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13 Abstract

14 Speech understanding in noisy environments is still one of the major challenges for cochlear implant 

15 (CI) users in everyday life. We evaluated a speech enhancement algorithm based on neural networks 

16 (NNSE) for improving speech intelligibility in noise for CI users. The algorithm decomposes the 

17 noisy speech signal into time-frequency units, extracts a set of auditory-inspired features and feeds 

18 them to the neural network to produce an estimation of which frequency channels contain more 

19 perceptually important information (higher signal-to-noise ratio, SNR). This estimate is used to 

20 attenuate noise-dominated and retain speech-dominated CI channels for electrical stimulation, as in 

21 traditional n-of-m CI coding strategies. The proposed algorithm was evaluated by measuring the 

22 speech-in-noise performance of 14 CI users using three types of background noise. Two NNSE 

23 algorithms were compared: a speaker-dependent algorithm, that was trained on the target speaker used 

24 for testing, and a speaker-independent algorithm, that was trained on different speakers. Significant 

25 improvements in the intelligibility of speech in stationary and fluctuating noises were found relative 

26 to the unprocessed condition for the speaker-dependent algorithm in all noise types and for the 

27 speaker-independent algorithm in 2 out of 3 noise types. The NNSE algorithms used noise-specific 

28 neural networks that generalized to novel segments of the same noise type and worked over a range of 

29 SNRs. The proposed algorithm has the potential to improve the intelligibility of speech in noise for CI 

30 users while meeting the requirements of low computational complexity and processing delay for 

31 application in CI devices.
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36 1. INTRODUCTION

37  A cochlear implant (CI) is an auditory prosthesis that provides a sensation of hearing for listeners 

38 with severe to profound sensorineural hearing loss. State-of-the-art CI devices allow many users to 

39 achieve near-to-normal speech understanding in quiet acoustic conditions (Fetterman and Domico, 

40 2002; Zeng et al., 2008). However, background noises such as environmental sounds or competing 

41 talkers negatively affect CI users' speech understanding. The decrease in performance can be 

42 measured with the speech reception threshold (SRT), which is defined as the signal-to-noise ratio 

43 (SNR) at which 50% of the speech is intelligible. CI users typically have SRTs that are 10 to 25 dB 

44 higher (worse) than those of normal hearing (NH) listeners (Spriet et al., 2007; Wouters and Van den 

45 Berghe, 2001). It has been reported that CI recipients can take less advantage of temporal gaps or 

46 slow amplitude fluctuations on an otherwise stationary noise masker compared with NH listeners in 

47 terms of speech intelligibility (Cullington and Zeng, 2008; Stickney et al., 2004; Zeng et al., 2008, 

48 Oxenham and Kreft, 2014). This process is known as release from masking (Miller and Licklider, 

49 1950). Since the spectral information conveyed by a CI is reduced to a small number of effective 

50 spectral channels (Friesen et al., 2001), CI users rely strongly on temporal information (in the form of 

51 envelope modulations) and thus are more susceptible to modulated masking noise than NH listeners 

52 (Cullington and Zeng, 2008; Fu et al., 2013). Most likely, a combination of reduced spectral 

53 resolution and increased modulation interference accounts for the decrease in speech understanding 

54 performance observed for CI users compared with NH listeners and with NH listeners tested with CI 

55 simulations (Cullington and Zeng, 2008; Jin et al., 2013, Oxenham and Kreft, 2014).

56  

57 Speech enhancement (SE) algorithms have been proposed to alleviate this problem by attenuating the 

58 noise component of the noisy mixture to increase the intelligibility and perceived quality of the speech 

59 component (Loizou, 2013). SE algorithms can be divided into algorithms that make use of two or 

60 more microphones to exploit the spatial properties of target and noise sources, and algorithms that 

61 make use of a single microphone (or the output signal of a multi-microphone algorithm). Multi-

62 microphone algorithms have been shown to deliver large benefits in SRT scores when the target 

63 signal and the interfering noise source are spatially separated (Mauger and Warren, 2014; Spriet et al., 

64 2007; Wouters and Van den Berghe, 2001). However, in everyday listening situations, these 

65 requirements might not always be fulfilled, and single-microphone algorithms are still of interest for 

66 numerous applications, such as hearing devices, where the number of microphones is usually limited 

67 to two and the two microphones are on the same side of the head.

68  

69 Single-microphone SE algorithms are based on the assumption that improving the global SNR of 

70 noisy speech will lead to improved speech intelligibility (SI) (French and Steinberg, 1947). With such 

71 algorithms, the signal is converted into the spectral domain (e.g. by Fourier analysis or filter bank 

72 processing) and a filter is applied to retain the signal in frequency channels with high SNR and 
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73 attenuate the signal in frequency channels with low SNR, leading to an increased global SNR. 

74 Numerous algorithms have been proposed to estimate the SNR in each frequency channel (Gerkmann 

75 and Hendriks, 2012; Martin, 2001). This estimate is used to calculate a gain function to determine the 

76 attenuation of noise-dominated channels. SE algorithms mainly differ in the SNR estimation methods 

77 and the gain functions used for noise suppression (e.g. spectral subtraction or parametric Wiener filter, 

78 Boll, 1979; Lim and Oppenheim, 1979). In the ideal case (i.e. when the speech and noise components 

79 are known), these algorithms can lead to highly increased intelligibility, close to that for noise-free 

80 speech for NH listeners (Madhu et al., 2013) and CI users (Koning et al., 2015; Mauger et al., 2012a; 

81 Qazi et al., 2013). Similarly, extensive studies on the SI benefits of time-frequency masking with the 

82 ideal binary mask (IBM) support the potential of SNR-based suppression criteria for improving the 

83 intelligibility of speech in noise (Anzalone et al., 2006; Brungart et al., 2006; Hu and Loizou, 2008; 

84 Wang et al., 2009).

85  

86 In a real system, where only the mixture of speech and noise is available, SNR estimation errors may 

87 lead to speech distortions, introduction of musical noise or insufficient noise suppression. In 

88 challenging acoustic environments these artefacts greatly reduce and often completely undo the 

89 speech intelligibility benefits observed in the ideal case for NH and hearing-impaired (HI) listeners 

90 (Brons et al., 2012; Chen and Loizou, 2012; Loizou, 2013). For CI users, where a decrease in SI 

91 performance is typically observed at higher SNRs than for NH and HI listeners, improvements in SI 

92 have been reported with several SE algorithms based on noise-estimation techniques (Dawson et al., 

93 2011; Hu et al., 2007; Mauger et al., 2012b; Ye et al., 2013). This success may be due to the better 

94 performance (reduced estimation errors) of the algorithms for higher SNRs. In addition, Mauger et al. 

95 (2012a; 2012b) reported that CI users generally preferred a more aggressive gain function than the 

96 standard Wiener gain function, suggesting that CI users might be more resistant to speech removal 

97 distortions (type-II errors) and less resistant to noise addition errors (type-I) (also reported by Qazi et 

98 al., 2013). For CI users, maximum benefits of about 2 dB in SRT were found for speech in stationary 

99 noise, but the benefit was much reduced when the interfering noise was non-stationary, as in the case 

100 of competing talkers (Dawson et al., 2011; Mauger et al., 2012b).

101

102 A recent approach to SE algorithms employs supervised machine learning to estimate the gain 

103 function (by using either classification or regression methods), instead of using conventional SNR 

104 estimation techniques (Tchorz and Kollmeier, 2003). Using a similar approach, algorithms have been 

105 trained on labelled datasets to approximate the IBM. These have been reported to provide remarkably 

106 large SI improvements for NH listeners (Kim et al., 2009), HI-listeners (Healy et al., 2013, 2014) and 

107 CI users (Hu and Loizou, 2010) for speech in both stationary and non-stationary noise, even at low 

108 SNRs. However, these algorithms were trained and tested on datasets using the same speaker, 

109 background noise and SNRs. This approach is likely to lead to overfitting of the training data and 
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110 strongly limits generalization performance to acoustic conditions different from the ones used during 

111 training (May and Dau, 2014). Recently, it has been shown, for both NH and HI listeners, that 

112 incorporating more exemplars of the noise recordings in the training stage leads to algorithms that 

113 generalize well to novel realizations of the same noise type (Bolner et al., 2016; Healy et al., 2015) or 

114 to completely novel types of noise (Chen et al., 2016). These studies indicate that generalization to 

115 novel noise conditions is possible when the training datasets incorporate higher degrees of variability. 

116 Furthermore, the use of a “soft” gain mask (often called ideal ratio mask, IRM) inspired by the 

117 Wiener filter gain function (Lim and Oppenheim, 1979) avoids the need to choose an appropriate 

118 SNR-dependent classification threshold in IBM-based processing, and can lead to a regression model 

119 that worked over a range of SNRs (Bolner et al., 2016) or generalized to untrained SNRs (Chen et al., 

120 2016).

121  

122 The results from the studies described above are promising. However, generalization to novel, unseen 

123 speakers was not tested (Bolner et al., 2016; Chen et al., 2016, Healy et al., 2015). In real-world 

124 situations, in the context of SE for hearing devices, an algorithm should work well with any target 

125 speaker and meet the requirements of limited computational complexity and short processing delay 

126 (Stone and Moore, 2005). The algorithms proposed by Chen et al. (2016) and Healy et al. (2015) 

127 include non-causal information (future frames) in the processing and therefor introduce considerable 

128 processing delays (>20 ms). As described by Healy et al. (2015), the use of future frames has to be 

129 avoided for applications using real-time processing, such as hearing aids and CIs.

130  

131 In this study, we tested whether an SE algorithm using neural networks (NNSE) can improve the 

132 SRTs of CI users for speech in stationary and non-stationary background noises. We address the 

133 important aspect of generalization performance to a novel speaker by comparing two identical 

134 systems that were trained on either the same or different speakers from the one used during testing. 

135 This study used noise-specific networks that were tested on novel segments of the same noise type 

136 (similar to Healy et al., 2015). The algorithm complexity and processing delay were chosen to yield a 

137 real-time feasible architecture with low latency for potential application in CIs. We employed an 

138 aggressive gain function as preferred by CI users (Mauger et al., 2012a, 2012b; Qazi et al., 2013) and 

139 integrated the SE algorithm into the coding strategy of a CI to evaluate the performance of the 

140 algorithm. The algorithm was designed to work over a range of SNRs (Chen et al., 2016; Bolner et 

141 al., 2016) relevant to CI users and to process stimuli adaptively using online processing.

142  

143 2. ALGORITHM DESCRIPTION

144 The NNSE algorithm, was integrated within an implementation of the Advanced Combination 

145 Encoder (ACE™) CI speech processing strategy (Seligman and McDermott, 1995). Figure 1 shows a 

146 block diagram of the algorithm.
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147

148 PLACEHOLDER - Figure 1

149  

150 2.1 Reference strategy

151 A research ACE strategy implementation served as the reference strategy. The noisy speech signal 

152 was downsampled to 16 kHz, passed through a pre-emphasis filter, and sent through an automatic 

153 gain control (AGC). The AGC compressed the acoustic dynamic range such that it could be conveyed 

154 into the smaller electrical dynamic range of a CI recipient (with an attack time of 5 ms, a release time 

155 of 75 ms, a compression threshold of 73 dB SPL and compression limiting above that level). Next, a 

156 filter bank based on a Fast Fourier Transform (FFT) was applied to the compressed signal. The FFT 

157 was performed on Hanning-windowed 8-ms long input blocks, with an overlap of 7 ms. The 

158 magnitude of the complex FFT output was used to provide an estimate of the envelope for each of the 

159 M frequency channels (typically, M=22). Each channel was then allocated to one electrode. Maxima 

160 selection was applied to retain the subset of N channels with the largest envelope magnitudes (with 

161 N<M set by an audiologist during the fitting of the subject’s CI processor). A loudness growth 

162 function (LGF) instantaneously mapped the envelope for each channel to the subject’s dynamic range 

163 between the threshold level (THL) and maximum comfortable loudness level (MCL) for electrical 

164 stimulation (using the THL and MCL parameters from the subject’s CI processor). Finally, the 

165 electrodes corresponding to the selected channels were stimulated sequentially and one cycle of 

166 stimulation was completed. The number of cycles per second is called the channel stimulation rate, 

167 and the total stimulation rate is N times the channel stimulation rate.

168  

169 2.2 Speech enhancement algorithm 

170 CI processing directly transforms the envelope of the frequency channels to an electrical output, and it 

171 does not require a reconstruction stage. We chose to integrate the NNSE directly into the CI signal 

172 path rather than performing preprocessing of the noisy signal. This avoids an unnecessary synthesis 

173 stage, which would introduce additional noise and increase the complexity and delay of the system. 

174 The NNSE algorithm consisted of two main components: feature extraction and neural network (NN) 

175 regression.

176

177 After downsampling to 16 kHz, the noisy speech signal was divided into 20-ms long segments with 

178 50% overlap. Feature extraction was performed on each segment of the noisy signal, and the output 

179 was fed to the NN. The trained NN (the training is described below) was used to estimate the Wiener 

180 gain over 31 frequency channels equally spaced on the equivalent rectangular bandwidth (ERBN-

181 number, Glasberg and Moore, 1990) scale with centre frequencies ranging from 50 to 8000 Hz. Since 

182 the frequency channels assigned to the electrodes varied across subjects, the estimated gains were 

183 mapped to each subject's specific filter bank configuration. Exponential smoothing (with a time 
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184 constant of 12 ms) was performed before applying the gain to the corresponding noisy envelope in the 

185 ACE signal path. The main effect of the gain application was the attenuation of noise-dominated 

186 channels. This occurred before the ACE channel selection (see Fig. 1). Therefore, speech-dominated 

187 channels were more likely to be selected for stimulation. Unlike most SE algorithms (Loizou, 2013), 

188 the algorithm does not require a voice activity detector or the estimation of noise statistics. The NNSE 

189 was designed so that it could be run in real time, with an algorithmic delay of 10 ms.

190

191 An example of an electrodogram of a Dutch sentence ("Het verhaal is heel spannend") from the LIST 

192 corpus processed by the ACE coding strategy with 11 maxima is shown in Fig. 2. An electrodogram 

193 represents the stimulation pattern across electrodes (y-axis) over time (x-axes). The height of each 

194 vertical bar reflects the normalised amplitude of a single stimulation pulse.

195 The top panel represents the electrodogram of the clean sentence, in which the boundaries between 

196 words are clearly visible. For the second panel, the speech was corrupted by babble noise (SNR = 5 

197 dB). The resulting stimulation sequence changed significantly: periods of silence were filled with 

198 noise, envelopes were distorted, and not all of the channels containing speech were selected. The third 

199 and fourth panels represent the conditions with NNSE processing using speaker-independent and 

200 speaker-dependent training, respectively. The processing steered channel selection to pick the 

201 channels containing speech, thus partially restoring information that was masked by the noise (Qazi et 

202 al., 2013).

203

204 PLACEHOLDER - Figure 2

205

206 2.2.1 Feature extraction

207 Feature extraction was performed on each 20-ms segment, or frame, at a rate of 100 Hz. Each frame 

208 was passed through a Gammatone filter bank consisting of 31 channels equally spaced on the ERBN-

209 number scale with centre frequencies ranging from 50 to 8000 Hz (Hohmann, 2002). Then, the energy 

210 of each channel was log-compressed to obtain 31 Gammatone Frequency Energy features (GFENn, 

211 with n denoting the frame number). From the GFENn, two additional features were extracted: 26 

212 Gammatone Frequency Cepstral Coefficients (GFCCn) and 13 Gammatone Frequency Perceptual 

213 Linear Prediction Cepstral Coefficients (GPLPn). The GFCCn features were obtained by performing 

214 the discrete cosine transform (DCT) on GFENn for frequencies above 200 Hz (and excluding the DC 

215 component of the DCT). The GPLPn features were obtained by filtering GFENn with the relative 

216 spectral transform (RASTA, Hermansky and Morgan, 1994) filter, which emphasises the modulation 

217 frequencies relevant to human speech, and performing a 12-th order linear prediction model analysis 

218 on the output (perceptual linear prediction, PLP).

219
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220 The 31 GFENn, 26 GFCCn and 13 GFPLPn features were concatenated to form a 70-dimensional 

221 feature vector Fn. Our pilot results (Bolner et al., 2016) indicated that this combination led to higher 

222 estimation accuracy than the individual features alone. Note that Fn was derived exclusively from the 

223 ERBN-number spaced spectrum of the signal (GFENn). Evaluation with several objective measures 

224 (difference between hit and false alarm rates, HIT-FA, Kim et al., 2009; short-time objective 

225 intelligibility measure, STOI, Taal et al., 2011; normalized covariance metric, NCM, Holube and 

226 Kollmeier, 1996; Ma et al., 2009) indicated that this choice had no detrimental effects on the 

227 estimation accuracy of the algorithm compared with the use of the more conventional MFCC (using 

228 the Mel-scale) and RASTA-PLP (using the Bark scale), and it avoided two additional filtering stages.

229 Finally, Fn was concatenated with the features extracted from the preceding frame Fn-1 to provide  

230 additional temporal information. The resulting 140-dimensional feature vector [Fn, Fn-1] was fed to the 

231 NN to estimate the Wiener gain for the current frame n. Note that the NN estimated the Wiener gain 

232 using information related to the current and past frames only. This feature set allowed relatively low 

233 complexity and low delay making the proposed algorithm suitable for real-time processing, in contrast 

234 to most recent speech segregation studies (Chen et al., 2016; Healy et al., 2013, 2015).

235

236 2.2.2 Neural network regression: architecture and training procedure

237 A parametric Wiener gain mask (Lim and Oppenheim, 1979), the IRM, was used as the training target 

238 for the supervised training process. The ideal ratio mask is defined as follows:

239 ,𝐺(𝑓,𝑛) =  ( 𝑆𝑁𝑅(𝑓,𝑛)
𝑆𝑁𝑅(𝑓,𝑛) + 1)𝛽

240 where  denotes the SNR in frame n and Gammatone frequency channel f. The parameter  𝑆𝑁𝑅(𝑓,𝑛) 𝛽

241 controls the slope of the gain function . We experimented with different values of  and found 𝐺(𝑓,𝑛) 𝛽

242  to be a good compromise between noise removal and speech distortion when the mask was 𝛽 = 1
243 applied to noisy speech. This choice was also supported by the finding that CI users generally prefer a 

244 relatively aggressive gain function (Mauger et al., 2012a, 2012b) as opposed to the square-root 

245 Wiener mask ( ) used in previous studies with HI listeners (Chen et al., 2016; Healy et al., 𝛽 = 0.5
246 2015). 

247

248 The neural network consisted of an input layer, defined by the feature vector, 2 hidden layers of 75 

249 units using a saturating-linear activation function (which resembled a piecewise linearised sigmoidal 

250 function) and 31 linear output units. Resilient backpropagation (Riedmiller and Braun, 1993) was 

251 used for training the NN in full-batch mode over 500 epochs with a learning rate of 0.01 and weight 

252 increment and decrement factors of 1.2 and 0.5, respectively. The cost function was the mean squared 

253 error (MSE) between the true and estimated Wiener gain using a weight-decay regularisation of 0.5 to 

254 avoid overfitting.

255
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256 The parameters of the algorithm were chosen based on a previous study of Bolner et al. (2016), who 

257 observed significant improvements in speech intelligibility in noise for NH listeners using CI vocoder 

258 simulations with a supervised NN-based SE algorithm. The biggest difference between the two 

259 algorithm configurations was a reduced number of neural network parameters (node weights and 

260 biases), mainly deriving from the use of a Gammatone filter bank with 31 channels both for the 

261 feature extraction stage and Wiener gain estimation, as opposed to 63 channels used by Bolner et al. 

262 (2016). The Nucleus implants tested in this study maximally use 22 spectral channels, and thus 31 

263 channels seemed a good compromise between algorithm complexity and SE performance for CI 

264 application. The 31 estimated Wiener gains were mapped to the 22 CI channels before application to 

265 the envelopes. The configuration used in the current study allowed a reduction in the algorithm 

266 complexity while maintaining comparable performance in terms of estimation accuracy and with 

267 respect to several speech intelligibility objective metrics, such as HIT-FA (between estimated and 

268 ideal ratio masks), NCM and STOI (using vocoded simulations of the enhanced and noise-free 

269 reference signals, Chen and Loizou, 2011).

270

271 The algorithm made use of feed-forward neural networks that were trained using the true Wiener gain 

272 along with the features extracted from the noisy speech. Rather than performing large-scale training 

273 with thousands of noises (as done by Chen et al., 2016), the networks were noise-specific, i.e. each 

274 network was trained for a particular listening situation (similar to Hu et al., 2010). This made it 

275 possible to take advantage of the learning of the distinctive spectro-temporal characteristics of each 

276 noise while limiting the NN size.

277

278 The speech materials used to train the NNSE were LISTm (sentences of equal difficulty with 2-7 

279 keywords, equal number of syllables and key words per list, male Flemish talker, Jansen et al., 2014), 

280 LISTf (similar structure to LISTm, but partially different sentences than LISTm, female Flemish 

281 talker, Van Wieringen and Wouters, 2008), NVA (lists of 10 bisyllabic words, male Flemish talker, 

282 Wouters et al., 1994), and GRID (simple and syntactically identical phrases of 6 words, 18 male and 

283 16 female English talkers, Cooke et al., 2006). Three types of noise were used: steady speech 

284 weighted noise (SWN), single-speaker-modulated speech-weighted noise (ICRA), and 20-talker 

285 babble (BABBLE). The SWN had the same long-term spectrum as the sentences of the LISTm corpus 

286 (Jansen et al., 2014). The modulated speech-weighted noise was the ICRA5-250 (Dreschler et al., 

287 2001) that was generated by sending English male speech through a 3-channel filter bank, randomly 

288 reversing the sign of each sample in each channel (with a probability of 0.5), filtering it again with the 

289 same filter bank, randomizing the phase in the frequency domain and applying the standard long-term 

290 average speech spectral shape of male speech. The ICRA5-250 noise has maximum silent gaps of 250 

291 ms and may contain some intelligible fragments, at least for English native speakers, as reported by 

292 Dreschler et al. (2001). The BABBLE signal was recorded at Auditec St. Louis and consisted of a 
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293 mixture of 20 English competing talkers (8 male, 12 female). The three types of masking noise have 

294 different degrees of temporal fluctuation (increasing from SWN to BABBLE to ICRA) and thus 

295 introduce varying amounts of modulation masking (Dau et al., 1997).

296

297 During training, 4-minute long recordings of the three noises were mixed with two speech material 

298 training sets:

299 • Single talker (ST), containing 10 lists from the LISTm corpus (total of 8 minutes)

300 • Multiple talker (MT), containing 6 lists from the LISTf corpus, 4 lists from the NVA corpus 

301 and 120 sentences from the GRID corpus (total of 15 minutes).

302 In both cases, the sentences were mixed with random segments of the noise at 7 SNRs, from –6 to +6 

303 dB in steps of 2 dB. This, in turn, produced two networks for each noise type, one trained on a single 

304 talker (LISTm) and the other trained on multiple talkers.

305 3. MATERIALS AND METHODS

306 3.1 Software/Hardware 

307 The research ACE strategy and NNSE algorithm were developed in MATLAB (The MathWorks, 

308 Natick, Massachusetts). Stimuli were processed through a computer implementing the ACE strategy 

309 (with/without NNSE) and directly presented to the implant user. Electrical stimulation was delivered 

310 via the Cochlear NIC3 interface connected to an L34 experimental processor. The system delivered 

311 radio frequency output to the coil that transmitted stimulus data to the subject’s implant. 

312

313 3.2 Subjects

314 A group of 14 CI users, all native Dutch speakers and implanted with a Cochlear Nucleus® CI, 

315 participated. The study protocol was approved by the Commissie Medische Ethiek GZA Ziekenhuizen 

316 (Antwerp) ethics committee, and subjects gave their informed consent to participate in the study. 

317 Subjects were not paid, but travel expenses were reimbursed. This study was conducted according to 

318 the guidelines for Good Clinical Practice (GCP), ISO14155-2011 (International Standard for Clinical 

319 Investigations of medical devices for human subjects) and the Declaration of Helsinki (2013).

320 The mean age of the group at the start of the study was 61 years, ranging from 23 to 81 years. Only 

321 one ear of each subject was tested. If the subject had a hearing aid (HA) or CI on the contralateral 

322 side, it was turned off during the testing. The mean duration of implant use was 9.8 years at the start 

323 of the study, with a range from 1.2 to 13.6 years. All subjects were users of the ACE strategy. 

324 Demographic data for the subjects can be found in Table 1.

325

326 PLACEHOLDER - Table 1

327

328 Prior to the speech in noise test, the subjects’ existing CI program parameters were transferred from 
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329 their own sound processor to the control computer. Subjects informally reported that they did not 

330 perceive a difference between the daily program on their sound processor and the stimulation 

331 delivered via the ACE strategy on the test system. Details of each subject's CI parameters, such as 

332 stimulation rate, number of maxima, number of total active channels, THL and MCL, and dynamic 

333 range are presented in Table 2.

334

335 PLACEHOLDER - Table 2

336  

337 3.3 Stimuli and processing conditions

338 Sentences from the LISTm corpus (Jansen et al., 2014) were used as the target speech material. The 

339 LISTm corpus consists of 38 lists, with 10 sentences for each list, produced by a male Flemish talker. 

340 The number of keywords per sentence ranged from 2 to 7, with an average and median of 3. Since 10 

341 lists of the corpus were used during the training stage of the algorithm, only the remaining 28 lists 

342 were employed for the listening test.

343 The maskers were 20-s long novel realizations of SWN, ICRA5-250 and BABBLE, from which a 

344 random segment was extracted and mixed with the target speech for each sentence. This was done in 

345 order to test the algorithm on sentences and noise segments that were not previously processed by the 

346 NNs.

347 The three processing conditions were:

348 • UN: unprocessed condition, i.e. ACE.

349 • NNSE-ST: processed condition with the NNSE algorithm, using the networks trained on the 

350 single-talker data. Note that in this case the algorithm was tested on the same speaker as the 

351 one used during the training stage (LISTm).

352 • NNSE-MT: processed condition with the NNSE algorithm, using the networks trained using 

353 multiple talkers data, which did not include the target speaker. 

354 The NNSE-MT condition was included to assess the performance of the NNSE in more realistic and 

355 challenging conditions when the target speaker was unknown to the system, in contrast to recent SE 

356 studies (Bolner et al., 2016; Chen et al., 2016; Healy et al., 2013, 2015; Hu and Loizou, 2010).

357

358 3.4 Study protocol 

359 The study used a repeated measures, single-subject design in which each subject served as his/her 

360 own control. This approach made it possible to accommodate the heterogeneity that usually 

361 characterizes the CI population. At the beginning of the session, each subject was allowed to choose 

362 his/her preferred volume. Sentences from one list of the corpus (from the training set) were presented 

363 in quiet and in noise (SWN between 0 and 5 dB SNR) until the subject was satisfied with the volume. 

364 The chosen volume setting was then fixed for the rest of the testing.
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365

366 The SRT was measured using an adaptive procedure for 9 conditions [3 maskers (SWN, ICRA, 

367 BABBLE) x 3 processing conditions (UN, NNSE-ST, NNSE-MT)] by an audiologist in a sound-

368 treated room. Both subject and audiologist were blind as to which processing condition was being 

369 tested.

370

371 An SRT was measured using one list (10 sentences) randomly selected from the speech corpus. The 

372 speech level was held constant at 65 dB SPL while the noise level was adjusted according to the 

373 subject’s response to each sentence in steps of 2 dB, in a one-down, one-up procedure to target the 

374 50% correct point. After determining the level of the (hypothetical) 11th item, the SRT was calculated 

375 as the mean of the last 6 SNRs. A response was counted as correct when all the keywords in the 

376 sentence were correctly identified. Errors for non-keywords were not taken into account, but 

377 incomplete keywords or minor variations of verb tenses of keywords were penalised (van Wieringen 

378 and Wouters, 2008).

379

380 Each of the 9 conditions was tested 3 times, counterbalancing the order in which the conditions were 

381 tested for each subject. The order in which the noise and processing conditions were tested was 

382 counterbalanced across 12 subjects, and the order for the remaining two subjects was allocated 

383 randomly. The final SRT for each condition was obtained by averaging the three SRT values. At the 

384 end of the testing, subjects resumed the use of their own sound processor.

385

386 3.5 Evaluation

387 Prior to clinical testing, an objective analysis of the performance of each processing condition was 

388 performed. Electrodograms were computed at different SNRs, and were compared with a reference 

389 electrodogram in terms of type I and type II error rates. Although this method has not been widely 

390 used in the literature, it represents a useful way to compare noise reduction performance for CIs 

391 (Mauger et al., 2012b).

392 In an electrodogram, stimuli have normalized values between 0 and 1, representing the electrical 

393 perception range between threshold and comfort level in each frame and frequency channel. The 

394 reference electrodogram was generated by processing speech in quiet with ACE (without NNSE), and 

395 provided the “ideal” outcome of noise reduction. 

396 Error rates were computed as the stimulus amplitude difference of the reference electrodogram (REF-

397 E) and the comparison electrodogram (COM-E), with the method proposed by Mauger et al. When 

398 the COM-E contained a stimulus (channel-frame) that was lower in amplitude than the corresponding 

399 stimulus in the REF-E, a type II error was computed as the stimuli amplitude difference. For example, 
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400 if the COM-E had a stimulus amplitude of 0.3 and the REF-E had a stimulus of 0.5, this was 

401 considered as a type II error of value 0.2. A full type II error (value = 1) occured when no stimulus 

402 (amplitude = 0) was present in the COM-E, while the REF-E contained a stimulus with amplitude = 1. 

403 In a similar manner, a type I error occurred when the COM-E contained a stimulus of higher 

404 amplitude than for the REF-E. The type I error was computed as the difference of the stimulus 

405 amplitudes. For example, if the COM-E had a stimulus amplitude of 0.3 and the REF-E had a 

406 stimulus amplitude of 0, this was considered as a type I error of value 0.3. A type I error can be 

407 viewed as a noise addition error, while a type II error can be viewed as a speech removal error. 

408 Type I and type II errors were summed across all channels and frames and divided by the total 

409 number of possible errors to obtain the type I and type II error rates. Error rates for processing 

410 condition were computed as the average error rates calculated over 20 sentences at –5, 0, 5, and 10 dB 

411 SNR, with 11 selected channels (ACE maxima selection). This was done so as to have the same 

412 number of possible errors for both error types and to avoid introducing a bias towards either of the 

413 two.

414 PLACEHOLDER - Figure 3

415

416 Results of the objective analysis are displayed in Figure 3. For SWN, UN gave type I error rates from 

417 36% to 66%, and type II error rates ranging from 9% to 15% (SNR = -5 and 10 dB, respectively). The 

418 NNSE conditions gave similar error rates, with greatly reduced type I error rates ( 6% and 17%, ≤ ≤

419 at –5 and 10 dB SNR, respectively), at the expense of slightly higher type II error rates ( 14% and ≤

420 20%, at –5 and 10 dB SNR, respectively).≤

421 For ICRA, UN gave type I error rates from 20% to 42%, and type II error rates from 4% to 10% (SNR 

422 = -5 and 10 dB, respectively). Again, both NNSE conditions gave greatly reduced type I error rates at 

423 the expense of higher type II error rates. Type I errors ranged from 7% to 17% for NNSE-MT, and 

424 from 6% to 14% for NNSE-ST, at –5 and 10 dB SNR, respectively, while type II error rates ranged 

425 from 7% to 12% for NNSE-MT, and from 11% to 15% for NNSE-ST (at –5 and 10 dB SNR, 

426 respectively).

427 For BABBLE, UN gave type I error rates from 37% to 66%, and type II error rates from 9% to 15% 

428 (SNR = -5 and 10 dB, respectively), in line with what was found for SWN. Also for BABBLE, both 

429 NNSE conditions gave reduced type I error rates but higher type II error rates compared to the UN 

430 condition. Type I errors ranged from 9% to 30% for NNSE-MT, and from 5% to 20% for NNSE-ST, 

431 at –5 and 10 dB SNR, respectively. Type II error rates ranged from 14% to 18% for NNSE-MT, and 

432 from 22% to 25% for NNSE-ST.
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433 In conclusion, both NNSE algorithms greatly reduced the noise, but also introduced some speech 

434 removal distortions. This effect was more pronounced for NNSE-ST than for NNSE-MT for the 

435 modulated noises (ICRA and BABBLE), while the performance of the two NNSE strategies was 

436 comparable for SWN. Both NNSE-MT and NNSE-ST reduced the total error compared to UN for all 

437 noises and SNRs. These results suggested that an improvement in speech perception might be 

438 achieved and supported the clinical speech performance testing of CI users.

439 4. RESULTS

440 The group mean SRTs for all processing conditions are shown in Fig. 4 and individual SRTs and their 

441 changes relative to those for the unprocessed condition (UN) are shown in Fig. 5. The data in all 

442 conditions were normally distributed, as tested with the Kolmogorov-Smirnov (using Lilliefors 

443 significance correction) and the Shapiro-Wilk tests. The SRTs used in statistical analyses were the 

444 average of the 3 SRTs obtained for each processing condition and noise type. Performance with UN 

445 was poorer (higher SRT) than with the processed conditions for all three noises. Group mean SRTs 

446 for speech in UN increased from 2.8 dB in SWN, to 5.1 dB in ICRA, and up to 6.7 dB in BABBLE. 

447 For all three noise types, lower mean SRTs were obtained with NNSE-MT and NNSE-ST than with 

448 UN. NNSE-ST achieved the lowest SRTs for all three noise conditions with an advantage of about 1 

449 to 1.5 dB SRT over NNSE-MT.

450 A two-way analysis of variance (ANOVA) with repeated measures was conducted with factors 

451 processing condition (UN, NNSE-ST and NNSE-MT) and noise type (SWN, ICRA, and BABBLE). 

452 There were significant main effects of processing condition [F(2,26) = 31.83, p < 0.001], noise type 

453 [F(2,26) = 37.63, p < 0.001] and a significant interaction [F(4,54) = 13.73, p < 0.001].

454 Further statistical analysis was conducted separately for each noise type to compare the 3 processing 

455 conditions.

456 For SWN noise, Mauchly's test showed no violation of sphericity and a one-way repeated measures 

457 ANOVA indicated a significant effect of processing condition [F(2,12) = 8.165, p = 0.006]. Post hoc 

458 pairwise comparisons using Bonferroni correction revealed significant differences between UN and 

459 both NNSE-MT (p = 0.019) and NNSE-ST (p = 0.003), but not between NNSE-MT and NNSE-ST (p 

460 = 0.10), with improvements in SRT scores relative to those for UN of 1.4 and 2.3 dB for NNSE-MT 

461 and NNSE-ST, respectively. Apart from three subjects for NNSE-MT and one subject for NNSE-ST, 

462 subjects benefitted from the processing with both NNSE algorithms for speech in SWN. 

463 For ICRA noise, Mauchly's test showed no violation of sphericity and a one-way repeated measures 

464 ANOVA indicated a significant effect of processing condition [F(2,12) = 28.13, p < 0.001]. Post hoc 

465 pairwise comparisons using Bonferroni correction revealed significant differences between UN and 

466 both NNSE-MT (p < 0.001) and NNSE-ST (p < 0.001) but not between NNSE-MT and NNSE-ST (p 
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467 = 0.67), with improvements in SRT scores relative to those for UN of 5.4 and 6.4 dB for NNSE-MT 

468 and NNSE-ST, respectively. Apart from subject 14, all subjects benefitted from the processing with 

469 both NNSE algorithms for speech in ICRA. For some subjects, there were improvements in SRT 

470 scores of more than 10 dB.

471 For BABBLE noise, Mauchly's test showed a violation of sphericity (p = 0.023) and a one-way 

472 repeated measures ANOVA using the Greenhouse-Geisser correction indicated a significant effect of 

473 processing condition [F(1.364,32.727) = 7.45, p = 0.009]. Post hoc pairwise comparisons using 

474 Bonferroni correction revealed significant differences between UN and NNSE-ST (p < 0.001) and 

475 between NNSE-MT and NNSE-ST (p = 0.035). A significant improvement in SRT scores relative to 

476 UN was observed only for NNSE-ST. Apart from subject 4, all subjects benefitted from NNSE-ST for 

477 speech in BABBLE. For NNSE-MT, 8 out of the 14 subjects showed SRT improvements relative to 

478 UN of 1.5-3 dB. However, the rest of the subjects performed either the same or more poorly with 

479 NNSE-MT than with UN.

480 PLACEHOLDER - Figure 4

481 PLACEHOLDER - Figure 5

482

483 5. DISCUSSION 

484 Significant improvements in speech intelligibility for CI subjects were produced by NNSE for the 

485 three background noises over a range of SNRs. To accomodate the large variability among CI users, 

486 algorithm performance was evaluated using an adaptive procedure measuring SRT scores, in contrast 

487 to previous studies that tested at fixed SNRs. The magnitude of the improvements in SRT ranged from 

488 1.4 dB for speech in SWN with NNSE-MT up to 6.4 dB for speech in ICRA with NNSE-ST. Apart 

489 from NNSE-MT with BABBLE, significant improvements were found for NNSE relative to UN in all 

490 conditions.

491 For SWN, improvements tended to be larger for NNSE-ST than for NNSE-MT (2.3 / 1.4 dB SRT), 

492 but this difference was not statistically significant. There was also a non-significant difference of 1 dB 

493 between NNSE-MT and NNSE-ST for ICRA (SRTs of 5.4 and 6.4 dB, respectively) but there was a 

494 significant difference of 1.6 dB for BABBLE (SRTs of 0.4 and 2.0 dB, respectively). The advantage 

495 of NNSE-ST over NNSE-MT was expected due to the mismatch between training and testing sets for 

496 NNSE-MT. Nevertheless, NNSE-MT led to significant improvements relative to UN for speech in 

497 SWN and ICRA despite the mismatch in speakers. NNSE-MT failed to give significant improvements 

498 relative to UN for BABBLE. For this noise condition, competing speakers might be wrongly detected 

499 as the target speaker and not attenuated adequately. Especially for lower SNRs, where the spectral 

500 energy of the target speaker was less dominant, NNSE-MT performed worse than NNSE-ST (it 
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501 should be noted, that the training data were increased by nearly a factor of 2 for NNSE-MT, to 

502 increase its robustness to unseen speakers). The latter can use a priori information about the target 

503 speaker's spectral characteristics.

504 For ICRA, the improvements produced by NNSE (ST and MT) relative to UN were remarkable 

505 (about 5 to 6 dB) and were about 3 times larger than for the other two noise conditions. The average 

506 SRT for UN was comparable for ICRA and BABBLE. The processing produced a much larger 

507 improvement relative to UN for ICRA than for BABBLE. The ICRA noise employed in this study had 

508 much stronger spectro-temporal modulations (obtained from one male talker) than the BABBLE noise 

509 (20 talkers), leading to more and larger time-frequency (T-F) regions with a positive SNR. We 

510 speculate that the NNSE algorithm exploits these positive-SNR T-F regions in the feature space to 

511 predict adjacent or even more distant spectro-temporal patterns of the target speech signal. This would 

512 enable the algorithm to extrapolate its prediction over potentially masked T-F regions with lower SNR 

513 in the corresponding time frame (similar to the mechanism often called "glimpsing" or listening in the 

514 dips by human listeners). The algorithm was presented with numerous examples and variations of 

515 potential masking patterns during training and thus learned typical spectral patterns of the speech. 

516 This constitutes a potential benefit of machine learning algorithms in conjunction with acoustic 

517 broadband features over traditional signal processing schemes that operate independently on separate 

518 frequency channels.

519 The machine learning based algorithm proposed by Hu et al. (2010) showed large improvements in 

520 percentage correct scores for speech in three different non-stationary noise backgrounds for CI 

521 listeners. A direct comparison between the performance of their system and NNSE is difficult because 

522 we used an adaptive procedure in contrast to testing at fixed SNRs, and we used different speech 

523 materials and background noises. Hu et al. showed large improvements with an IBM-based 

524 processing scheme, but their system was trained on the same speaker, noise realizations and SNRs as 

525 used for testing. May et al. (2014) showed that the use of novel noise realizations for testing led to a 

526 substantial decrease in estimation performance with a Gaussian Mixture Model (GMM) based system, 

527 such as the one used by Hu et al. Recently, Healy et al. (2015) and Bolner et al. (2016) have shown 

528 that neural network based regression systems can achieve high estimation performance with novel 

529 realizations of the same noise type. Both studies tested at fixed SNRs and used acoustic stimuli to test 

530 normal hearing and hearing-impaired listeners' speech understanding in noise. Bolner et al. tested NH 

531 listeners using CI vocoder simulations and reported an improvement of 18% in percentage correct 

532 scores for speech in BABBLE at an SNR of 5 dB. This improvement can be compared to the 2-dB 

533 improvement in SRT for NNSE-ST, since the two algorithms used the same speaker for training and 

534 testing. Jansen et al. (2013) reported that, for CI users, an improvement in SRT scores of about 1 dB 

535 corresponds to an improvement in percentage correct scores of 18.7% with the LISTm corpus and 

536 SWN. This suggests that CI users benefitted more from NNSE processing than the NH listeners with 
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537 CI simulations for speech in BABBLE. For SWN at 5 dB SNR, Bolner et al. measured an 

538 improvement relative to UN of 27%, whereas in this study an improvement of 2.3 dB was achieved by 

539 NNSE-ST. Again, this suggests larger benefits for CI users than for NH listeners, but less so than for 

540 BABBLE.

541 Other studies of single-microphone noise reduction for CI users showed consistent improvements in 

542 understanding of speech in stationary noise such as SWN (Dawson et al., 2011; Hu et al., 2007; 

543 Mauger et al., 2012; Ye et al., 2013). However, the improvements were usually smaller with non-

544 stationary noise and only a few studies achieved significant improvements for both stationary and 

545 non-stationary noise (Dawson et al., 2011). Machine-learning based algorithms like NNSE have the 

546 potential to overcome this challenge and achieve consistent improvements in both stationary and non-

547 stationary noises, as indicated by the performance of NNSE with BABBLE and ICRA.

548 Several architectures for machine learning based noise reduction have been proposed in the last few 

549 years. In the studies of Kim et al. (2009) and Hu and Loizou (2010), GMM classifiers were used, 

550 which recently have been surpassed by artificial neural networks with several hidden layers (deep 

551 neural network, DNN) (Chen et al., 2016; Healy et al., 2013, 2015). Similar to the architecture of the 

552 previous GMM-based classification systems, where the SNR of each frequency channel is predicted 

553 independently, Healy et al. (2013) used two successive stages of multiple-subband DNNs (one DNN 

554 for each of the 64 frequency channels) resulting in a very large classification system. Healy et al. 

555 (2014) reduced the complexity of the DNN by a factor of 43 by using a single DNN for the prediction 

556 of the SNR of all frequency channels simultaneously. They used a DNN with 3 hidden layers, each 

557 composed of 1024 rectified linear units, and changed the feature extraction process to broadband 

558 features (being extracted across all frequency channels simultaneously) resulting in a greatly reduced 

559 number of features (64 times smaller) and an input layer dimensionality of just 259. However, this 

560 DNN system still had nearly 2.5 million tunable parameters. In the most recent studies on DNN-based 

561 speech separation, the complexity was increased again to DNNs with nearly 4 million (Healy et al., 

562 2015) and more than 20 million tunable parameters (Chen et al., 2016). Recent advances in 

563 computational power through the use of supercomputers and graphics processing units (GPUs) made 

564 it possible to train and execute such complex algorithms in reasonable amounts of time. However, the 

565 application of such complex algorithms to hearing devices with strongly limited computational and 

566 memory resources is not feasible at present. In contrast, the NNSE algorithm uses a smaller number of 

567 relatively simple features combined with a much smaller NN regression system consisting of 2 hidden 

568 layers with 75 units each. This NN system has 18,631 tunable parameters, 2/3 of those used by Bolner 

569 et al. (2016). NNSE employs 200 times fewer parameters than the system used by Healy et al. (2015) 

570 and has a 1000-fold smaller system complexity than the system used by Chen et al. (2016).
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571 Real-time processing requires a processing delay of less than 20-30 ms to ensure perceived audio-

572 visual synchrony and acceptance by users of hearing devices (Stone and Moore, 2005). Besides the 

573 computational complexity aspect, which may become less relevant with the steady increase in 

574 computational power, the algorithm architectures used in many studies make use of non-causal 

575 processing involving the analysis of “future” frames (e.g. from feature sets using 2 future frames used 

576 by Healy et al., 2015, up to 11 future frames used by Chen et al., 2016). Generally, algorithms need to 

577 work in a causal way to be implementable in hearing devices that meet the perceptual requirements of 

578 potential end-users. The NNSE algorithm proposed in this study satisfies this requirement by using 

579 only the past and the current frames.

580 An important aspect of SE algorithms is their ability to generalize to unseen acoustic conditions. 

581 NNSE was designed to satisfy several generalization requirements. Firstly, multiple SNRs were used 

582 for training, yielding an algorithm that worked over a range of SNRs. This was assessed by using an 

583 error rate analysis where NNSE gave decreased total error rates relative to the unprocessed condition 

584 for all noise types and SNRs (and even for an untrained SNR of 10 dB). Secondly, novel realizations 

585 of a specific type of background noise were used for evaluation. NNSE performed well in these more 

586 challenging conditions (as it was also shown by Bolner et al., 2016, and Healy et al., 2015). Thirdly, 

587 NNSE-MT was tested using a novel speaker and substantial improvements were found for two out of 

588 three noise types. However, generalization to unseen types of noise was not assessed with the current 

589 study that used noise-specific training and testing. A future goal is to design a system that works in 

590 completely novel noise conditions, but still meets the constraints on delay and computational power of 

591 CI processors.

592 Kim and Loizou (2010) reported that a GMM classifier using amplitude modulation spectrum (AMS) 

593 features for estimating the IBM, that was trained on a large number of noise types, failed to achieve 

594 satisfactory performance with unseen noises (low classification rates). This was the case even when a 

595 speaker-dependent classifier was used. Instead of employing large-scale training to improve 

596 generalization, they proposed incrementally adapting the system to new noises. May and Dau (2014) 

597 have shown that a GMM-based classifier trained on AMS features tended to overfit the training data 

598 more when they increased the dimensionality of the feature space and the complexity of the classifier. 

599 The authors observed a larger decrease in classification performance when the algorithm was tested 

600 on novel segments of the same noise type for the more complex classifier and feature combinations 

601 than for the less complex ones (no evaluation on unseen noise types was performed). They proposed 

602 addressing the problem of overfitting with the use of a less complex classification system and a lower 

603 dimensionality of the feature space. Chen et al. (2016) used large-scale training with thousands of 

604 background noises in combination with a powerful DNN system and showed that generalization to 

605 unseen noises could be achieved when speaker-dependent models were used. This is a promising 

606 result and suggests that DNN-based systems might improve generalization to unseen noises compared 
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607 to the GMM-based systems that were used in previous studies (Kim and Loizou, 2010; May and Dau, 

608 2014).

609 GMM-based systems have been used mostly in combination with AMS features (Kim et al., 2009; 

610 Kim and Loizou, 2010; Hu and Loizou, 2010; May and Dau, 2014). Chen et al. (2014), showed that 

611 Gammatone-based features performed better than other features (including AMS) in terms of 

612 classification accuracy and HIT-FA rates with a DNN-based system. During the optimization of 

613 NNSE, we found similar results, confirming an advantage of Gammatone-based energy features over 

614 AMS features. We combined the processing paradigms of Gammatone-based RASTA-PLP features 

615 (that incorporate temporal aspects of speech such as modulations), and GFCC features (that perform a 

616 de-correlation of the spectral information), with log-compressed Gammatone-energy features in order 

617 to increase the robustness to noise and changes in speaker characteristics. 

618 We performed a pilot experiment to evaluate the performance of the NNSE algorithm with unseen 

619 types of noise. We used 12 real-world recordings from different noisy environments (various 

620 recordings from a stadium, several restaurants and cafeterias, a classroom, a train, city and highway 

621 traffic situations; all obtained from freesound.org) and combined 20-s long segments of each 

622 recording to form a multi-noise recording with a total length of 4 minutes (the same length as 

623 employed for the noise-specific NNSE). The NNSE algorithm was trained on the multi-noise 

624 recording using the same procedure as for the listening experiment, and its performance to the noises 

625 employed for the training of the noise-specific NNSE was assessed objectively using the NCM speech 

626 intelligibility predictor. The NCM scores are shown in Fig. 6 for the single- and multi-talker NNSE 

627 algorithm for both noise-specific and noise-independent training (the NCM scores were calculated 

628 using 20 sentences from the LISTm corpus).

629 PLACEHOLDER - Figure 6

630

631 For SWN and BABBLE, there was a small decrease in performance with the noise-independent 

632 algorithm compared to the noise-specific algorithm for NNSE-ST, and a larger decrease in 

633 performance with the noise-independent algorithm compared to the noise-specific algorithm for 

634 NNSE-MT. Interestingly, large improvements in NCM scores for both NNSE-ST and NNSE-MT 

635 were achieved with the noise-independent algorithms relative to UN. This is promising, because NCM 

636 was proven useful for predicting intelligibility outcomes for vocoded stimuli in our pilot study using 

637 CI simulations (Bolner et al., 2016) and for CI users (Chen and Loizou, 2011), but it remains unclear 

638 if the predicted improvements relative to UN will occur for CI users. For ICRA, the performance of 

639 the noise-independent algorithm was much reduced in comparison to that for the noise-specific 

640 algorithm for NNSE-ST, and the predicted performance of the noise-independent algorithm equaled 

641 that for UN for NNSE-MT (it should be noted that the noise-independent algorithm did not impair 
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642 intelligibility relative to UN). We speculate that the difference in predicted performance between 

643 noise conditions depends on the degree of similarity of the spectro-temporal characteristics between 

644 the training and testing noise types. The NCM scores indicate that both the speaker-dependent and the 

645 speaker-independent NNSE algorithms generalize better to unseen noise types for cases when the 

646 spectro-temporal modulation patterns are somewhat similar between the training and testing noises (as 

647 was the case for SWN and BABBLE) than when the training and testing noises contain different 

648 spectro-temporal modulation patterns (in the case of ICRA). Instead of using multi-noise training to 

649 increase algorithm performance in unseen noise types, a noise-specific algorithm could be combined 

650 with an environmental classifier to provide a priori knowledge about the noise type (Hazrati et al., 

651 2014; May and Dau, 2013), while retaining the advantages of high SE performance in combination 

652 with low processing delay and potentially reduced computational complexity compared to a “one-for-

653 all” large-scale algorithm.

654 6. CONCLUSIONS

655 A speech enhancement algorithm based on neural networks (NNSE) intended to improve the 

656 perception of speech in noise was evaluated using 14 CI users. Significant improvements, ranging 

657 from 1.4 to 6.4 dB in SRT, were achieved with noise-specific neural networks using stationary and 

658 non-stationary background noise. The architecture and low processing delay of the NNSE algorithm 

659 make it suitable for application in hearing devices. While NNSE was evaluated using a noise-specific 

660 approach, several aspects of generalization to unseen acoustic conditions were addressed, most 

661 importantly performance with a speaker not used during the training stage. Even though 

662 improvements in SRT scores were about 1 to 1.5 dB lower than for the speaker-dependent algorithm, 

663 substantial and statistically significant improvements were found for 2 out of 3 noise conditions for 

664 the speaker-independent NNSE algorithm. The benefits in CI users’ speech in noise understanding are 

665 promising and provide motivation for further investigations of this approach. Future development in 

666 the rapidly growing field of machine learning can be expected to improve the estimation accuracy and 

667 generalization performance to unseen conditions.
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Figure Captions

Figure 1. Block diagram of the proposed speech enhancement algorithm integrated into the 

ACE signal path (including an automatic gain control, AGC, and loudness growth function, 

LGF). The algorithm has two components: Feature Extraction and Neural Network.

Figure 2. Electrodogram of the sentence 'Het verhaal is heel spannend' produced by a male 

speaker (LISTm) at a level of 65 dB SPL. The top panel is for the noise-free signal. The 

second panel is for the signal with BABBLE noise (SNR = 5 dB). The third and fourth panels 

are for the conditions with NNSE-MT and NNSE-ST, respectively.

Figure 3. Error rate analysis for UN, NNSE-MT and NNSE-ST processing conditions for the 

three noises, at –5, 0, 5 and 10 dB SNR. Lines join error rates for the same input SNR. The 

target speech was LISTm sentences (not part of the training database of either of the NNSE 

algorithms).

Figure 4. Group mean SRTs with UN (ACE), NNSE-MT (multi-talker) and NNSE-ST (single-

talker) processing for each noise type (left: SWN, center: ICRA, right: BABBLE). Error bars 

represent the standard error of the mean; (*) p ≤ 0.05, (**) p ≤ 0.01, (***) p ≤ 0.001.

Figure 5. Top panel: Individual SRTs for UN (ACE), NNSE-MT (multi-talker) and NNSE-ST 

(single-talker) processing for each noise type (left: SWN, center: ICRA, right: BABBLE). 

Bottom panel: individual SRT change (positive is better) relative to the UN condition for 

NNSE-MT and NNSE-ST, for the three noises. Subjects are ordered by their performance 

for speech in UN (ascending SRT from left to right).

Figure 6. NCM intelligibility prediction scores for UN (ACE), MT-NI (NNSE-MT with noise-

independent training), MT-NS (NNSE-MT with noise-specific training), ST-NI (NNSE-ST with 

noise-independent training), ST-NS (NNSE-ST with noise-specific training) and IRM (ideal 

ratio mask) for each noise type (left: SWN, center: ICRA, right: BABBLE).
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Table Captions

Table 1. Individual subject demographics: age (years), tested ear (left/right), duration of 

implant use (years), implant type, origin of hearing loss, etiology, and duration of profound 

hearing loss (years).

Table 2. CI parameters for each of the 14 subjects during the study: channel stimulation rate 

(Hz), number of maxima/number of active electrodes, THL and MCL (threshold and comfort 

levels in current level, CL), minimum and maximum of the dynamic range (DR, in CL).
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Highlights

• An algorithm for improving speech understanding in noise for cochlear implant users is 
evaluated

• Significant improvements were found for stationary and non-stationary noise types

• It generalizes to a novel speaker and works over a range of signal-to-noise ratios

• The small algorithmic delay makes it suitable for real-time application 


