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Abstract 
 

A fusion approach to person recognition is presented here outlining the automated 

recognition of targets from human descriptions of face, body and clothing.  Three novel 

results are highlighted.  First, the present work stresses the value of comparative 

descriptions (he is taller than…) over categorical descriptions (he is tall).  Second, it 

stresses the primacy of the face over body and clothing cues for recognition.  Third, the 

present work unequivocally demonstrates the benefit gained through the combination of 

cues: recognition from face, body and clothing taken together far outstrips recognition 

from any of the cues in isolation. Moreover, recognition from body and clothing taken 

together nearly equals the recognition possible from the face alone.  These results are 

discussed with reference to the intelligent fusion of information within police 

investigations. However, they also signal a potential new era in which automated 

descriptions could be provided without the need for human witnesses at all. 
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1. Introduction 

We live in a technologically sophisticated world in which the methods of police 

investigation are changing.  There is a smartphone user, or a CCTV camera virtually on 

every street corner who can capture a perpetrator in the act. As such, imagery is often 

broadcast with the hope of eliciting public identification, and surveillance images can 

provide direct evidence of value to both the investigative process and the court system.  

Nevertheless, for all its sophistication, this information is useless unless we can make an 

identification from the images available. Two problems may prevent this.  First, the 

images can sometimes be too poor in quality to enable fine-grained biometric analysis 

of characteristics.  Second, the images may depict a perpetrator who purposely hides or 

disguises their face.  The latter case was exemplified by the recent images of Jihadi 

John who hid his face (but not his body) in incriminating photographs.  Consequently, a 

question arises as to whether the continuing focus on faces is appropriate if the face can 

so easily be degraded or hidden? The purpose of the present paper is to examine a new 

approach in computer vision which relies on soft biometrics. Specifically, we examine 

the utility of soft biometric descriptions of the face, body and clothing of a target when 

making an identification, and we explore the benefits that are possible when soft 

biometrics are combined in sensible and realistic ways. 

1.1 Soft Biometrics for Identification 

Soft biometrics represent a relatively new form of biometric identification which rely on 

the physical or behavioural characteristics as described by humans (Dantcheva, Elia & 

Ross, 2016; Nixon, Correia, Nashrollahi, Moeslund, Hadid & Tistarelli, 2015;).  Earliest 

references described soft biometrics as descriptive labels which could be used to 
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separate populations into subsets (i.e., male, Caucasian) but which were not sufficient 

when trying to identify a specific individual. Later, soft biometrics were defined as the 

‘personal characteristics describable by humans that can be used to aid or effect person 

recognition’ (Nixon et al., 2015, p220). Their value comes from the fact that they may 

help to refine a more traditional biometric search. For example, if the target sex, race, or 

approximate age of a target is known from a soft biometric label, the set of potential 

matches to search through can be reduced.   

More recent work has explored the capacity to make an identification based on 

these soft biometrics alone. This has the potential to provide a tremendous advantage in 

the real world as the soft biometrics can be obtained with no intervention even when the 

target is at a distance. These, of course, are exactly the conditions in which more 

traditional biometrics become unavailable due to low resolution or occlusion. 

Consequently, soft biometrics may offer clear operational value. 

The earliest approach using soft biometrics for identification was provided by 

Samangooei, Guo and Nixon (2008) who asked 38 participants to provide descriptions  

of ten walkers imaged side-on in the Southampton Gait Database (Shutler, Grant, Nixon 

& Carter, 2002). The descriptions were selected from a previous study (Macleod, 

Frowley & Shepherd, 1994) in which participants had an unlimited amount of time to 

describe a set of target individuals from moving video sequences of the targets walking, 

or from static photographs taken during the act of walking. A total of 1238 descriptions 

were extracted, with 1041 providing descriptions of overall physique and the remainder 

providing descriptions of motion. These were grouped (where possible) and a set of 23 

labels was generated covering everyday and easily understandable characteristics such 

as age, sex, height, etc. Whilst age was represented by 7 categories, and sex by just 2 
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categories, all other characteristics which could vary continuously, such as height, were 

reduced to a 5-point scale (i.e., very short, short, average, tall, very tall).. Later, the 13 

most reliable labels were incorporated into the final set for (soft biometric) categorical 

description.  

Samangooei et al. (2008) used these 13 labels as prompts to encourage 

participants to describe ten targets in a process which approximated that of an 

eyewitness interview. The results suggested substantial agreement across participants 

when describing two key characteristics – race and sex. Moreover, they revealed 

significant correlations particularly between those labels that described overall thickness 

and length of the body, as well as extremities (Samangooei & Nixon, 2014).  In 

particular, common-sense relationships were revealed between body shape and weight, 

and each correlated with arm thickness, leg thickness and chest descriptions as 

expected. Consistent with known physiology, a significant correlation was also noted 

between height and leg length. The lack of a number of other expected correlations may 

be attributable to the difficulty in describing features when viewed from the side, 

especially when they related to aspects such as shoulder width which could not easily be 

discerned.   

Of greater interest, however, was the fact that when each of ten targets was 

compared to stored exemplars in an identification task, Samangooei et al. (2008) 

revealed a maximum 90% Correct Classification Rate (CCR) based on the soft 

biometric labels alone. Moreover, this rose to 99.5% CCR when the soft biometric 

labels were combined with a more traditional biometric method involving automated 

gait recognition. Consequently, soft biometric labels provided an important input to the 

identification problem both alone, and when combined with other biometric measures. 
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1.2 Precision and Comparison 

Samangooei et al. (2008) took care to attend to factors that may affect the quality of the 

soft biometric labels.  For example, he allowed participants to view the walkers for as 

long as needed to ensure that memory constraints did not affect performance.  He also 

asked participants to provide their own values (e.g. when describing height, participants 

selected one of the five values: Very Short, Short, Average, Tall or Very Tall) rather 

than constraining their perception by using given labels which may carry connotations 

that vary across individuals.  Finally, he ensured that anchoring issues were minimised 

by presentation of the walkers in an order that was randomised across participants.  

Two factors of concern remained: first, participants’ perceptions of others may 

depend on their expectations of what they consider to be average, and this may vary 

from one person to the next. For example, what is ‘tall’ for one person may not be ‘tall’ 

for another given their own height. To mitigate against this, Samangooei et al. (2008) 

obtained participant descriptions of themselves to use as an index reference. However, 

an inaccuracy of self-report, or an unwillingness to reveal personal information, make 

this less-than-ideal as a solution.   

Second, participants’ perceptions of others may suffer through both perceptual 

and cognitive limitations associated with the perceiver. In particular, the psychological 

literature has described a phenomenon known as the grain-size strategy (Yaniv & 

Foster, 1995). This arises because of the dual need for the participant to provide an 

answer that meets two criteria – accuracy and informativeness (Goldsmith & Koriat, 

2008).  In an uncertain world in which accuracy cannot be assured, participants use a 

subjective level of confidence to indicate the likelihood that their answer is correct. 

When confidence is high, they volunteer the answer and satisfy both accuracy and 

informativeness.  However, when confidence is low, they can still meet a desire to be 
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accurate by providing an answer that is less fine-grained.  For example, they may report 

a target’s age as between 20-40 years rather than between 30-35 years. The concern in 

the current context is that if a target is sufficiently far away, then estimates of the target 

characteristics may become so vague that they effectively become useless. 

Alternatively, participants may simply say ‘I don’t know’ and thus avoid providing a 

ridiculous answer (Luna, Higham & Martin-Luengo, 2011). Both represent a weakness 

when soft biometric labels are requested. 

One way to address both concerns is to shift away from categorical labels (e.g. 

‘he is tall’) towards comparative labels (‘he is taller than…’). This comparative soft 

biometric approach was taken by Reid and Nixon (2011) who asked participants to 

describe one target who was shown alongside another known point of comparison. This 

procedure avoided the problems associated with individual expectations as participants’ 

judgements were not influenced by their perceptions of themselves but were instead 

grounded by an objective and known reference. It may also avoid the problems 

associated with the grain size strategy as comparative judgements may be easier to 

make than absolute ones. Indeed, the data obtained using categorical labels showed 

large overlaps between the short, medium and tall labels, suggesting some confusion 

across participants in the use of the terms. Nevertheless, the categorical labels correlated 

somewhat with actual walker height as measured from the images (in pixels) (Pearson’s 

correlation = 0.71, p < .0001). In contrast, the comparative labels, once sorted, were 

observed to have a far stronger correlation with walker height (in pixels), suggesting a 

greater discriminative power from comparative labels than from categorical ones 

(Pearson’s correlation = 0.87, p < .0001).  Added to this, Reid and Nixon (2013) 

provided evidence to suggest that the participants themselves far preferred the 
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comparative method over the categorical method when providing descriptions (S = 8, 

n = 45, p < .01).  

The results using comparative labels are promising. However, the real question 

of interest is whether identification performance is better when comparative rather than 

categorical labels are used. In this regard, the data provided by Reid, Nixon and 

Stevenage (2014) are important.  The comparative descriptors were first sorted to derive 

a rank order of the walkers.  From this ranked list, Reid then compared each walker to a 

database of stored representations simulating an identification task.  This revealed a 

CCR of 95% when comparative descriptors were used, which exceeded the CCR of 

90% when categorical descriptors were used previously. Consequently, not only was the 

comparative approach preferred by the participants, but it yielded labels which were of 

greater value in the identification task.  

The challenge that now presents itself is whether comparative labels may be 

obtained for the three domains of value in an investigative process – the face, the body 

and the clothing of a target. The current paper presents data to examine this point. With 

this in mind, our primary purpose is to obtain descriptions in the form of soft biometric 

labels for all three domains, in order to determine the relative value of the face, body 

and clothing on an identification task.  

Alongside this piecemeal approach, however, we also evaluate identification 

performance following the combination of soft biometric labels.  This combination, or 

fusion, of information has only previously been conducted using computer-extracted 

labels rather than human-generated labels (Arigbabu, Ahmada, Adnan & Yossof, 2015), 

and results suggested that the combination of face shape, height and body weight 

improved recognition performance. Surprisingly, however, the addition of computer-

extracted labels for skin colour impaired recognition performance. A similar fusion 
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approach has not yet been conducted using human-generated labels.  Accordingly, our 

second purpose is to evaluate the effect of an intelligent combination, or fusion, of 

human-generated soft biometric labels with the hope of improving performance on the 

identification task. 

2. Human Description of Body, Face and Clothing  

Many approaches have used categorical labels to describe the body and the face (Klare, 

Klum, Klotnz, Taborsky, Akgul & Jain, 2014; Park, 2010) and have achieved 

encouraging recognition results on standard databases. In one study using automated 

facial descriptions (Mery & Bowyer, 2015), the labels1 were derived by a data-driven 

approach and were evaluated in the recognition of expressions, gender, race, disguise 

and beard. A second study (Zhang, Beveridge, Draper, & Phillips, 2015) used estimated 

gender and race together with face shape.    Finally, in the domain of clothing labels, 

reported results (Jaha & Nixon, 2014) have suggested that they may support 

identification even when used alone (see also Li, Liu, Wang, Liu & Yan, 2014), and that 

their combination with traditional soft biometrics allowed a substantial improvement of 

the otherwise obtained results.  

The current work follows from the above work with computer-generated labels 

or estimations. However, within the current paper, we focus entirely on human-

generated labels for the good reason that the human eye is less affected than a camera 

by factors such as lighting and pose (see Jaha & Nixon, 2015).  Additionally, age-

related declines in the human are less notable than the degradation that may occur in 

                                                 

1 The term ‘labels’ is used throughout the current manuscript. This may be interpreted as being 

analogous to the term ‘attribute’ used in the computer vision and biometrics literature cited here. 
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sources such as over-taped CCTV imagery. Consequently, the current work builds on 

the recent successful demonstrations with human-generated labels. In particular, it 

examines the value of such labels (categorical and comparative) when describing the 

face, body, and clothing of a target.  

Given its individuality, it is anticipated that when the face is available for 

scrutiny, it has the potential to provide a rich vein of information about the target.  It is, 

however, understood that the face may not always be visible to the witness, or to the 

camera, through disguise (balaclava, motorbike helmet, masks), through occlusion, or 

through poor resolution.  Similarly, when considering the use of clothing as a cue to 

identity, it is understood that this may provide value over a short time-frame. However, 

the opportunity to change clothing will affect this as a means of identification over a 

longer period.  Given these assumptions, it is anticipated that the face, when available, 

will provide the most valuable soft-biometric labels to support identification, followed 

by the body and then the clothing of the target individual. Moreover, it is anticipated 

that the combination of soft-biometric labels across face, body and clothing will 

improve recognition performance beyond the level that is possible when taking each set 

of labels in isolation.  

2.1 Procedure for Generating Labels 

2.1.1 Database  

The database was comprised of the video sequences depicting 40 targets walking 

unsupervised along a straight track, in front of a green screen chromakey background. 

Within each video sequence, the target was visible as a full-length moving figure 

viewed from the side (Shutler et al., 2002).  The chromakey background was used to 

provide a controlled background which ensured focus entirely on the target. The 
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majority of the walking targets were young white males (aged around 22 years) and 

Chinese females (aged around 25 years). The videos were presented in a repetitive loop. 

2.1.2 Categorical Body Labelling 

A total of 149 participants provided categorical body labels for each of the 40 

targets by viewing the video-sequence of each target walking.  Video sequences were 

viewed via a web interface (Samangooei et al., 2008) which allowed the participant to 

view the video for as long as required. Importantly, each target was viewed one at a 

time. From this, participants indicated the perceived sex (male, female), and perceived 

age (Infant, Pre-Adolescence, Adolescence, Young Adult, Adult, Middle Aged or 

Senior) of the target. In addition, they used the 5-point scales to describe the target for 

Arm Length, Arm Thickness, Chest, Figure, Height, Hips, Leg Length, Led Direction, 

Leg Thickness, Muscle Build, Shoulder Shape, and Weight. The categorical soft 

biometrics labels for the human body were selected for use when a target was at a 

distance (or at low resolution) and detail could not be perceived.  Finally, participants 

were able to indicate their confidence in their labelling through adjusting the % value 

associated with their certainty of judgement.  However, analyses of the certainty data 

went beyond the scope of the current study, and is not considered further. Examples of 

some of the labels used in this study but not their descriptions (terms) are given in 

Figure 1.  
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All: gender, age, ethnicity, skin colour 

General 

Body: figure, weight 

Face: length, width, fleshiness 

Clothing: tattoos, attachment(s), overall style category 

Head/ Face 

Body: skin colour, hair colour/ length, neck length/ thickness 

Face: parts of skin, hair, forehead, eyes, ears, nose, lips, chin 

Clothing: hat, face/ head coverage 

Upper Body 

Body: arm length/ thickness, chest,  

Clothing: neckline, clothing category, sleeve length 

Lower Body 

Body: leg length/ shape/ thickness, hips’ width 

Clothing: clothing category/ length, belt, shoes, heel 

Figure 1. Example labels used for describing the targets 

2.1.3 Comparative Face and Body Labelling 

A different set of 57 participants provided comparative body and face labels by 

viewing the 40 targets.  For each participant, the target walkers were presented 

alongside a comparison walker in a web interface designed by Reid et al. (2014) (see 

Figure 2). As above, the web interface allowed the videos to be replayed for as long as 

required.   

Comparative labels of the body were obtained for the same characteristics as 

described above.  Similarly, comparative labels of the face were obtained for a subset of 

characteristics outlined in the modified Face Rating Schedule (Sporer, 2007), yielding 

descriptions of Skin, Hair, Forehead, Eyebrows, Eyes, Ears, Nose, Lips and Chin (for 

full details, see Reid & Nixon, 2013). Critically, however, all participants gave their 

descriptions by considering each of the target walkers relative to the single comparison 

walker. 

Across all participants, both target and comparison identities were varied so that 

all 40 target walkers were described, relative to different but known comparisons.  This 

allowed for the final generation of a rank order (A is taller than B is taller than C) 
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without all comparisons being required.  Finally, and as with the categorical labelling 

procedure, participants were able to indicate their confidence in their labelling through 

adjusting the % value associated with their certainty of judgement. However, analysis of 

these data again went beyond the scope of the current study, and is not considered 

further.   

 

Figure 2: The web interface for deriving comparative body labels (Reid et al., 2014) 

2.1.4 Labelling of Clothing 

Finally, a different set of 27 participants provided categorical and comparative 

labels of the clothing of the 40 targets.  Participants generated these labels from still 

photographic images, obtained on the same occasion as the walking video sequences.  

Thus, clothing and grooming had not altered (see Figure 3).  These images were either 

presented alone (to yield categorical labels), or alongside a known comparison (to yield 

comparative labels) as above. 

The clothing was described using 5-point labels for Head, Upper Body, Lower 

Body, Foot, Attachments and General Style (for full details, see Jaha & Nixon, 2014). 

This enabled the generation of a complete description of clothing labels for the whole 

body, or parts of it. An example of part of the set of categorical and comparative labels 

to describe clothing for Upper Body, Lower Body and Foot is shown in Figure 4.  
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(a) clothing (b) face 

Figure 3: Examples images used to generate comparative labels for face and clothing 

(Jaha & Nixon, 2014; Reid & Nixon, 2013). 

 

 

Figure 4: Example categorical and comparative labels for clothing (Jaha & Nixon, 

2014). 

 

 

2.2 Overlap between labels 

The correlation between facial and body labels, as presented in Figure 5, shows little 

correlation overall between the two sets of labels (darker cells indicate a lower 
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correlation) suggesting little overlap. In other words, the processing of gathering 

descriptive labels for both faces and bodies augments, rather than duplicates, 

information.  This is important because it makes it much more likely that a combination, 

or fusion, approach will improve recognition performance as additional and non-

overlapping information is being added to the mix rather than information that merely 

repeats already known characteristics.  

A similar point is made in the work of O’Toole and colleagues when considering 

the fusion of face recognition decisions across the quite different approaches taken by 

human and computer algorithms (Phillips & O’Toole, 2014). However, of more 

relevance is the work reported by O’Toole, Phillips, Weimer, Roark, Ayyad, Barwick & 

Dunlop, (2011), who examined performance in an identity matching task when 

participants were provided with information from either the face, the body, or the two 

combined.  Their results supported our prediction that a combination of inputs would 

improve performance. Indeed, performance was best when based on the face and body 

combined. Furthermore, performance was optimised when the inputs were dynamic, as 

this tended to direct attention to both inputs.  

The minimal overlap evident in our correlational matrix bodes well for the 

fusion analysis to follow. However, this is not to say that there is no overlap 

whatsoever. In this regard, when comparing descriptions of faces and bodies, it was 

interesting to note that the strongest correlations appeared between hair colour and 

descriptors which captured aspects of ethnicity. From Figure 5, hair colour (the Chinese 

targets invariably had black hair) was highly correlated with skin colour (Skin - 

Light/Dark). Other labels with a strong correlation to hair colour included Nose 

(Narrow/Wide), Nose (Flat/Protruding), Eyebrows (Low/High), and Eyes 
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(Slanted/Round), suggesting that these labels may also be correlated with race and 

ethnicity.  

 

Figure 5. Correlation between facial and bodily comparisons. Lighter cells 

represent stronger correlations; darker cells represent weaker correlations (Reid & 

Nixon, 2013). 

3. Implementation  

3.1 Identification: recognition and verification 

The Euclidean distance metric was used to evaluate the similarity between a probe (the 

target to be identified) and each example within a gallery (the population of known 

individuals against which the probe is to be compared for identification purposes).  This 

was achieved by ordering the gallery targets, based on their similarity to the probe. In 

terms of recognition performance, the gallery target with the greatest similarity to the 

probe was returned as the identity of the probe. However, in terms of verification, the 
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similarity between the gallery target and the probe had to meet or exceed a pre-selected 

threshold if it was to be ‘accepted’ rather than ‘rejected’ as a match. Accepting an 

incorrect target is a False Positive and rejecting a correct target is a False Negative.  

A Receiver Operating Curve (ROC) shows the verification rate, which analyses 

the percentages of False Positives versus False Negatives. A standard and commonly-

used measure of performance is the Equal Error Rate (EER), which is the point at which 

the False Accept Rate (FAR) equals the False Reject Rate (FRR). The lower the EER, 

the better the performance.  

3.2 Feature Vectors and Ranking 

For the categorical labels such as sex, the feature vector is formed by a numeric value 

associated with each term describing that label. The comparative labels need to be 

sorted into a list which goes from the smallest to the largest (or equivalent) for that 

label. This list is equivalent to a set of categorical labels from comparative analysis. 

This list was achieved by using the Elo rating system (Elo, 1978) which was originally 

aimed to quantify the ranks of chess players. As there is no opportunity for all chess 

players to play all other players, it is impossible to determine the rank order of players 

from best to worst through direct comparisons. However, the rank order can be inferred 

from the results of a partial list of matches against other players. For example, if A beats 

B, and B beats C, it can be inferred that A would beat C. Similarly, in soft biometrics, 

the ranks between all targets for each label cannot be observed directly, but may be 

inferred from a partial list of comparisons.   

Taking the chess example, in mathematical terms, a ‘match’ is a comparison 

between two players, i and j. The match outcome reflects superiority, or not, in 

performance and hence in status. The outcome is used to adjust the players’ ratings. 
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Thus, for two players i and j the ratings Ri and Rj are updated according to the results of 

a comparison between them. The result of a comparison S takes a value 1 for 

superiority, 0.5 for a tie, and 0 for inferiority (Si = 0 when player i is not superior or 

equal in comparison), and this is used to update the ratings for two players from 

iteration <n> to iteration <n+1> as 

 
𝑅𝑖

<𝑛+1> = 𝑅𝑖
<𝑛> + 𝑘(𝑆𝑖

<𝑛> − 𝐸𝑖)

𝑅𝑗
<𝑛+1> = 𝑅𝑗

<𝑛> + 𝑘(𝑆𝑗
<𝑛> − 𝐸𝑗)

                    (1) 

where E is the expected outcome given the current ratings. Consequently, the rating is 

updated by the difference between what has been achieved and what was expected. The 

parameter k is the maximum rating adjustment variable. In the case of soft biometric 

labels, k depends on the available number of comparisons 𝑁𝐶. The maximum rating, M, 

is used to define 𝑘 =  𝑀/𝑁𝐶 allowing M to be fully explored by any number of 

comparisons. E is then calculated by 

 

𝑄𝑖 = 10𝑅𝑖 𝑈⁄

𝑄𝑗 = 10𝑅𝑗 𝑈⁄

𝐸𝑖 = 𝑄𝑖 (𝑄𝑖 + 𝑄𝑗)⁄

𝐸𝑗 = 𝑄𝑗 (𝑄𝑖 + 𝑄𝑗)⁄
  

                    (2)  

where U is chosen to reflect how a player’s current rating affects the expected result. A 

large value for U implies little change to the player’s rating, and U must exceed zero.  

Within the current implementation, the terms describing soft biometric labels 

were assigned a number in the range -2, 1, 0, +1 or +2 based on their order. The ‘score’ 

from a comparison was determined by normalizing the given label’s value to within 0 

and 1. If the actual result differed little from the expected result then the relative 

measurements remained unchanged. On the other hand, if the actual result differed 

considerably from the expected result, the targets’ relative measurements were adjusted 

in the direction indicated by the comparison. The magnitude of adjustment depended on 
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the difference between the actual and the expected results. In this way, we determined 

feature vectors for different targets that were comprised of a set of categorical labels 

together with a set of labels derived by ranking comparative assessments. 

2.2.2 Fusing Body, Face and Clothing 

 

In order to analyse recognition performance with respect to possible surveillance 

scenarios, we investigated recognition performance with different combinations of 

labels. The Euclidean distance (or match) between two targets i and j for a feature 

vector 𝒇𝒊 (for target i) of N measurements 𝒇𝒊 =  {𝑓1,𝑖, 𝑓2,𝑖 … 𝑓𝑁,𝑖} is 

𝑑𝑖𝑗 = √∑ (𝑓𝑘,𝑖 − 𝑓𝑘,𝑗)
2𝑁

𝑘=1                     (3)  

This difference was thresholded, such that a value lower than the threshold represented 

a match between the targets, whilst a value above the threshold implied no-match. The 

False Positives and False Negatives were thus derived from the thresholded value.  

Given that we have three modalities of labels (pertaining to the face, body and clothing 

of the target), for feature fusion the feature vector becomes a stack of the three 

modalities. Body B with number of features NB the Body feature vector is 

𝒇𝒊𝑩
 =  {𝑓1,𝑖𝐵

, 𝑓2,𝑖𝐵
… 𝑓𝑁𝐵,𝑖𝐵

} (and Face F, Clothing C, similarly) and by denoting the 

modalities as m where m = 1 for Body, m = 2 for Face and m = 3 for Clothing, the 

overall distance by feature fusion is   

𝑑𝐹𝑖𝑗 = √∑ ∑ (𝑓𝑘,𝑖𝑚
− 𝑓𝑘,𝑗𝑚

)
2

𝑁𝑚
𝑘=1

3
𝑚=1                     (4)   

Alternatively, we achieve fusion by summation, or by the product rule 
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𝑑𝑃𝑖𝑗 = ∏ √∑ (𝑓𝑘,𝑖𝑚
− 𝑓𝑘,𝑗𝑚

)
2𝑁𝑚

𝑘=1
                    (5)

3

𝑚=1
 

The match scores were then normalised to vary between 0 (match) and 1 (no 

match), and quality factors were introduced, such as  

𝑑𝑃_𝑄𝑖𝑗 = ∏ √
∑ (𝑓𝑘,𝑖𝑚

− 𝑓𝑘,𝑗𝑚
)

2
𝑁𝑚
𝑘=1

𝑄(𝑖, 𝑗, 𝑚)
                    (6)

3

𝑚=1
 

where the quality was expressed in a probabilistic way as  

𝑄(𝑖, 𝑗, 𝑚, 𝑞) =
𝑝 (𝑑𝑖,𝑗𝑚

, 𝑞|𝐶)

𝑝 (𝑑𝑖,𝑗𝑚
, 𝑞|𝐼)

                    (7) 

where C and I were the two possible classes of users, Client (the true subject) and 

Imposter (a different subject), for a quality factor q. The classification problem was 

considered using conditional probability for a score s by defining a classification as: 

Assign 𝐬 → 𝜔𝑖,  if

𝑝(𝜔𝑖|𝐬) > 𝑝(𝜔𝑗|𝐬), 𝑖 ≠ 𝑗
                    (8) 

where 𝝎 = {𝜔1, 𝜔2 … 𝜔𝑇 } and ωi is the ith class (or target) and T is the number of 

targets. This formulation of the posterior probability was calculated using the 

probability density of the score set given a class label given by Bayes theorem as: 

𝑝(𝜔𝑖|𝐬) =
𝑝(𝐬|𝜔𝑖)𝑝(𝜔𝑖)

𝑝(𝐬)
                    (9) 

where 𝑝(𝜔𝑖)  is the probability of observing a class, and 𝑝(𝐬)  is the probability of 

observing a given score. The class conditional probability 𝑝(𝐬|𝜔𝑖) was the only 

unknown and was estimated using a parametric technique. The decision is then 
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𝐶𝑖 = {
1 ∏

𝑝(𝐬𝒎|𝜔𝑖)𝑝(𝜔𝑖)

𝑝(𝐬𝒎)
≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑚

0 otherwise

                    (10) 

This approach was applied in two discrete scenarios.  The first examined the effect on 

recognition performance when fusing information across all modalities (the face, body 

and clothing, where 𝑚 = 1,2,3). In contrast, the second examined the effect on 

recognition performance when assuming that the face may not be available and thus 

when fusing information across the remaining modalities (only body and clothing, 

where 𝑚 = 2,3). 

4. Evaluation 

4.1 Performance from soft biometric labels for individual modalities 

The performance of the three modalities is shown in Figure 6. This revealed several 

findings of interest. First, the categorical labels (Figure 6a) showed the anticipated 

order: the face labels offered the best performance (EER = 0.078) followed by the body 

(EER = 0.136) and lastly the clothing (EER = 0.151). When evaluating the recognition 

performance associated with the comparative labels (Figure 6b), the overall pattern is 

similar. However, the performance associated with comparative face labels has 

improved (EER = 0.052) relative to that based on categorical face labels above. 

Similarly, the performance associated with comparative body labels (EER = 0.083) has 

improved relative to that based on categorical body labels. Interestingly, the data 

suggested fewer False Positives to comparative body labels than to comparative face 

labels, when the False Negative rate was high.  

What was most striking, however, was the very clear result indicating that 

comparative labels of clothing appeared to be of least utility for recognition with an 
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EER of 0.155. This said, it should be remembered that clothing labels remain of value 

when the target is viewed from a distance, as body parts, and especially the face parts, 

cannot usually be discerned under such conditions. Overall, however, the data here 

revealed a clear advantage associated with the use of comparative labels over 

categorical labels and this replicates the results of previous studies (Jaha & Nixon, 

2014; Reid &Nixon, 2011). 

  

(a) categorical (b) comparative 

Figure 6 Individual performance of three soft biometric modalities 

This paper provides the first unified presentation of results by 

precisely the same process of label generation across the face, body and clothing 

modalities.  Using this superior and well-controlled approach, the results have 

confirmed the primacy of the face, followed by the body and then the clothing 

labels when evaluating recognition performance, as demonstrated by Jaha and 

Nixon (2014), Reid and Nixon (2011) and Samangooei et al. (2008). 

 

4.2  Fusing Soft Biometrics 

Intuitively, the fusion of face, body and clothing biometrics should improve 
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performance. This was tested here across two discrete scenarios involving all modalities 

(face, body and clothing), and involving a plausible subset of modalities (body and 

clothing only).  

When considering the fusion of information across all modalities, the 

performance in Figure 7(a) showed that the performances based on the fusion of 

categorical labels was good (EER = 0.0033). However, performance was considerably 

better when based on the fusion of comparative labels (EER = 0.0014). This latter level 

of performance was extremely good as the EER is very low and would be acceptable 

even if it were much larger. Consequently, these data were clear in showing a marked 

advantage of comparative over categorical labels when fusing information across all 

three modalities. By comparison to the data reported above, they also showed a marked 

improvement in performance compared to the levels achieved when based on each 

modality taken in isolation. 

Given the dominance of the face compared to the body and clothing labels 

reported earlier, one question that remains relates to the level of performance that may 

be possible if the face becomes unavailable.  The second fusion scenario addressed this 

issue through examining recognition performance when body and clothing information 

was fused in the absence of face information. This may reflect the real-world situation 

that exists when viewing a target from such a distance that the face cannot be seen. 

Figure 7(b) shows the result of fusing body and clothing without including the face. The 

EER here was 0.0043 and as such, was better than that based on either clothing or body 

labels when used alone. Indeed, performance was similar to that achieved when using 

just the face. The dominance of the face implies that, naturally, the higher the resolution 

the better. However, the current results suggested that if the face could not be seen, it 

would still be possible to derive identification, with similar accuracy, from a 
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combination of the body and clothing characteristics. As such, it is not surprising that 

eyewitness identification forms include face descriptions, but when these cannot be 

used there remains a rich stock of material for identification (so long as it is exploited). 

 

 

  

(a) body, face and clothing (b) body and clothing only 

 

Figure 7: Performance when fusing modalities under two realistic scenarios. 

5. Discussion 

Society desperately needs ways to identify people from surveillance video: it is 

common to publish videos or stills of the scene of a crime, and to hope that members of 

the public can identify the suspects. The current work has explored the potential to 

make robust identification decisions based on soft-biometric descriptions of the face, 

body and clothing of an individual. Novelty is provided here through the application of 

a valuable comparative soft biometric approach in which descriptions are provided 

relative to an objective standard (comparative labels) rather than relative to some 

internal norm (categorical labels) which is likely to vary across individuals. In this 

regard, the results were unequivocal in demonstrating that comparative labels were of 

greater value than categorical labels in enabling a successful identification of targets. As 

such, these data support the practice of gathering witness descriptions in a way that 
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avoids individual differences in expectations, and in a way that minimises vague 

answers through difficult task demands.   

One aspect of using comparative data that has only been alluded to so far is that 

a number of comparisons is used. Clearly one at least is needed, and fewer are needed 

for the face than for the body, again reinforcing the superior performance of the face for 

recognition. Figure 8 shows the influence of the number of comparisons: the face is at 

near 100% CCR at 5 comparisons, whilst the body reaches 90% CCR at around 10 

comparisons.  As such the body appears to require at least twice the volume of data 

needed for the face and still offers lower recognition capability. 

 

Figure 8 Effect of number of comparisons on recognition performance 

 

5.1 Relative Importance of Face, Body and Clothing 

Alongside this demonstration, the data supported the expectation that labels 

describing the face were of more valuable than those describing the body, which in turn 

were more valuable than those describing the clothes.  As such, the common-sense 

prediction regarding the primary value of the face as a cue to identity was endorsed 

here, as was the common-sense prediction of the short-term value of clothing cues. 

These results sit in contrast to the findings of Lucas and Henneberg (2016) whose recent 
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work suggested that the body was more valuable than the face when an individual was 

viewed at a distance.  Their method, however, was quite different to that adopted here. 

They endeavoured to combine cues in a stepwise fashion until there was no-one in their 

database of 3982 individuals who shared the combination of cues.  When such a 

situation was reached, everyone in the database was said to be individuated. Their 

results suggested that fewer body cues than face cues were required to reach this point 

of individuation, hence their conclusion that the body offered more valuable cues for 

identification than the face.   

In accounting for the discrepancy in findings, it is worth noting that Lucas and 

Henneberg’s body and face cues took the form of precise measures (Gordon, 

Bradtmiller, Churchill, Clauser, McConville, Tebbetts & Walker, 1988) derived by 

trained individuals given an idealised sample of targets. In contrast, the results reported 

here were based on descriptions derived from untrained participants.  Arguably, the 

current descriptions may be much more realistic of the data that can rapidly be obtained 

from a witness about a ‘person of interest’. As such, it is possible the body may be more 

valuable than the face given the time and opportunity to generate precision metrics. 

However, the face may be more important than the body in the more realistic and 

ecologically valid conditions where untrained witnesses see unconstrained views of a 

target. 

5.2 The benefit of fusion             

Perhaps of greater importance within the present paper is the demonstration of 

the benefits that are accrued through the intelligent fusion of face, body and clothing 

information. Indeed, the results of the present paper were clear in demonstrating 

superior identification performance when descriptors were combined across available 

sources.  Optimal performance was obtained when comparative descriptors of the face, 
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body and clothing were all combined. This yielded a comparative EER of just .0015 

meaning that a false alarm may be expected on only 3 occasions for a population of 

2000 targets.   

These results mirrored the approach discussed by Yovel and O’Toole (2016) 

who presented a thoughtful analysis regarding human fusion of dynamic information.  

They outline a multi-modal model of person perception in which the face, body and 

voice were combined to provide a rich description of an individual. Indeed, they 

suggested that identification may usefully be viewed as a process that unfolds over 

space and time, with the face being the primary cue to identity, but the body and voice 

being used when the viewing conditions are sub-optimal through distance, pose or 

occlusion. The results presented here model the benefit shown by humans through 

integration of different information streams.  Interestingly, however, Rice, Phillips 

Natu, An & O’Toole (2013) suggest that the human onlooker may be unaware of the 

degree to which they rely on the body or the face when identifying someone.  Indeed, 

participants reported that they relied on facial features to identify someone, and yet eye 

movement data confirm the use of body cues especially under sub-optimal conditions. 

The explicit inclusion of each set of descriptors here may have maximised performance 

through fusion across all information sources available. However, in a real-world 

witness scenario, human witnesses may need to be prompted regarding soft-biometric 

descriptors of the body or indeed of clothing in order to unlock their maximal potential. 

In this regard, the current paper moves us closer towards an appreciation of 

person perception as a multidimensional problem and towards identification as a 

multimodal task. Traditionally, analysis of human capability, and development of 

automated capacity, has been focussed on one modality at a time – the face, or the 

voice, or the body, or the distinct style of movement through gait.  The current paper, 
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however, emphasizes the value that results when modalities are combined.  Indeed, two 

important benefits are demonstrated by the current work.  First, the fusion approach 

demonstrates strength: when all available information is pooled, identification rates are 

substantially improved. This showcases optimal performance under ideal conditions 

when multiple sources of information are available.  Second, the fusion approach 

demonstrates resilience against those situations in which only partial information may 

be available: the combination of partial information still provided superior recognition 

rates relative to those obtained from each modality taken alone. Indeed, identification 

was better when body and clothing cues were combined than when taken individually, 

and this combination yielded performance levels as good as those when the strongest 

single cue – the face - was considered alone. This result is important as it suggests that 

even when the face may be unavailable, there remains a rich stock of information 

contained in the body and the clothing which provides valuable intelligence. This was 

exactly the scenario provided when trying to identify Jihadi John (who hid his face), and 

when trying to identify one of the two brothers responsible for the 2013 Boston 

Marathon bombing (who wore dark glasses and a baseball cap to mask his features) (see 

Jain & Ross, in press).  

6. Considerations of Automated Eyewitness Descriptions 

What is clear from the results so far is the fact that powerful automated 

processing of human descriptions can support a very high level of identification. This 

raises a complex issue within the legal system regarding the degree to which testimony, 

whether from witness or expert, may be assisted by an automated system. It is to this 

issue that the remainder of the discussion is devoted.  

The issue of automated assistance assumes importance for several reasons.  

First, it reflects the discussion provided by Jain and Ross (in press) who emphasized the 
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return of biometrics research to a forensic setting where it may assist in police 

investigations and court proceedings. Among the benefits they discuss is the fact that an 

automated biometric solution can measure values such as confidence intervals, or 

similarity metrics.  These have considerable advantages over the more subjective 

testimony provided by a witness or an expert in court, not least because they provide a 

measure of match based on a continuous scale rather than a more blunt, binary, 

match/no match interpretation (see Champod, 2011; Mnookin, 2008; and Neumann & 

Champkin, 2012 for useful discussions on the merits of match metrics in the field of 

fingerprint analysis). Metric-based reporting does, however, depend upon the 

knowledge of error rates so that judges and jurors can appreciate the value of the 

information they are provided with.  Additionally, it also depends on the non-trivial 

issue of conveying metric-based information in a way that is accessible to the court.  

Whilst these are indeed factors that require a response, they should not be factors that 

prevent a warranted change.  Consequently, there is merit in raising the issue of whether 

the change towards automated assistance, and thus the change towards metrics-based 

information in court, is warranted. 

In this regard, the consideration of automated assistance within investigations 

and court proceedings is gaining traction given rising concerns over the frailties of the 

human witness.  Human witnesses exhibit problems associated with the processing of an 

emotional situation including the inability to perceive information as it is, the inability 

to retrieve information afterwards, and the inability to make reliable use of the 

information that they have. These human frailties are summarised well by the US 

National Academy of Sciences Report (2009) which highlights the problem of 

contextual or confirmatory bias in which humans may perceive information in line with 

their knowledge, expectations or preconceptions. Human error can arise as a 
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consequence, and notable examples exist within case law.  These include the false arrest 

of Brandon Mayfield in connection with the Madrid bombing in 2004 (FBI report, 

2005), and the fateful shooting of Jean Charles de Menezes who was mistaken as one of 

the 7/7 bombers involved in the London Underground bombings of 2005. Human errors 

have also been elicited in the covert testing of experts. Indeed, a set of experts was 

presented with a pair of fingerprints which they had previously verified as a ‘match’. 

However, they were led to believe they were the Mayfield and Madrid bomber prints 

and hence ‘not a match’. Under these contextually biased circumstances, 4/5 experts 

changed their original decision to give a wrong answer (Dror, Charlton & Péron, 2006). 

Together, these results add to the concerns over human error in forensic decision 

making.  Recent research has concentrated on finding ways to minimise such error, 

through shielding decision makers from irrelevant information, or through encouraging 

the conduct of blind line-up procedures and blind checking of expert decisions (Haber, 

2008). However, the greater involvement of an automated process may also provide a 

valid way forward. 

An interesting discussion of this issue is provided by Dror and Mnookin (2010) 

who explored the role that an automated system could play within a forensic 

investigation. They described a novel framework in which man and machine may each 

contribute to an identification decision but in different ways. Three scenarios may 

result.  First, man and machine may both be capable of the same task in the same way, 

but the task is offloaded to the machine which thus acts as a ‘cognitive servant’. In such 

an instance, benefits may be felt because the machine may complete the human task in 

less time, or with greater accuracy given the human tendency to err under a high 

cognitive load. Second, both man and machine may contribute to the same task in 

complementary ways in which case the machine is a ‘cognitive partner’ with each 
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contributing something that the other cannot contribute. This is the situation described 

within the current paper, as human raters provided the comparative descriptions, whilst 

the automated system provided the means for combination and complex analysis to the 

point of identification.  Finally, the machine may offer a superior approach in a task 

towards which the human has little to contribute. In this case, the machine is the 

‘cognitive driver’.  This latter situation approaches what researchers have referred to as 

a ‘light-out’ process, so called because it can effectively be completed even when the 

lights are turned out and the humans have gone home.  

In the current context, a lights-out process would require that the automated 

system takes over the only part of the task that the humans are currently involved in – 

the provision of soft biometrics labels describing the perpetrator. If such a capacity 

could be developed this would mean that witness descriptions could be generated on the 

basis of CCTV images even if there was no human present to witness the event or to see 

the perpetrator. This situation is far from being a theoretical notion.  Indeed, work is 

being conducted to explore the accuracy with which soft biometric labels are predicted 

through automated means (Reid et al., 2014).  Success in such an endeavour would 

enable a fully automated eyewitness statement, based on the intelligent combination of 

computer-generated identity descriptors – a lights-out solution.   

This raises the thorny issue of whether a police investigation, or a court process, 

would ever accept evidence that has been derived in this way.  Such a debate may root 

itself in ethical issues regarding societal acceptance of a court outcome in which a 

machine is the bearer of responsibility.  Equally, it may raise legal issues regarding the 

interpretation of expert evidence currently understood as providing either ‘fact’ or 

‘opinion’. Whilst the reality may reflect a situation in which automated eyewitness 

descriptions form part of a case against a defendant but never the entirety of a case, the 
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ethical and legal issues nevertheless require our scrutiny. What is clear, however, is that 

we are fast approaching a time when an automated eyewitness statement represents a 

real possibility, rather than a future prospect.  

7. Conclusions and Future Work 

It has been known for some time, and with some debate, that eyewitnesses are able to 

describe people for recognition purposes. Our new study shows that their descriptions 

can be used within a programme of research aimed towards automated eyewitness 

descriptions. It is possible to arrange for participants to label targets consistently for 

recognition using categorical labels of three modalities: the face, the body and the 

clothing. Of these, the face appears to be the most descriptive modality and leads to the 

highest recognition capability. Recognition capability is, however, improved when 

those labels are derived by comparing targets and this improvement is consistent across 

the three modalities. Moreover, it is possible to fuse these labels for recognition, and 

this improves performance above that based on any modality when used alone. Current 

work is aimed to automatically generate the labels by using computer vision techniques, 

using deep learning and computer vision based methods.  

There is a rich field of future research that includes the labels themselves, their 

generation, their analysis and their uses. There are many extensions that can be made in 

analysing the performance of the labels (such as by ANOVA, MANOVA – with 

implicit testing of normality), and it would also be interesting to analyse individual 

participant performance, especially with respect to factors such as the cross race effect. 

The labels used for eyes and eyebrows in the face labelling gave some participants 

cause for concern, and more study could be made of their phrasing and of their potency 

for recognition. In future, we will need to enlarge the database of targets, to capture a 

greater variety of appearance in modern societies. For a population of N targets we need 
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N versions of each categorical label. For the same population we need (
𝑁
2

) comparative 

labels though for full coverage it could be fewer. We continue to investigate ways to use 

crowdsourcing methods to estimate comparative labels of the body (Martinho–

Corbishley, Nixon & Carter, 2016), and of low resolution images of the face 

(Almudhahkar, Nixon & Hare, 2016), and initial results look promising. Given our 

focus on fusion within this paper, we will doubtless later use chimeric data, and this is 

not uncommon in studies on multimodal biometric fusion. Indeed, there is already some 

exploration of the effect of distance (and image resolution) on the quality of soft 

biometrics (Tome, Fierrez, Vera-Rodriguez & Nixon, 2014), and this could usefully 

guide a fusion technique to give greater weight to a modality when distance or 

resolution factors are optimal. In these ways, we will continue to show how these labels 

can be used for effective new ways of target recognition, leading to the automatic 

generation of eyewitness descriptions from images and video. 
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Figure 7(a) enlarged 
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