banks that are either

too connected or Too-Big-To-Fail? (Morrison, 2011; Battiston et al., 2012a)

In the present model, both a bank’s size and connectivity are approximated

by a node’s degree; hence we consider bailout strategies in which nodes of

degree greater than a certain threshold k are always bailed out, while other

nodes are allowed to fail. In Fig. 6, the dependence of utility on k is given

for systems of varying heterogeneity parametrised by the exponent of the

degree distribution ν. The extremes of very stringent (very large k) or very

lenient (very small k) bailout correspond to the extremes of q = 0 and q = 1

in the mixed strategy bailout scenario, which are not optimal unless system

heterogeneity exceeds the threshold of ν ≈ 1.9 when no bailout is cost efficient

(as in the case of ν = 1.6 displayed in the figure). In between these extremes,

the dependency is generally S-shaped with extremal points at low degree and

high degree, illustrating the potential benefits and (long term) dangers of
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preferentially bailing out large banks. The first maximum corresponds to a

low degree threshold, which allows sufficient hub nodes to be bailed out that

bankruptcy cascades can effectively be suppressed. Comparison with mixed

strategy bailout shows that targeted intervention is potentially beneficial,

if the bailout threshold is properly calibrated. In contrast, and similarly

to the results observed for mixed strategy intervention above, there exists

a threshold region where bailout encourages excessive risk-taking without

being able to suppress systemic effects, and system utility is negative. This

again highlights the danger that a poorly calibrated intervention strategy

can have on system performance.
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Figure 6. Effect of bank connectivity. Dependence of utility on the minimum degree k for defining
hub nodes for preferential bailout. Results for scale-free networks with degree exponent ν = 2.5, 2 and
1.6. The horizontal line Uopt gives the optimal achievable utility for a mixed strategy bailout that does
not use topological information.

As a refinement of degree-based bailout, we also consider a class of in-
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tervention strategies that select whether to bailout banks dependent on the

riskiness of their neighbours’ and their consequent susceptibility to being im-

pacted by a bankruptcy cascade. Rather than q being a “static” probability

as it was previously, it is now determined by a linear function of total neigh-

bour risk, where xj represents a bank strategy and aij the adjacency matrix

for the network:

qi = c0 + c1fi
∑
j

aijxj (2)

with coefficients c0 and c1 as parameters and node-dependent coefficients

fi = k−θi potentially allowing for size-specific factors such that this class of

strategies can be seen as a superset of the size-based interventions presented

above (see Materials and Methods). In a static setting without adaptive risk-

taking, we would expect preferential bailout of positively correlated risk, i.e.

positive coefficients c1, to be the most efficient way of stopping bankruptcy

cascades. We have searched the space of bailout strategies parametrised

by c0, c1 and θ in the setting with adaptive risk and generally find utility

maxima for θ ≈ 1, whose dependence on c1 is shown in Fig. 7 for the three

prototypical asset correlation network types.

Contrary to our intuition for the static case, we find that optimal util-

ities decrease sharply for positive c1 and note a marked improvement until

saturation for negative c1. Closer inspection of the optimal strategies reveals

that utility maxima are reached when banks are only bailed out if at least
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Figure 7. Neighbourhood risk. (A) Dependence of maximum achievable utility on the risk correlation

factor c1, which we find in the class fi = k−θi for θ ≈ 1. (B) Dependence of utility on system heterogeneity,
parametrised by ν. We compare utilities with no intervention (U(0)) and full intervention (U(1)), as well
as the best mixed strategy (qopt), degree-based (kopt) and neighbour-based (Ubest) intervention methods.

one or two of their network neighbours take on low risks. To understand

why these strategies are optimal in an adaptive setting, one should consider

bailout strategies as a selection mechanism that shapes the allocation of

risk. If we preferentially bail out patches of positively correlated risk, this

positively correlated risk is selected for, and will eventually result in a long-

term system configuration with an agglomeration of such patches requiring a

large number of bailouts each turn. Conversely, negatively correlated bailout

might not be beneficial in the short term, but will encourage slightly nega-

tively correlated risk allocations, which are just enough to stop system-wide

cascades with minimal bailout requirement. This can be illustrated well in

spatial networks, cf. Fig. 8, which give snapshots of example configurations

evolved using various bailout regimes and show the corresponding landscapes

of likelihoods to stop bailout. It can be seen that in the optimal regime, a

relatively large fraction of evenly distributed low risk-takers is encouraged
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who effectively restrict potential bankruptcy cascades to very small sizes.

(A) (B) (C)

Figure 8. Risk allocation and cascades. Example configurations of risk allocation (top) and illustration
of bailout likelihoods and of example cascades (bottom) for various bailout strategies. In the top pictures,
darker colours indicate higher risk. In the bottom pictures, darker colours indicate a high likelihood that a
bankruptcy cascade will be stopped at this bank. Example cascades started at randomly selected locations
are also shown here, where red illustrates bankrupt banks, green bailed-out banks and blue banks who
were affected, but survived. (A) Configuration for the optimal mixed bailout strategy q = 0.63, (B)
configuration for optimal neighbour-dependent strategy and (C) mixed bailout strategy with the same
effective bailout likelihood q = 0.13 as for the optimal neighbour dependent strategy in (B).

In Fig. 7 we also compare the dependence of utility using an optimal

neighbour-dependent bailout strategy on system heterogeneity. Similarly to

lattices and small-worlds, utility is greatest for large ν, but decreases strongly

when system heterogeneity is increased. Fig. 7 also includes a comparison

of all considered types of bailout strategy for systems with varying degree

of heterogeneity. We note that an (anti-correlated) neighbour-dependent

bailout strategy is always superior to degree-based or mixed strategy inter-

vention policy, but the threshold of system heterogeneity when any form of

intervention becomes efficient is nearly independent of the choice of strategy.
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Closer analysis gives ν ≈ 1.9 for an optimal mixed strategy bailout, and a

slightly lower ν ≈ 1.8 for degree-based and neighbour-dependent bailout (cf.

intersection of the U(0)-curve with the curves denoting the various bailout

strategies). In addition, a second crossing point at ν ≈ 2.5 is notable when

mixed strategy bailout becomes superior to degree-based bailout. At this

point, degree thresholds have to be set such that almost all nodes are bailed

out all the time and choices of mixed strategy bailout allow for a finer tuning

of bailout strategy.

4. Conclusions

In this paper we have introduced a model of adaptive risk based on a

stylised banking systems, in which distress and insolvency can propagate via

networks of asset co-investment. We have argued that the bailout strategies

of an external regulator can be understood as a selective force that shapes

the allocation of risk in this networked system, and will thus influence perfor-

mance measures and system fragility. Analysing adaptive risk-taking high-

lights the potentially problematic effects of bailout over a sustained period

of time. We provide quantitative evidence that whereas bailout will always

restrain the systemic effects of insolvency in the short term, it can encourage

excessive risk-taking and thus be detrimental to long term system efficiency.

A long term cost-benefit analysis of bailout allows the determination of opti-

mal intervention probabilities, and we generally find these points located in

a regime above the percolation threshold of the banking network.
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In agreement with intuition, more globalised worlds require more bailout,

and are harder to control than regionalised banking systems without long

range connections. Furthermore, depending on the likelihood of distress situ-

ations, an optimally tuned intervention strategy is found to be always efficient

in systems with minimal heterogeneity in bank size, but non-intervention can

become a superior strategy if system heterogeneity exceeds some threshold.

An intervention strategy may be refined to become conditional on a bank’s

size or position within the network. Size-based bailouts can become supe-

rior to purely probabilistic bailouts in heterogeneous systems, if intervention

thresholds are chosen such that systemic effects are suppressed but unneces-

sarily frequent bailout is avoided. However, we find that intervention strate-

gies conditional on the risk-taking of a bank’s neighbours are comfortably

superior to probabilistic or size-based bailout. If finely tuned, such a bailout

policy can favourably partition the system into regions of high risk-taking

separated by boundaries of low risk-taking, thus restraining the possible size

of bankruptcy cascades. The long-term optimality of bailing out (slightly)

negatively correlated risk-takers may appear counter-intuitive. However, un-

derstanding that bailout can be a selective force that shapes system structure,

it becomes clear that a targeted bailout strategy can encourage patterns of

the same risk-taking it intends to mitigate when preventing cascades. Thus,

while it is not the most efficient method of cascade prevention, bailing out

banks with negatively correlated risk-taking can promote an overall system

structure that enhances robustness.
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Our model intentionally uses a highly abstracted banking network to

illustrate the differences between various bail-out strategies in the short and

long term. Therefore, a potential area of future research would be to improve

realism by extending the work to include a more detailed representation of

contagion channels, e.g. based on the recent literature on multiplex networks

(Montagna and Kok, 2013; Brummitt and Kobayashi, 2015; Poledna et al.,

2015). Another possible avenue for future work would be to allow bank

connections to evolve over time as strategies change, creating an adaptive

network of interconnected balance sheets.
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