Microfluidic system for chemiluminescence characterisation
Microfluidic system for chemiluminescence characterisation
Microfluidic technology (generally lab-on-a-chip) has been focused area of research since 90s and the main goal of this technology is to develop different chemical and biological techniques. It is quicker than the correspondent traditional techniques and consumes small volumes of material.
One of the important functions in micro scale fluidic channels is mixing that its characteristics affected by scale because the viscous forces are more than inertial forces in this range of dimensions that provides laminar flow inside the channel; in this scale the mixing is defined by diffusion rather than turbulence.
This dissertation presents the design of a microfluidic device and employing a combination of rapid prototype technology with polydimethylsiloxane (PDMS) for the fabrication. After the fabrication, chemiluminescence phenomenon is tested inside the device and the resultant images from the charge-coupled-device (CCD) camera are analysed using numerical analysis and image processing.
Two sets of tests are performed for characterising the chemiluminescence in fabricated device. Preliminary tests to check the device and the chemicals’ behaviour and the actual test. In order to find the limit of detection, which is obtained as lower than 4 x 10-6 g of the dominant chemical (luminol) concentration in 100 ml of the solution, depends upon different parameters such as flow rate and the concentration of luminol are checked. The effect of the flow rate and the concentration on the maximum value and the decay length of the light intensity along the fluidic missing channels are then discussed.
In the final part of the project, nanoparticles are used to improve the intensity of the light in the channel in order to improve the limit of detection of the system.
Mosayyebi, Ali
ab9cf6da-58c4-4441-993b-7d03d5d3549a
May 2013
Mosayyebi, Ali
ab9cf6da-58c4-4441-993b-7d03d5d3549a
Wilkinson, James
73483cf3-d9f2-4688-9b09-1c84257884ca
Butement, Jonathan
24ec84ac-7e21-4f66-a2de-68b81f54da63
Karabchevsky, Alina
26a2c158-ef26-43be-8f10-b37e04baa017
Mosayyebi, Ali
(2013)
Microfluidic system for chemiluminescence characterisation.
University of Southampton, School of Electronics and Computer Science: Optoelectronics Research Centre, Masters Thesis.
Record type:
Thesis
(Masters)
Abstract
Microfluidic technology (generally lab-on-a-chip) has been focused area of research since 90s and the main goal of this technology is to develop different chemical and biological techniques. It is quicker than the correspondent traditional techniques and consumes small volumes of material.
One of the important functions in micro scale fluidic channels is mixing that its characteristics affected by scale because the viscous forces are more than inertial forces in this range of dimensions that provides laminar flow inside the channel; in this scale the mixing is defined by diffusion rather than turbulence.
This dissertation presents the design of a microfluidic device and employing a combination of rapid prototype technology with polydimethylsiloxane (PDMS) for the fabrication. After the fabrication, chemiluminescence phenomenon is tested inside the device and the resultant images from the charge-coupled-device (CCD) camera are analysed using numerical analysis and image processing.
Two sets of tests are performed for characterising the chemiluminescence in fabricated device. Preliminary tests to check the device and the chemicals’ behaviour and the actual test. In order to find the limit of detection, which is obtained as lower than 4 x 10-6 g of the dominant chemical (luminol) concentration in 100 ml of the solution, depends upon different parameters such as flow rate and the concentration of luminol are checked. The effect of the flow rate and the concentration on the maximum value and the decay length of the light intensity along the fluidic missing channels are then discussed.
In the final part of the project, nanoparticles are used to improve the intensity of the light in the channel in order to improve the limit of detection of the system.
Text
am10g11 MSc Dissertation.pdf
- Other
More information
Published date: May 2013
Organisations:
University of Southampton, Optoelectronics Research Centre
Identifiers
Local EPrints ID: 403346
URI: http://eprints.soton.ac.uk/id/eprint/403346
PURE UUID: 58105b71-58c7-4a91-aebf-ade80d59f11c
Catalogue record
Date deposited: 28 Nov 2016 09:15
Last modified: 14 Dec 2024 02:54
Export record
Contributors
Author:
Ali Mosayyebi
Thesis advisor:
Jonathan Butement
Thesis advisor:
Alina Karabchevsky
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics