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Abstract Aquatic organisms capable of undergoing extensive volume variation of
their body during locomotion can benefit from increased thrust production. This is
enabled by making use of not only the expulsion of mass from their body, as docu-
mented extensively in the study of pulsed-jet propulsion, but also from the recovery
of kinetic energy via the variation of added mass. We use a simplified mechani-
cal system, i.e. a shape-changing linear oscillator, to investigate the phenomenon
of added-mass recovery. Our study proves that a deformable oscillator can be set
in sustained resonance by exploiting the contribution from shape variation alone
which, if appropriately modulated, can annihilate viscous drag. By confirming that
a body immersed in a dense fluid which undergoes an abrupt change of its shape
experiences a positive feedback on thrust, we prove that soft-bodied vehicles can be
designed and actuated in such a way as to exploit their own body deformation to
benefit of augmented propulsive forces.

1 Introduction

Most aquatic organisms rely on periodic oscillations of some wing-link control sur-
face for locomotion. These may entail fins, a tail or whole-body ondulatory routines,
which eventually participate in generating rotating fluids which is pushed backwards
while propelling the body forwards [8, 14]. A broad degree of variability is found in
the details of the kinematics of the surfaces of actuation and the associated topology
of the vortices generated; however, the processes which enable vertebrate organisms
to propel themselves in water manifest a remarkable degree of consistency [13].

Of higher interest within the frame of soft robotics are those mode of locomotion
where body modifications don’t necessarily rely on the activation of joints or the
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coordinated motion of reciprocating limbs, but rather those where the body undergoes
extensive transformation of its topology or volume. In this respect, mono-cellular
organisms or aggregate of these, as well as certain tunicate and cephalopods [6],
are better paradigms of what a soft body, and hence a soft robot, can achieve [15].
These organisms have attracted the attention of the robotics community because they
represent the perfect source of inspiration for the design of soft-bodied underwater
vehicles [3, 12]. In the past, cephalopods have been studied extensively for their
pulsed-jet propulsion [7], but lately their volume-changing propulsion routine has
been associated with the phenomenon of added-mass recovery and the idea that this
may further contribute to the thrust production [16, 17]. If confirmed, this would
have a major impact both on the understanding of the biomechanics of these living
organisms, as well as on the chance to exploit this principles in the design and control
of innovative underwater vehicles [2, 4, 11]. Following the results of [5], we report
on the phenomenon of added-mass recovery for a simplified mechanical system in
order to demonstrate that shape variation can indeed act as a secondary source of
thrust.

2 Added Mass Variation as a Thrust Term

When a body is accelerating in a dense medium, added mass defines an inertial term
which depends on the amount of kinetic energy lost for accelerating the fluid around
it. This was first postulated by Alfred Barnard Basset [1] in attempting to account
for the differing frequencies experienced by a body oscillating in vacuum and in a
dense fluid. Given the dynamics of a 1 dof (degrees of freedom) oscillator,

m*x +kx =0, (1)

where m*, x(t) and k respectively represent the effective mass, the position and
the elastic constant of the oscillator, the frequencies of oscillation in vacuum, wy,
and in a dense medium, w*, are defined as wy = w* = +/k/m*. However, while for
the case of a body oscillating in vacuum m* = m, for a body vibrating in a dense
fluid m* = m + m,, where m, is the added mass of the body, thus explaining why
o* < wy.

The added-mass is thus a force generated by the fluid acting against the acceler-
ation of a body and, for single bodies far away from solid boundaries, it depends on
the density of the fluid and the shape of the body. This term is especially important
in the design and control of aquatic soft-bodied machines because these are often
made of relatively light materials and added-mass effects become prominent when
ps/py ~ 1or <1, with p; and p, being the density of the solid and the fluid.

The role that added-mass plays when a body undergoes shape variations such as
those experienced by cephalopods has not been looked into in details. To do so we
take in consideration the same mechanical system employed by Basset and expand
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Fig. 1 Scheme of the shape-changing spring-mass oscillator. Here r represents the radius of the
oscillator at time ¢, while rq refers to the mean radius of the oscillator. The distance of the frame of
reference centered in O from the relaxation point of the spring is x. Adapted from [5].

on this by accounting for the capability of an oscillating body to vary its shape, and
hence its added-mass, in time, see Fig. 1.

For a body immersed in a dense, viscous fluid, it has become customary to define
the dynamics of such a body according to the Morison force [10], which accounts
for the combined effects of added-mass and drag via their linear summation. In this
case the dynamics of the 1 dof oscillator of Fig. 1 reads:

%(m*ic) = —%pfch;c|x| + kx. )
Where the differential sign in front of the inertial term has been retained because we
are interested in accounting for bodies whose shape can be altered in time.

We perform the differentiation on the first LHS (left hand side) term while assum-
ing the mass to remain constant (i.e. m = 0) and only the shape, and hence the
added-mass, to change (i.e. m, # 0). This situation is resemblant to the case of an
oscillator being inflated/deflated by pumping a gas inside it, so that the variation
of the inertia of the oscillating body is negligible. If this is the case, the buoyancy
of the oscillator does vary, but since the motion of the body is purely translational
along the x direction, the forces along the vertical and horizontal direction remain
fully decoupled. Hence, substituting m* into Eq. (2) and bringing the differentiation
forward yields,

1
(m—}-ma))'c':—EprdA)'cI)'cl—i-kx—n'iafc. 3)

In the LHS term, m, (¢), is the time-varying added-mass, while the third RHS term is
the added-mass variation term which has the form of a thrust source. This latter form
of Eq. (2) suggests that added-mass variation can indeed work as a propelling force
as long as the motion has been initiated by some other effect, i.e. the elastic energy of
a spring, in an oscillator, or the jet, in a freely swimming organism. The occurrence
of the minus sign in front of the m1,x, proves that, in order for added-mass variation
to act as a propelling term, 72, must be negative, thus requiring the body to shrink.
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The best way to prove that the added-mass variation term can indeed provide a
positive feedback on thrust is by rearranging Eq. (3) as follows:

1
(m4+my)x =— (E,odeA|x| - n'1a) X+ kx. 4)

This latest rearrangement highlights that, if added-mass variation can act as a pro-
pelling force, a function of 1, must exist according to which,

) 1 .
ta = 5 pyCaAli] 5)
thus cancelling viscous drag and eventually driving the oscillator into the regime
described in Eq. (1). This implies that, by virtue of external shape variation alone,
a damped oscillator can be made to behave as an undamped one. This function can
be readily derived by assuming the oscillator to be a sphere, whose added-mass is
simply,
2 3
mg = Zpymr’, (6)
3 .
where r(¢) is the time-varying radius of the sphere. The time derivative of m, thus
reads,
ty = 2mp r?F. (7)

By substituting Eq. (7) into Eq. (5), the condition for zero damping is met when,
' Lc x| ®)
r=—— .
4o

This extremely simple formulation defines the radius variation needed for a sphere
oscillating in a dense medium to cancel viscous damping effects and in this way drive
the system into resonance.

A closed form for the radius variation can be found by assuming a sinusoidal
velocity profile of the oscillator, i.e.:

x = Xcos (wt) &)

where X is the initial displacement of the oscillator. This yields the time-varying
radius profile depicted in Fig.2 for two full oscillations and four shape-variation
routines. We refer to this radius-variation routine as the “step” profile. Figure2b
reports, in the lower part, the assumed oscillator velocity and, above, the non-
dimensional radius profile; Fig.2a depicts the size of the sphere at four instants
throughout half an oscillation of the body. The shape of the function r(¢) in Fig.2b
is extremely interesting because it qualitatively resembles the activation mode of
certain pulsed-jet propelled organisms. At /7 = 0.5 the oscillator has zero speed
when the spring is fully stretched. At this stage the sphere has a radius r = ry +a
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Fig. 2 Evolution in time of the shape-changing oscillator based on the “step” profile of Eq. (8). In
a, depiction of the oscillator pulsating around the average radius rg at four instants during one half
oscillation of the mass-spring system. In b, the upper part of the plot shows the profile of radius
variation of the oscillator based on Eq. (8); the lower part of the plot shows the assumed velocity
profile based on Eq. (9), with U = wX being a reference velocity. Adapted from [5]

with a = }thX being the amplitude of the radius variation of the sphere. Then the
mass is released and the elastic force of the spring accelerates the sphere. Based on
Eq. (8) at /T = 0.75 the sphere reaches the relaxation point of the spring, where
potential energy is zero, kinetic energy is maximum and the sphere has shrank to its
mean value ry. The deflation of the body continues until the end of the oscillation,
t/T = 1.0 and r = ro — a, when the sphere stops. This is when the jump condition
imposed by the absolute value in Eq. (8) forces the sphere to re-inflate abruptly
to its original size. Incidentally this is the most efficient time to make the sphere
inflate because if it did so during the motion, a negative thrust would be generated,
slowing down the oscillation. By suddenly expanding the body when the velocity is
zero, the sudden growth of added-mass has no negative impact on the propulsion. In
order to verify that this kind of routine enables the oscillator to undergo resonance
by annihilating viscous resistance, we perform fully coupled fluid-solid numerical
simulations.
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Fig.3 Amplitude of the oscillations for the “step”, Eq. (8), and “sinusoidal” shape-variation profiles
obtained from the fully-coupled fluid-structure-interaction simulation. Adapted from [5].

3 Numerical Validation

To test the hypothesis formulated in Sect. 2 we use a three dimensional Navier-Stokes
solver especially suited for modelling fluid-solid-interaction case studies [9, 18]. Our
test case consists of a sphere in a fluid acted upon by the elastic force of a spring,
Fig. 1, and a prescribed routine of pulsation based on Eq. (8) and analogous to that
depicted in Fig. 2. The dynamics of the sphere is thus exclusively dependent on the
spring elastic forces and the pressure forces generated by the surrounding fluid which
reacts to the body displacement and body deformation.

The results, extensively discussed in [5], are briefly reported in Figs.3 and 4a—e.
The results presented in Fig. 3 confirm that the shape change of the body drives the
onset of sustained resonance by acting as a propelling term or, more precisely, by
cancelling the viscous damping. As opposed to the well known case of a standard
weakly damped fixed-shape oscillator, where the oscillations progressively decay
with time, in the pulsating case the oscillations persists while maintaining the same
amplitude.

Of course, there is not one single profile of radial variation which enables recovery
of kinetic energy from added-mass variation. Ideally, any pulsating mode executed
at double the frequency of oscillation will drive the onset of resonance. Indeed, anal-
ogous results can be achieved by employing a “sinusoidal” radial variation profile,
as demonstrated in Figs. 3 and 4f—j.

This is the first evidence of resonance being driven by the variation of added-
mass, alone. These results confirm that body shape-changes can trigger an exchange
of kinetic energy between the body and the fluid in such a way that it produces a
positive feedback on the thrust of the body. In the case of an oscillatory system, this
manifests itself in the occurrence of a resonant behaviour, but if we were dealing
with a self-propelled vehicle the same phenomenon would appear as an additional
source of thrust.
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Fig. 4 Evolution of the vortical structures (1, vortex criterion) during one oscillation after attain-
ment of the zero-damping regime in response to the “step” (a, b, ¢, d, e) and the “sinusoidal” (f, g,
h, i, j) radius variation profile at 7/T = 0.2 (a, f), 1/T = 0.4 (b, g), /T =0.6 (¢, h), r/T =0.8
(d, i), /T = 1.0 (e, j). Adapted from [5].

4 Added-Mass Recovery in Self-propelled Vehicles

Evidence of the capability of a shape-changing body to benefit of thrust thanks to
the recovery of kinetic energy has been demonstrated in [16]. A vehicle consisting
of a rigid neutrally buoyant structure of length L = 27 cm and an elastic membrane
stretched around it is used as the demonstrator. This vehicle is meant to replicate
one pulsation of a cephalopod: the elastic membrane is inflated with water and, once
released, the water stored inside the membrane is accelerated across a nozzle of
section A;. This jet of water pushes the vehicle forward as the elastic membrane
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Fig. 5 Experiments performed with a shape-changing self-propelled vehicle; a sequential frames
of the deflating vehicle, b speed of the vehicle as measured by tracking the center of mass of the
body and ¢ net thrust force non-dimensionalized by the jet force F; for the shape-changing body
(dashed gray line) compared with that experienced by a rigid 5:1 ellipsoid of revolution subject to
the same jet thrust F';. Above the X F/F; = 1 line the vehicle is subject to added-mass recovery
effect and the net force is larger than the jet thrust. Adapted from [16].

deflates. The experiments entail the recording of the displacement of the vehicle
along with its shape deformation, Fig. 5Sa. Edge detection of the frames taken during
this single burst of acceleration provides an accurate estimate of the membrane
outline and, hence, of the instantaneous volume of the vehicle and its center of mass.
From these, the ejected mass and the velocity, x, of the vehicle, Fig.5b, can be
derived. The mass of the vehicle, with its payload, decreases from its starting value
of my = 3.65kg to the point when the membrane comes in contact with the rigid
frame; this yields an almost constant rate of mass expulsion of 7z = 3kg s~!. From
these quantities, the thrust generated by the jet F; = mU;, withU; = ;—‘ #, and the
total force X' F = mX experienced by the shrinking vehicle are derived. The force
X' F acting over the body can be compared to that experienced by arigid 5:1 ellipsoid
of revolution subject to the same F;. The comparison is presented in Fig.5c. The
area above the line X' F/F; = 1 defines the dynamics regulated by the added-mass
recovery effect according to which the vehicle experiences more thrust than that
provided by the jet alone.
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From a conservative analysis the shrinking prototype was found to benefit of
a 30 % increase in thrust associated with the shape-variation alone, with a 130 %
increase in acceleration with respect to the rigid case and a 200 % increase in speed.
The peak shown in Fig. 5c for the shrinking body, as opposed to that of the rigid
body, can only be attributed to the term —2,X which arose in Eq. (3) due to the
shape variation of the oscillator. The dynamics observed in the shrinking vehicle can
only be justified by accounting for the shape variation effects, thus confirming the
role of added-mass recovery as a source of thrust.

5 Conclusion

The purpose of this study is to underline the benefit of controlled shape modification
in the frame of the propulsion of deformable aquatic bodies. While it is hard to assess
the role of shape change on thrust in actual self-propelled systems, the approach used
here permits to segregate the effect of added-mass variation from other sources of
thrust and in this way to highlight its role as a propelling force.

We provide a rigorous formulation of the phenomenon associated with shape vari-
ation by studying a simple mechanical system consisting of a spring-mass oscillator
submerged in quiescent fluid and subject to periodic changes in its volume. The
study of this simplified system demonstrates that the kinetic energy associated with
the shape variation can completely cancel the viscous damping of the fluid, even-
tually giving rise to sustained, persistent oscillations. We also present experiments
performed on a shape-changing self-propelled vehicle whose peculiar dynamics can
only be explained by accounting for the role of added-mass recovery hereby formu-
lated.

The confirmation that a body immersed in a dense fluid which undergoes an
abrupt change of its shape experiences a positive feedback on thrust has significant
implications in the design and control of soft underwater robots that exploit shape
variation as their locomotion strategy.
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